
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Qualitative Polyline Similarity Testing With Applications To

Query-By-Sketch, Indexing And Classification

Peer-reviewed author version

KUIJPERS, Bart; MOELANS, Bart & Van de Weghe, N (2006) Qualitative Polyline

Similarity Testing With Applications To Query-By-Sketch, Indexing And

Classification. In: de By, Rolf A. & Nittel, Silvia (Ed.) Proceedings of the 14th ACM

International Symposium on Geographic Information Systems, ACM-GIS 2006. p. 11-18..

DOI: 10.1145/1183471.1183475

Handle: http://hdl.handle.net/1942/1408

Qualitative Polyline Similarity Testing with Application s to
Query-by-Sketch, Indexing and Classification

Bart Kuijpers
Theoretical Computer Science

Hasselt University &
Transnational University of

Limburg, Belgium

bart.kuijpers@uhasselt.be

Bart Moelans
Theoretical Computer Science

Hasselt University &
Transnational University of

Limburg, Belgium

bart.moelans@uhasselt.be

Nico Van de Weghe
Geography Department

Ghent University
B-9000 Ghent, Belgium

nico.vandeweghe@ugent.be

ABSTRACT
We present an algorithm for polyline (and polygon) simi-
larity testing that is based on the double-cross formalism.
To determine the degree of similarity between two polylines,
the algorithm first computes their generalized polygons, that
consist of almost equally long line segments and that approx-
imate the length of the given polylines within an ε-error
margin. Next, the algorithm determines the double-cross
matrices of the generalized polylines and the difference be-
tween these matrices is used as a measure of dissimilarity
between the given polylines. We prove termination of our
algorithm and show that its sequential time complexity is

bounded by O
“

(max(N1,N2)
ε

)2
”

, where N1 and N2 are the

number of vertices of the given polylines. We apply our
method to query-by-sketch, indexing of polyline databases,
and classification of terrain features and show experimental
results for each of these applications.

Categories and Subject Descriptors
H.2.1 [Database Management]: Logical Design; H.2.8
[Database Management]: Database Applications—Spa-
tial databases and GIS

General Terms
Algorithms, Theory, Design

Keywords
Polygons, Polylines, Similarity, Double-Cross Calculus, Qual-
itative Calculi

1. INTRODUCTION AND SUMMARY
In several domains, such as computer vision, image analy-

sis and GIScience, shape recognition and retrieval are central

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM-GIS’06,November 10–11, 2006, Arlington, Virginia, USA.
Copyright 2006 ACM 1-59593-529-0/06/0011 ...$5.00.

problems. Roughly speaking, there are two approaches to
shape recognition and retrieval: the quantitative approach
and the qualitative approach. Traditionally, most attention
has gone to the quantitative methods [?, ?, ?, ?] and only re-
cently, the qualitative approach has gained more attention,
supported by cognitive studies that provide evidence that
qualitative models of shape representation tend to be much
more expressive than their quantitative counterpart [?]. It
is widely accepted that shapes are one of the most complex
phenomena that have been dealt with using a qualitative
representation of space [?].

Within the qualitative approaches to describe two-dimen-
sional shapes there are two major approaches: the region-
based and the boundary-based approach. The region-based
approach uses global properties such as circularity, eccentric-
ity and axis orientation to describe shapes. As a result, this
approach can only discriminate shapes with large dissimilar-
ities [?]. The boundary-based approach describes the type
and position of localized features (such as vertices, extremes
of curvature and changes in curvature) along the polyline
representing the shape [?]. Among the boundary-based ap-
proaches are [?, ?, ?, ?, ?, ?, ?].

In this paper, we assume shapes to be described by their
boundaries, which we assume to be polygons. As a gen-
eralization of polygons, we consider polylines and use this
more general term in the remainder of the exposition, also
to include polygons. At the basis of polyline recognition and
retrieval lie algorithms to determine similarity between poly-
lines. Here, we follow the qualitative formalism provided by
the double-cross calculus [?, ?], which is used in the quali-
tative trajectory calculus for shapes [?], to test for polyline
similarity. The double-cross matrix of a polyline contains
for each pair of line segments in the polyline a 4-tuple of −,
+, and 0 that describes the relative qualitative position of
these line segments to each other. We remark that there are
81 possible such 4-tuples, but that only 65 of these 4-tuples
are physically realizable.

For two given polylines, our method computes, if the poly-
lines have equally many vertices, the double-cross matrices
of the polylines and returns some distance value between
these matrices as a measure of dissimilarity. A problem
might be that the two given polylines of which we want to
test similarity, may be given with a different number of ver-
tices. To overcome this difference, our algorithm first com-
putes for each of the two polylines a series of so-called gener-
alized polylines, that consist of 2, 4, 8, ..., 2n, ... line segments.

The nth generalized polyline has its vertices exactly at frac-
tions 0, 1

2n , 2
2n , ..., 2n

2n of the length of the original polyline.
The generalized polylines have the property that they con-
verge (also in length) to the given polylines and that they
tend to consist of equally long line-segments. The latter
property has the advantage that line segments analogously
subdivided polylines, point to relatively analogous places on
the polylines. The idea of using generalized polylines was
introduced by two of the present authors in [?] and used in
a naive way. In this paper, we optimize this approach and
give a theoretical analyzis and complexity considerations of
this idea.

Our algorithm for testing the similarity of two polylines,
given by a sequence of vertices, works grosso modo as fol-
lows. For two given polylines, the algorithm computes their
respective generalized polylines until their lengths approx-
imate that of the given polylines sufficiently (this is for-
malized by an error-percentage ε that is part of the input).
Once we have the generalized polylines, we compute their
double-cross matrices and output the distance between these
matrices. There are many possible ways to define a distance
function between matrices. The one that we discuss in this
paper, has shown to give the best results in practical exper-
iments. To compute this distance, we first create for each
of the two double-cross matrices a 65-ary vector of natural
numbers that counts for each of the 65 realizable 4-tuples of
−, + and 0, the number of times they occur in the matrix.
The distance-function then counts the average difference be-
tween the 65 count values.

We prove several properties of our algorithm for testing
polyline similarity. The algorithm is guaranteed to termi-
nate on any input and when it terminates the generalized
polyline tends to consist of equally long line segments. It

computes at most ⌊log
“

max(N1,N2)
ε

”

⌋ + 1 generalized poly-

lines, where N1 and N2 are the number of vertices of the
given polylines. We also show a theoretical upper bound
on the overall sequential time complexity of our algorithm,

which is O
“

(max(N1,N2)
ε

)2
”

. Although our algorithm con-

tains large parts that are parallellizable, this only gives a
gain by a factor of 2 compared to the sequential time com-
plexity.

We apply our algorithm to three problems and give empir-
ical test results on geographic data. Firstly, we consider the
problem of similar polygons. We apply our implementation
to various (polygonalized) sketches of a map of Belgium and
it correctly orders the sketches in terms of increasing simi-
larity.

Secondly, we take a look at the query-by-sketch problem,
which allows a user to visually describe shapes or move-
ments, in order to retrieve them from a database [?, ?].
It turns out that our algorithm performs well in classify-
ing sketches of maps and also in retrieving geographic data
given a query that is expressed as a two-dimensional sketch.
In this experiment we also show the above mentioned 65-
dimensional vector of count values can be used as an index
on a database containing polygonal figures. We consider
the problem of retrieving cities in Belgium by sketch and
the output, which is a top 4 of best fitting cities, seems to
correspond to what the human eye would recognize.

Thirdly, we apply our algorithm to polylines that repre-
sent terrain features (such as plateau, mesa, flat-floored val-
ley, u-shape valley, depression and canyon) [?]. Experiments

on fairly simple terrains give good results, but it seems that
for more complex profiles, a division is needed according to
the local maxima or minima of the terrain to obtain fits for
the corresponding parts of the terrain.

Organization. This paper is organized as follows. In
Section ??, we define polylines and generalized polylines.
Also the double-cross formalism is explained there. In Sec-
tion ??, the algorithm for testing polyline similarity is given
and some basic properties are proven. We also give an anal-
ysis of its computational complexity. In Section ??, we
discuss the experiments with query-by-sketch, indexing and
classification of terrain features.

2. DEFINITIONS AND PRELIMINARIES
In this section, we define polylines and generalized poly-

lines and explain the double-cross formalism.

2.1 Polylines and polygonal shapes
Let R denote the set of real numbers and R

2 the real plane.

Definition 1. A polyline P in R
2 is a piecewise linear curve

that is given by an ordered list of its vertices, i.e., P = 〈(x0,
y0), (x1, y1), ..., (xN , yN)〉. A polygonal shape (or polygon)
is a polyline P = 〈(x0, y0), (x1, y1), ..., (xN , yN)〉 for which
(x0, y0) = (xN , yN).

Let P = 〈(x0, y0), (x1, y1), ..., (xN , yN)〉 be a polyline. The
vertices (x0, y0) and (xN , yN) are respectively the start and
end vertex of P . We denote the line segment between (xi, yi)
and (xi+1, yi+1) by Li(P) and its length by ℓ(Li(P)). We
call ℓ(P) := ℓ(L0(P)) + ℓ(L1(P)) + · · · + ℓ(LN−1(P)) the
length of P . The vector from (xi, yi) to (xi+1, yi+1) will be

denoted
−→
ℓi (P). If P is clear from the context, we will omit

(P) from the above notations.
The semantics of the polyline P = 〈(x0, y0), (x1, y1), ...,

(xN , yN)〉 is the subset of R
2 consisting of all line segments

between consecutive vertices of P , and we write

sem(P) :=
[

1≤i<N

Li(P).

Often, when confusion is not possible, we will just talk about
P when we mean sem(P).

We remark that the above definition does not exclude that
three or more consecutive vertices may be collinear. In fact,
different polylines, given by their vertices, may have the
same semantics. We also remark that the line segments,
appearing in the semantics, may intersect, as is illustrated
in the polyline shown in Figure ??. As geographic input
data, we only consider polylines and polygons that are not
self-intersecting, but polylines that occur in our algorithms
may be self-intersecting. For this reason we allow them in
the definition. For the sake of finite representability, we
assume that the vertices have rational coordinates.

When we describe our algorithm to test polyline similar-
ity, we will use, for a given polyline P , a number of so-
called generalized polylines P 2, P 4, P 8, ..., P 2n

, ... that tend
(as n grows) to consist of equally long line segments. To
define these generalized polylines, we first need to define
the distance along P from the start vertex of P to some
point belonging to sem(P). Hereto, we introduce a function
λP : [0, ℓ(P)] → R

2 that maps a length τ to the unique
point of Lk(P) at distance τ ′ from (xk, yk), where τ =
Pk−1

i=0 ℓ(Li(P)) + τ ′ with 0 ≤ τ ′ < ℓ(Lk(P)) (with k ≥ 0).

(7

2
, 0)(0, 0)

(0, 1)

(1, 0)

(2, 1)
(4, 1)

Figure 1: An example of a polyline: P =
〈(0, 0), (0, 1), (2, 1), (7

2
, 0), (4, 1), (1, 0)〉. Its semantics,

drawn by means of the lines, is self-intersecting.

(0, 0) (1, 0)

(1, 1)(0, 1)

Figure 2: An example of a polyline P =
〈(0, 1), (0, 0), (1, 0), (1, 1)〉, drawn in full lines. Next,
P 2 is shown in dashed lines and P 4 in dotted lines.

Definition 2. Let P = 〈(x0, y0), (x1, y1), ..., (xN , yN)〉 be
a polyline. We define the generalized polylines of P , denoted
P 2, P 4, P 8, ..., P 2n

, ... as follows. The polyline P 2n

= 〈(u0,
v0), (u1, v1), ..., (u2n , v2n)〉 with (ui, vi) the unique point on
sem(P) at distance i

2n ·ℓ(P) from the start vertex of P along

P , i.e., (ui, vi) = λP (i
2n · ℓ(P)), for i = 0, 1, ..., 2n.

We remark that, in general, sem(P) and sem(P 2n

) are not
the same. They may even be different for arbitrary n. An ex-
ample of this fact is given in Figure ??. Here, the three lines
that make up the polyline P = 〈(0, 1), (0, 0), (1, 0), (1, 1)〉 are
all equally long. Consequently, the vertices (0, 0) and (1, 0)

will never belong to sem(P 2n

), since 1
3
6= i

2n for any n and
any 0 ≤ i ≤ 2n.

2.2 The double-cross formalism
The double-cross calculus [?, ?] is an expressive way of

qualitatively representing a configuration of two vectors by
means of a 4-tuple that expresses the orientation of both
vectors with respect to each other. The double-cross for-
malism is, for instance, used in the “qualitative trajectory
calculus for shapes” [?, ?, ?, ?, ?, ?].

Above, we have associated to a polyline P = 〈(x0, y0), (x1,

y1), ..., (xN , yN)〉 the vectors
−→
ℓi (P), representing oriented

line segments between (xi−1, yi−1) and (xi, yi), for i = 1, ...,
N .

We use the double-cross formalism to qualitatively present

the orientation between
−→
ℓi and

−→
ℓj by means of a 4-tuple

(C1 C2 C3 C4) from {−, 0, +}4 (traditionally this 4-tuple is

written without commas). Consider two vectors
−→
ℓi and

−→
ℓj .

First of all, we define a “double cross” for these two vectors,
determined by three lines:

- RL: the Reference Line connecting (xi−1, yi−1) and (xj−1,
yj−1);

- PLi: the Perpendicular Line on RL through (xi−1, yi−1);

- PLj : the Perpendicular Line on RL through (xj−1, yj−1).

PLj

(xi−1, yi−1)
(xj , yj)

−→

ℓ j

(xj−1, yj−1)

RL

−→

ℓ i

(xi, yi)
−→u

PLi

Figure 3: Double-cross design: the lines RL, PLi, PLj .

We refer to the vector between (xi−1, yi−1) and (xj−1, yj−1)
as −→u . The lines RL, PLi, PLj and the vector −→u are illus-
trated in Figure ??.

Definition 3. For
−→
ℓi ,

−→
ℓj with (xi−1, yi−1) = (xj−1, yj−1),

we define, for reasons of continuity [?], DC(
−→
ℓi ,

−→
ℓj) =

(C1 C2 C3 C4) = (0 0 0 0). For
−→
ℓi ,

−→
ℓj with (xi−1, yi−1) 6=

(xj−1, yj−1), we define the 4-tuple

DC(
−→
ℓi ,

−→
ℓj) = (C1 C2 C3 C4)

as follows:

C1 = − iff (xi, yi) lies on the same side of PLi

as (xj−1, yj−1) and (xi, yi) 6∈ PLi;
C1 = 0 iff (xi, yi) ∈ PLi;
C1 = + iff else;
C2 = − iff (xj , yj) lies on the same side of PLj

as (xi−1, yi−1) and (xj , yj) 6∈ PLj ;
C2 = 0 iff (xj , yj) ∈ PLj ;
C2 = + iff else;
C3 = − iff (xi, yi) lies on the left of −→u ;
C3 = 0 iff (xi, yi) ∈ RL;
C3 = + iff else;
C4 = − iff (xj , yj) lies on the right of −→u ;
C4 = 0 iff (xj , yj) ∈ RL; and
C4 = + iff else.

For example, the 4-tuple for the vectors
−→
ℓi and

−→
ℓj , shown

in Figure ??, is (+ −−−).

In the algorithms below, we shall compute, for given
−→
ℓi

and
−→
ℓj , the value DC(

−→
ℓi ,

−→
ℓj) = (C1 C2 C3 C4) algebraically

as is described in the following property. By sign : R →
{−, 0, +} we denote the function that maps strictly negative
numbers to −, 0 to 0 and strictly positive numbers to +.

Proposition 1. Let
−→
ℓi and

−→
ℓj have coordinates as described

in Figure ??. Then we have

C1 = −sign((xj−1 − xi−1) · (xi − xi−1)
+(yj−1 − yi−1) · (yi − yi−1));

C2 = sign((xj−1 − xi−1) · (xj − xj−1)
+(yj−1 − yi−1) · (yj − yj−1));

C3 = −sign((xj−1 − xi−1) · (yi − yi−1)
−(yj−1 − yi−1) · (xi − xi−1));

and
C4 = sign((xj−1 − xi−1) · (yj − yj−1)

−(yj−1 − yi−1) · (xj − xj−1)).

Proof. For
−→
ℓi =

−→
ℓj , it is clear that the four above for-

mulas evaluate to zero. So, let’s assume
−→
ℓi 6=

−→
ℓj . Let us con-

sider the following vectors in R
3: −→u = (xj−1 − xi−1, yj−1 −

yi−1, 0),
−→
ℓ′i = (xi − xi−1, yi − yi−1, 0)

−→
ℓ′j = (xj − xj−1, yj −

yj−1, 0) and −→w = (0, 0, 1).
The well-known formula to calculate the angle θ between

the two vectors −→u and −→v is cos(θ) =
−→u .−→v

|−→u |.|−→v |
(the · denotes

the scalar product of two vectors). So, we have cos(θ) = 0 if
and only if −→u .−→v = 0 if and only if θ = ±90◦. So −→u .−→v = 0
means that −→u is perpendicular to −→v . On the other hand,
we have cos(θ) > 0 when θ ∈]−90◦, 90◦[, so when −→u .−→v > 0.
And finally −→u .−→v < 0 is equivalent to θ ∈]90◦, 270◦[. When

we apply this reasoning to −→v =
−→
ℓ′i and −→v =

−→
ℓ′j , we obtain

the expressions for C1 and C2: C1 = −sign(−→u ·
−→
ℓ′i) and

C2 = −sign(−−→u ·
−→
ℓ′j).

For C3, we consider the block-product (−→u ×
−→
ℓ′i) ·

−→w . This

product is zero if and only if −→u and
−→
ℓi are collinear. The

vectorial product −→u × ~ℓ′i is a vector pointing in the direction

of positive z-coordinate if and only if
−→
ℓ′i is on the right of

−→u , which means that (−→u ×
−→
ℓ′j) · −→w < 0 in this case.

The case of C4 is completely similar to that of C3, after
interchanging left and right. So, we have C3 = −sign((−→u ×
−→
ℓ′i) ·

−→w) and C4 = sign((−→u ×
−→
ℓ′j) · −→w).

The following property says how DC(
−→
ℓj ,

−→
ℓi) can be de-

rived from DC(
−→
ℓi ,

−→
ℓj) in a straightforward way.

Proposition 2. If DC(
−→
ℓi ,

−→
ℓj) = (C1 C2 C3 C4), then we

have DC(
−→
ℓj ,

−→
ℓi) = (C2 C1 C4 C3).

If we write −− for +; −+ for − and −0 for 0, we easily
obtain the following property.

Proposition 3. If DC(
−→
ℓi ,

−→
ℓj) = (C1 C2 C3 C4) and σ :

R
2 → R

2 is a reflection along a line, then we have the equal-

ity DC(σ(
−→
ℓi), σ(

−→
ℓj)) = (C1 C2 − C3 − C4).

2.3 The double-cross matrixDCM

Based on the double-cross formalism, we now define the
double-cross matrix of a polyline.

Definition 4. A double-cross matrix DCM(P) of a poly-
line P = 〈(x0, y0), (x1, y1), ..., (xN , yN)〉 is a N × N matrix

with DCM(P)[i, j] = DC(
−→
ℓi ,

−→
ℓj).

Because of Proposition ?? and because the diagonal entries
of DCM(P) are all (0 0 0 0), it suffices to consider only

the upper triangle of the matrix DCM(P), i.e., the N2−N
2

elements DCM(P)[i, j] with i < j. The following property
is easily verified.

Proposition 4. Let P be a polyline and let α : R
2 → R

2 be
an orientation-preserving isometry (i.e., a composition of a
rotation and translation) or a point-scaling (i.e., a mapping
of the form (x, y) 7→ a · (x, y) with a 6= 0, then DCM(P) =
DCM(α(P)).

We remark that the double-cross matrix is not invariant
under scalings of the form (x, y) 7→ (a · x, b · y) with a 6= b.
More specifically, C1 and C2 are not invariant under these
scalings, but C3 and C4 are invariant.

3. POLYLINE SIMILARITY ALGORITHM

3.1 The algorithm DC-similar∆

We now describe our algorithm for determining the simi-
larity of polylines and polygonal shapes (we give it in pseudo-
code). This algorithm returns a degree of similarity between
two given polylines P1 and P2. It uses an error rate ε (with
0 ≤ ε ≤ 1) and depends on a distance function ∆ between
double-cross matrices, which we consider a parameter of the
algorithm.

Basically, the algorithm computes the generalized poly-
lines of P1 and P2 until these approximate the length of P1

and P2 up to an error ε (a “small” percentage of the length).
Then the double-cross matrices of the generalized polylines
are computed and the distance between them is returned.

Algorithm DC−similar∆

input : t r a j e c t o r i e s P1, P2 ;
th r e sho ld 0 ≤ ε ≤ 1 .

set n :=1;
compute P 2

1 and P 2
2 ;

while |ℓ(P 2n

1) − ℓ(P1)| ≥ ε · ℓ(P1)

or |ℓ(P 2n

2) − ℓ(P2)| ≥ ε · ℓ(P2)
do

n:=n+1;
compute in p a r a l l e l

1 . P 2n

1 from P 2n−1

1 and P1 ; and

2 . P 2n

2 from P 2n−1

2 and P2 ;
od

compute in p a r a l l e l

1 . M1 := DCM(P 2n

1) ; and

2 . M2 := DCM(P 2n

2) ;
return ∆(M1, M2) .

As mentioned, ∆(M1, M2) expresses a measure of differ-
ence or distance between the two double-cross matrices M1

and M2. There are many possibilities here, but in our exper-
iments we have used the distance function ∆H (for an alter-
native function ∆E , we refer to Section ??). To define the
distance measure ∆H(M1, M2) between DoubleCross matri-
ces, we first construct, for both matrices M1 and M2, vectors
γ(M1), γ(M2) ∈ N

65 that counts for each of the 65 realizable
4-tuples of −, + and 0, the number of times they occur in
the matrices M1 and M2. Then

∆H(M1, M2) =
1

N2 − N

65
X

i=1

|γ(M1)[i] − γ(M2)[i]| .

The function ∆H counts the average difference between the
65 count values.

3.2 Basic properties ofDC-similar∆

We now give some basic properties of DC-similar∆. To
start, we show that the algorithm is guaranteed to termi-
nate on any input. We remark that these properties are
independent of the choice of ∆ (as long as the evaluation of
∆ terminates).

Proposition 5. The algorithm DC-similar∆ terminates
on any inputs P1, P2 and 0 < ε ≤ 1.

Proof. To prove this property, it suffices to show that for
any polyline P and any 0 < ε ≤ 1, there exists an n ≥ 1 such
that |ℓ(P) − ℓ(P 2n

)| < ε · ℓ(P). We prove this by showing

that limn→∞ ℓ(P 2n

) = ℓ(P).

If we construct P 2n+1

from P 2n

and P there are two pos-

sibilities: (1) if each vertex of P 2n+1

is also an element

of sem(P 2n

), then sem(P 2n

) = sem(P) and thus ℓ(P) =

ℓ(P 2n

) = ℓ(P 2n+1

) and the stop condition is satisfied; (2)

there is at least one vertex p of P 2n+1

that is not an ele-
ment of sem(P 2n

). Because of the triangle inequality and

by construction we know that ℓ(P 2n

) < ℓ(P 2n+1

) ≤ ℓ(P).

From these two cases we can deduce that limn→∞ ℓ(P 2n

) =
ℓ(P) and therefore there exists an n ≥ 1 such that |ℓ(P) −

ℓ(P 2n

)| < ε · ℓ(P).

Proposition 6. When the algorithm DC-similar∆, on in-
put P1, P2 and 0 < ε ≤ 1, terminates for some n, then
the standard deviation of the lengths of the line segments of
P 2n

k tends to 0, more specifically, it is bounded by ε
2n · ℓ(Pk)

(k = 1, 2).

Proof. Let P be P1 or P2 and let L1, ..., L2n be the line
segments of P 2n

. Let ℓ̄ denote the average length of the
segments L1, ..., L2n . The square of the standard deviation

σ is then 1
2n

P2n

i=1(ℓ(Li) − ℓ̄)2. By construction and the

triangle inequality we know that ℓ(Li) ≤ ℓ(P)
2n . We also

know that ℓ(P 2n

) =
P2n

i=1 ℓ(Li) > ℓ(P) · (1 − ε). Therefore

σ2 ≤ 1
2n

P2n

i=1(
ℓ(P)
2n − ℓ(P)(1−ε)

2n)2 = (ℓ(P)
2n · ε)2 and thus σ ≤

ε
2n · ℓ(P).

3.3 Time complexity ofDC-similar∆H

The following property gives an upper bound for the se-
quential time complexity of DC-similar∆H

. We remark,
that although large parts of DC-similar∆H

can be per-
formed in parallel, this only gives a gain of a factor of 2.

Proposition 7. The algorithm DC-similar∆H
, on input

P1 = 〈(r0, s0), (r1, s1), ..., (rN1
, sN1

)〉, P2 = 〈(u0, v0), (u1,

v1), ..., (uN2
, vN2

)〉 and 0 < ε ≤ 1, needs O
“

(max(N1,N2)
ε

)2
”

sequential time to return its output.

Proof. Let P = 〈(x0, y0), (x1, y1), ..., (xN , yN)〉 be P1 or

P2. The difference between P and P 2n

is that line segments
of P 2n

can short cut angles of P . Such a short-cut angle

(or series of angles) of P has length ℓ(P)
2n and there can at

most be N cut angles. The difference in length between P

and P 2n

is therefore bounded by N · ℓ(P)
2n . We remark that

this number will eventually, for increasing n, become smaller
than ε ·ℓ(P), since N.ℓ(P) is fixed. Therefore, the algorithm
DC-similar∆H

terminates, on input P1 and P2, as soon as

N1 · ℓ(P1)
2n < ε · ℓ(P1) and N2 · ℓ(P2)

2n < ε · ℓ(P2). This is true

for n = ⌊log
`

M
ε

´

⌋+1 with M = max(N1, N2). In this case,
the while-loop of the algorithm has calculated maximally

2⌊log(M

ε
)⌋+1 ≤ 2M

ε
vertices on the generalized polylines and

to compute the matrices M1 and M2 in the algorithm, we

need in worst cast to calculate
(2 M

ε
)2−2 M

ε

2
≤ 2.(M

ε
)2 entries.

The function ∆H just scan each tuple of M1 and M2 in par-
allel once and needs maximum O(M

ε
) sequential time.

(a) (b)

(c) (d)

(e)

Figure 4: A map of Belgium and some sketches.

4. EXPERIMENTAL RESULTS
In this section we discuss three experiments using Java-

implementations of the algorithm DC-similar∆H
. The run

time results we mention are with respect to a system with
an Intel r©Pentium r©M 1.86 GHz processor and 1GB RAM
running Kubuntu as operating system.

4.1 Experiment 1: Polygon similarity
For the first experiment, we used five figures representing

Belgium (see Figure ??). Figure ?? is the correct representa-
tion of Belgium, consisting of 2047 line segments. Figure ??

is the same figure with the three bumps in the upper part
moved to the right. The remaining three figures are sketches
of Belgium made by respectively a geographer (Figure ??:
real representation, Figure ??: abstract representation) and
a non-specialist (Figure ??).

Figure ?? ?? ?? ?? ??

?? 100% 99% 87% 66% 60%
?? 100% 87% 67% 60%
?? 100% 80% 69%
?? 100% 84%
?? 100%

Table 1: Similarity between polygons of Figure ?? using ∆H

with threshold 5%.

We applied the algorithm DC-similar∆ for ∆ = ∆H to
each two of these five figures with a threshold ε = 5%. The
result are given in Table ??. The measure ∆H gives results
that are very much in line with our intuition. For the above
mentioned hardware, ∆H takes ±2.5 minutes to calculate
the similarity of 2 shapes with 215 line-segments (so ±229

entries). These experiments are in line with the theoretical

complexity bound given by proposition ??. Figure ??, with
the three bumps moved to the right is 99% similar to the real
map. The remaining three sketches of Belgium are ordered
with decreasing similarity corresponding to our feeling.

We remark that ∆H , because it is based on counting
entries in the double-cross matrices, gives the same result,
independent of the start vertex of polygonal input figures.

4.2 Experiment 2: Query by sketch
Because several experiments indicated that ∆H gives good,

start-vertex-independent results, we used the vector of 65
count values that is constructed by ∆H as a method to index
a database. This index is then used to support query-by-
sketch. The 65-ary vector for a sketched figure is computed
and, e.g., the four figures in the database that have a 65-ary
vector closest to it are returned in order of descending best
match.

Figure 5: The 43 cities and villages of Limburg.

More precisely, we have applied this method to perform
a query-by-sketch on the villages and cities of Belgium. In
this experiment we have calculated these index value for
villages and cities, such that the generalized polygons of all
cities approximate the length of the original polygon with
an error smaller than 2%. Then for each of the villages and
cities the 65-ary vector with count values of the 65 possible
4-tuples of −, + and 0, is calculated as an index. Next, we
queried for the presence of a sketched village. The sketched
polygon is generalized up to the same level as the cities and
villages in the database are; its index value is computed;
and the four best fits (using the distance given by ∆H) are
returned.

For the sake of producing readable figures, we here given
an example of a query on a limited sample of cities in Bel-
gium, namely the villages and cities in the province of Lim-
burg, as depicted in Figure ??. This province consists of
43 villages and cities and it is not connected. Building the
index for this sample has costed 0.8 seconds on the above-
mentioned configuration.

The first query is: “Give the 4 cities of Limburg looking
the most as the bowler hat sketched on the left in Figure ??.”
The resulting cities are colored dark gray in Figure ??, with
Lommel, the most similar city, shown in the north. We re-
mark that Proposition ?? guarantees that similarity is tested
invariantly under translations, rotations and scalings, as can
be seen from these results. Indeed, Lommel, looks like a the
given bowler hat but 45◦ rotated.

Another query was: “Give the 4 cities of Limburg looking

Figure 6: Bowler hat and bow tie sketch.

Figure 7: Result of bowler hat query (dark gray) and bow
tie query (light gray).

the most as the bow tie sketched on the right in Figure ??.”
The resulting cities are colored light gray in Figure ??. The
best fit is the village at the bottom right.

4.3 Experiment 3: Classification of terrain
features

Our last experiment deals with terrain features.The fig-
ures in this experiment are inspired by work of Kulik and
Egenhofer [?]. We used the seven figures in Figure ?? as
primitive terrain features to classify some silhouettes of ter-
rains.

We use our ∆H measure to classify the figures in Fig-
ure ??.

Our ∆H algorithm classifies the three silhouettes of Fig-
ure ??, as (a) Mesa, (b) U-Valley and (c) Mesa (or U Val-
ley) respectively (see Tables ??,?? and ??). For (a) and
(b) this corresponds to our visual observations. Figure ??

(c) is more complicated and needs more attention. We di-
vided this figure according to its local maxima and minima
(see Figure ??). The resulting classifications, summarized
in Tables ?? and ??, give a more precise description of these
terrains.

Fig. ?? Fig. ?? Fig. ??

Butte 58% 52% 58%
Plateau 62% 62% 64%

Mesa 71% 64% 70%

Flat Valley 48% 56% 50%
U Valley 63% 77% 68%

Depression 47% 49% 50%
Canyon 42% 50% 43%

Table 2: Classification by ∆H of Figure ?? using the primi-
tives sketched in Figure ??.

(a) Butte (b) Plateau (c) Mesa

(d) Flat-
floored Valley

(e) U-shape
Valley

(f) Depres-
sion

(g) Canyon

Figure 8: Basic shapes of terrain features.

A B C D E
Butte 67% 62% 68% 71% 52%

Plateau 49% 58% 57% 40% 62%

Mesa 68% 71% 78% 65% 62%

Flat Valley 40% 40% 44% 46% 38%
U Valley 48% 54% 56% 40% 49%

Depression 38% 41% 42% 30% 54%
Canyon 39% 42% 40% 30% 47%

Table 3: Classification by ∆H of Figure ?? using the primi-
tives sketched in Figure ??.

5. DISCUSSION
We have given a number of basic properties and described

the time complexity of the algorithm DC-similar∆ for test-
ing polyline similarity. This algorithm depends on a func-
tion ∆ that measures the difference between double-cross
matrices. We have experimented with a number of ∆’s and
∆H , used throughout the paper gives the best experimental
results. As stated, one reason for this might be that it is in-
dependent from the choice of start vertex of a polygon. For
polylines, that are not polygons, it might be preferable to
work with a ∆ that compares corresponding line segments
in the two polylines more directly. We here give an example
of a ∆, namely ∆E , that is more appropriate for polylines.
First, we define a distance δ between elements of {−, 0, +}:
δ(−,−) := δ(+, +) := δ(0, 0) := 0, δ(−, 0) := δ(+, 0) := 1,
δ(−, +) := 2 and δ(x, y) := δ(y, x). Next, we define a dis-
tance δ̄ between entries of the double-cross matrices:

δ̄((C1C2C3C4), (C
′
1C

′
2C

′
3C

′
4)) :=

4
X

i=1

δ(Ci, C
′
i).

Finally, if P1 and P2 are polylines with N edges, then we
define

∆E(DCM(P1), DCM(P2)) :=

(a) (b)

(c)

Figure 9: Some silhouettes of terrains.

a b c d e f
Butte 52% 49% 49% 57% 52% 58%

Plateau 50% 40% 48% 41% 50% 66%

Mesa 53% 49% 53% 53% 53% 68%

Flat Valley 71% 54% 45% 62% 71% 47%
U Valley 54% 63% 61% 69% 68% 56%

Depression 43% 43% 41% 34% 46% 56%
Canyon 31% 37% 52% 54% 43% 50%

Table 4: Classification by ∆H of Figure ?? using the primi-
tives sketched in Figure ??.

1

4(N − 1)2

X

1≤i<j≤N

δ̄(DCM(P1)[i, j], DCM(P2)[i, j]).

The function ∆E measures the differences between the two
matrices entry per entry. In a double-cross matrix , there are
N2−N

2
meaningful entries of which N−1 (the ones just above

the diagonal) have maximal distance 4 and the other ones
have maximal distance 8. In total, the maximal distance
can reach 4(N − 1)2, which explains the factor at the start
of the above formula.

The proposed algorithm DC-similar∆ might also be im-
proved in other ways. For instance, termination conditions
based on the Hausdorff distance between a polyline and its
generalized polylines might be considered.

6. ACKNOWLEDGMENTS
This research has been partially funded by the European

Union under the FP6-IST-FET programme, Project n. FP6-
14915, GeoPKDD: Geographic Privacy-Aware Knowledege
Discovery and Delivery”, (www.geopkdd.eu) and by the Re-
search Foundation Flanders (FWO-Vlaanderen), Research
Project G.0344.05.

7. REFERENCES
[1] F.L. Bookstein. Size and shape spaces for landmark

data in two dimensions. Statistical Science, 1:181–242,
1986.

[2] N. Van de Weghe. Representing and Reasoning about
Moving Objects: A Qualitative Approach. PhD thesis,
Ghent University (Belgium), 2004.

[3] N. Van de Weghe, A. G. Cohn, and Ph. De Maeyer. A
qualitative representation of trajectory pairs. In

(a)

(b)

Figure 10: Figure ?? divided by his maxima (left) and min-
ima (right).

R. López de Mántaras and L. Saitta, editors,
Proceedings of the 16th Eureopean Conference on
Artificial Intelligence (ECAI’04), pages 1103–1104,
2004.

[4] N. Van de Weghe, A.G. Cohn, G. de Tré, and Ph. De
Maeyer. A qualitative trajectory calculus as a basis for
representing moving objects in geographical
information systems. To appear in Control and
Cybernetics, 2006.

[5] N Van de Weghe, A.G. Cohn, Ph. De Maeyer, and
F. Witlox. Representing moving objects in computer
based expert systems: the overtake event example.
Expert Systems with Applications, 29(4):977–983,
2005.

[6] N. Van de Weghe and Ph. De Maeyer. Conceptual
neighbourhood diagrams for representing moving
objects. In J. Akoka et al., editor, ER (Workshops),
volume 3770 of Lecture Notes in Computer Science,
pages 228–238, 2005.

[7] N. Van de Weghe, G. De Tré, B. Kuijpers, and Ph. De
Maeyer. The double-cross and the generalization
concept as a basis for representing and comparing
shapes of polylines. In R. Meersman et al., editor,
Proceedings of the 1st International Workshop on
Semantic-based Geographical Information Systems
(SeBGIS’05), volume 3762 of Lecture Notes in
Computer Science, pages 1087–1096. Springer, 2005.

[8] I. Dryden and K.V. Mardia. Statistical Shape
Analysis. Wiley, 1998.

[9] M. Egenhofer. Query Processing in
Spatial-Query-by-Sketch. Journal of Visual Languages

and Computing, 8(4):403–424, 1997.

[10] M. Erwig and M. Schneider. A visual language for the
evolution of spatial relationships and its translation
into a spatio-temporal calculus. Journal of Visual
Languages and Computing, 14(2):181–211, 2003.

[11] K. D. Forbus. Qualitative physics: Past, present, and
future. In D. S. Weld and J. de Kleer, editors,
Readings in Qualitative Reasoning about Physical
Systems, pages 11–39. Kaufmann, San Mateo,
California, 1990.

[12] Christian Freksa. Using orientation information for
qualitative spatial reasoning. In A. Frank et al.,
editor, Spatio-Temporal Reasoning, volume 639 of
Lecture Notes in Computer Science, pages 162–178.
Springer, 1992.

[13] J.S. Gero. Representation and reasoning about shapes:
cognitive and computational studies in visual
reasoning in design. In Proceedings of the
International Conference on Spatial Information
Theory (COSIT’99), pages 315–330, 1999.

[14] B. Gottfried. Tripartite line tracks qualitative
curvature information. In Kuhn et al., editor,
Proceedings of the International Conference on Spatial
Information Theory (COSIT’03), volume 2825 of
Lecture Notes in Computer Science, pages 101–117.
Springer, 2003.

[15] E. Jungert. Symbolic spatial reasoning on object
shapes for qualitative matching. In Proceedings of the
International Conference on Spatial Information
Theory (COSIT’93), pages 444–462, 1993.

[16] J.T. Kent and K.V. Mardia. Shape, procrustes
tangent projections and bilateral symmetry.
Biometrika, 88:469–485, 2001.

[17] L. Kulik and M. Egenhofer. Linearized terrain:
Languages for silhouette representations. In Kuhn
et al., editor, Proceedings of the International
Conference on Spatial Information Theory
(COSIT’03), volume 2825 of Lecture Notes in
Computer Science, pages 118–135. Springer, 2003.

[18] L.J. Latecki and R. Lakämper. Shape similarity
measure based on correspondence of visual parts.
IEEE Trans. Pattern Anal. Mach. Intell.,
22(10):1185–1190, 2000.

[19] M. Leyton. A process-grammar for shape. Artif.
Intell., 34(2):213–247, 1988.

[20] R.C. Meathrel. A General Theory of Boundary-Based
Qualitative Representation of 2D Shape. Phd thesis,
University of Exeter (UK), 2001.

[21] F. Mokhtarian and A. K. Mackworth. A theory of
multiscale, curvature-based shape representation for
planar curves. TPAMI, 14:789–805, 1992.

[22] Chr. Schlieder. Geographic Objects with Indeterminate
Boundaries, chapter Qualitative shape representation,
pages 123–140. Taylor & Francis, 1996.

[23] K. Zimmermann and Chr. Freksa. Qualitative spatial
reasoning using orientation, distance, and path
knowledge. Appl. Intell., 6(1):49–58, 1996.

