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 Abstract

In frequent geographic pattern mining a large amount o f
patterns is well known a priori. This paper presents a
novel approach for mining frequent geographic patterns
without associations that are previously known as non-
interesting. Geographic dependences are eliminated
during the frequent set generation using prior knowledge.
After the dependence elimination maximal generalized
frequent sets are computed to remove redundant frequent
sets. Experimental results show a significant reduction o f
both the number of frequent sets and the computational
time for mining maximal frequent geographic patterns.

1. Introduction

The frequent pattern mining (FPM) technique often
generates a large number of frequent itemsets and rules
among which a small number is novel and interesting
to the user. To overcome this problem an enormous
amount of algorithms have been proposed for
transactional databases, but no prior knowledge has
been used to reduce non-interesting patterns. In spatial
FPM this problem increases due the natural
dependences among geographic data, which generate a
large amount of patterns that are well known a priori.

In geographic databases, most discovered patterns are
strongly related to geographic dependences which
represent strong regularities, but do not contribute to
the discovery of novel and useful knowledge. Users of
some domains may not be interested in strong
geographic domain rules such as is_a(GasStation)!

intersect(Street) (100%), but in non-obvious rules such
as is_a(GasStation) and intersects(WaterResource) !

pollution=high (40%).
Aiming to reduce the number of well known patterns

and redundant frequent sets we propose a novel method
for mining frequent geographic patterns. We propose to
eliminate dependences in a first step and all redundant
frequent sets in a second step, computing maximal

generalized frequent geographic patterns (MGFGP).  

The remainder of the paper is organized as follows:
Section 2 presents the related works and the main
contribution of this paper. Section 3 describes the
problem of mining frequent geographic patterns with
well known dependences. Section 4 presents the
algorithm MG-FGP and shows experiments performed
over real geographic databases. Section 5 concludes the

paper and gives directions of future work.

2. Related Works and Contribution

There are basically two approaches in the literature
for extracting frequent patterns from geographic
databases. Both follow the Apriori [1] approach and do
not apply the closed frequent set technique. One is
based on quantitative reasoning, which mainly
computes distance relationships during the frequent set
generation. Algorithms based on this approach [2] deal
with geographic attributes directly, and have some
general drawbacks: input is restricted to points,
compute only quantitative spatial relationships, and do
not consider non-spatial attributes of geographic data,
which may be of fundamental importance for knowledge
discovery.  

The other approach is based on qualitative reasoning
[3]-[4] and usually considers both distance and
topological relationships between a reference geographic
object type and a set of relevant spatial feature types
represented by any geometric primitive (e.g. points,
lines, polygons). Because of the high computational
cost, spatial relationships are normally extracted in a
first step, and frequent patterns are computed in another
step.

Both qualitative and quantitative reasoning
approaches have not focused on interesting geographic
aspects to be considered in FPM. In [4] prior
knowledge is used to reduce well known patterns, but a
posteriori, after both frequent sets and association rules
have already been generated.  

In [5] we proposed Apriori-KC to eliminate well
known geographic patterns during the frequent set
generation. In [6] we proposed to reduce well known
patterns by pruning the input space as much as
possible, and remaining dependences are eliminated by
pruning the frequent sets. However, a large number of
frequent sets is still generated in [5] and [6]. As a
continued study on frequent geographic pattern mining
without well known dependences, in this paper we
apply the closed frequent set [7]-[8] technique for
mining frequent geographic patterns without redundant
frequent sets. We demonstrate that the closed frequent
set approach when applied to the geographic domain
does not warrant the elimination of well known



dependences. Therefore, we propose to eliminate well
known dependences and generate maximal non-
redundant frequent sets.

The main advantage of our method is the simplicity
as well known dependences are eliminated. While most
approaches define syntactic constraints and different
thresholds to reduce the number of patterns and
association rules, we consider semantic knowledge

constraints, and eliminate the exact pairs of geographic
objects that produce well known patterns.  

3. The General Problem of Mining FGP

with Well Known Dependences

Most approaches for FPM in transactional databases
generate frequent sets as in Apriori [1], or closed
frequent sets [7]-[8]. While in transactional data mining
the main problem relies on the candidate generation, in
geographic data mining it relies on the spatial
neighborhood computation [9, page.205]. The number
of predicates in geographic FPM is much smaller than
the number of items in transactional databases.  

3.1 Geographic Dependences in Frequent
Pattern Mining

In transactional FPM every row in the dataset is
usually a transaction and columns are items. In
geographic FPM every row is an instance (e.g. Porto
Alegre) of a reference object type (e.g. city), called
target feature type, and columns are predicates. Every
predicate is related to a non-spatial attribute (e.g.
population) of the target feature type or a spatial
predicate. Spatial predicate is a relevant feature type

that is spatially related to specific instances of the target
feature type (e.g. contains_factory). In geographic FPM
the set F = {f1, f2, …,fk, ..., fn} is a set of non-spatial
attributes and spatial predicates, and ! (dataset) is a set
of instances of a reference feature type, where each
instance is a row R such that R "  F. There is exactly
one tuple in !  for each instance of the reference feature
type.

The problem of geographic FPM is decomposed in
two main steps: (a) extract spatial predicates - a spatial
predicate is a spatial relationship (e.g. distance) between
the target feature type and a set of relevant feature types;
and (b) find all frequent predicates - a set of predicates
is frequent if its support is at least equal to minimum
support.

Assertion 1. [1] If a predicate set Z is large, then
every subset of Z will also be large. If the set Z is not
large, then every set that contains Z is not large too.

Since the focus of this paper relies on the frequent
pattern reduction (step b), let us consider the example
shown in Figure 1. Figure 1(a) shows a dataset with six
tuples and five predicates. Every row in the dataset is a
city and the predicate sets are relevant feature types
(port, school, water resource, hospital, treated water
network) with spatial relationships with the target

feature type (city) described in Figure 1(c). In Figure
1(b) are the k frequent sets with minimum support 50%
in the dataset in Figure 1(a).

Figure 1.  Dataset with 6 tuples and frequent

predicate sets with minimum support 50%

From this point we will refer to a row or a tuple in
the dataset as a “transaction” (tid) and a set of rows as a
“set of transactions” (tidset) to follow the terminology
commonly used in the frequent pattern mining
literature.

The dataset in Figure 1(a) has a geographic
dependence between A (Port) and W (Water Resource),
since every port must be related to at least one water
resource. Because of their natural dependence, rules such
as contains(Port)!contains(WaterResource) will be
generated. Such a rule expresses that cities that contain
ports do also contain water resources. Notice that this
kind of rule has no cause!effect, once cities do not
contain ports because they contain water resources, but
cities can only have ports when they also have  water
bodies.
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Figure 2. Frequent predicate sets (corresponding
tidsets are shown in brackets)

Notice that we cannot eliminate A and W from the
dataset because either A or W may have an interesting
association with any other predicate (C, D, or T).
Figure 2 shows the meet-semilattice [10] of the 25
frequent sets, among which 6 have the dependence
{A,W}.

As can be observed in Figure 2, geographic
dependences appear the first time in frequent sets with 2
elements, and are replicated to many larger frequent sets
when minsup is reached. If we remove all frequent sets



in which A and W appear together, no information is
lost [5]-[6]. However, many redundant [11] frequent sets
that generate redundant rules with same support and
confidence, still remain among the resultant frequent
itemsets (e.g. {A,C},{A,T},{C,T},{T,W}). These sets
are eliminated by the closed frequent set approach,
introduced in the following section.

3.2 Geographic Dependences in Closed
Frequent Pattern Mining

According to [7]-[8], a frequent predicate set L is a
closed frequent predicate set if !(L)=L. The closure
operator ! associates with a frequent predicate set L the
maximal set of predicates common to all transactions
(tidset) containing L . The closure operator allows the
definition of all closed frequent itemsets which
constitute the minimal non-redundant frequent sets.  

Figure 3 shows the closed frequent sets meet-
semilattice of the frequent sets presented in the previous
section. The set {A,D,W}, for example, is a frequent

itemset because it reaches minimum support (50%). It is
also a closed frequent itemset because in the set of
transactions (1345) where it occurs in the dataset, no set
larger than {A,D,W} in the same transactions reaches
minimum support. The frequent itemset {A,D,T}, for
example, appears in the transactions 135,  but in the
same transactions, a larger set {A,D,T,W} can be
generated.  

{A,C,D,W}

{D}

{C,D}

{A,D,W}

{D,T} {D,W}

{C,D,T} {C,D,W}

{A,D,T,W}

(123456)

(12456) (1356) (12345)

(1345) (156) (1245)

(145) (135)

{ }

{A,C,D,W}

{D}

{C,D}

{A,D,W}

{D,T} {D,W}

{C,D,T} {C,D,W}

{A,D,T,W}

(123456)

(12456) (1356) (12345)

(1345) (156) (1245)

(145) (135)

{ }

Figure 3. Closed frequent sets meet-semilattice  with
geographic dependences

As can be observed in Figure 3, the closed frequent
set approach does not warrant the elimination of well
known geographic dependences, since among the 9
closed frequent sets, 3 sets (in dark boxes) contain both
A and W.

 By eliminating the closed frequent sets with the
geographic dependence {A,W} the information of the
sets {A,C}, {A,D}, {A,T}, {T,W}, {D,T,W},
{A,C,D}, and {A,D,T} is lost. This example shows
that the closed frequent set technique cannot be applied
to geographic data when the objective is to obtain
frequent geographic patterns without well known
dependences.

To reduce the number of frequent sets without well
known dependences and without sacrifice the result
quality, we propose to generate maximal non-redundant

generalized frequent sets with knowledge constraints.
Definition 1 (MGFGP – Maximal Generalized

Frequent Geographic Patterns without well known

geographic dependences): a frequent predicate set or a
frequent geographic pattern L is maximal generalized
when it has no well known geographic dependence in a
set of dependences " such that L-"=L and M(L)=L.

The Maximal operator M associates with a frequent
predicate set L the maximal set of predicates common
to all transactions containing L without well known
geographic dependences, i.e., L is maximal if there is
no frequent predicate set L´ in the same transactions of
L such that L#L´.

Considering the frequent sets generated from
transactions 135 without well known dependences
({T,W}, {A,T}, {A,D,T}, and {D,T,W}) shown in the
meet-semilattice in Figure 4, notice that
{T,W}#{D,T,W} and {A,T}#{A,D,T}. So neither
{T,W} nor {A,T} are maximal. However,
{A,D,T}${D,T,W}, so both {A,D,T} and {D,T,W}
are maximal. In transactions 135, while only one
frequent set is closed ({A,D,T,W}), but having a
geographic dependence, two frequent sets ({A,D,T} and
{D,T,W}) are maximal, but without well known
geographic dependences.
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Figure 4. Maximal frequent sets meet-semilattice
without well known dependences

The elimination of geographic dependences from the
frequent sets (Figure 2) in addition to the elimination of
redundant frequent sets (Figure 4), generates a reduced
number of maximal frequent sets, as shown in Figure 5.
Notice that no information is lost and the result quality
is not sacrificed.  

Figure 5. Maximal generalization of frequent sets
without well known dependences

In the following section we present the MG-FGP
algorithm and evaluate the proposed method with
experiments performed over real GDB.

4. Mining MGFGP with Knowledge

Constraints

Figure 6 shows the pseudo-code of the algorithm
MG-FGP to generate maximal generalized frequent
geographic patterns without well known dependences.
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additional verification to generate either maximal of
closed frequent sets requires extra scans over the dataset.
However, Figure 8 shows that the closed frequent set
approach, apart from not eliminating well known
geographic dependences requires more computational
time than MG-FGP.
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Figure 8. Computational time to generate frequent
sets, closed frequent sets, and maximal frequent sets

MG-FGP tends to reduce computational time for
large databases when the number of dependences
increases, since less frequent sets will be generated.

5. Conclusions and Future Work

In frequent geographic pattern mining a large amount
of patterns is well known. Examples using the meet-
semilattice  of frequent sets, as well as experiments
with real geographic databases, showed that the closed
frequent set approach, when applied to the geographic
domain, generates many closed frequent sets containing
well known dependences. Indeed, if geographic
dependences are removed from closed frequent sets, the
result quality is sacrificed.

To eliminate well known geographic domain patterns
in geographic FPM we proposed an efficient method,
which eliminates pairs of geographic dependences in
one single step. Indeed, we eliminate redundant frequent
sets and compute the maximal generalized frequent sets
to avoid the generation of redundant association rules.

In this paper we presented a solution to generate
maximal generalized FGP without well known
dependences considering geographic data at a high
granularity level (e.g. water). However, the dependence
replication process increases when mining data at lower
granularities (e.g. river, lake, sea). As future work we
will evaluate our method considering hierarchical
geographic dependences when mining maximal
geographic patterns from data at different granularities.
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