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ABSTRACT
Given a documentD in the form of an unordered labeled tree, we
study the expressibility onD of various fragments of XPath, the
core navigational language on XML documents. We give charac-
terizations, in terms of the structure ofD, for when a binary relation
on its nodes is definable by an XPath expression in these fragments.
Since each pair of nodes in such a relation represents a unique path
in D, our results therefore capture the sets of paths inD definable
in XPath. We refer to this perspective on the semantics of XPath
as the “global view.” In contrast with this global view, there is also
a “local view” where one is interested in the nodes to which one
can navigate starting from a particular node in the document. In
this view, we characterize when a set of nodes inD can be defined
as the result of applying an XPath expression to a given node of
D. All these definability results, both in the global and the local
view, are obtained by using a robust two-step methodology, which
consists of first characterizing when two nodes cannot be distin-
guished by an expression in the respective fragments of XPath, and
then bootstrapping these characterizations to the desiredresults.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages—query languages

General Terms
Languages, Theory

Keywords
XPath, expressibility, definability

1. INTRODUCTION
XPath is a simple language for navigation in XML documents

which is at the heart of standard XML transformation languages
and other XML technologies [4].

XPath can be viewed as a query language in which an expres-
sion associates to every document a binary relation on its nodes
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representing all navigation paths in the document defined bythat
expression [3, 11, 18]. From that query-level perspective,several
natural semantic issues have been investigated in recent years for
various fragments of XPath. These include expressibility,closure
properties, and complexity of evaluation [3, 12, 18], as well as
decision problems such as satisfiability, containment, andequiv-
alence [2, 19].

Alternatively, we can view XPath as a navigational tool on a par-
ticular given document, and study expressiveness issues from this
document-level perspective. (A similar duality exists in the rela-
tional database model, where Bancilhon [1] and Paredaens [21]
considered and characterized expressiveness at the instance level,
which, subsequently, Chandra and Harel [7] contrasted withex-
pressiveness at the query level.)

In this setting, our goal is to characterize, for various natural
fragments of XPath, when a binary relation on the nodes of a given
document (i.e., a set of navigation paths) is definable by an expres-
sion in the fragment.

To achieve this goal, we develop a robust two-step methodology.
The first step consists of characterizing when two nodes in a docu-
ment cannot be distinguished by an expression in the fragment un-
der consideration. It turns out for those fragments we consider that
this notion of expression equivalence of nodes is equivalent to an
appropriate generalization of bisimilarity. The second step of our
methodology then consists of bootstrapping this result to acharac-
terization for when a binary relation on the nodes of a given docu-
ment is definable by an expression in the fragment (in the sense of
the previous paragraph).

We refer to this perspective on the semantics of XPath at the doc-
ument level as the “global view.” In contrast with this global view,
there is also a “local view” which we consider. In this view, one is
only interested in the nodes to which one can navigate starting from
a particular given node in the document under consideration. From
this perspective, a set of nodes of that document can be seen as the
end points of a set of paths starting at the given node. For each of
the XPath fragments considered, we characterize when such aset
represents the set ofall paths starting at the given node defined by
some expression in the fragment. These characterizations are de-
rived from the corresponding characterizations in the “global view,”
and turn out to be particularly elegant in the important special case
where the starting node is the root.

In this paper, we study four XPath fragments. The most expres-
sive among them is theXPath-algebrawhich permits the self, par-
ent, and child operators, predicates, compositions, and the boolean
operators union, intersection, and difference. (Since we work at
the document level, i.e., the document is given, there is no need to



include the ancestor and descendant operators as primitives.) We
also consider thecore XPath-algebra, which is the XPath-algebra
without intersection and difference at the expression level. The
core XPath-algebra is the adaptation to our setting of Core XPath
of Gottlob et al. [11]. Of both of these algebras, we considerthe
fragments without the parent operator, called thedownward XPath-
algebraanddownward core XPath-algebra, respectively.

The robustness of the characterizations provided in this paper
is further strengthened by their feasibility. As discussedin Sec-
tion 8, the global and local definability problems for each ofthe
XPath fragments are decidable in polynomial time. This feasibil-
ity hints towards efficient partitioning and reduction techniques on
both the set of nodes and the set of paths in a document. Such tech-
niques may be fruitfully applied towards document compression
[6], access control [9], and designing indexes for query processing
[10, 14, 20, 22].

The remainder of this paper is organized as follows. In Sec-
tion 2, we formally define the four XPath fragments as well as ex-
pression equivalence of nodes, and introduce some terminology. In
Section 3, we propose our two-step methodology by applying it to
both downward fragments of XPath, because these allow the sim-
plest exposition. In particular, it will turn out that both fragments
are equivalent, and that, in these cases, expression equivalence is
the same as bisimilarity. In Section 4, we present the generaliza-
tions of bisimilarity required to deal with the XPath-algebra and
the core XPath-algebra, which are studied in Sections 5 and 6, re-
spectively. The structural characterizations of the semantics of the
four XPath fragments in Sections 3, 5 and 6 pertain to the “global
view” only. In Section 7, we derive the corresponding characteri-
zations for the “local view.” In Section 8, finally, we discuss some
ramifications of our results as well as directions for futureresearch.

Because of space considerations, several proofs are eitheromit-
ted or only sketched. The proofs of Section 4, many of which re-
quire a case analysis, have been moved to an Appendix.

2. NOTATION AND TERMINOLOGY
In this paper,documentsare finiteunorderednode-labeled trees.

More formally, a documentD is a 4-tuple(V, Ed, r, λ), with V the
finite set of nodes,Ed⊆ V ×V the set of edges,r ∈ V the root and
λ : V → L the node-labeling function into an infinite enumerable
setL of labels.

We next define the fragments of XPath [4] considered in this
paper. As observed in the Introduction, we can prune the set of
operators considerably, since we are only concerned with (1) ex-
pressibilityon (2) asingledocument.

Definition 1. The XPath-algebraconsists of the primitivesε, ℓ̂
(ℓ ∈ L), ∅, ↓, and↑, together with the operators.E1/E2, E1[E2],
E1 ∪ E2, E1 ∩ E2, andE1 − E2.

Given a documentD = (V, Ed, r, λ), thesemantics, E(D), of
an XPath-algebra expressionE is a binary relation overV , defined
as follows:

• ε(D) = {(n, n) | n ∈ V }; ℓ̂(D) = {(n, n) | n ∈
V andλ(n) = ℓ}; ∅(D) = ∅;

• ↓ (D) = Ed; ↑ (D) = Ed−1;

• E1/E2(D) = π1,4σ2=3(E1(D) × E2(D)); E1[E2](D) =
π1,2σ2=3(E1(D) × E2(D));

• E1 ⋆ E2(D) = E1(D) ⋆ E2(D), where “⋆” stands for “∪”,
“∩”, or “−”.

Actually, we can show (proof omitted) that the predicate operator
“E1[E2]” is superfluous in the XPath-algebra, but we leave it in
because it cannot be omitted in the XPath fragments we define next:

• The downward XPath-algebrais the XPath-algebra without
“↑”.

• Thecore XPath-algebrahas the same primitives as the XPath-
algebra, together with the operatorsE1/E2, E1[E2] with E2

a boolean combination1 of core XPath-algebra expressions,
andE1 ∪ E2.

• Thedownward core XPath-algebrais the core XPath-algebra
without “↑”.

Definition 1 reflects the “global” perspective of XPath as work-
ing on an entire document, rather than the “local” perspective of
XPath as working on a particular node, reflected in Definition2.

Definition 2. LetE be an XPath-algebra expression, and letD =
(V, Ed, r, λ) be a document. Form ∈ V , E(D)(m) := {n ∈ V |
(m, n) ∈ E(D)}.

As the first step in our two-step methodology, we are interested in
which nodes in a document we can or cannot distinguish by XPath.
Therefore, we define the following equivalence relation:

Definition 3. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . Thenm1 andm2 areexpression-equivalent(denoted
m1 ≡e m2) if, for each XPath-algebra expressionE, E(D)(m1) =
∅ if and only if E(D)(m2) = ∅.

Similarly, we can also definedownward expression equivalence
(denoted asm1 ≡e↓ m2), core expression equivalence(denoted
m1 ≡e− m2), and downward core expression equivalence(de-
notedm1 ≡e−↓ m2), each corresponding to one of the XPath-
algebra fragments introduced above.

Next, we introduce the notion ofsignatureof a pair of a nodes in
a document.

Definition 4. Let D = (V, Ed, r, λ) be a document, and let
m, n ∈ V . Thesignaturesig(m, n) is an XPath-algebra expres-
sion defined as follows:

1. If n is a descendant (ancestor) ofm, then sig(m,n) :=↓k

(sig(m, n) :=↑k), with k the length of the path betweenm
andn.2

2. Otherwise, let top(m, n) be the least common ancestor ofm
andn. Then

sig(m, n) := sig(m, top(m, n))/sig(top(m, n), n).

The sequencem = p1, . . . , pk = n of all the intermediate nodes
encountered upon computing sig(m, n)(D)(m) is called thepath
from m to n.

Note that, form1, m2, n1, n2 ∈ V , (m2, n2) ∈ sig(m1, n1)(D)
in general doesnot imply that sig(m1, n1) = sig(m2, n2) unless
n1 is a descendant ofm1, or vice-versa. For example, in the doc-
umentD in Figure 1, top left, (m1, m1) ∈ sig(m1, m3), while
sig(m1, m1) = ε and sig(m1, m3) =↑2 / ↓2.

We therefore define the following comparison between the sig-
natures of pairs of nodes:
1Obtained using union, intersection, and complementation with re-
spect toV × V .
2The exponent notation denotes repeated composition (“/”). If
m = n, then sig(m, n) := ε.



Definition 5. Let D = (V, Ed, r, λ) be a document, and let
m1, m2, n1, n2 ∈ V . We say that sig(m1, n1) ≥ sig(m2, n2)
if (m2, n2) ∈ sig(m1, n1)(D).

We conclude this section with the following observation:

PROPOSITION 1. LetD = (V, Ed, r, λ) be a document, and let
m1, m2, n1, n2 ∈ V . There exists an XPath-algebra expression
Sig(m1, n1) such that(m2, n2) ∈ Sig(m1, n1)(D) if and only if
sig(m1, n1) = sig(m2, n2).

PROOF. If n1 is a descendant ofm1, or vice-versa, choosing
Sig(m1, n1) := sig(m1, n1) clearly satisfies all requirements. Oth-
erwise, Sig(m,n) := sig(m, n) − sig(parent(m), parent(n)) sat-
isfies all requirements.

3. CHARACTERIZING THE SEMANTICS
OF THE DOWNWARD AND THE DOWN-
WARD CORE XPATH-ALGEBRAS

In this section, we are concerned with the downward XPath-
algebra and the downward core XPath-algebra, since their seman-
tics have the simplest characterizations. In subsequent sections, we
generalize our results to the full XPath-algebra and the core XPath-
algebra.

Our first goal is to characterize both downward expression equiv-
alence and downward core expression equivalence in terms ofthe
structure of the document under consideration. Thereto, wedefine
another equivalence relation on the nodes of a document, this time
purely in terms of the structure of that document.

Definition 6. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . Thenm1 andm2 aredownward1-equivalent(de-
notedm1 ≡1

↓ m2) if

1. λ(m1) = λ(m2); and

2. for each childn1 of m1, there exists a childn2 of m2 such
thatn1 ≡1

↓ n2, and vice versa.

In the literature, downward 1-equivalence is usually referred to
asbisimilarity [5]. For the sake of generalization in Section 4, we
use a different terminology in this paper.

m2
m1 m2

m3m1

m2m1

m1 m2

Figure 1: Example documents. All nodes are assumed to have
the same label.

Example 1.Consider the document in Figure 1,top left. By Def-
inition 6 the nodesm1 andm2 are downward 1-equivalent, whereas
the nodesm1 andm3 arenot downward 1-equivalent.

We generalize downward 1-equivalence topairs of nodes.

Definition 7. Let D = (V, Ed, r, λ) be a document, and let
m1, m2, n1, n2 ∈ V such thatn1 is descendant ofm1 andn2 is
a descendant ofm2. Then,(m1, n1) and(m2, n2) aredownward
1-equivalent(denoted(m1, n1) ≡

1
↓ (m2, n2)) if

1. sig(m1, n1) = sig(m2, n2); and

2. for each pair of nodesp1 andp2 with

(a) p1 on the path fromm1 to n1;

(b) p2 on the path fromm2 to n2; and

(c) sig(m1, p1) = sig(m2, p2)
3,

we have thatp1 ≡1
↓ p2.

By repeatedly applying Definition 6, the following connection
between between downward1-equivalence of nodes and pairs of
nodes can be established:

LEMMA 1. Let D = (V, Ed, r, λ) be a document, and let
m1, m2, n1 ∈ V such thatn1 is a descendant ofm1 andm1 ≡1

↓

m2. Then there exists a descendantn2 ofm2 such that(m1, n1) ≡
1
↓

(m2, n2).

Using Lemma 1, the following key lemma can now be proved by
structural induction.

LEMMA 2. Let E be a downward XPath-algebra expression,
let D = (V, Ed, r, λ) be a document, and letm1, m2, n1, n2 ∈
V such that(m1, n1) ≡1

↓ (m2, n2). If (m1, n1) ∈ E(D), then
(m2, n2) ∈ E(D).

Combining Lemmas 1 and 2 immediately yields

COROLLARY 1. Let E be a downward XPath-algebra expres-
sion, letD = (V, Ed, r, λ) be a document, and letm1, m2, n1 ∈ V
such thatm1 ≡1

↓ m2 and (m1, n1) ∈ E(D). Then there exists
n2 ∈ V such that(m2, n2) ∈ E(D).

We can now present a characterization of downward (core) ex-
pression equivalence.

THEOREM 1. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . Then,m1 ≡e↓ m2 if and only ifm1 ≡e−↓ m2 if
and only ifm1 ≡1

↓ m2.

PROOF. Sincem1 ≡e↓ m2 impliesm1 ≡e−↓ m2, it remains to
prove that (1)m1 ≡1

↓ m2 impliesm1 ≡e↓ m2 and (2)m1 ≡e−↓

m2 impliesm1 ≡1
↓ m2.

For (1), letm1 ≡1
↓ m2, and letE be a downward XPath-algebra

expression such thatE(D)(m1) 6= ∅. Hence, there existsn1 ∈ V
such that(m1, n1) ∈ E(D). By Corollary 1, there existsn2 ∈
V such that(m2, n2) ∈ E(D), whenceE(D)(m2) 6= ∅. By
symmetry, the same holds vice-versa.

For (2), letm1 ≡e−↓ m2. By induction on the height ofm1, we
show thatm1 ≡1

↓ m2.
If m1 is a leaf, thenm2 is a leaf, for, otherwise,↓ (D)(m1) = ∅

and↓ (D)(m2) 6= ∅, a contradiction. In addition, we also have

that λ(m1) = λ(m2), for, otherwise,λ̂(m1)(D)(m1) 6= ∅ and

λ̂(m1)(D)(m2) = ∅, a contradiction. By Definition 6,m1 ≡1
↓

m2.
If m1 is not a leaf,m2 is not a leaf either, andλ(m1) = λ(m2),

by the same arguments as in the base case. Now, letn1
1 be a child

of m1, and letn1
2, . . . , n

ℓ
2 be all children ofm2. Suppose that,

3Or, equivalently, sig(p1, n1) = sig(p2, n2).



for all i, 1 ≤ i ≤ ℓ, n1
1 6≡e−↓ ni

2. Hence, there exists a down-
ward core XPath-algebra expressionEi such thatEi(D)(n1

1) 6= ∅
andEi(D)(ni

2) = ∅.4 Let F := ε[ε[E1] ∩ . . . ∩ ε[Eℓ]]. Then
↓ /F (D)(m1) 6= ∅ and ↓ /F (D)(m2) = ∅, a contradiction.
Hence, there exists a childnj

2 of m2, 1 ≤ j ≤ ℓ, such that
n1

1 ≡e−↓ nj
2. By the induction hypothesis,n1

1 ≡1
↓ nj

2. Of course,
the same holds vice-versa.

As a consequence of Theorem 1, downward (core) expression
equivalence is decidable.

We next turn to the second step of our two-step methodology by
bootstrapping Theorem 1 to characterize those binary relations over
the nodes of a document that can be defined as the evaluation ofa
downward (core) XPath-algebra expression.5 For that purpose, we
need the following lemma.

LEMMA 3. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . There exists a downward core XPath-algebra expres-
sionEm1

such thatEm1
(D)(m2) 6= ∅ if and only ifm1 ≡1

↓ m2.

PROOF. Let p2 ∈ V be a node such thatm1 6≡1
↓ p2. By

Theorem 1,m1 6≡e−↓ p2. Hence, there exists a downward core
XPath-algebra expressionFm1,p2

such thatFm1,p2
(D)(m1) 6= ∅

andFm1,p2
(D)(p2) = ∅. It is now easily seen that

Em1
:= ε

h

T

p2∈V and m1 6≡
1

↓p2

ε[Fm1p2
]
i

.

is the required downward core XPath-algebra expression.

We now prove the main theorem of this section.

THEOREM 2. Let D = (V, Ed, r, λ) be a document, and let
J ⊆ V × V . The following statements are equivalent:

1. There exists a core downward XPath-algebra expressionE
such thatE(D) = J .

2. There exists a downward XPath-algebra expressionE such
thatE(D) = J .

3. (a) for allm, n ∈ V , (m, n) ∈ J impliesn is a descendant
of m; and

(b) for all m1, n1, m2, n2 ∈ V with n1 a descendant of
m1, n2 a descendant ofm2, and(m1, n1)≡

1
↓ (m2, n2),

(m1, n1) ∈ J implies(m2, n2) ∈ J .

PROOF. Clearly (1) ⇒ (2). The implication(2) ⇒ (3) has
been shown in Lemma 2. It remains to show that(3) ⇒ (1).
Thereto, consider the downward core XPath-algebra expression

E :=
S

(m1,n1)∈J

T

p1 on the path
from m1 to n1

sig(m1, p1)/ε[Ep1
]/sig(p1, n1),

with Ep1
as in Lemma 3. It is now easily seen that condition (3)

above implies thatE(D) = J .

We immediately conclude that the downward core XPath-algebra
and the downward XPath-algebra are equally expressive as naviga-
tion tools on a given document.6

4Alternatively, if E′
i is an expression such thatE′

i(D)(n1
1) = ∅

andE′
i(D)(ni

2) 6= ∅, then putEi := ε[ε − ε[E′
i]].

5In Section 7, we consider this second step for the local view.
6Using an involved argument (omitted), we can actually show that
both fragments are equivalent as query languages.

4. DOWNWARD K-EQUIVALENCE AND K-
EQUIVALENCE

We now generalize downward 1-equivalence to downwardk-
equivalence, for arbitraryk ≥ 1. The values ofk that will interest
us most are1, 2, and3.

Definition 8. Let k ≥ 1. Let D = (V, Ed, r, λ) be a document,
and letm1, m2 ∈ V . Thenm1 andm2 aredownwardk-equivalent
(denotedm1 ≡k

↓ m2) if

1. λ(m1) = λ(m2);

2. for each childn1 of m1, there exists a childn2 of m2 such
thatn1 ≡k

↓ n2, and vice versa; and

3. for each childn1 of m1 and each childn2 of m2 such that
n1 ≡k

↓ n2, min(|n̄1|, k) = min(|n̄2|, k), where, fori =
1, 2, n̄i = {p | (mi, p) ∈ Edandp ≡k

↓ ni}.7

Clearly, Definition 8 reduces to Definition 6 fork = 1. It can be
shown (proof omitted) that downwardk-equivalence is the coarsest
equivalence relation satisfying conditions (1), (2), and (3) above.

In order to deal with the presence of the “↑” operator in both the
XPath-algebra and the core XPath-algebra, we need a more restric-
tive kind of “k-equivalence” than downwardk-equivalence.

Definition 9. Let k ≥ 1. Let D = (V, Ed, r, λ) be a document,
and letm1, m2 ∈ V . Thenm1 andm2 arek-equivalent(denoted
m1 ≡k m2) if

1. m1 ≡k
↓ m2;

2. m1 is the root if and only ifm2 is the root;

3. if m1 andm2 are not the root, andp1 andp2 are the parents
of m1 andm2, respectively, thenp1 ≡k p2.

In other words,m1 andm2 arek-equivalent if they are at the
same depth in the document, and each pair of same-generation
ancestors ofm1 and m2 is downwardk-equivalent. As a con-
sequence, we see that same-generation ancestors ofk-equivalent
nodes arek-equivalent themselves.

Example 2.In Figure 1,top left, m1 andm2 are downward 1-
equivalent, butnot 1-equivalent. In Figure 1,top center, m1 and
m2 are 1-equivalent, butnot 2-equivalent. In Figure 1,top right,
m1 andm2 are 2-equivalent, butnot 3-equivalent. Finally, in Fig-
ure 1,bottom, m1 andm2 are 3-equivalent, butnot 4-equivalent.

Definition 10. Let k ≥ 1. LetD = (V, Ed, r, λ) be a document,
and letm1, m2, n1, n2 ∈ V . Then(m1, n1) and(m2, n2) arek-
equivalent(denoted(m1, n1) ≡

k (m2, n2)) if

1. sig(m1, n1) = sig(m2, n2); and

2. for each pair of nodesp1 andp2 with

(a) p1 on the path fromm1 to n1;

(b) p2 on the path fromm2 to n2; and

(c) sig(m1, p1) = sig(m2, p2),

we have thatp1 ≡k p2.

Similarly, (m1, n1) and(m2, n2) arek-related(denoted(m1, n1)
⇛

k (m2, n2)) if
7For a setA, |A| denotes the cardinality ofA.



1. sig(m1, n1) ≥ sig(m2, n2); and

2. for each pair of nodesp1 andp2 with

(a) p1 on the path fromm1 to n1;

(b) p2 either on the path fromm2 to n2 or an ancestor
of top(m2, n2); and

(c) sig(m1, p1) ≥ sig(m2, p2),

we have thatp1 ≡k p2.

Notice thatk-equivalence andk-relatedness coincide ifn1 is a
descendant ofm1, or vice-versa. In general, downwardk-related-
ness isnot symmetric.

The following technical lemmas are very practical. The second
is the generalization of Lemma 1.

LEMMA 4. Let k ≥ 1. Let D = (V, Ed, r, λ) be a document,
and letm1, m2, n1, n2 ∈ V . Then(m1, n1) ≡k (m2, n2) (re-
spectively(m1, n1) ⇛

k (m2, n2)) if and only if m1 ≡k m2,
n1 ≡k n2, and sig(m1, n1) = sig(m2, n2) (respectively
sig(m1, n1) ≥ sig(m2, n2)).

PROOF. For each pair of nodesp1 andp2 for which p1 ≡k p2

must hold according to Definition 10,p1 is either an ancestor ofm1

or an ancestor ofn1 andp2 a same-generation ancestor ofm2 or of
n2. As observed earlier, same-generation ancestors ofk-equivalent
nodes arek-equivalent.

LEMMA 5. Let k ≥ 1. Let D = (V, Ed, r, λ) be a document,
and letm1, m2, n1 ∈ V such thatn1 is a descendant ofm1 and
m1 ≡k

↓ m2. Then, there exists a descendantn2 of m2 such that
(m1, n1) ≡

k
↓ (m2, n2).

The following properties play a crucial role in proving the ana-
logues of Lemma 2 and Corollary 1, used in characterizing these-
mantics of the downward (core) XPath-algebra, for characterizing
the semantics of the XPath-algebra (Lemma 6 and Corollary 2)and
the core XPath-algebra (Lemma 11 and Corollary 3). Their proofs
are in the Appendix.

PROPOSITION 2. Letk ≥ 1. LetD = (V, Ed, r, λ) be a docu-
ment, and letm1, m2, n1 ∈ V with m1 ≡k m2. Then, there exists
n2 ∈ V such that(m1, n1) ⇛

k (m2, n2).

PROPOSITION 3. Let k ≥ 1. Let D = (V, Ed, r, λ) be a doc-
ument, and letm1, m2, n1, n2, p1 ∈ V such that(m1, n1) ⇛

k

(m2, n2). Then, there existsp2 ∈ V such that(m1, p1) ⇛
k

(m2, p2) and(p1, n1) ⇛
k (p2, n2).

PROPOSITION 4. Letk ≥ 2. LetD = (V, Ed, r, λ) be a docu-
ment, and letm1, m2, n1 ∈ V with m1 ≡k m2. Then, there exists
n2 ∈ V such that(m1, n1) ≡

k (m2, n2).

PROPOSITION 5. Let k ≥ 3. Let D = (V, Ed, r, λ) be a doc-
ument, and letm1, m2, n1, n2, p1 ∈ V such that(m1, n1) ≡k

(m2, n2). Then, there existsp2 ∈ V such that(m1, p1) ≡k

(m2, p2) and(p1, n1) ≡
k (p2, n2).

5. CHARACTERIZING THE SEMANTICS
OF THE XPATH-ALGEBRA

Lemma 6, below, is the analogue of Lemma 2 for the full XPath-
algebra.

LEMMA 6. Let E be an XPath-algebra expression, letD =
(V, Ed, r, λ) be a document, and letm1, m2, n1, n2 ∈ V such
that (m1, n1) ≡3 (m2, n2). If (m1, n1) ∈ E(D), then also
(m2, n2) ∈ E(D).

PROOF. The proof goes by induction on the structure ofE. The
induction step for the compositionE1/E2 relies on Proposition 5;
the induction step for the predicate operatorE1[E2] relies on Propo-
sition 4; and the induction step for the difference operatorE1 −E2

relies on the symmetry of 3-equivalence on pairs of nodes. The rest
of the proof is straightforward.

Combining Proposition 4 and Lemma 6 immediately yields

COROLLARY 2. LetE be an XPath-algebra expression, letD =
(V, Ed, r, λ) be a document, and letm1, m2, n1 ∈ V such that
m1 ≡3 m2 and(m1, n1) ∈ E(D). Then there existsn2 ∈ V such
that (m2, n2) ∈ E(D).

Using the same argument used for statement (1) in the proof of
Theorem 1, we obtain

LEMMA 7. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . If m1 ≡3 m2, thenm1 ≡e m2.

The reverse implication, however, requires more work. We first
show that expression equivalence implies downward 3-equivalence,
and then bootstrap this result to show that, actually, expression
equivalence implies 3-equivalence.

LEMMA 8. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . If m1 ≡e m2, thenm1 ≡3

↓ m2.

PROOF. Since downward 3-equivalence is the coarsest equiva-
lence relation satisfying conditions (1), (2), and (3) of Definition 8,
it suffices to prove that expression equivalence satisfies these con-
ditions.

For conditions (1) and (2), this requires the same argumentsas
used for statement (2) in the proof of Theorem 1. We therefore
restrict ourselves to condition (3). Thus, letn1

1, . . . , n
k
1 be all chil-

dren ofm1 andn1
2, . . . , n

ℓ
2 be all children ofm2, and assume that

n1
1 ≡e n1

2. We have to show thatmin(|ñ1
1|, 3) = min(|ñ1

2|, 3),
where, fori = 1, 2, ñ1

i = {p | (m1
i , p) ∈ Edandp ≡e n1

i }. To do
so, we have to show that the following situations cannot occur:

1. |ñ1
1| = 1 and|ñ1

2| > 1, or vice-versa; and

2. |ñ1
1| = 2 and|ñ1

2| > 2, or vice-versa.

By symmetry, it suffices to consider the former situation in each of
these cases.

1. |ñ1
1| = 1 and|ñ1

2| > 1. Hence,̃n1
1 = {n1

1} and, without loss
of generality, we may assume thatñ1

2 ⊇ {n1
2, n

2
2}. Since, for

all i = 2, . . . , k, n1
1 6≡e ni

1, there exists an XPath-algebra
expressionEi such thatEi(D)(n1

1) 6= ∅ andEi(D)(ni
1) =

∅. By definition of expression equivalence, we also have, for
j = 1, 2, thatEi(D)(nj

2) 6= ∅.

Let F := ε[E2] ∩ . . . ∩ ε[Ek], and letG := F/ ↑ / ↓ /F .
One can easily verify thatε[G − ε](D)(n1

1) = ∅, while
ε[G− ε](D)(n1

2) 6= ∅, a contradiction.8 So, this case cannot
occur.

8Of course, one could also have use the expressionG − ε instead
of ε[G − ε]. However, our choice allows reuse of this part of the
proof in a subsequent proof.



2. |ñ1
1| = 2 and |ñ1

2| > 2. Without loss of generality, we may
assume that̃n1

1 = {n1
1, n

2
1} andñ1

2 ⊇ {n1
2, n

2
2, n

3
2}. Since,

for all i = 3, . . . , k, n1
1 6≡e ni

1, there exists an XPath-algebra
expressionEi such thatEi(D)(n1

1) 6= ∅ andEi(D)(ni
1) =

∅. By definition of expression equivalence, we also have, for
j = 1, 2, 3, thatEi(D)(nj

2) 6= ∅.

Now, letF := ε[E3] ∩ . . . ∩ ε[Ek], let G := F/ ↑ / ↓ /F ,
and let H := ε[G − ε]. One can easily verify that
((H/H)− ε)(D)(n1

1) = ∅, while ((H/H)− ε)(D)(n1
2) 6=

∅, a contradiction. So, this case cannot occur either.

We may thus conclude that expression equivalence also satisfies
condition (3) of Definition 8.

LEMMA 9. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . If m1 ≡e m2, thenm1 ≡3 m2.

PROOF. By induction on the depth ofm1 in the document.
If m1 is the root, thenm2 is also the root, for, otherwise,

↑ (D)(m1) = ∅ and↑ (D)(m2) 6= ∅. Equal nodes are of course
3-equivalent.

If m1 is not the root, thenm2 cannot be the root either, for,
otherwise, we could derive a contradiction as in the base case.
Thus, condition (2) of Definition 9 is met. To prove that con-
dition (3) is met, letp1 be the parent ofm1 and p2 the parent
of m2. If p1 6≡e p2, there exists an XPath-algebra expressionE
such thatE(D)(p1) 6= ∅ andE(D)(p2) = ∅. Obviously, then
↑ /E(D)(m1) 6= ∅ and ↑ /E(D)(m2) = ∅, a contradiction.
Thus, p1 ≡e p2. By the induction hypothesis,p1 ≡3 p2. Fi-
nally, Lemma 8 yields condition (1). We may thus conclude that
m1 ≡3 m2.

Lemmas 7 and 9 are both directions of a characterization of ex-
pression equivalence:

THEOREM 3. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . Then,m1 ≡e m2 if and only ifm1 ≡3 m2.

As a consequence of Theorem 3, expression equivalence is de-
cidable.

We next turn to characterizing those binary relations over the
nodes of a document that can be defined as the evaluation of an
XPath-algebra expression. For that purpose, we need the follow-
ing lemma, which is the analogue for the full XPath-algebra of
Lemma 3 for the downward (core) XPath-algebra. The proof is
completely analogous.

LEMMA 10. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . There exists an XPath-algebra expressionEm1

such
thatEm1

(D)(m2) 6= ∅ if and only ifm1 ≡3 m2.

We now prove the main theorem of this section.

THEOREM 4. Let D = (V, Ed, r, λ) be a document, and let
J ⊆ V ×V . There exists an XPath-algebra expressionE such that
E(D) = J if and only if, for all m1, m2, n1, n2 ∈ V such that
(m1, n1) ≡

3 (m2, n2), (m1, n1) ∈ J implies(m2, n2) ∈ J .

PROOF. The “only if” follows immediately from Lemma 6.
Therefore, we focus on the “if”. Thereto, consider the XPath-
algebra expression

E :=
S

(m1,n1)∈J

ε[Em1
]/Sig(m1, n1)/ε[En1

],

with Em1
andEn1

as in Lemma 10 and Sig(m1, n1) as in Proposi-
tion 1. It is now easily seen that the condition above imposedonJ
implies thatE(D) = J .

6. CHARACTERIZING THE SEMANTICS
OF THE CORE XPATH-ALGEBRA

Lemma 11, below, is the analogue of Lemma 6 for the core
XPath-algebra.

LEMMA 11. LetE be a core XPath-algebra expression, letD =
(V, Ed, r, λ) be a document, and letm1, m2, n1, n2 ∈ V such that
(m1, n1) ⇛

2 (m2, n2). If (m1, n1) ∈ E(D), then(m2, n2) ∈
E(D).

PROOF. The proof goes by induction on the structure ofE. The
proof of the base case is straightforward. The induction step for
the compositionE1/E2 relies on Proposition 3. The induction step
for the union operatorE1 ∪ E2 is straightforward. We discuss the
induction step for the predicate operatorE1[E2], with E1 a core
XPath-algebra expression andE2 a boolean combination of core
XPath-algebra expressions, in more detail.

SinceE2 can be normalized in disjunctive normal form, and
since set union can be pushed out from the predicate to the expres-
sion level, we may assume thatE2 is of the formF1 ∩ . . . ∩ Fk ∩
G1 ∩ . . .∩Gℓ. If (m1, n1) ∈ E(D), there existsp1 ∈ V such that
(m1, n1) ∈ E1(D), (n1, p1) ∈ F1(D), . . ., (n1, p1) ∈ Fk(D),
(n1, p1) /∈ G1(D) . . ., (n1, p1) /∈ Gℓ(D). By the induction
hypothesis,(m2, n2) ∈ E1(D). By Proposition 4, there exists
p2 ∈ V such that(n1, p1) ≡

2 (n2, p2). In particular,(n1, p1) ⇛
2

(n2, p2), whence, by the induction hypothesis,(n2, p2) ∈ F1(D),
. . ., (n2, p2) ∈ Fk(D). Since(n1, p1) ≡2 (n2, p2), we also have
(n2, p2) ⇛

2 (n1, p1).9 If there werei, 1 ≤ i ≤ ℓ, such that
(n2, p2) ∈ Gi(D), then, by the induction hypothesis,(n1, p1) ∈
Gi(D), a contradiction. We conclude that(n2, p2) /∈ G1(D), . . .,
(n2, p2) /∈ Gℓ(D), whence(m2, n2) ∈ E(D).

Notice that the absence of difference at the expression level is
crucial for this proof to work, as an induction step for the difference
operator would fail because of the asymmetry of “⇛

2”.
Combining Proposition 2 and Lemma 11 immediately yields

COROLLARY 3. LetE be a core XPath-algebra expression, let
D = (V, Ed, r, λ) be a document, and letm1, m2, n1 ∈ V such
that m1 ≡2 m2 and(m1, n1) ∈ E(D). Then there existsn2 ∈ V
such that(m2, n2) ∈ E(D).

Using the same argument used for statement (1) in the proof of
Theorem 1, we obtain

LEMMA 12. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . If m1 ≡2 m2, thenm1 ≡e− m2.

To prove the reverse direction, we proceed in the same way as
for the XPath-algebra.

LEMMA 13. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . If m1 ≡e− m2, thenm1 ≡2

↓ m2.

PROOF. The proof is completely analogous to that of Lemma
8, except that, in order to prove that core expression equivalence
satisfies condition (3) of Definition 9, we must only show thatthe
case “|ñ1

1| = 1 and|ñ1
2| > 1” cannot occur. Since the expression

exhibited for this case is actually a core XPath-algebra expression,
the argument used there can be reused here.

Notice that the expression exhibited in the proof of Lemma 8 to
show that the case “|ñ1

1| = 2 and|ñ1
2| > 2” cannot be transformed

into a core XPath-algebra expression.
Lemma 13 can be bootstrapped to Lemma 14, in the same way

as Lemma 8 to Lemma 9:
9Remember that, while “≡2” is symmetric, “⇛2” in general isnot!



LEMMA 14. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . If m1 ≡e− m2, thenm1 ≡2 m2.

Lemmas 12 and 14 are both directions of a characterization of
core expression equivalence:

THEOREM 5. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . Then,m1 ≡e− m2 if and only ifm1 ≡2 m2.

As a consequence of Theorem 5, core expression equivalence is
decidable.

We next turn to characterizing those binary relations over the
nodes of a document that can be defined as the evaluation of a core
XPath-algebra expression. For that purpose, we need the follow-
ing lemma, which is the analogue for the core XPath-algebra of
Lemma 3 for the downward (core) XPath-algebra. The proof is
completely analogous.

LEMMA 15. Let D = (V, Ed, r, λ) be a document, and let
m1, m2 ∈ V . There exists a core XPath-algebra expressionEm1

such thatEm1
(D)(m2) 6= ∅ if and only ifm1 ≡2 m2.

We now prove the main theorem of this section.

THEOREM 6. Let D = (V, Ed, r, λ) be a document, and let
J ⊆ V × V . There exists a core XPath-algebra expressionE such
that E(D) = J if and only if, for all m1, m2, n1, n2 ∈ V such
that (m1, n1) ⇛

2 (m2, n2), (m1, n1) ∈ J implies(m2, n2) ∈ J .

PROOF. The proof is completely analogous to the proof of The-
orem 4, except that, in the expressionE exhibited, “Sig(m1, n1)”—
which is not a core XPath-algebra expression—is replaced by
“sig(m1, n1)”.

7. THE LOCAL PERSPECTIVE
Theorems 2, 4, and 6 settle the definability of XPath from a

global perspective. Starting from these results, we can nowalso
settle the definability of XPath from a local perspective.

COROLLARY 4. LetD = (V, Ed, r, λ) be a document, letm ∈
V , and letN ⊆ V .

1. There exists a downward (core) XPath-algebra expressionE
such thatE(D)(m) = N if and only if, forn1, n2 ∈ V with
(m, n1) ≡

1
↓ (m, n2), n1 ∈ N impliesn2 ∈ N .

2. There exists an XPath-algebra expressionE whereE(D)(m)
= N if and only if, for n1, n2 ∈ V with n1 ≡3 n2 and
sig(m, n1) = sig(m, n2), n1 ∈ N impliesn2 ∈ N .

3. There exists a core XPath-algebra expressionE such that
E(D)(m) = N if and only if, forn1, n2 ∈ V with n1 ≡2

n2 and sig(m,n1) ≥ sig(m,n2), n1 ∈ N impliesn2 ∈ N .

For the important special case where the nodem is the root, the
statements of Corollary 4 can be simplified.

COROLLARY 5. Let D = (V, Ed, r, λ) be a document, and let
N ⊆ V .

1. There exists a downward (core) XPath-algebra expressionE
such thatE(D)(r) = N if and only if, forn1, n2 ∈ V with
n1 ≡1 n2, n1 ∈ N impliesn2 ∈ N .

2. There exists an XPath-algebra expressionE whereE(D)(r)
= N if and only if, forn1, n2 ∈ V with n1 ≡3 n2, n1 ∈ N
impliesn2 ∈ N .

3. There exists a core XPath-algebra expressionE such that
E(D)(r) = N if and only if, forn1, n2 ∈ V withn1 ≡2 n2,
n1 ∈ N impliesn2 ∈ N .

8. DISCUSSION
In this paper, we characterized the expressive power of fournatu-

ral fragments of XPath at the document level. Of course, it ispossi-
ble to consider other fragments or extensions of the XPath-algebra
and its data model. Analyzing these using our two-step methodol-
ogy in order to further improve our understanding of XPath isone
possible research direction which we are currently pursuing.

Another future research direction is refining the links between
XPath and finite-variable first-order logics [16]. Recently, such
links have been established at the level of query semantics.For
example, Marx [17, 18] has shown that Core XPath [11] is equiv-
alent to FO2tree—first-order logic using at most two variables over
ordered node-labeled trees—interpreted in the signaturechild,
descendant, andfollowing sibling. Our results establish
new links to finite-variable first-order logics at the document level.
For example, we can show that, on a given document, the XPath-
algebra and FO3—first-order logic with at most three variables—
are equivalent in expressive power. Indeed, we can show that, at
the document level, the XPath-algebra is equivalent with Tarski’s
relation algebra [23] over trees. Tarski and Givant [24] established
the link between Tarski’s algebra and FO3. Theorem 3 can then be
used to give a new characterization, other than via pebble-games
[8, 15], of when two nodes in an unordered tree are indistinguish-
able in FO3. In this light, connections between other fragments of
the XPath-algebra and finite-variable logics must be examined.

The connection between the XPath-algebra and FO3 also has
ramifications with regard to complexity issues. Indeed, using a re-
sult of Grohe [13] which establishes that expression equivalence
for FO3 is decidable in polynomial time, it follows readily from
Theorem 4 and Corollary 4 that the global and local definability
problems for the XPath-algebra are decidable in polynomialtime.
By other arguments, based on the syntactic characterizations in this
paper, one can also establish that the global and local definability
problems for the other fragments of the XPath-algebra are decid-
able in polynomial time. As mentioned in the Introduction, this
feasibility suggests efficient partitioning and reductiontechniques
on the set of nodes and the set of paths in a document. Such tech-
niques may be successfully leveraged for various aspects ofXML
document processing such as indexing, access control, and docu-
ment compression. This is another research direction whichwe are
currently pursuing.
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APPENDIX
In this Appendix, we provide more details regarding the proofs of
Propositions 2–5. For the convenience of the reader, the statements
of the results are repeated.

PROPOSITION2 1. Let k ≥ 1. Let D = (V, Ed, r, λ) be a
document, and letm1, m2, n1 ∈ V with m1 ≡k m2. Then, there
existsn2 ∈ V such that(m1, n1) ⇛

k (m2, n2).

PROOF. The case thatn1 is a descendant ofm1 follows from
Lemma 5.

If n1 is not a descendant ofm1, then lett1 := top(m1, n1).
Sincem1 ≡k m2, Definition 9 implies that there exists an ancestor
t2 of m2 such thatt1 ≡k t2 and sig(m1, t1) = sig(m2, t2) (1).
By the previous case, there exists a descendantn2 of t2 such that
n1 ≡k n2 and sig(t1, n1) = sig(t2, n2) (2). From (1) and (2),
we deduce sig(m1, n1) ≥ sig(m2, n2). Lemma 4 now yields the
desired result.

Before proceeding to the proof of Proposition 3, we like to point
attention to Figure 2.

m2

2p

n2

m1

1p

n1

Figure 2: Example document. All nodes are assumed to have
the same label

In this document, sig(m1, n1) = sig(m2, n2) and sig(n1, p1) =
sig(n2, p2), but sig(m1, p1) 6≥ sig(m2, p2). This example shows
that, in the proof of Proposition 3—as well as in the proof of Propo-
sition 5 to follow later—care must be taken in choosingp2. There-
fore, both proofs proceed via an exhaustive case analysis. Once
the correct choice forp2 is made, however, the remainder of the
proof for that case is technical but straightforward and, therefore,
omitted.

PROPOSITION3 1. Letk ≥ 1. LetD = (V, Ed, r, λ) be a doc-
ument, and letm1, m2, n1, n2, p1 ∈ V such that(m1, n1) ⇛

k

(m2, n2). Then, there existsp2 ∈ V such that(m1, p1) ⇛
k

(m2, p2) and(p1, n1) ⇛
k (p2, n2).

PROOF. We distinguish three principal cases:

1. top(m1, p1) is a strict ancestor of top(m1, n1).
Then, top(p1, n1) = top(m1, p1). Let p2 be any node sat-
isfying (m1, p1) ⇛

k (m2, p2). (Proposition 2). It can now
be shown that(p1, n1) ⇛

k (p2, n2). Figure 3 illustrates the
constructions in this case for one possible configuration of
m2, n2, andp2.

2. top(m1, p1) is a strict descendant of top(m1, n1).
Then, top(p1, n1) = top(m1, n1). Now, letp2 be any node
satisfying(m1, p1) ⇛

k (m2, p2) (Proposition 2). Again, it
can now be shown that(p1, n1) ⇛

k (p2, n2). Figure 4 illus-
trates the constructions in this case for one possible configu-
ration ofm2, n2, andp2.

3. top(m1, p1) = top(m1, n1). We distinguish two subcases:

(a) top(p1, n1) is a strict descendant of top(m1, n1). This
situation is shown in Figure 5. This case is the same as
the second principal case, with the roles ofm1 andn1

(and hence the roles ofm2 andn2) interchanged. Since
the statement of the lemma is symmetric in this respect,
we may consider this case solved.



m  ,n2 2top(           )

n1

m1

p1

m  ,n1 1top(           )

n2

m2
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Figure 3: Illustration of the constructions in the first prin ci-
pal case of the proof of Proposition 3. The nodess2 and t2
are the ancestors ofm2 satisfying top(m1, n1) ≡

k s2 and
top(m1, p1) ≡

k t2.
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Figure 4: Illustration of the constructions in the second prin-
cipal case of the proof of Proposition 3. The nodess2 and t2
are the ancestors ofm2 satisfying top(m1, n1) ≡

k t2 and
top(m1, p1) ≡

k s2.

n1

m1

p1

m  ,n1 1top(           ) m  ,p1 1top(           )=

p  ,n1 1top(           )

Figure 5: The first subcase of the third principal case of the
proof of Proposition 3.

(b) top(p1, n1) = top(m1, p1) = top(m1, n1). This situ-
ation is shown in Figure 6. Since, in this subcase, we
have, in particular, that top(m1, n1) = top(p1, n1) and
top(m1, p1) is on the path fromm1 to top(m1, n1), this
subcase can be dealt with in the same way as the second
principal case.

n1

m1

p1

m  ,n1 1top(           ) m  ,p1 1top(           ) p  ,n1 1= = top(           )

Figure 6: The second subcase of the third principal case of the
proof of Proposition 3.

PROPOSITION4 1. Let k ≥ 2. Let D = (V, Ed, r, λ) be a
document, and letm1, m2, n1 ∈ V with m1 ≡k m2. Then, there
existsn2 ∈ V such that(m1, n1) ≡

k (m2, n2).

PROOF. By Lemma 4, it suffices to show that there existsn2 ∈
V such thatn1 ≡k n2 and sig(m1, n1) = sig(m2, n2).

The case wheren1 is a descendant ofm1 is covered by Proposi-
tion 2, sincek-equivalence andk-relatedness coincide in this case.

If n1 isnota descendant ofm1, then considert1 := top(m1, n1).
Sincem1 ≡k m2, Definition 9 implies that there exists an ancestor
t2 of m2 such thatt1 ≡k t2 and sig(m1, t1) = sig(m2, t2).

t1

p1 q1

m1

n1

m2

p2

t2

q2

n2

Figure 7: Illustration of the constructions in the proof of Propo-
sition 4.

If n1 = t1, then, clearly,n2 := t2 satisfies all requirements.
Otherwise, letp1 be the child oft1 on the path tom1, and letq1 be
the child oft1 on the path ton1. Clearly,p1 6= q1. Also, letp2 be
the child oft2 on the path tom2. Clearly,p1 ≡k p2. In particular,
p1 ≡k

↓ p2. We now distinguish two cases:

1. p1 6≡k
↓ q1. By Definition 8, there exists a childq2 of t2 such

thatq1 ≡k
↓ q2 (whenceq1 ≡k q2). Sincep1 6≡k

↓ q1, p2 6≡k
↓ q2.

In particular,p2 6= q2.

2. p1 ≡k
↓ q1. By Definition 8, and because ofk ≥ 2, there exists

a child q2 of t2 such thatp2 6= q2 andq1 ≡k
↓ q2 (whence

q1 ≡k q2).

In both cases,p2 6= q2 andq1 ≡k q2. Sincen1 is a descendant
of q1, there exists a descendantn2 of q2 such thatn1 ≡k n2

and sig(q1, n1) = sig(q2, n2). Sincep2 6= q2, it follows that
sig(m1, n1) = sig(m2, n2).



PROPOSITION5 1. Letk ≥ 3. LetD = (V, Ed, r, λ) be a doc-
ument, and letm1, m2, n1, n2, p1 ∈ V such that(m1, n1) ≡k

(m2, n2). Then, there existsp2 ∈ V such that(m1, p1) ≡k

(m2, p2) and(p1, n1) ≡
k (p2, n2).

PROOF. We distinguish three principal cases:

1. top(m1, p1) is a strict ancestor of top(m1, n1).
Then, top(p1, n1) = top(p2, n2). Let p2 be any node satisfy-
ing (m1, p1) ≡k (m2, p2). (Such a node exists, by Proposi-
tion 4.) It is now readily seen that(p1, n1) ≡

k (p2, n2).

m  ,n2 2top(           )

n1

m2m1

p1

n2

p2

m  ,n1 1top(           )

p  ,n11top(           ) m  ,p1 1top(           )= p  ,n22top(           ) m  ,p2 2top(           )=

Figure 8: Illustration of the constructions in the first prin cipal
case of the proof of Proposition 5.

2. top(m1, p1) is a strict descendant of top(m1, n1).
Let p2 be any node satisfying(m1, p1) ≡k (m2, p2). (Such
a node exists, by Proposition 4.) It is now readily seen that
(p1, n1) ≡

k (p2, n2).

m  ,p2 2top(           )

n1

m2m1

n2

p1

m  ,p1 1top(           )

p2

p  ,n11top(           ) m  ,n1 1top(           )= p  ,n22top(           ) m  ,n2 2top(           )=

Figure 9: Illustration of the constructions in the second princi-
pal case of the proof of Proposition 5.

3. top(m1, p1) = top(m1, n1). We distinguish two subcases:

(a) top(p1, n1) is a strict descendant of top(m1, n1).
Let p2 be any node satisfying(p1, n1) ≡k (p2, n2).
(Such a node exists, by Proposition 4.) It is now read-
ily seen that(m1, p1) ≡

k (m2, p2).

n1

m2m1

n2

p1

m  ,n1 1top(           ) m  ,p1 1top(           )=

p  ,n1 1

p2

top(           )

Figure 10: Illustration of the constructions in the first subcase
of the third principal case of the proof of Proposition 5.

(b) top(p1, n1) = top(m1, p1) = top(m1, n1).
If p1 equals this top node, then letp2 := top(m2, n2).
If m1 equals this top node, then letp2 be any node satis-
fying (p1, n1) ≡

k (p2, n2). Finally, if n1 equals this top
node, then letp2 be any node satisfying(m1, p1) ≡k

(m2, p2). (Such nodes exist, by Proposition 4.) It is
readily seen that, in all these border cases,p2 satisfies
all requirements.
If none of these bordercases occur, we are in the situation
shown in Figure 11.

m  ,n1 1top(           ) m  ,p1 1top(           ) p  ,n1 1= = 22top(           )m  ,n

m1

p1 n1
m2

p2 n2

q1 s1 r1 s2q2 r2

top(           )

Figure 11: Illustration of the constructions in the second sub-
case of the third principal case of the proof of Proposition 5.

Let q1, r1, ands1 be the children of top(m1, n1) on the
paths tom1, n1, andp1, respectively, and letq2 andr2

be the children of top(m2, n2) on the paths tom2 and
n2, respectively. Clearly, top(m1, n1) ≡k top(m2, n2),
whence, in particular, top(m1, n1) ≡k

↓ top(m2, n2). By
Definition 8, and sincek ≥ 3, it can be seen in an analo-
gous way as in the proof of Proposition 4 that there exists
a child s2 of top(m2, n2) such thats1 ≡k

↓ s2 (whence
s1 ≡k s2), s2 6= q2, ands2 6= r2.
Finally, let p2 ∈ V be any descendant ofs2 satisfy-
ing (s1, p1) ≡k (s2, p2). (Sincek-equivalence andk-
relatedness coincide for ancestor-descendant pairs, such
a node exists, by Proposition 2.) Obviously, sig(m1, p1)
= sig(m2, p2) and sig(p1, n1) = sig(p2, n2), whence
(m1, p1) ≡

k (m2, p2) and(p1, n1) ≡
k (p2, n2).


