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ABSTRACT representing all navigation paths in the document definethay
expression [3, 11, 18]. From that query-level perspectesgeral
natural semantic issues have been investigated in recard j@&r
various fragments of XPath. These include expressibitiysure
properties, and complexity of evaluation [3, 12, 18], aslvasl
decision problems such as satisfiability, containment, eopaiv-
alence [2, 19].

Alternatively, we can view XPath as a navigational tool orae p
ticular given document, and study expressiveness issaastfris
document-level perspective. (A similar duality exists lie trela-
tional database model, where Bancilhon [1] and Paredaet]s [2
considered and characterized expressiveness at thedadtel,
which, subsequently, Chandra and Harel [7] contrasted esith
pressiveness at the query level.)

In this setting, our goal is to characterize, for variousureit
fragments of XPath, when a binary relation on the nodes ofengi
document (i.e., a set of navigation paths) is definable bykpres-
sion in the fragment.

To achieve this goal, we develop a robust two-step methggolo
The first step consists of characterizing when two nodes oca-d
ment cannot be distinguished by an expression in the fragoren
der consideration. It turns out for those fragments we carghat

Given a documenb in the form of an unordered labeled tree, we
study the expressibility o> of various fragments of XPath, the
core navigational language on XML documents. We give charac
terizations, in terms of the structure Bf for when a binary relation
on its nodes is definable by an XPath expression in these &atgn
Since each pair of nodes in such a relation represents aeipat

in D, our results therefore capture the sets of path® idefinable

in XPath. We refer to this perspective on the semantics oftiXPa
as the “global view.” In contrast with this global view, tleds also

a “local view” where one is interested in the nodes to whick on
can navigate starting from a particular node in the documémt
this view, we characterize when a set of node®inan be defined
as the result of applying an XPath expression to a given néde o
D. All these definability results, both in the global and thedlo
view, are obtained by using a robust two-step methodolognchv
consists of first characterizing when two nodes cannot bineis
guished by an expression in the respective fragments oftiXBatl
then bootstrapping these characterizations to the dessedts.

Categories and Subject Descriptors

H.2.3 [Database Managemerjt Languages-guery languages this notion of expression equivalence of nodes is equivdtean
appropriate generalization of bisimilarity. The secorepsbdf our
General Terms methodology then consists of bootstrapping this resultdbaaac-

terization for when a binary relation on the nodes of a givecud
ment is definable by an expression in the fragment (in theesehs
the previous paragraph).

Languages, Theory

KeyWO rds We refer to this perspective on the semantics of XPath atdbe d

XPath, expressibility, definability ument level as the “global view.” In contrast with this glokigew,
there is also a “local view” which we consider. In this vieweos

1. INTRODUCTION only interested in the nodes to which one can navigate stgirdom

a particular given node in the document under considerakoom
this perspective, a set of nodes of that document can be sabe a
end points of a set of paths starting at the given node. Fdr efac
the XPath fragments considered, we characterize when sgeh a
represents the set afl paths starting at the given node defined by
some expression in the fragment. These characterizatiendea
rived from the corresponding characterizations in thetigloview,”
and turn out to be particularly elegant in the important sglease

XPath is a simple language for navigation in XML documents
which is at the heart of standard XML transformation langsg
and other XML technologies [4].

XPath can be viewed as a query language in which an expres-
sion associates to every document a binary relation on ideso

Permission to make digital or hard copies of all or part o thork for where the starting node is the root.

personal or classroom use is granted without fee providatidbpies are In this paper, we study four XPath fragments. The most expres
not made or distributed for profit or commercial advantage that copies sive among them is th¥Path-algebravhich permits the self, par-
bear this notice and the full citation on the first page. Toyooiherwise, to ent, and child operators, predicates, compositions, ambtdblean

republish, to post on servers or to redistribute to listguies prior specific - : : - .
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include the ancestor and descendant operators as prigjtivide
also consider theore XPath-algebrawhich is the XPath-algebra
without intersection and difference at the expressionllevihe
core XPath-algebra is the adaptation to our setting of Cdrat
of Gottlob et al. [11]. Of both of these algebras, we consitier
fragments without the parent operator, calleddbesnward XPath-
algebraanddownward core XPath-algebraespectively.

The robustness of the characterizations provided in thigpa
is further strengthened by their feasibility. As discusge®dec-
tion 8, the global and local definability problems for eachttod
XPath fragments are decidable in polynomial time. Thisiféas
ity hints towards efficient partitioning and reduction teifues on
both the set of nodes and the set of paths in a document. Szich te
nigues may be fruitfully applied towards document compogss
[6], access control [9], and designing indexes for quergessing
[10, 14, 20, 22].

Actually, we can show (proof omitted) that the predicaterafm
“E1[E2]” is superfluous in the XPath-algebra, but we leave it in
because it cannot be omitted in the XPath fragments we dedixte n

e The downward XPath-algebrés the XPath-algebra without
o,

e Thecore XPath-algebrdas the same primitives as the XPath-
algebra, together with the operatdrs/ 2, E1[E2] with Eo

a boolean combinatidrof core XPath-algebra expressions,
andE; U Es.

e Thedownward core XPath-algebiia the core XPath-algebra
without “1”.

Definition 1 reflects the “global” perspective of XPath as kvor
ing on an entire document, rather than the “local” perspeabif

The remainder of this paper is organized as follows. In Sec- XPath as Working ona particular node, reflected in Definifilon

tion 2, we formally define the four XPath fragments as welbas e
pression equivalence of nodes, and introduce some terogiyoln
Section 3, we propose our two-step methodology by applyita i
both downward fragments of XPath, because these allow the si
plest exposition. In particular, it will turn out that botfagments
are equivalent, and that, in these cases, expression &mdeais
the same as bisimilarity. In Section 4, we present the génara
tions of bisimilarity required to deal with the XPath-algetand
the core XPath-algebra, which are studied in Sections 5 ang 6
spectively. The structural characterizations of the seit&wof the
four XPath fragments in Sections 3, 5 and 6 pertain to thebdglo
view” only. In Section 7, we derive the corresponding chteae
zations for the “local view.” In Section 8, finally, we dissusome
ramifications of our results as well as directions for futesearch.
Because of space considerations, several proofs are eithier

Definition 2. Let E' be an XPath-algebra expression, andlet
(V,Ed, r, A) be adocument. Fon € V, E(D)(m) :={n €V |
(m,n) € E(D)}.

As the first step in our two-step methodology, we are intexkist
which nodes in a document we can or cannot distinguish bytXPat
Therefore, we define the following equivalence relation:

Definition 3. Let D = (V,Ed,r,\) be a document, and let
m1,ma € V. Thenm; andm. areexpression-equivaleiitlenoted
m1 =. my) if, for each XPath-algebra expressiBh E(D)(m1) =
0 if and only if E(D)(mz2) = 0.

Similarly, we can also defindownward expression equivalence
(denoted asn; =.; ms2), core expression equivalen¢denoted

ted or only sketched. The proofs of Section 4, many of which re M1 =.- m2), anddownward core expression equivalen-

quire a case analysis, have been moved to an Appendix.

2. NOTATION AND TERMINOLOGY

In this paperdocumentsare finiteunorderednode-labeled trees.
More formally, a documenb is a 4-tuple(V, Ed, , A), with V' the
finite set of nodes:d C V x V the set of edges, € V the root and

notedm: =.-; m2), each corresponding to one of the XPath-
algebra fragments introduced above.

Next, we introduce the notion asfgnatureof a pair of a nodes in
a document.

Definition 4. Let D = (V,Ed,r,\) be a document, and let
m,n € V. Thesignaturesig(m,n) is an XPath-algebra expres-

X : V — L the node-labeling function into an infinite enumerable sion defined as follows:

setL of labels.

We next define the fragments of XPath [4] considered in this
paper. As observed in the Introduction, we can prune thefset o

operators considerably, since we are only concerned wjtkex1
pressibilityon (2) asingledocument.

Definition 1. The XPath-algebraconsists of the primitives, 7
(¢ € £),0,],and], together with the operator&, / E2, E1[E2],
Fi1UFE>, E1N Es, andE, — Es.

Given a documenD = (V,Ed,r, \), thesemantics E(D), of
an XPath-algebra expressi@his a binary relation oveV’, defined
as follows:

e (D) = {(n,n) | n € V}; D) = {(n,n) | n €
VandA(n) = £}; (D) = 0;
e | (D)=Ed 1 (D)=Ed";

[ ] E1/E2(D) = 7T1}40‘2:3(E1(D) X EQ(D)); El[E2](D) =
71'1,20'2=3(E1(D) X EQ(D));

e E1 % Ex(D) = E1(D) x E2(D), where %” stands for U,
“ or

1. If n is a descendant (ancestor)f, then sigm,n) :=|"
(sig(m,n) :=1%), with k the length of the path between
andn.?

2. Otherwise, let tofin, n) be the least common ancestonof
andn. Then

sig(m, n) := sig(m, top(m, n))/sig(top(m, n), n).

The sequencer = py, ..., pr = n of all the intermediate nodes
encountered upon computing &ig, n)(D)(m) is called thepath
fromm ton.

Note that, formi, ma,n1,n2 € V, (ma,n2) € sig(mi,n1)(D)
in general doesiot imply that sigm1,n1) = sig(mz,n2) unless
n1 is a descendant ofi1, or vice-versa. For example, in the doc-
umentD in Figure 1,top left (mi,m1) € sig(mi,ms), while
sig(my,m1) = € and sigmy, m3) =12 / |%

We therefore define the following comparison between the sig
natures of pairs of nodes:

1Obtained using union, intersection, and complementatiitim ne-
specttoV x V.

>The exponent notation denotes repeated compositigh). (“If
m = n, then sigm, n) :=e.



Definition 5. Let D = (V,Ed,r,\) be a document, and let
mi,m2,N1,N2 € V. We say that Si@nl,nl) > Sig(mg,ng)
if (m2,n2) S Sig(ml,nl)(D).

We conclude this section with the following observation:

PropPosITION 1. LetD = (V, Ed, r, \) be a document, and let
mi,mz,n1,n2 € V. There exists an XPath-algebra expression
Sig(m1, n1) such that(mz, n2) € Sigimi,n1)(D) if and only if
Sig(ml, ’I’L1) = Sig(mg, ’I’Lz).

PrROOF If n; is a descendant o1, or vice-versa, choosing
Sig(m1, n1) := sig(m1, n1) clearly satisfies all requirements. Oth-
erwise, Sigm, n) := sig(m,n) — sig(parentm), paren{n)) sat-
isfies all requirements. O

3. CHARACTERIZING THE SEMANTICS
OF THE DOWNWARD AND THE DOWN-
WARD CORE XPATH-ALGEBRAS

In this section, we are concerned with the downward XPath-

algebra and the downward core XPath-algebra, since theiarse
tics have the simplest characterizations. In subsequetibss, we
generalize our results to the full XPath-algebra and the ¥®tath-
algebra.

Our first goal is to characterize both downward expressiaiveq
alence and downward core expression equivalence in tertee of
structure of the document under consideration. Theretajefiae
another equivalence relation on the nodes of a documesttihé
purely in terms of the structure of that document.

Definition 6. Let D = (V,Ed,r, \) be a document, and let
mi,me € V. Thenm; andm, aredownwardl-equivalent(de-
notedm1 Ei mz) if

1. AX(m1) = A(m2); and

2. for each childn; of mq, there exists a chiladhs of ms such
thatn, =| n», and vice versa.

In the literature, downward 1-equivalence is usually mefgrto
asbisimilarity [5]. For the sake of generalization in Section 4, we
use a different terminology in this paper.

m m

m mg

Figure 1. Example documents. All nodes are assumed to have
the same label.

Example 1.Consider the document in Figuretap left By Def-
inition 6 the nodesn, andm. are downward 1-equivalent, whereas
the nodesn; andms arenotdownward 1-equivalent.

We generalize downward 1-equivalenceptors of nodes.

Definition 7. Let D = (V,Ed,r,\) be a document, and let
mi,me,n1,n2 € V such thatn; is descendant af; andns is
a descendant ohz. Then,(m1,n1) and(mz, n2) aredownward
1-equivalent(denotedm1,n1) =] (ma2, n2)) if

1. sigmai,n1) = sig(mz, n2); and
2. for each pair of nodes; andp2 with

(a) p1 on the path fromm; tonq;
(b) p2 on the path fromn. to ny; and
(©) sigim1,p1) = sig(maz, p2)°,

we have thap: =] p.

By repeatedly applying Definition 6, the following connecti
between between downwaiddequivalence of nodes and pairs of
nodes can be established:

LEmMMA 1. Let D = (V,Ed,r,\) be a document, and let
mi1,me,n1 € V such thatn; is a descendant of,; andm; ;j
ma. Then there exists a descendantof m. such that(m:,n1) =|
(ma2,n2).

Using Lemma 1, the following key lemma can now be proved by
structural induction.

LEMMA 2. Let E be a downward XPath-algebra expression,
let D = (V,Ed,r,\) be a document, and let1, ma2,n1,n2 €
V such that(mi,n1) =| (ma2,n2). If (m1,n1) € E(D), then
(mz,’l’bz) S E(D)

Combining Lemmas 1 and 2 immediately yields

COROLLARY 1. Let £ be a downward XPath-algebra expres-
sion, letD = (V, Ed, r, \) be adocument, and let,, m2,n1 € V
such thatm; =| ms and (m1,n1) € E(D). Then there exists
ng € V such that(mz, n2) € E(D).

We can now present a characterization of downward (core) ex-
pression equivalence.

THEOREM 1. Let D = (V,Ed,r, A\) be a document, and let
mi1,me € V. Then,mi =, mz ifand only ifm; =.-| ma if
and only ifmy =| mo.

PROOF. Sincem: =.| ma impliesmi =, ma, itremains to
prove that (1yn1 =] m» impliesmi =.; m» and (2)m1 =,
meo impIieSm1 Ei mao.

For (1), letm, E} mz, and letE be a downward XPath-algebra
expression such thdt(D)(m1) # (. Hence, there exists; € V
such that(m.,n1) € E(D). By Corollary 1, there exista, €
V such that(mz,n2) € E(D), whenceE(D)(ms2) # (. By
symmetry, the same holds vice-versa.

For (2), letm: =.— | m2. By induction on the height af.;, we
show thatm1 Ei mao.

If m1 is a leaf, therms, is a leaf, for, otherwise| (D)(m1) =0
and| (D)(m2) # 0, a contradiction. In addition, we also have

that \(m1) = A(mz), for, otherwise,)(n;)(D)(ml) # () and
A(m1)(D)(m2) = 0, a contradiction. By Definition 6m; =|
ma.

If m1 is not aleafym; is not a leaf either, and(m1) = A(mo2),
by the same arguments as in the base case. Now; Ise a child
of mi, and letnd, ..., n% be all children ofm,. Suppose that,

30r, equivalently, sifp1,n1) = sig(pz, n2).



foralli, 1 < i < ¢, ni #.,-, nb. Hence, there exists a down-
ward core XPath-algebra expressiBpsuch thatF; (D)(ni) # 0
and E;(D)(n%) = 0.* Let F := ¢[e[E1] N ... Ne[E]]. Then
| /F(D)(m1) # 0 and| /F(D)(m2) = 0, a contradiction.
Hence, there exists a child} of ms, 1 < j < ¢, such that
ni =.-, nj. By the induction hypothesis;; =| n3. Of course,
the same holds vice-versa. [l

As a consequence of Theorem 1, downward (core) expression (denotedn,

equivalence is decidable.

We next turn to the second step of our two-step methodology by

bootstrapping Theorem 1 to characterize those binaryioakover

the nodes of a document that can be defined as the evaluatin of

downward (core) XPath-algebra expressidror that purpose, we
need the following lemma.

LeEmMMA 3. Let D = (V,Ed,r,A\) be a document, and let

m1, mz € V. There exists a downward core XPath-algebra expres-

sion Ey,,, such thatE,,, (D)(m2) # 0 if and only ifm, =] ma.

PROOF Letp, € V be a node such that, #| p2. By
Theorem 1,m1 #.-| p2. Hence, there exists a downward core
XPath-algebra expressidfiy,, p, such thatF,, ,,(D)(m1) # 0
andFr,, », (D)(p2) = 0. Itis now easily seen that

En, i=¢ N E[lepz]]'
p2€V andmlzlpz

is the required downward core XPath-algebra expression. [
We now prove the main theorem of this section.

THEOREM 2. Let D = (V,Ed,r, A\) be a document, and let
J C V x V. The following statements are equivalent:

1. There exists a core downward XPath-algebra expression
such thatt/(D) = J.

2. There exists a downward XPath-algebra expresdiosuch
that E(D) = J.

3. (a) forallm,n € V,(m,n) € Jimpliesn is a descendant
of m; and

(b) for all mi,n1,m2,n2 € V with n, a descendant of
m1,nz adescendant ofiz, and(my,n1) =] (m2, n2),
(m1,n1) € J implies(mz,n2) € J.

PrROOF Clearly (1) = (2). The implication(2) = (3) has
been shown in Lemma 2. It remains to show tfa} = (1).
Thereto, consider the downward core XPath-algebra express

FE = U N
(my,m1)€J p1 onthe path
from mq to ny

sig(m1, p1)/e[Ep,]/sig(p1, n1),

with E,, as in Lemma 3. It is now easily seen that condition (3)

above implies that’(D) = J. O

We immediately conclude that the downward core XPath-atgeb
and the downward XPath-algebra are equally expressivevégana
tion tools on a given documefit.

*Alternatively, if E; is an expression such that (D)(ni) =
andE;(D)(n%) # 0, then putk; := ele — ¢[Ej]].
5In Section 7, we consider this second step for the local view.

5Using an involved argument (omitted), we can actually shust t
both fragments are equivalent as query languages.

4. DOWNWARD k-EQUIVALENCEAND K-
EQUIVALENCE

We now generalize downward 1-equivalence to downward
equivalence, for arbitrarg > 1. The values ok that will interest
us most ard, 2, and3.

Definition 8. Letk > 1. Let D = (V, Ed, r, \) be a document,
and letm1, mo € V. Thenm; andm, aredownwardk-equivalent
—k H
=] WLQ) if

1. /\(m1) = )\(m2);

2. for each childw; of m1, there exists a chileéks of m2 such
thatni =} no, and vice versa; and

3. for each childn; of m; and each childv; of ms such that
n1 = n2, min(|f1|, k) = min(|A2|, k), where, fori =
1,2,n; = {p | (ms,p) € Edandp =} n;}.

Clearly, Definition 8 reduces to Definition 6 fér= 1. It can be
shown (proof omitted) that downwakdequivalence is the coarsest
equivalence relation satisfying conditions (1), (2), aBpabove.

In order to deal with the presence of th ‘bperator in both the
XPath-algebra and the core XPath-algebra, we need a mare+es
tive kind of “k-equivalence” than downwaritequivalence.

Definition 9. Letk > 1. Let D = (V, Ed, r, \) be a document,

and letm1, m2 € V. Thenm; andm. arek-equivalent(denoted
—k H
mi] = m2) if

1. m1 E]f ma,;
2. my is the root if and only ifmx is the root;

3. if m1 andms are not the root, ang andp- are the parents
of m; andme, respectively, thep; =F p,.

In other words,m1 andms are k-equivalent if they are at the
same depth in the document, and each pair of same-generation
ancestors ofn, andm. is downwardk-equivalent. As a con-
sequence, we see that same-generation ancestéreadivalent
nodes aréc-equivalent themselves.

Example 2.In Figure 1,top left m1 andm. are downward 1-
equivalent, bunot 1-equivalent. In Figure 1top center m, and
mq are l-equivalent, butot 2-equivalent. In Figure ltop right,
m1 andms are 2-equivalent, butot 3-equivalent. Finally, in Fig-
ure 1,bottom m; andm- are 3-equivalent, butot 4-equivalent.

Definition 10. Letk > 1. Let D = (V, Ed, r, A) be a document,
and letm, m2,n1,n2 € V. Then(mi,n1) and(msz, n2) arek-
equivalent{denoted(m., n1) =* (ma, ng)) if

1. sigmi,n1) = sig(me, n2); and
2. for each pair of nodes; andp. with

(a) p1 on the path frommn; ton;;
(b) p2 on the path fromm. to n2; and
(¢) sigm1,p1) = sig(mz, p2),

we have thap; =" po.

Similarly, (m1, n1) and(mz, n2) arek-related(denotedmi,n1)
=5 (ma,n2)) if

"For a setd, | A| denotes the cardinality of.



1. sigmi,n1) > sig(me,n2); and
2. for each pair of nodes; andp. with

(a) p1 on the path fromn; ton;;

(b) p2 either on the path fromn, to ne or an ancestor
of top(mz, n2); and

(c) siglmi,p1) > sig(mz, p2),

we have thap; =* ps.

Notice thatk-equivalence and-relatedness coincide if; is a
descendant ofnq, or vice-versa. In general, downwakdrelated-
ness inot symmetric.

The following technical lemmas are very practical. The selco
is the generalization of Lemma 1.

LEMMA 4. Letk > 1. LetD = (V,Ed,r, \) be a document,
and |etm1,m2,n1,n2 c V. Then(ml,nl) Ek (mz,nz) (re-
spectively(mi,n1) =% (ma,n2)) if and only if m; =* ma,
ni =" mne, and sidmi,n1) = sig(me,n2) (respectively
sig(ma, n1) > sig(ma, n2)).

PROOF. For each pair of nodes; andp, for which p; =* ps
must hold according to Definition 19; is either an ancestor af;
or an ancestor of; andp, a same-generation ancestome$ or of
nsa. As observed earlier, same-generation ancestdtsagfuivalent
nodes aré:-equivalent. O

LEMMA 5. Letk > 1. LetD = (V,Ed,r,\) be a document,
and letm, m2,n1 € V such thatn; is a descendant af; and
m1 = ma. Then, there exists a descendantof m. such that
(m1,n1) Elf (mg,ng).

The following properties play a crucial role in proving theea
logues of Lemma 2 and Corollary 1, used in characterizingséhe
mantics of the downward (core) XPath-algebra, for chareaitey
the semantics of the XPath-algebra (Lemma 6 and Corollaan@)
the core XPath-algebra (Lemma 11 and Corollary 3). Theiofsro
are in the Appendix.

PROPOSITION 2. Letk > 1. LetD = (V, Ed,r, \) be a docu-
ment, and leini, ma,n1 € V withm; =* ms. Then, there exists
ns € V such that(ml, nl) 9k (mz,nz).

PROPOSITION 3. Letk > 1. LetD = (V,Ed,r, \) be a doc-
ument, and letni, m2,n1,n2,p1 € V such that(mi,n;) ="
(ma2,n2). Then, there existps € V such that(mi,p1) =F
(m2,p2) and (p1,m1) =* (p2,m2).

PROPOSITION 4. Letk > 2. LetD = (V,Ed,r, \) be a docu-
ment, and lein,, ma, ny € V withmy =F ms. Then, there exists
na2 € V such that(m1,n1) =k (ma,n2).

PROPOSITION 5. Letk > 3. LetD = (V,Ed,r, \) be a doc-
ument, and letny, ma,n1,n2,p1 € V such that(mi,n;) ="
(ma2,n2). Then, there existgs € V such that(my,p1) =F
(ma, p2) and (p1,n1) =" (p2,n2).

5. CHARACTERIZING THE SEMANTICS
OF THE XPATH-ALGEBRA

LEMMA 6. Let E be an XPath-algebra expression, B =
(V,Ed,r, \) be a document, and leti, m2,n1,n2 € V such
that (m1,m1) =° (ma,n2). If (m1,n1) € E(D), then also
(mz,’l’bz) c E(D)

PROOF The proof goes by induction on the structurezfThe
induction step for the compositiof: / E; relies on Proposition 5;
the induction step for the predicate operalibf E-] relies on Propo-
sition 4; and the induction step for the difference oper@tor F-
relies on the symmetry of 3-equivalence on pairs of nodes.rést
of the proof is straightforward. O

Combining Proposition 4 and Lemma 6 immediately yields

COROLLARY 2. LetE be an XPath-algebra expression, Iet=
(V,Ed,r, \) be a document, and let1,m2,n1 € V such that
m1 =* ma and(m1,n1) € E(D). Then there exists. € V such
that (mz, nz) S E(D)

Using the same argument used for statement (1) in the proof of
Theorem 1, we obtain

LEMMA 7. Let D = (V,Ed r,\) be a document, and let
mi, M2 € V. Ifmi EB ma, thenmi =. mo.

The reverse implication, however, requires more work. & fir
show that expression equivalence implies downward 3-etprice,
and then bootstrap this result to show that, actually, esgioa
equivalence implies 3-equivalence.

LEmMMA 8. Let D = (V,Ed,r, A) be a document, and let
mi, ma € V. lfmi =, ma, thenm, Eﬁ mo.

PrRoOOF Since downward 3-equivalence is the coarsest equiva-
lence relation satisfying conditions (1), (2), and (3) ofiDition 8,
it suffices to prove that expression equivalence satisfiesetison-
ditions.

For conditions (1) and (2), this requires the same argurnesnts
used for statement (2) in the proof of Theorem 1. We therefore
restrict ourselves to condition (3). Thus, i€, . . ., n¥ be all chil-
dren ofm; andni, ..., n4 be all children ofms, and assume that
ni =. ni. We have to show thahin(|#1],3) = min(|73],3),
where, fori = 1,2, 7; = {p | (m},p) € Edandp =. n;}. Todo
so, we have to show that the following situations cannot nccu

1. |a{| = 1 and|@z| > 1, or vice-versa; and
2. |ai| = 2 and|A3| > 2, or vice-versa.

By symmetry, it suffices to consider the former situationacteof
these cases.

1. |Ai| = 1and|A3] > 1. Hencepl = {ni} and, without loss
of generality, we may assume thigt O {n3,n3}. Since, for
alli = 2,...,k, nl #. nt, there exists an XPath-algebra
expression®; such that; (D) (n}) # 0 andE;(D)(n}) =
(. By definition of expression equivalence, we also have, for
j=1,2,thatF;(D)(n3) # 0.
Let F :=¢[Ez]N...Ne[Ex], and letG := F/ 1 / | /F.
One can easily verify that[G — ¢](D)(n1) = 0, while
e[G —€](D)(n3) # 0, a contradictiorf. So, this case cannot
occur.

80f course, one could also have use the expresSiene instead

Lemma 6, below, is the analogue of Lemma 2 for the full XPath- of ¢[G' — ¢]. However, our choice allows reuse of this part of the

algebra.

proof in a subsequent proof.



2. |ny| = 2 and|ng| > 2. Without loss of generality, we may
assume thaki = {ni,ni} andni D {n3,n3,n3}. Since,
foralli = 3,...,k,nl #Z. n}, there exists an XPath-algebra
expressionk; such that; (D)(n1) # ¢ andE;(D)(n})
(. By definition of expression equivalence, we also have, for
j=1,2,3,thatE;(D)(n}) # 0.

Now, letF' := ¢[Es] N ...Ne[Ek], letG:=F/ 1/ | /F,
and let H e[G — ¢]. One can easily verify that
((H/H) —¢)(D)(n1) = 0, while (H/H) — £)(D)(n3) #
(, a contradiction. So, this case cannot occur either.

We may thus conclude that expression equivalence alsdisstis
condition (3) of Definition 8. ([l

LEmMMA 9. Let D = (V,Ed r,\) be a document, and let

mi,m2 € V.lfmi =, ma, thenm =3 ma.

PrROOF By induction on the depth of; in the document.

If m4 is the root, thenms is also the root, for, otherwise,
1 (D)(m1) = 0 and? (D)(m2) # 0. Equal nodes are of course
3-equivalent.

If m4 is not the root, thenny cannot be the root either, for,
otherwise, we could derive a contradiction as in the base.cas
Thus, condition (2) of Definition 9 is met. To prove that con-
dition (3) is met, letp; be the parent ofn; and p2 the parent
of ma. If p1 #. p2, there exists an XPath-algebra expression
such thatE(D)(p1) # 0 and E(D)(p2) = 0. Obviously, then
1 /E(D)(m1) # 0 and{ /E(D)(m2) = 0, a contradiction.
Thus,p1 =. p2. By the induction hypothesig); =* p.. Fi-
nally, Lemma 8 yields condition (1). We may thus concludd tha
ma. [l

Lemmas 7 and 9 are both directions of a characterization-of ex
pression equivalence:

mi =

THEOREM 3. Let D = (V,Ed,r, A\) be a document, and let
m1, ma € V. Thenm =. mo if and only ifm; =2 ma.

As a consequence of Theorem 3, expression equivalence is de-

cidable.
We next turn to characterizing those binary relations oher t

nodes of a document that can be defined as the evaluation of a

XPath-algebra expression. For that purpose, we need thmsvfol
ing lemma, which is the analogue for the full XPath-algebfa o
Lemma 3 for the downward (core) XPath-algebra. The proof is
completely analogous.

LeEmMMA 10. Let D = (V,Ed,r, \) be a document, and let
m1,ma € V. There exists an XPath-algebra expression, such
that E,,,, (D)(mz2) # 0 if and only ifm; =3 ma.

We now prove the main theorem of this section.

THEOREM 4. Let D = (V,Ed,r, \) be a document, and let
J C V x V. There exists an XPath-algebra expressiosuch that
E(D) = J if and only if, for allmi, m2,n1,n2 € V such that
(m1,m1) =2 (m2,n2), (m1,n1) € Jimplies(mz, n2) € J.

PROOF The “only if” follows immediately from Lemma 6.
Therefore, we focus on the “if”. Thereto, consider the XPath
algebra expression

E = U

(m1,m1)€T

e[Em, ]/Sig(ma, m1) [e[En, ],

with E,,, andE,,, asin Lemma 10 and Sigx1, n1) as in Proposi-
tion 1. It is now easily seen that the condition above impased
implies thatE(D) = J. |

6. CHARACTERIZING THE SEMANTICS
OF THE CORE XPATH-ALGEBRA

Lemma 11, below, is the analogue of Lemma 6 for the core
XPath-algebra.

LEMMA 11. LetE be a core XPath-algebra expression, fet=
(V,Ed,r, A) be adocument, and let1, m2,n1,n2 € V such that
(m1,n1) 32 (mz,nz). If (m17n1) € E(D), then(mz,nz) €
E(D).

PROOF The proof goes by induction on the structurezfThe
proof of the base case is straightforward. The inductiop fte
the compositior®; / E; relies on Proposition 3. The induction step
for the union operatoE; U E- is straightforward. We discuss the
induction step for the predicate operatBt[E-], with E1 a core
XPath-algebra expression aii¢h a boolean combination of core
XPath-algebra expressions, in more detail.

Since E2 can be normalized in disjunctive normal form, and
since set union can be pushed out from the predicate to threexp
sion level, we may assume that is of the formFi N... N Fr N
GiN...NGy. If (my1,n1) € E(D), there existy, € V such that
(m1,n1) S E1(D), (nl,pl) S F1(D), . (n1,p1) S Fk(D),
(n1,p1) ¢ Gi(D) ..., (n1,p1) ¢ Ge(D). By the induction
hypothesis,(m2,n2) € E1(D). By Proposition 4, there exists
p2 € V such that(ni, p1) =2 (nz2, p2). In particular,(n1, p1) =2
(n2,p2), whence, by the induction hypothes{s.., p2) € Fi(D),
..o (n2,p2) € Fi(D). Since(ni,p1) (na2, p2), we also have
(na,p2) =2 (n1,p1).? If there werei, 1 < i < ¢, such that
(n2,p2) € Gi(D), then, by the induction hypothesig1,p1) €
G;(D), a contradiction. We conclude thats, p2) ¢ G1(D), .. .,
(’I’Lz,pz) ¢ Ge(D), WhenCE(mz,’l’Lz) c E(D) [

Notice that the absence of difference at the expression igve
crucial for this proof to work, as an induction step for thiéetience
operator would fail because of the asymmetry gf".

Combining Proposition 2 and Lemma 11 immediately yields

COROLLARY 3. Let E be a core XPath-algebra expression, let
D = (V,Ed,r, \) be a document, and let1, m2,n1 € V such
thatm, =2 me and(m1,n1) € E(D). Then there existss € V

psuch that(mz, n2) € E(D).

Using the same argument used for statement (1) in the proof of
Theorem 1, we obtain

LEMMA 12. Let D = (V,Ed,r,\) be a document, and let
mi, M2 € V. Ifmy 2 msa, thenm =.- Ma.

To prove the reverse direction, we proceed in the same way as
for the XPath-algebra.

LEMMA 13. Let D (V,Ed,r,\) be a document, and let
mi, ma € V. lfmi =.- M2, thenm: Ef ma.

PROOF The proof is completely analogous to that of Lemma
8, except that, in order to prove that core expression elguica
satisfies condition (3) of Definition 9, we must only show ttre
case 71| = 1 and|a3| > 1” cannot occur. Since the expression
exhibited for this case is actually a core XPath-algebraesgion,
the argument used there can be reused here.

Notice that the expression exhibited in the proof of Lemma 8 t
show that the casd#i| = 2 and|73| > 2" camnot be transformed
into a core XPath-algebra expression.

Lemma 13 can be bootstrapped to Lemma 14, in the same way
as Lemma 8 to Lemma 9:

®Remember that, whilex2” is symmetric, ‘= 2" in general isnot!



LEMMA 14. Let D
mi,mg € V. If my

(V,Ed,r,)\) be a document, and let
ma, thenml EQ mo.

=e-

Lemmas 12 and 14 are both directions of a characterization of
core expression equivalence:

THEOREM 5. Let D = (V,Ed,r, \) be a document, and let
mi,ma € V. Thenm, =, mo if and only ifm, =2 mo.

As a consequence of Theorem 5, core expression equivalence i
decidable.

We next turn to characterizing those binary relations oher t
nodes of a document that can be defined as the evaluation o a co
XPath-algebra expression. For that purpose, we need thoavfol
ing lemma, which is the analogue for the core XPath-algelfra o
Lemma 3 for the downward (core) XPath-algebra. The proof is
completely analogous.

LEmMMA 15. Let D = (V,Ed,r, \) be a document, and let
mi,ma € V. There exists a core XPath-algebra expression,
such thatF,,,, (D)(m2) # 0 if and only ifm; =2 mo.

We now prove the main theorem of this section.

THEOREM 6. Let D = (V,Ed,r, \) be a document, and let
J CV x V. There exists a core XPath-algebra expressibauch
that £(D) = J if and only if, for all m1, m2,n1,n2 € V such
that (m1,n1) =2 (m2,n2), (m1,n1) € J implies(ma,n2) € J.

PROOF The proof is completely analogous to the proof of The-
orem 4, except that, in the expressiBrexhibited, “Sidm1, n1)"—
which is not a core XPath-algebra expression—is replaced by
“Sig(ml, 711)”. O

7. THE LOCAL PERSPECTIVE

Theorems 2, 4, and 6 settle the definability of XPath from a
global perspective. Starting from these results, we can aiswy
settle the definability of XPath from a local perspective.

COROLLARY 4. LetD = (V,Ed, r, \) be a document, letr €
V,andletN C V.

1. There exists a downward (core) XPath-algebra expresBion
such that(D)(m) = N if and only if, forni, ns € V with
(m,n1) =] (m,n2),n1 € N impliesnz € N.

. There exists an XPath-algebra expressiowhereE(D) (m)
= N if and only if, forn,;,n. € V withn; =3 ny and
sig(m, n1) = sig(m,n2), n1 € N impliesns € N.

. There exists a core XPath-algebra expressiorsuch that
E(D)(m) = N if and only if, forni,ns € V with n; =2
ng and sigm, n1) > sig(m, n2), n1 € N impliesns € N.

For the important special case where the nodes the root, the
statements of Corollary 4 can be simplified.

COROLLARY 5. LetD = (V,Ed,r, \) be a document, and let
NCV.

1. There exists a downward (core) XPath-algebra expresBion
such thatE/(D)(r) = N if and only if, forni, ny € V with
ni='no,ni €N impliesnz € N.

. There exists an XPath-algebra expresstowhere E(D)(r)
= N ifand only if, forni,ne € V withn; no,n1 €N
impliesns € N.

. There exists a core XPath-algebra expressiorsuch that
E(D)(r) = Nifand only if, forni, ns € V withn; =2 na,
ni1 € N impliesny € N.

8. DISCUSSION

In this paper, we characterized the expressive power ofifatu-
ral fragments of XPath at the document level. Of course [Jbssi-
ble to consider other fragments or extensions of the XPlagbbsa
and its data model. Analyzing these using our two-step naetho
ogy in order to further improve our understanding of XPatbrie
possible research direction which we are currently pugsuin

Another future research direction is refining the links gw
XPath and finite-variable first-order logics [16]. Recensuch
links have been established at the level of query semankcs.
example, Marx [17, 18] has shown that Core XPath [11] is equiv
alent to F@,..—first-order logic using at most two variables over
ordered node-labeled trees—interpreted in the signatiné | d,
descendant , andf ol | owi ng_si bl i ng. Our results establish
new links to finite-variable first-order logics at the docurnievel.
For example, we can show that, on a given document, the XPath-
algebra and F&—first-order logic with at most three variables—
are equivalent in expressive power. Indeed, we can show dhat
the document level, the XPath-algebra is equivalent wittsKis
relation algebra [23] over trees. Tarski and Givant [24&aBkshed
the link between Tarski’s algebra and E’heorem 3 can then be
used to give a new characterization, other than via pebdneeg
[8, 15], of when two nodes in an unordered tree are indistsigu
able in FJ. In this light, connections between other fragments of
the XPath-algebra and finite-variable logics must be exachin

The connection between the XPath-algebra and B0 has
ramifications with regard to complexity issues. Indeedhgisi re-
sult of Grohe [13] which establishes that expression edgrivae
for FO? is decidable in polynomial time, it follows readily from
Theorem 4 and Corollary 4 that the global and local defingbili
problems for the XPath-algebra are decidable in polynotiiz.
By other arguments, based on the syntactic charactenieaiticthis
paper, one can also establish that the global and local déftpa
problems for the other fragments of the XPath-algebra acélde
able in polynomial time. As mentioned in the Introductiohist
feasibility suggests efficient partitioning and reducttenhniques
on the set of nodes and the set of paths in a document. Such tech
niques may be successfully leveraged for various aspect{af
document processing such as indexing, access control, and d
ment compression. This is another research direction whehre
currently pursuing.
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APPENDIX

In this Appendix, we provide more details regarding the fsax
Propositions 2-5. For the convenience of the reader, thenséats
of the results are repeated.

PROPOSITION2 1. Letk > 1. LetD = (V,Ed,r,\) be a
document, and letn;, ma, n1 € V withmi =* mo. Then, there
existsna € V such that(mi,n1) =% (m2, n2).

PROOF The case that, is a descendant of.; follows from
Lemma 5.

If n1 is not a descendant afuq, then lett; := top(mi,n1).

Sincem; =" ma, Definition 9 implies that there exists an ancestor
to of ma such thatt; = ¢, and sigmy,t1) = sig(ma, t2) (1).
By the previous case, there exists a descendardf ¢ such that
n1 =" ng and sidti,n1) = sig(ta,n2) (2). From (1) and (2),
we deduce signi,n1) > sig(mz,n2). Lemma 4 now yields the
desired result. O

Before proceeding to the proof of Proposition 3, we like tohpo
attention to Figure 2.

nz

m mp

Figure 2: Example document. All nodes are assumed to have
the same label

In this document, si@n1,n1) = sig(ms, n2) and signi,p1) =
sig(na, p2), but sigmi,p1) 2 sig(mz, p2). This example shows
that, in the proof of Proposition 3—as well as in the proof afd-
sition 5 to follow later—care must be taken in choosjng There-
fore, both proofs proceed via an exhaustive case analysike O
the correct choice fops is made, however, the remainder of the
proof for that case is technical but straightforward andydfore,
omitted.

PROPOSITION3 1. Letk > 1. LetD = (V,Ed,r, \) be a doc-
ument, and letni, m2,n1,n2,p1 € V such that(mh’lh) Sk
(ma,n2). Then, there existso € V such that(mi,p1) =
(ma,p2) and (p1,m1) =" (p2, n2).

PrROOFR We distinguish three principal cases:

1. top(m1,p1) is a strict ancestor of topn, n1).
Then, tofdpi,n1) = top(mi,p1). Let ps be any node sat-
isfying (ma1,p1) =% (ma,p2). (Proposition 2). It can now
be shown thatp;,n1) =* (p2,n2). Figure 3 illustrates the
constructions in this case for one possible configuration of
ma, N2, andpz.

2. top(m1,p1) is a strict descendant of t¢puy, n1).
Then, togp1,n1) = top(m1,n1). Now, letp. be any node
satisfying(m1,p1) =" (m2,p2) (Proposition 2). Again, it
can now be shown thdp,n1) =% (p2, n2). Figure 4 illus-
trates the constructions in this case for one possible aonfig
ration ofmas, ns2, andpa.

3. top(ma, p1) = top(m1,n1). We distinguish two subcases:

(a) top(p1,n1) is a strict descendant of t¢pr1,n1). This
situation is shown in Figure 5. This case is the same as
the second principal case, with the rolesmef andn;
(and hence the roles af; andn:) interchanged. Since
the statement of the lemma is symmetric in this respect,
we may consider this case solved.



top(py Ny ) = top(my,py ) 52

top(mq,ng ) S

top(m,,n, )

kol

Py

ni np

Figure 3: lllustration of the constructions in the first prin ci-
pal case of the proof of Proposition 3. The nodes. and t.
are the ancestors ofm satisfying top(mi,n1) =* s2 and
top(ml,pl) Ek ta.

top(py,ng ) = top(my,ny )

top(my .py )

P1 P2

Figure 4: lllustration of the constructions in the second piin-
cipal case of the proof of Proposition 3. The nodes. and t-
are the ancestors ofm satisfying top(m1,n1) =* t2 and
top(m1,p1) =~ sa.

top(mq,my ) = top(my,py )

top( p1.m

m

Py

Figure 5: The first subcase of the third principal case of the
proof of Proposition 3.

(b) top(pl,m) = tOp(m17p1) = tOp(ml,nl). This situ-
ation is shown in Figure 6. Since, in this subcase, we
have, in particular, that tgp1,n1) = top(pi,n1) and
top(m1, p1) is on the path fromn; to top(m1, n1), this
subcase can be dealt with in the same way as the second
principal case.

top(my,ny ) = top(my,py )= top( pp.m )

my
Ny P1

Figure 6: The second subcase of the third principal case of th
proof of Proposition 3.

O

PROPOSITIONd 1. Letk > 2. LetD = (V,Ed,r,\) be a
document, and letn;, ma, n1 € V withmi =* mo. Then, there
existsnz € V such that(mi,n1) =* (ma, na).

PROOF By Lemma 4, it suffices to show that there existse
V such thain, =F ny and sigma, n1) = sig(ma, nz).

The case where; is a descendant ofi; is covered by Proposi-
tion 2, sincek-equivalence and-relatedness coincide in this case.

If n1 isnota descendant efi1, then considet; := top(m1, n1).
Sincern1 =" ma, Definition 9 implies that there exists an ancestor

to of my such that; = ¢ and sidma, t1) = sig(ma, t2).

53 t2

my mz

ny no

Figure 7: lllustration of the constructions in the proof of Propo-
sition 4.

If n1 = t1, then, clearlyn. := t. satisfies all requirements.
Otherwise, lep: be the child oft; on the path ton,, and letg; be
the child oft; on the path tav;,. Clearly,p:1 # ¢1. Also, letps be
the child oft, on the path tans. Clearly,p; =" p.. In particular,

P1 E’f p2. We now distinguish two cases:

1. m 3é’f q1. By Definition 8, there exists a chilgh of ¢2 such
thatql Elf q2 (Whencah =k qz). Sincep1 7_élf q1,P2 ?élf q2.
In particular,ps # qo.
2. ;m E’f q1. By Definition 8, and because 6f> 2, there exists
a child g2 of t2 such thatps # g2 andq: E’f g2 (Whence
a1 =" q).
In both casesps # ¢» andqi =* ¢». Sincen; is a descendant
of ¢1, there exists a descendant of ¢» such thatn, =* ny
and sidqi,n1) = sig(gz,n2). Sincep: # qq, it follows that
Sig(ml, n1) = Sig(mz, ’ILQ). O



PROPOSITIONS 1. Letk > 3. LetD = (V,Ed,r, \) be adoc-
ument, and letni, ma,n1,n2,p1 € V such that(mg,n;) ="
(ma2,m2). Then, there existg. € V such that(mi,p1) =F
(ma, p2) and (p1,n1) =" (p2,n2).

PrROOF We distinguish three principal cases:

1. top(m1,p1) is a strict ancestor of topn, n1).

Then, togp1,n1) = top(p2, n2). Letp2 be any node satisfy-
ing (m1,p1) =° (ma2,p2). (Such a node exists, by Proposi-

tion 4.) It is now readily seen thép, n1) =" (pa,n2).

top(py.ny ) 5 top(my.py ) top(pz.nz ) = top(m;.p,

top(my.ny ) top(my .y )

my my

ny np

Figure 8: lllustration of the constructions in the first prin cipal
case of the proof of Proposition 5.

2. top(ma, p1) is a strict descendant of t¢pr1, n1).

Let p2 be any node satisfyingmi,p1) =* (ma, p2). (Such

a node exists, by Proposition 4.) It is now readily seen that

(p1,m1) =* (p2,m2).

top(py Ny ) = top(my,ng ) top(p, Ny ) = top(m,,n,

top(my,py ) top(my,p; )

m mz

ny n2

o

P1 P2

Figure 9: lllustration of the constructions in the second piinci-
pal case of the proof of Proposition 5.

3. top(m1, p1) = top(m1, n1). We distinguish two subcases:

(a) top(p1,n1) is a strict descendant of t¢pr1, n1).
Let p» be any node satisfyingpi,n1) = (p2,n2).

(Such a node exists, by Proposition 4.) It is now read-

ily seen thaf{m1, p1) =* (ma, p2).

my

top(my,m )= top(my.p; )

top(py.ny )

my

o
P1 P2

Figure 10: lllustration of the constructions in the first subcase
of the third principal case of the proof of Proposition 5.

(b) top(p1,n1) = top(m1,p1) = top(m1,n1).
If p1 equals this top node, then It := top(ma,ns).
If m1 equals this top node, then lgt be any node satis-
fying (p1,n1) =* (p2,n2). Finally, if n; equals this top
node, then lep, be any node satisfyingmi,p1) =*
(mz2,p2). (Such nodes exist, by Proposition 4.) It is
readily seen that, in all these border cagessatisfies
all requirements.
If none of these bordercases occur, we are in the situation
shown in Figure 11.

top(my,ny )= top(myg.py )= top(py.ny ) top(my.ny )

Figure 11: lllustration of the constructions in the second sib-
case of the third principal case of the proof of Proposition 5

Let ¢1, r1, ands; be the children of tofpn1, n1) on the
paths tom1, n1, andpi, respectively, and lejo andr:

be the children of tofgns, n2) on the paths ton, and

na, respectively. Clearly, tdpni, n1) =" top(ma, nz),
whence, in particular, tqpn,n1) ;’f top(maz, n2). By
Definition 8, and sincé& > 3, it can be seen in an analo-
gous way as in the proof of Proposition 4 that there exists
a child sz of top(mz, n2) such thats; =} s (whence

S1 Ek 82), S92 7& q2, and52 7& 2.

Finally, letp, € V be any descendant af satisfy-

ing (s1,p1) =F (s2,p2). (Sincek-equivalence and-
relatedness coincide for ancestor-descendant pairs, such
a node exists, by Proposition 2.) Obviously,(sig, p1)

= sig(mz, p2) and sidp1,n1) = sig(pz2, n2), whence
(m1,p1) =* (m2,p2) and(p1,n1) =" (p2,m2).

O



