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ABSTRACT

In some clinical research, the endpoint of greatest relevance to inferences concern-

ing therapeutic efficacy is not available or cannot be measured easily. Sometimes the

determination of the true endpoint is difficult, requiring an expensive, invasive or uncom-

fortable procedure. In some trials, however, the main endpoint of interest, for example

death, is rare and/or takes a long period of time to reach. In such trials, there would be

benefit in finding a more proximate endpoint to determine more quickly the effect of an

intervention.

In this report, a meta-analytic approach was used to validate progression free survival

as a surrogate for overall survival. Firstly the logarithm of both endpoints were assumed

to be normally distributed and fixed effects models were applied to them. Secondly both

endpoints were considered as failure time and appropriate methods were applied. In all

cases, the individual and trial level surrogacy estimates were too low to be useful. It was

concluded that, for this study, progression free survival can’t be used as a surrogate for

the overall survival.
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CHAPTER 1. INTRODUCTION

Prostate cancer is a form of cancer that develops in the prostate, a gland in the male

reproductive system. Most prostate cancers are slow growing; however, there are cases of

aggressive prostate cancers. Rates of detection of prostate cancers vary widely across the

world, with South and East Asia detecting less frequently than in Europe, and especially

the United States. Prostate cancer tends to develop in men over the age of fifty (Siegel

et al. 2011 ). Globally it is the sixth leading cause of cancer-related death in men (in the

United States it is the second) (Baade et al. 2009; Siegel et al. 2011). Prostate cancer

is most common in the developed world with increasing rates in the developing world

(Baade et al. 2009).

Different types of treatment are available for patients with prostate cancer. Some

treatments are standard (the currently used treatment), and some are being tested in

clinical trials. The dataset analyzed in this report is from a clinical trial where a new

treatment is compared to standard treatment (Due to confidentiality, the names of the

two treatment are not given), and two endpoints which are overall survival and progres-

sion free survival are considered. Overall survival was defined as the time interval from

randomization to death from any cause. One secondary endpoint was progression-free

survival, which was defined as the time from randomization to disease progression or

death.

The conventional approach to evaluate the efficacy of therapeutic agents is to con-

duct clinical trials with clinical endpoints that reflect tangible benefits to patients. Such
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endpoints include disease occurrence (for example, infection, cancer recurrence and heart

attack) and death. Unfortunately, conventional clinical trials require hundreds of patients

and take years to complete. Researchers and patients wish to assess the effectiveness of

promising new agents as quickly as possible, which has led investigators to explore labo-

ratory markers that may serve as surrogate endpoints in clinical trials. Replacement of

a rare or late-occurring clinical endpoint with a frequent or short-term outcome variable

can lead to substantial reduction in sample size and trial duration (Lin et al. 1997).

In some clinical research, the endpoint of greatest relevance to inferences concern-

ing therapeutic efficacy is not available or cannot be measured easily. Sometimes the

determination of the true endpoint is difficult, requiring an expensive, invasive or uncom-

fortable procedure. Sometimes we find it unobservable for an impractically long interval.

Occasionally the true endpoint is not directly measurable at all, at least with current

technology. In these cases we must rely on alternative, or surrogate, endpoints (Ellenberg

and Hamilton 1989).

Surrogate endpoints are referred to as endpoints that can be used in lieu of other

endpoints in the evaluation of experimental treatments or other interventions. They are

useful when they can be measured earlier, more conveniently or more frequently than the

endpoints of interest, which are referred to as the ’ true’ or ’final’ endpoints (Ellenberg

and Hamilton, 1989). In this project two endpoints were considered, progression free

survival ( surrogate endpoint), and overall survival (true endpoint). Progression free

survival, which is the time from randomization to the progression of the disease or death

was chosen here, because it can be observed earlier compared to overall survival. The

prostate cancer grows slowly.

Prentice (1989) define a surrogate endpoint to be a response variable for which a test

of the null hypothesis of no relationship to the treatment groups under comparison is

also a valid test of the corresponding null hypothesis based on the true endpoint. In
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this project this definition is equivalent to say that a test of the null hypothesis of no

relationship to the treatment groups under comparison on progression free survival is

also valid test of the corresponding null hypothesis based on overall survival.

In this paragraph we give some advantages of using surrogate endpoint. First, the

length of time required for follow-up in a trial that uses a surrogate endpoint is often much

shorter than a trial that uses a true endpoint. Second, in some cases a surrogate may

be easier to measure than the true endpoint. For example, for cardiovascular diseases if

the true endpoint is the size of the infarction as measured by a myocardial scintigraphy,

a measure of enzymes is an easily obtainable surrogate (Wittes et al. 1989). Third, the

prevalence of certain rare diseases may be so low that a study of the ’true’ endpoint

is impossible. Perhaps the most important practical advantage of a surrogate is that

the sample size in a trial with a surrogate may be considerably lower than in a trial

of the true endpoint. For rare diseases for example, the use of survival time as the

primary endpoint presents problems. First, the comparison requires a very large number

of patients followed for an extended period to observe the necessary number of deaths.

In some cases, to measure the true endpoint may be more costly compared to the

surrogate endpoint. For diseases where no effective therapies exist, surrogate endpoints

are used to accelerate the approval mechanism by regulatory agencies. Before a surrogate

endpoint can replace a final endpoint in the evaluation of an experimental treatment,

it must be formally ’validated’, a process that has caused much controversy and has

not been fully elucidated so far ( Burzykowski et al., 2005). A surrogate to endpoint

should be clinically relevant and biologically plausible. It should be simple and cheap

to measure and should be sensitive and specific to treatment effect. It should share a

causal mechanism with the clinical endpoint and must be as close as possible to the

clinical endpoint in the chain of events leading from drug-receptor interaction to the

therapeutic response (Weir and Walley 2006).
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The key motivation for validating a surrogate endpoint is to be able to predict the

effect of treatment on the true endpoint, based on the observed effect of the treatment

on the surrogate endpoint, with sufficient precision to distinguish safely between effects

that are clinically worthwhile and effect that are not (Buyse et al. 2000).

1.1 Objectives

The main goal of this report is to validate progression free survival as a surrogate for

overall survival for prostate cancer for a new treatment. The structure of this report is as

follows. The second chapter describes the dataset used for the analysis. In chapter three,

different approaches used to validate the surrogate were introduced and described. In

chapter four we present results obtained, and in the last chapter we discuss and conclude

from the obtained results.
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CHAPTER 2. DATA DESCRIPTION

Data analyzed in this report come from a clinical trial conducted in the following

countries: Austria (AT), Australia (AU), Belgium (BE), Canada (CA), France (FR),

Germany (GE), Hungary (HU), Italy (IT), Netherlands (NL), Republic of Ireland (IR),

Spain (SP), United kingdom (UK) and United State of America (USA). In these coun-

tries, patients were enrolled in investigator sites. In total there was 147 sites. The

number of site per country range from 1 (Netherlands ) to 60 (USA). In the site, pa-

tients were assigned either to the new treatment or to the standard treatment (coded as

1 for the new treatment and 0 otherwise). The number of patients per site range from 1

to 48. Among those sites, 23 of them were not having any patient under the standards

treatment arm, and 13 without any patient under the new treatment arm. 69 out of

147 (47%) sites have less than 5 patients in both treatment arms. Figure 2.1 shows the

distribution of patients per country and per treatment arm. As it can be seen from it,

in all countries, most patients were randomized to the new treatment arm.

Figure 2.1 Patients distribution per country and per treatment arm



6

In total, there was 1183 patients, 789 of them were assigned to the new treatment,

and 394 assigned to the standard treatment. Table 2.1 presents the distribution of the

patients and sites per country.

Table 2.1 Patients and sites distribution per country

AT AU BE CA FR GE HU IT NL IR SP UK USA
Sites 3 17 10 12 9 5 2 5 1 6 5 12 60
Patients 12 104 43 154 90 38 7 33 6 13 16 176 491

In what follows the country from which the patients come from was treated as the

unit of analysis. Thus the term ”trial-specific” should be understood as meaning country

specific. The analysis was restricted to countries with at least 3 patients on each treat-

ment arm. This constraint was adopted to ensure estimability. As a result, data from

10 countries were used, with a total sample size of 1158 patients. Data from Austria,

Hungary, and Netherlands were not used in analysis. The overall survival time (true

endpoint) and the progression free survival time ( surrogate endpoint to be validated)

raw data and log transformed data were shown in Figure 2.2.

Figure 2.2 original overall survival time vs progression free survival data (left plot).
Log transformation of the original data (right plot)

From the above figure, it can be seen that on the original scale most of the people

had an event (death or progression) before 300 days, and at the end (about 700 days)
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they were few people still surviving. The diagonal shows those patients for whom the

overall survival was equal to the progression free survival. For patients who were above

the diagonal, they had an event on their progression free survival ( disease progression)

before having an event on their overall survival ( either died very late or still alive at the

end of the study). In most patients, longtime was needed to have an event on overall

survival endpoint compared to progression free survival endpoint.

Figure 2.3 shows that the medium survival time is longer on overall survival endpoint,

as expected, compared to progression free survival endpoint. No significant results were

found on both endpoints.

Figure 2.3 Kaplan Meier plot per endpoint

754 out 1158 (65%) patient had an event on overall survival time, while 1093 out of

1158 (94%) had an event on progression free survival time. 754 patients had an event

on both endpoints.
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Figure 2.4 presents the forest plots for log hazard obtained for both endpoints in

different countries. It can be seen that all intervals contain zero, this suggests that there

was no treatment effect on each endpoints, except for one country (Ireland), on the

progression free survival endpoint. The vertical dashed line represents reference value

zero.

Figure 2.4 Forest plots:log hazard ratio on overall survival (left) and log hazard ratio
on progression free survival (right)

In this report SAS macro using IMLPlus programming language, developed by Burzykowski,

were used to estimate the Copula. Other analysis were done using SAS version 9.2 and

R version 2.15.1.
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CHAPTER 3. METHODOLOGY

In validation of possible surrogate, two major branches have been developed, meth-

ods in single-trial settings and meta-analytical evaluation methods. However, there are

many drawbacks of using single-trial data to validate or evaluate a possible surrogate

endpoint (for example require of extremely large sample size, and/or require an unre-

alistic highly significant treatment effect on clinical endpoints to obtain estimates with

sufficient precision) (Shi and Sargent 2009).

In order to reach the standard of validity of a surrogate endpoint, a trial-level as-

sessment is required (Buyse and Molenberghs 1998, Buyse et al. 2000). The nature of

the single trial restricts the generalizable information one can gain to evaluate surrogate

endpoints within any single trial. Without multitrial data, it is almost impossible to

make any direct inference about the association between the treatment effects on the

surrogate and clinical endpoints, because one pair of data cannot provide sufficient ev-

idence of any association (Shi and Sargent 2009). Systematically gathering data across

various previous randomized trials can provide a more complete understanding of how

well the treatment effect on the surrogate endpoint can predict the effect on the clinical

endpoint (Hughes 2002).

As pointed out previously, the validity of a surrogate endpoint needs to be assessed

at both the patient and the trial-level (Buyse and Molenberghs 1998, Buyse et al. 2000).

The individual-level surrogacy, measures the association between the potential surrogate

endpoint and the clinical endpoint, adjusting for the effect of treatment across all the

trials included. On the other hand, the trial-level surrogacy, describes how well one
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can predict the treatment effect on the clinical endpoint in a future trial based on the

observed association between the treatment effects on the surrogate and clinical endpoints

observed in previous trials (Shi and Sargent 2009).

In this chapter we describe methodology used in this report. First we discuss briefly

single trial validation, based on Buyse and Molenberghs (1998) and then after the meta-

analytic approach is discussed. In the first part of the analysis, the endpoints are assumed

to be normal distributed ( logarithm of the endpoints), ignoring the censoring in the data,

but the main focus is put on them when they are failure time endpoints.

3.1 Single trial validation

In the case where both the surrogate and the true endpoint are continuously and

jointly normally distributed Buyse and Molenberghs (1998) assumed the following model

(adapted to our dataset)

log(PFS)i = µS + αZi + εSi (3.1)

and

log(OS)i = µT + βZi + εT i (3.2)

Where µS and µT are fixed intercepts and α and β are the fixed effect of the treatment

Z on the progression free survival and overall survival endpoints, respectively. Z = 1 if

the patient is under new treatment arm, and Z = 0 if the patient is under the standard

treatment arm. Further, εSi and εT i are error terms having a joint zero-mean normal

distribution with the variance-covariance matrix :

Σ =

σSS σST

σTT

 (3.3)

Buyse and Molenberghs (1998) outlined some conceptual difficulties with the PE

(proportion of the effect of Z on T (log(OS)) that can be explained by the surrogate
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(log(PFS)), defined as :

PE(T, S, Z) =
β − βS
β

= 1− βS
β

(3.4)

where β and βS are the estimates of the effects of Z on T without and with adjustment

for S. In some cases PE is not a proportion: it can be estimated to be anywhere on the

real line, which complicates its interpretation. Buyse and Molenberghs (1998) argued

that PE can advantageously be replaced by two related quantities. The first, defined at

the population level and termed ’ relative effect’ (RE), is the ratio of the overall treatment

effect on the true endpoint over that on the surrogate endpoint. Using (3.1)-(3.2), RE

is formally defined as follows:

RE =
β

α
(3.5)

The second is the individual-level association between both endpoints, after account-

ing for the effect of treatment, and referred to as ’adjusted association’ ρZ . For normally

distributed endpoints, the adjusted association is defined as follows:

ρZ =
σST√
σSSσTT

(3.6)

Additionally, one would expect a good surrogate to have a strong association with

the true endpoint within individuals, hopefully reflecting some biological pathway from

the surrogate endpoint to the true endpoint (Buyse and Molenberghs 1998). Such an

association could be captured by ρZ .

However, there are also problem with the RE as remarked by Buyse and Molenberghs

(1998); the confidence interval for RE can be wide. This difficulty can be overcome by

sufficiently large sample sizes, though. More importantly, in order to use the estimate

of RE for predicting the treatment effect on T for a new trial ( given the effect on

S), it is necessary to assume that the relationship between the treatment effects on the
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surrogate and the true endpoints is multiplicative (Buyse and Molenberghs 1998; Buyse

et al. 2000). This assumption may be too stringent and, if the estimate of RE is based

on a single trial, is unverifiable. A verification is possible if data from multiple trials are

available (Buyse and Molenberghs 1998).

In our case, we have a meta analytic setting , and more emphasize are given to

this setting. The meta-analytic framework is now a well-accepted one. It allows to

increase the accuracy of the validation process ( for example, increase the precision

of the estimation of PE or RE ), and to cast the evaluation in terms of two important

concepts and ultimately quantities: trial-level and individual-level surrogacy. A surrogate

being valid if it is both trial-level and individual-level valid. If the data are available

on a single trial ( or, more generally, on single experimental unit), the above concept

( trial and individual surrogacy) is only partially possible. While the individual-level

surrogacy (producing ρZ ) carries over by virtue of the within-trial replication, the trial-

level reasoning breaks down and one cannot go beyond the relative effect as suggested

by Buyse and Molenberghs (1998).

3.2 Meta-Analytic approach

In meta-analytic approach, parameters estimates are more accurate compared to

single trial validation. Here, the logarithm transformation of progression free survival and

overall survival are assumed to be jointly normally distributed. Two distinct modeling

strategies are followed, based on two-stage fixed effects representation on the one hand

and random effects on the other hand (Buyse et al. 2000).
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3.2.1 Normal/Normal endpoints case

3.2.1.1 Reduced fixed effects model

The first stage (from the two-stage model representation) is based upon a fixed ef-

fects model, fitted on progression free survival (log(PFS)) and overall survival (log(OS)),

ignoring censoring. We start with the following reduced fixed effect model:

log(PFS)ij = µS + αiZij + εSij (3.7)

and

log(OS)ij = µT + βiZij + εT ij (3.8)

Where µS and µT are common intercepts, αi and βi are trial specific effects of treat-

ment Z on progression free survival and overall survival , respectively, in trial i and εSij

and εT ij are correlated normally distributed error terms, assumed to be mean zero with

covariance matrix:

Σ =

σSS σST

σTT

 (3.9)

With this reduced fixed effect model, trial level surrogacy is assessed by the determi-

nation coefficient obtained by fitting the following linear regression model:

β̂i = λ0 + λ1α̂i + εi (3.10)

Where β̂i is the estimate of treatment effect on log(OS)ij in the ith trial and α̂i is

treatment effect on log(PFS)ij in the ith trial, obtained from models (3.7)-(3.8). εi are

error terms, normally distributed with mean zero and a constant variance.

The individual level is assessed by the squared correlation between S and T after

adjusting for both the trial effects and treatment effect, and is given by

R2
indiv =

σ2
ST

σSSσTT
(3.11)
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3.2.1.2 Reduced mixed effects model

At the second stage, it is assumed

αi
βi

 =

α
β

 +

ai
bi

 (3.12)

Where the second term on the right hand side of (3.12) is assumed to follow a zero

mean normal distribution with dispersion matrix:

Dr =

daa dab

dbb

 (3.13)

The reduced mixed effects model is obtained by combining the first stage in (3.7)-(3.8)

and second stage in (3.12) to give

log(PFS)ij = µS + (α + ai)Zij + εSij (3.14)

and

log(OS)ij = µT + (β + bi)Zij + εT ij (3.15)

where now µS and µT are fixed intercepts, α and β are the fixed effects of treatment

Z on the endpoints, and ai and bi are the random effects of treatment Z on the endpoints

in trial i . The vector of random effects (ai, bi) is assumed to be mean-zero normally

distributed with covariance matrix (3.13). The error term εSij and εT ij have a covariance

matrix (3.9).

Trial-level surrogacy is given by following coefficient:

R2
trial(r) = R2

bi|ai =
d2ab
daadbb

(3.16)

The individual level surrogacy is assessed as in the previous case, and is given by the

quantity in (3.11).
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3.2.1.3 Full mixed effects model

The full fixed effects model is obtained by adding random intercepts on the right side

of equations (3.14)-(3.15)

log(PFS)ij = (µS +mSi) + (α + ai)Zij + εSij (3.17)

and

log(OS)ij = (µT +mT i) + (β + bi)Zij + εT ij (3.18)

where now µS and µT are fixed intercepts, α and β are the fixed effects of treatment Z

on the endpoints, mSi andmT i are random intercepts, and ai and bi are the random effects

of treatment Z on the endpoints in trial i. The vector of random effects (mSi,mT i, ai, bi)

is assumed to be mean-zero normally distributed with covariance matrix:

D =



dSS dST dSa dSb

dTT dTa dTb

daa dab

dbb


(3.19)

The error terms εSij and εT ij follow the same assumptions as in fixed-effects model

(3.7)-(3.8), with covariance matrix (3.9).

The quality of the surrogate at the trial level may then be calculated as the coefficient

of determination for predicting the effect of Z on T , given the effect of Z on S:

R2
trial(f) = R2

bi|mSi,ai
=

dSb
dab


T dSS dSa

dSa daa


−1dSb

dab


dbb

(3.20)

Coefficient (3.20) is unitless and ranges in the unit interval if the corresponding

variance-covariance matrix is positive definite, two desirable features for its interpretation

(Buyse et al. 2000).
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At the individual level, the association between endpoints is the squared correlation

coefficient between S and T after adjusting for the trial and treatment effects:

R2
indiv = R2

εTi|εSi
=

σ2
ST

σSSσTT
(3.21)

Buyse et al. (2000) suggests to term a surrogate ’trial-level valid’ if R2
trial(f) (or

R2
trial(r) ) is sufficiently close to one, and ’individual-level valid’ if R2

indiv is sufficiently

close to one. Finally, a surrogate is termed ’valid’ if it is both trial-level and individual-

level valid. In order to replace the words ’valid’ with ’perfect’, the corresponding R2

values are required to equal one. To be useful in practice, a valid surrogate must be

able to predict the effect of treatment upon the true endpoint with sufficient precision to

distinguish safely between effects that are clinically worthwhile and effects that are not.

3.2.1.4 simplified models

Buyse et al. (2000) showed that fitting mixed-effects model (3.17)-(3.18) can be

surprisingly difficult task in a number of situations. This is particularly true when the

number of trials or the number of patients per trial is small. Also situations with extreme

correlations pose problems. These authors studied one alternative approach in the sense

that they replaced the mixed-effects model by their fixed-effect counterparts. Tibaldi et

al. (2003) considered three dimensions along which simplifications can be made.

Trial dimension: whether the trial-specific effects are treated as either random or

fixed. A full random-effects is then distinguished from a two-stage approach.

Endpoint dimension: whether the surrogate and true endpoints are modeled as

bivariate outcome or two univariate ones. In the latter case the correlation between

both endpoints is not incorporated into the modeling strategy, rendering the study of

the individual-level surrogacy more involved.
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Measurement error dimension: whenever the full random-effects model is aban-

doned, one is confronted with measurement error since the treatment effects in the various

trial are estimated with error. The magnitude of this error is likely to depend on several

characteristics, such as trial size, which will vary across trials. Three ways to account for

measurement error are considered: unadjusted ( i.e., no correction at all), adjusted by

trial size, and an approach suggested by Van Houwelingen, Arends, and Stijnen (2002).

Recall that the measurement error dimension is irrelevant when the full random effects

model is assumed, but is crucial when a fixed effects approach is selected on the trial

dimension and/or when a univariate model is chosen on the endpoint dimension.

3.2.2 Failure time endpoints case

In this setting, the surrogate and the true endpoint are failure time variable. The

validation of surrogate in this setting is complicated by several factors, like presence of

censoring and competing risks, or absence of a unifying framework such as multivariate

normal distribution (Burzykowski et al. 2005).

In this setting two approaches were applied to assess the validity of progression free

survival as surrogate for the overall survival. In the first case, Cox proportional hazard

model were fitted univariately on both endpoints and per country. the following model

was used to this end.

λij(t) = λi0(t)exp(Zijβ) (3.22)

where:

- λij(t) is the hazard function for the jth individual in the ith country,

- λi0(t) is the baseline hazard function for the ith country and Zij is the treatment at

which the jth individual from the ith country, is assigned to,

- β is the regression coefficient assumed to be common for all individuals across country.

After obtaining these coefficients, the one corresponding to the overall survival were
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regressed on those corresponding to the progression free survival. The country-level

(trial-level) surrogacy was assessed by the coefficient of determination of this regression

line.

In the second case, we considered method developed by Burzykowski et al. (2001).

Burzykowski et al. (2001) developed a method based on an extension of the meta-analytic

proposed by Buyse et al. (2000). To extend the latter approach to the case where both

surrogate and the true endpoint are failure time, Burzykowski et al. (2001) proposed to

use a copula model. More specifically they assumed that the joint survival function of

(Sij, Tij) can be written as:

F (s, t) = P (Sij ≥ s, Tij ≥ t) = Cθ{FSij(s), FT ij(t)}, s, t ≥ 0, (3.23)

where FSij and FT ij denote marginal survival functions for both endpoints (overall

survival and progression free survival) and Cθ is a copula, i.e., a bivariate distribution

function on [0, 1]2 with uniform margins. An attractive feature of model (3.23) is that

the margins do not depend on the choice of the copula function.

In our setting, the following three copula functions were considered:

- The Clayton copula

- The Hougaard copula

- The Placket copula.

To model the effect of the treatment on the marginal distribution of Sij and Tij in (3.23)

we use proportional hazards model proposed by Burzykowski et al. (2001):

FSij(s) = exp{−
∫ s

0

λSi(x)exp(αiZij)dx}, (3.24)

FT ij(t) = exp{−
∫ t

0

λT i(x)exp(βiZij)dx}, (3.25)

where λSi and λT i are trial-specific marginal baseline hazard functions and αi and

βi are trial-specific effects of treatment Z on the endpoints in the trial i . The hazard
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functions can be specified parametrically or can be left unspecified. In our setting the

Weibull distribution for the marginal baseline hazards have been used. At the second

stage, Burzykowski et al. (2001) proposed to use the model :αi
βi

 =

α
β

 +

ai
bi

 (3.26)

where the second term on the right hand side of (3.26) is assumed to follow a zero

mean normal distribution with dispersion matrix

Dr =

daa dab

dbb

 (3.27)

In view of using model (3.26) at the second stage of the two-stage approach, the

quality of surrogate S at the trial level is assessed based on the coefficient of determination

R2
trial(r) =

d2ab
daadbb

(3.28)

To assess the quality of the surrogate at the individual level, a measure of association

between Sij and Tij , calculated while adjusting the marginal distribution of the two

endpoints for both the trial and treatment effects, is needed. Burzykowski et al. (2001)

proposed to used Kendall’s τ , as it depends only on the copula function Cθ and is

independent of the marginal distribution of Sij and Tij . It describes the strength of the

association between the two endpoints remaining after adjustment, through the marginal

model (3.24)-(3.25), for trial and treatment effects. Kendall’s τ has a straightforward

interpretation as a measure of individual-level association: its range is [−1, 1] and 0

means independence (Weir and Walley 2006).
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CHAPTER 4. RESULTS

4.1 Normal/Normal endpoints case

As described in the previous chapter, different technics were applied to our dataset.

The method developed by Buyse et al. (2000) was first tested on the data. In some cases

there were convergence problems with the random effects models approach. For the full

and reduced random effects model, there was no convergence for our data.

Some alternative methods described by Tibaldi et al (2003) were applied. Joint fixed

effects (full and reduced) models were fitted. In this approach, there is heterogeneity

because we have people from different countries with different sizes. One way to account

for this heterogeneity is to use weights proportional to country size. Another way is to

use method developed by Van Houweling et al. (2002).

To this end, weighted regression and unweighted regression were fitted in order to

account for heterogeneity. There was convergence problem when the method developed

by Van Houweling at al (2002) was applied to our data. In table 4.1, we give trial level

surrogacy results.

Table 4.1 Trial level surrogacy
Full Fixed effects model Reduced effects model

Level Unweighted weighted Van H. Unweighted weighted Van H.
Trial 0.42 0.29 - 0.14 0.51 -

The reduced fixed effects model gave the highest trial level surrogacy , R2
trial(r) = 0.51,

but this value is too low to be useful. The individual level surrogacy gave the same value
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from both cases (full and reduced effects), R2
indiv = 0.44 .

The next plot shows the fitted regression line. The size of the circle is proportional

to the number of patients from each trial (country).

Figure 4.1 Treatment effect on the logarithm of overall survival time vs treatment effect
on logarithm of progression free survival

4.2 Failure time endpoints case

4.2.1 Country specific Cox-ph model

Beside fixed effects models (full and reduced), failure time endpoints were considered,

and Cox’s regression model fitted on both endpoints (per country). The hazard ratio from

the overall survival endpoint were regressed on the one obtained from the progression

free survival endpoint. The coefficient of determination from that linear regression model

was used to assess trial level surrogacy. A value of 0.30 was obtained with a weighted

regression line . A value of 0.46 was obtained with unweighted regression. The next

figure shows both fitted lines. The circles sizes are proportion to the trial size.
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Figure 4.2 Hazard ratio from overall survival endpoint vs hazard ratio from progression
free survival endpoint

4.2.2 Joint modeling of two failure time endpoints

Lastly, results obtained with the copula models are presented. From these models,

the trial surrogacy are assessed by the correlation coefficient (3.28). As stated before,

three different copula were used. The individual level surrogacy was assessed by the

Kendall’s tau coefficient obtained from each copula. The next table summarizes the

obtained values.

Table 4.2 Trial and individual level surrogacy results

Model Individual level Trial level (unadjusted)
Clayton 0.3039 [0.2635;0.3442] 0.3175 [-0.1592;0.7942]
Hougaard 0.3565 [0.3189;0.3941] 0.4262 [-0.0382;0.8905]
Plackett 0.3461 [0.3371;0.3552] 0.4754 [0.0270;0.9237]

The results shown in the above table, show that the highest trial-level surrogacy was

given by the Plackett copula (0.47), and it is somehow closed to the one obtained using

reduced fixed model 0.51 (by ignoring censoring and assuming normal distribution for

the logarithm of both endpoints). The highest individual level surrogacy value was given

by Hougaard copula (0.356). it is a little bit small compared to the one obtained using

fixed effects models (0.44). we tried to find the adjusted R2 using the van Houweling et
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al. (2002), but there was convergence problem as in the fixed effects models cases.

Figures in the appendix, show treatment effect on overall survival vs treatment effect

on the progression free survival from the three copula. The straight lines are the pre-

dictions from a ( weighted by country size) simple linear regression model. As it can be

seen, the relation seems to be not strong, which is in accordance with the above results.
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CHAPTER 5. DISCUSSION AND CONCLUSION

The main objective of this study was the evaluation of progression free survival as

a surrogate for the overall survival for prostate cancer . The dataset used in this study

was obtained from a clinical trial conducted in 13 countries . The data was first explored

at site level and at the level of the country. The exploratory analysis gave some insight

into the dataset. Due to estimability problem, the country was chosen as analysis unit,

and countries with at least three patients per treatment arm were keep for analysis.

In the first part, the censoring was ignored and the logarithm of the endpoints were

assumed to be normally distributed. Fixed effects models ( full and reduced) were fitted.

Due to convergence problems, the random effects could not be fitted. In order to account

for heterogeneity in the countries, the method described by Tibaldi et al. (2003) was used.

It was not possible to obtain results from the approach developed by Van Houweling et

al. (2002). There were convergence problems.

The estimates for R2
trial and R2

indiv were too small to be useful. For this dataset,

progression free survival can’t be used as a surrogate for overall survival.

When the endpoints were considered as failure time, two approaches were applied.

Univariate Cox’s propotional hazard model and the copula models. Results obtained

from the Cox regression showed that progression free survival can’t be used as surrogate

for overall survival.

Results obtain from the copulas, were quite close to those obtained using fixed ef-

fects models. Progression free survival couldn’t be validated as surrogate for the overall
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survival in this study.

To conclude, in all approaches, it was possible to assess trial-level surrogacy. The

obtained values point in the same direction. They are all too small to conclude that

progression free survival can be used as a surrogate for the overall survival. Values

obtained for individual surrogacy assessment were also small to conclude. In all models,

where it was possible, the Van Houweling et al (2002) approach’s didn’t produce results,

there were convergence problems.
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APPENDIX A.

Treatment effect on overall survival vs treatment effect on progression free survival
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