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ABSTRACT 

Fish abundance is thought to be related to environmental factors and interactions between 

species. Catches at locations close to each other may also be similar resulting in spatial 

autocorrelation. The aim of this report is to assess the relationship between fish abundance 

and environmental correlates, the relationship between distributions of different fish species 

and temporal trends in fish abundance. Data for whiting, haddock and cod fish species were 

collected under the North Sea-International Bottom Trawl Survey (NS-IBTS) from 1994 to 

2005. Approximate full Bayesian inference was performed based on the Integrated Nested 

Laplace Approximation (INLA) approach. Predictions of fish catches per quarter and age 

class for 1994 and 2005 were done for each of the three species. Results show that there is a 

relationship between fish abundance and depth of the sea. Different species are more 

abundant at locations of different depth which varied with quarter and age class. Further to 

this, there is an association between fish abundance and age class as well as fish abundance 

and quarter in which the survey was conducted. There is a reduction in fish abundance from 

1994 to 2005. Low catches of haddock are associated with higher expected catches of 

whiting, and the same association between cod and whiting was established. Low catches of 

cod are negatively associated with catches of haddock 

 

Keywords: Bayesian analysis, Cod, Haddock, Integrated Nested Laplace Approximation 

(INLA), Fish abundance, Spatial distribution, Whiting 
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1 INTRODUCTION 

The North Sea is a relatively small basin, with a surface area of about 575 300 km
2
 and a 

volume of 42 300 km
3
. Although the North Sea occupies a rather small area, it is by no means 

homogeneous as regards, for example, depth, temperature, water type, and substratum. 

Waters are relatively shallow over much of the area, with average depths ranging from about 

30 metres in the southeast to 200 metres in the northwest (ICES, 2012). The area is important 

for marine shipping, fishing, military purposes, extraction of minerals, oil and gas as well as 

tourism. Lately, it has also become important for renewable energy installations such as wind 

farms (Paramor et al., 2009). 

 

In nature, resources are often patchily distributed and such patchiness can affect both 

population numbers and the coexistence of species (Chesson, 2000). Fish populations, like 

other animal and plant populations are not distributed randomly in space but show some 

spatial patterns. Understanding what the underlying and pattern generating processes are, is a 

fundamental ecologic question and a requirement for proper management when fish species 

are of conservation interest (Planque et al., 2011). 

 

Factors that influence the spatial distribution of fish can be classified into external and 

internal. Internally, the population size, age structure, fish condition, diversity and behaviour 

can modulate the spatial distribution of fish population through mechanisms such as density 

dependence, age or stage-dependent habitat preference and differential migration capacities 

(Planque et al., 2011). In addition, individual memory which determines conservatism at a 

population level might be responsible for the maintenance of a spatial population pattern 

across years and generations (Corten, 2001). Fish distribution is also affected by attracting or 

repulsing interactions such as during the spawning period, when males and females tend to 

concentrate at relatively small spatial scales to minimize gamete loss and to maximize 

reproductive success. Such conspecific attraction may also lead to the distribution of fish 

being auto-correlated in space (Loots et al., 2010). 

 

External factors affect populations differently depending on the life history stages (egg, larva, 

juvenile, and adult). At each stage fish must experience suitable abiotic conditions, find food 

for growth, and find shelter to escape from predation or disease. Changes in fish populations 

may result from physiological response to changes in environmental parameters (e.g. 

temperature), behavioural response such as avoiding unfavourable conditions and moving 
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into new suitable areas, changes in fecundity and/or trophic interactions. The commercial 

exploitation of certain species of fish greatly affects their abundance and may interact with 

other external factors (Rijnsdorp et al., 2009). In the North Sea, there are a number of other 

human activities which have the potential to impact on fish populations including the input of 

trace organic contaminants and nutrients from land, the input of oil and Polycyclic Aromatic 

Hydrocarbons (PAHs) from land and by the offshore oil and gas industry, and the input of oil, 

PAHs and antifoulants by shipping (Rogers and Stocks, 2001). 

 

The dominant fish species in the North Sea include demersal species such as Whiting 

(Merlangius merlangus) and Haddock (Melanogrammus aeglefinus), and pelagic species 

including Mackerel (Scomber scombrus) and Horse mackerel (Trachurus trachurus). In 

shallower waters (50–100 metres depth), populations are dominated by Haddock, Whiting, 

Herring (Clupea harengus), Dab (Limanda limanda) and Plaice (Pleuronectes latessa), while 

at greater depth (100–200 metres), Norway pout (Trisopetrus esmarki) dominate. 

 

Whiting is commonly found from 30 to 100 metres, mainly on mud and gravel bottoms, but 

also on sand and rock. It feeds on shrimps, crabs, mollusks, small fish, polychaetes and 

cephalopods. In the North Sea, time of spawning is between January and September. They 

mature at between three and four years of age with females growing faster than males, and 

can live to about ten years of age. The biggest threat to this species is over-harvesting by the 

fishing fleets of many nations (Arkley and Caslake, 2004). 

 

Haddock usually lives at depths between 40 and 300 metres, but can also be seen at 15-20 

metres. It feeds primarily on small invertebrates, although larger members of the species may 

occasionally consume fish. It thrives in temperatures of 2 to 10 °C (36 to 50 °F). Spawning 

occurs in the months of February to April. Juveniles prefer shallower waters and larger adults 

deeper water. Generally, adult haddock do not engage in long migratory behaviour as do the 

younger fish, but seasonal movements have been known to occur across all ages. Haddock is 

a popular food fish and is widely fished commercially (Cargnelli et al., 1999). 

 

Cod (Gadus morhua) can be found on any depth, from the subtidal zone and down to more 

than 600 metres and is widespread around the northern hemisphere (Telnes, 2012). It can 

grow to 2 metres in length and weigh up to 96 kilograms (210 lb). It can live for 25 years and 

sexual maturity is generally attained between ages two and four (O’Brien et al., 1993). Most 
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cod spawn between the months of January and April and females, if large enough, can release 

up to five million eggs. Depending on the temperature, the eggs hatch in two to four weeks 

and the young cod drift in the open ocean, feeding on small crustaceans. Atlantic cod will eat 

a wide variety of prey, ranging from other fish to worms; they also take swimming crabs, 

shrimps and prawns (Wildscreen U.K. Charity, 2012). 

 

1.1 Objectives 

The main objective of the study is to model the spatial distribution of fish using Integrated 

Nested Laplace Approximation (INLA). Furthermore, to assess the 

i. Relationship between fish abundance and environmental correlates, 

ii. Relationship between the distribution of the three fish species,  

iii. Temporal trends in the distribution of the three species. 

 
 

  

http://www.arkive.org/atlantic-cod/gadus-morhua/#GlossaryTerm7
http://www.arkive.org/atlantic-cod/gadus-morhua/#GlossaryTerm
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2 METHODOLOGY 

2.1 Description of Data 

Data on whiting, haddock and cod species for the period from 1994 to 2005 were extracted 

from the North Sea - International Bottom Trawl Survey (NS-IBTS). This survey monitors 

the abundance of both commercial and non-commercial fish species and has been conducted 

annually since 1965. In addition, it is now only conducted in quarter one and quarter three 

each year. Eight countries bordering the North Sea carry out approximately 600-700 hauls 

over the yearly survey period. The International Council for the Exploration of the Sea 

(ICES) statistical rectangles (1° longitude x 0.5° latitude = ca. 30 nm x 30 nm = ca. 56 km x 

56 km) define the survey grid. In each rectangle, fishing is conducted by ships of two 

different countries so that at least two hauls are made per rectangle.  The standard haul 

duration is 30 minutes with a fishing speed of 4 knots. Data recorded in the surveys include 

quarter, ship, gear, haul number, geographic location coordinates, date and time, area (region 

of the north sea), subarea (ICES statistical rectangle), species, length/age class and Catch Per 

Unit of Effort (CPUE). CPUE is an index for fish abundance at a location for a particular age 

class. 

 

2.2 Exploratory Data Analysis 

Exploratory spatial data analysis was carried out using bubble plots for catch counts at 

particular locations and age class. Histograms of catch counts for each haul and species were 

also plotted. A scatter plot for the catches by depth is presented, in order to give an indication 

of depth preference for species. Bar charts of total catches per year disaggregated by age class 

and quarter are also provided. 

 

2.3 Spatial statistics 

Spatial analysis is defined as quantitative procedures employed in the study of spatial 

arrangement of features (Benhart, 2006). In spatial statistics, it is often the case that some or 

all outcome measures exhibit spatial autocorrelation. Spatial autocorrelation arises as a result 

of observations at locations close to each other having more similar values than those far 

from each other (Dormann et al., 2007). Ignoring spatial autocorrelation when analyzing data 

with spatial characteristics can bias parameter estimates and yield incorrect standard error 

estimates (Mohebbi  et al., 2011). 

 

http://www.ices.dk/
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Spatial models are often formulated within the hierarchical Bayesian framework. INLA may 

be used to fit (spatial and non-spatial) latent Gaussian models, a large subset of Bayesian 

additive models with a structured additive predictor, in which Gaussian priors are assigned to 

all components of the vector of latent variables (Rue et al., 2009). More detail is provided in 

section 2.4. 

 

2.4 INLA Methodology 

2.4.1 Motivation 

Inference for latent Gaussian models is not straightforward since in general, the posterior 

distribution is not analytically available. To obtain parameter estimates, Markov Chain Monte 

Carlo (MCMC) techniques are widely used and regarded as the standard answer to the 

problem (Martino and Rue, 2010). However, fundamental challenges in applying MCMC 

remains: computational time is long, parameter samples can be highly correlated and 

estimates may have a large Monte Carlo (MC) error (Schrödle and Held, 2011). Further to 

this, to determine convergence, users face the task of choosing between several different 

measures of convergence, which might give contradictory answers to the question of 

convergence (Wilhelmsen et al., 2009). 

 

Integrated Nested Laplace Approximation (INLA) is a recently proposed method (Rue et al., 

2009) for approximate Bayesian inference in structured additive regression models with 

latent Gaussian fields. It is an alternative to MCMC in which it substitutes stochastic 

sampling with fast and accurate deterministic approximations based on the use of Laplace 

approximation and numerical integration. The methodology is particularly attractive if the 

latent Gaussian model is a Gaussian Markov random field (GMRF) with precision matrix Q 

controlled by a few hyperparameters θ say ≤ 6 (Beguin et al., 2012). A GMRF is a Gaussian 

random variable             with Markov properties such that for    ,    and    are 

independent conditional on     . The Markov properties are encoded in the precision matrix 

Q as       if and only if    and    are independent conditional on      (Rue et al., 2009).  
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2.4.2 Model formulation 

The response variable    (i=1,…, n) is the CPUE at a location and age class, and is assumed 

to follow an exponential family distribution. The mean    is related to a structured additive 

predictor    through a link function      so that         . The effects of various covariates 

are accounted for in an additive way as follows: 

       
            

 

   

                                                                         

In model (1),   denotes an intercept, the vector β represents linear effects of covariates z, 

           are unknown functions of covariates u with   being the number covariates assumed 

to have non-linear smooth effects,       are spatially structured effects that account for spatial 

autocorrelation and        is a spatially unstructured component (Rue et al., 2009). All 

parameters in model (1) are considered random and can be represented as a latent field 

           
        

       
      

Gaussian priors are assigned to all components of the above latent field x. Hyperparameters 

of these priors have hyper-prior distributions which might often be non-Gaussian (Gomez-

Rubio, 2011). 

 

The INLA approach for approximating posterior marginals is computed in three steps. The 

first step approximates the posterior marginal distribution of the hyperparameters θ, that is, 

the parameters of the prior distribution on the latent field x using the relationship 

       
        

        
   

where θ represents the hyperparameters, y the data and x the latent field described above. 

       can be approximated by 

          
       

          
 
       

  

where the denominator            is the Gaussian approximation to the full conditional 

distribution of x evaluated at the mode       for a given value of the hyperparameters θ.  

 

In the second step, INLA computes an approximation of the posterior distribution of the 

latent field x, given the observed response variables y and the hyperparameters  . This can be 

estimated by  
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Here                  is a Gaussian approximation to the distribution of            in which 

the vector     denotes all elements of the latent field x except the i
th

 one and is centered 

around the mode    
       . 

 

Within INLA,           can be approximated using three methods namely Gaussian, 

simplified Laplace approximation and Laplace approximation in order of accuracy and 

reverse order of computational expensiveness. The analysis performed for this study was 

based on  simplified Laplace approximation since it has been found to be highly accurate 

(Rue et al., 2009). The third step is to perform numerical integration with respect to  , that is 

to find the posterior distributions of the components of the latent field x given observed 

response variables y as the sum as follows: 

                     

 

                                                                 

 

In equation (2),    is the area weight corresponding to the integration point   ,          is 

the approximate posterior marginal distribution of the hyperparameters   at integration point 

k and             is the approximate posterior marginal distribution of the latent field at 

integration point k. (Wilhelmsen et al., 2009) 

 

In this paragraph, a description of how model (1) was applied to the fish data is given. In all 

the models presented in this report, the effects of depth, adult, quarter 3 were taken as linear 

whilst the effect of time was taken as non-linear. The linear predictor for the model without 

interactions was defined as 

                                                                        

 

In model (2), the effect of time was modelled as random walk of order 2 (rw2). The idea is to 

estimate a parameter for each of the distinct values of time so that in model (2) we have a 

parameter for each of the 12 time points. The procedure works as follows; unique ordered 

values of time are represented as a vector              and a random walk model of order 

2 is then constructed assuming independent second-order increments defined as 
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The density for   is then derived from the (12-2=10) second order increments as:  

          
         

  

 
       

 

  

   

  

A vague Gamma prior is assigned to the hyperparameter                 ). The 

spatially structured component        was assumed to vary smoothly from one spatial grid to 

another. To account for such smoothness,        is modelled as a Conditional Autoregressive 

distribution (CAR) and specified as  

               
 

  
   
   

 
 

    
   

where    is the number of neighbours of spatial grid i,     indicates that the two grid are 

neighbours. The precision    is assigned a vague Gamma prior as above. The spatially 

unstructured component        is assumed to be independent and identically distributed (i.i.d) 

Gaussian with mean zero and unknown precision     which was assigned a vague Gamma 

prior as well. 

 

2.5 Model Building 

Four distributions for count data, namely the Poisson, the Negative Binomial (NB), the Zero-

Inflated Poisson (ZIP) and the Zero-Inflated Negative Binomial (ZINB) distribution as well 

as Gaussian distribution on log transformed CPUE (Lognormal) were applied.  The log link 

function was used for the Poisson, the negative binomial (NB), the Zero-Inflated Poisson 

(ZIP) and the Zero-Inflated Negative Binomial (ZINB) distributions whereas the identity link 

function was used for the Lognormal distribution for the response. The Deviance Information 

Criterion (DIC), introduced by (Spiegelhalter et al., 2002) was used to compare models. It is 

defined as: 

         , 

where    is the posterior mean of the deviance of the model and    is the effective number of 

parameters. A better model was defined as the one with the smaller DIC value. Model 

comparison based on DIC is meaningful if the response variable is the same for all models 

fitted. To make these values comparable, the DIC values for models assuming Gaussian 

distribution on log transformed CPUE had to be adjusted for the log transformation. A 

constant term based on the first derivative of the logarithmic function was added to the DIC 

value obtained from INLA.  The constant term is defined as 
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where    is the first derivative of the logarithm transformation (Ntzoufras, 2009). 

 

In addition to the DIC values, predictive measures can be used to both validate and to 

compare models (Rue et al., 2009). Within INLA, Conditional Predictive Ordinate (CPO) 

measures are obtained from predictive density for the observed    based on all other 

observations (              ). One way of assessing the model quality is to use the cross-

validated logarithmic score (Czado et al., 2009) defined as  

                           

A smaller value of the logarithmic score indicates a better prediction quality of the model. 

This technique is useful if the response variable for the models under comparison is the same 

which is not the case with the models in this report. An alternative is to compute the 

Probability Integral Transform (PIT) values defined as             
           . For 

one to correctly use the PIT values, a distinction between continuous and count responses has 

to be made for comparison of models. For a count response, to obtain the correct PIT values 

an adjustment has to be made to the values from INLA as follows:  

    
   

               

As an informal diagnostic to assess, a histogram of PIT values is used and deviations from 

uniformity hint at reasons for prediction failures and model deficiencies (Czado et al., 2009). 
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3 RESULTS 

3.1 Exploratory Analysis 

There were a total of 8350 hauls over the period from 1994 to 2005. The distribution of the 

number of hauls per year is shown in figure A1, appendix. The number of hauls per year 

ranged from 590 to 770. The distribution of the number of catches in 1994 and 2005 for 

whiting is shown in figure 1. There are many hauls where fewer catches were observed and 

the distribution is skewed. Similar distributions were also observed for other species in the 

two years (figure A2). For whiting species, there were higher catches in quarter three 

compared to quarter one. More juvenile fish were caught compared to the whiting adults. 

There is a decrease in abundance of haddock from 1995 to 1998 and a sharp increase in 1999 

before it starts to decrease again. Haddock is more abundant in quarter three compared to 

quarter one on average except for the year 1999. With regards to catches per age class, more 

adults were caught compared to juveniles. There is an overall decline in the abundance of cod 

species. The distribution by quarter is not the same for all the years. With regards to age 

class, juveniles are more abundant compared to adults (figure A3, appendix). 

 

 

 

Figure 1: Distribution of catch for whiting species 

 

Figure 2 shows the spatial distribution of the three species under consideration for the period 

1994 to 2005. The size of the circle corresponds to catch at a location. Whiting seems to be 

found in all the areas of the sea though there are locations where they are more abundant. 

Plots for spatial distribution in 1994 and 2005 are given in the appendix (Figure A4). For 

each of the two years, the distribution shows preference of whiting towards regions to the 
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west of the sea as well as to the east. More catches were observed between a depth of 30 to 

80 metres below sea level (figure A5, appendix). Haddock species prefers locations to the 

North West of the sea, between 54 degrees and 62 degrees latitude (figure A4, appendix). 

Higher catches were observed at location with depth of between 50 and 150 metres below sea 

level. Cod species is found in most locations of the Sea though in low numbers compared to 

other species fish abundance. Higher catches were observed at locations with a depth of 20 to 

80 metres (figure A5, appendix). 

 

  
(a) Whiting (b) Haddock 

  

 

 

(c) Cod  

Figure 2: Bubble plots for catches per location for the three species, size of circle reflects CPUE  
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3.2 Statistical Analysis 

3.2.1 Model for whiting abundance 

Table 1 shows results of the model to assess relationship between whiting abundance and 

environmental correlates. The model that assumed a normal distribution for log (CPUE + 1) 

had the lowest DIC value of 204 503.2. The structured additive predictor    for this model is 

defined as: 

       
                                                                                

The vector   represents the parameter estimates for the five linear effects namely depth, 

quarter 3, adult, depth*adult, depth*quarter 3. Letters used for non-linear effects in model (3) 

represent the variables as follows; adult (A), quarter 3 (Q3) and time (T). A combination of 

any two of these represents the interaction between the two variables. The variables adult and 

quarter 3 are binary with whilst depth and time are continuous. The effects of time      , 

interaction between time and age class       as well as the interaction between time and 

quarter3       follows second-order random walk model with precision parameters 

             respectively. The smooth spatial effects       were modelled as a CAR 

distribution whilst the spatially unstructured effects were modelled as independent and 

.identically .distributed Gaussian with mean zero and precision defined as Gamma 

distributed. There is an effect of depth on fish abundance on the log scale which differs by 

quarter as well as age class. As depth increases, there is significantly more catches in quarter 

one compared to quarter three. At greater depth, adult whiting catch is 0.005 times more than 

juveniles. The effect of age class did not differ depending on the quarter in which the survey 

was conducted. There is a decline in fish abundance over time which differs by age class as 

well as quarter (figure 3a and A6). The spatial effects accounts for spatial autocorrelation not 

explained by covariates in the model (figure 3b). The pattern in the figure suggest that there 

could be other variables not measured that explains the spatial distribution of whiting species. 

Low variance of measurement error shows that adding spatial effects in the model helps to 

explain fish abundance. 
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Table 1: Posterior mean and standard deviation (SD) and quantiles of the linear effects and 

variance estimates of the model for whiting 

Variable Mean SD 2.5% quantile 97.5% quantile 

Intercept 3.200 0.041 3.119 3.281 

Depth 0.012 0.001 0.011 0.014 

Quarter 3 1.365 0.048 1.270 1.459 

Adults 0.104 0.048 0.009 0.198 

Depth*Quarter3 -0.014 0.001 -0.015 -0.013 

Depth*Adults 0.005 0.001 0.004 0.006 

Variance estimates 

Response 4.553 0.048 4.451 4.638 

Time 0.006 0.005 0.001 0.018 

Adults*Time 0.005 0.005 0.0004 0.017 

Quarter3*Time 0.006 0.005 0.0001 0.019 

Spatial Structured 0.011 0.003 0.007 0.017 

Spatial unstructured 0.006 0.002 0.004 0.010 

 

 

  

  
(a) Posterior mean of smooth effect of 

time 

(b) Posterior mean of the smooth spatial effects 

Figure 3: Estimated effects of smooth effects and spatial effects of the model for whiting 
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Figure 4 shows the predicted catches of whiting per statistical rectangle in quarter one and 

three of 1994 and 2005. With regards to the depth of the rectangle, the average depth was 

taken using all the locations in that rectangle. The plots show certain preferred locations 

where the predicted number of fish is higher. There is a shift in locations of high fish 

abundance depending on the quarter. In addition, there is low predicted CPUE in 2005 

compared to 1994 for both quarters. Predicted catches by year and age class are shown in 

figure A7, appendix. There seems to be a balance between the predicted catches for juveniles 

and adults though in some rectangles, there are more adults than juveniles. The pattern from 

the plot suggests that juveniles and adults tend to be found in the same locations and almost 

equal numbers. 

 

  

(a) Predicted catches in quarter one of 1994 (b) Predicted catches in quarter 3 of 1994 

  

  

(c) Predicted catches in quarter one of 2005 (d) Predicted catches in quarter 3 of 2005 

Figure 4: Predicted catches of whiting by quarter and year (1994 and 2005) 
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3.3.2 Model for haddock abundance  

Results of the model describing the relationship between log (CPUE +1) for haddock and 

age, quarter, depth and year as covariates are presented in table 2. The model had the lowest 

DIC value of 161 637.8 and the structured additive predictor    is defined as: 

 

       
                                                                             

 

The vector   represents the linear effects for depth, quarter 3, adult, depth*adult, 

depth*quarter 3 and adult*quarter 3. Letters used in the definition of non-linear effects are 

represent the same variables as in model 3. There is a significant effect of depth on log 

(CPUE +1) for haddock. However, this effect depends on quarter as well as age class. The 

effect of depth is greater in quarter one compared to quarter three. A one metre increase in 

depth increases log (CPUE +1) in quarter one by 0.002 more than it does in quarter three. In 

the same way, a one metre increase in depth increases log (CPUE +1) for juveniles by 0.012 

more than adults. There is higher log (CPUE +1) in quarter 3 compared to quarter one which 

is even higher by 0.087 for adults compared to juveniles.  

 

There is an effect of time on fish abundance and this effect depends on quarter and age class. 

The effect of time on fish abundance is not different between quarter one and quarter three 

from 1994 (time 0) to 2003. Thereafter, time has a negative effect on fish abundance in 

quarter three compared to quarter one. Similarly, after 2003, time has a negative effect of fish 

abundance in adults than juveniles. There is low variability in the spatially structured effect 

as well as spatially unstructured effects. This suggests that unexplained variability in fish 

abundance is almost similar in all statistical rectangles of the sea.  

   

Predicted catches of haddock species are shown in figure A8 and A9, appendix. In both 1994 

and 2005, predicted catches are higher in quarter three compared to quarter one. Pattern of 

predicted number of catches of juveniles and adults suggests that they co-exist though in 

different numbers.  
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Table 2: Posterior mean and standard deviation (SD) and quantiles for the linear effects and 

variance estimates of the model for haddock 

Variable Mean SD 2.5% quantile 97.5% quantile 

Intercept 0.227 0.020 0.187 0.266 

Depth 0.046 0.001 0.046 0.048 

Quarter 3 0.204 0.021 0.162 0.246 

Adults 0.157 0.022 0.114 0.200 

Quarter3*Adults 0.087 0.022 0.044 0.129 

Quarter3*Depth -0.002 0.001 -0.003 -0.001 

Adults*Depth -0.012 0.001 -0.013 -0.011 

Variance Estimates 

Response 5.704 0.072 5.567 5.851 

Time 1.1E-04 1.2E-04 0.1E-04 1.3E-04 

Quarter3*Time 0.9E-04 1.0E-04 0.1E-04 3.7E-04 

Adults*Time 0.9E-04 0.9E-04 0.1E-04 3.7E-04 

Spatial Structured 0.6E-04 0.3E-04 0.1E-04 1.3E-04 

Spatial unstructured 1.7E05 0.8E-05 0.7E-05 3.7E05 
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(a) Posterior mean of smooth effect of time (b) Posterior mean of smooth effect of 

Quarter3* time 

  

 
 

(c) Posterior mean of smooth effect of 

Adults*time 

(d) Posterior mean of the smooth spatial 

effects 

Figure 5: Estimated smooth effects and spatial effects of the model for haddock 
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3.2.3 Model for cod abundance 

Table 3 shows results of the model describing the relationship between log (CPUE + 1) for 

cod and depth, time (years since 1994), age and quarter. The model selected had the lowest 

DIC value of 76 260.4 and the structured additive predictor     is defined as: 

 

       
                                                                  

In model (5)   is the intercept,  , represents the parameter estimates for the eight linear 

effects namely depth, quarter 3, adult, depth*adult, depth*quarter 3, adult*quarter 3, time, 

time*adult. In addition,       is the non-linear smooth effect for interaction between time and 

quarter 3 which follows a second-order random-walk model with unknown precision    

assigned a Gamma prior distribution. Similar to the previous models,       and        were 

modelled as a CAR distribution, and independent and identically distributed Gaussian 

respectively. 

 

 Depth has an effect on log (CPUE +1) which differs depending on quarter and age class. 

Compared to juveniles, a one metre increase in depth is associated with less catches of adults 

For a one metre increase in depth, the difference between log (CPUE +1) for quarter three 

and quarter one is 0.004 with higher catches in quarter one. Expected log (CPUE +1) of adult 

fish is 0.061 more than that of juveniles for a one year increase in time. There are 

significantly more catches in quarter three from 1994 to 1998 and then more in quarter one 

thereafter (figure 6a). Variability of the spatially structured effects shows that the differences 

in spatial effects. This is evident in the plot of spatial effects where the effect is higher in 

certain grids (figure 6b). Predicted catch of cod are shown in figure A10 and A11, appendix. 

Predicted catches are higher in the small part of the Sea between 9 degrees and 13 degrees 

longitude. The pattern is the same for the two age classes and two quarters.  
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Table 3: Posterior mean, standard deviation (SD) and quantiles for the linear effects and 

variance estimates of the model for cod 

Variable Mean SD 2.5% quantile 97.5% quantile 

Intercept 1.489 0.044 1.403 1.574 

Depth 0.010 0.001 0.009 0.011 

Time -0.029 0.007 -0.042 -0.016 

Quarter 3 0.352 0.044 0.265 0.438 

Adults -0.286 0.056 -0.395 -0.177 

Adults*Time 0.061 0.009 0.043 0.080 

Adults*Depth -0.009 0.001 -0.011 -0.008 

Quarter3*Depth -0.004 0.001 -0.005 -0.003 

Variance Estimates 

Response 1.327 0.020 1.285 1.362 

Quarter3*Time 1.4E-04 0.7E-04 0.4E-04 3.0E-04 

Spatial Structured 0.841 0.189 0.600 1.321 

Spatial unstructured 1.5E-04 2.0E-04 0.2E-04 8.1E-04 

 

 
 

(a) Posterior mean of smooth effect of the 

difference between quarter three and one 

over time 

(b) Posterior mean of the smooth spatial 

effects 

Figure 6: Estimated smooth effects and spatial effects of the model for cod 
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3.3 Relationship between fish species 

To assess the relationship between fish species, a model with whiting as response and the 

other two species as covariates together with age, quarter, depth and time was developed. 

Another model with haddock as response variable was developed with covariates being 

whiting, cod and the above mentioned covariates.  

 

3.3.1 Relationship between whiting and other species 

Table 4 shows results of the model for the relationship between whiting and other species 

controlling for other covariates. The model has a DIC value of 219 879.2 and the response is 

the log (CPUE) for whiting. The structured additive predictor    for model is defined as: 

       
                                                

                                                                                             

 

The vector   represents parameter estimates for linear effects z which are depth, adult, 

quarter 3, depth*quarter3 and depth*adults. Letters in model (6) are explained as follows: H 

represents log (CPUE+1) for haddock, C represents log (CPUE+1) for cod, Q3 represents 

Quarter3 and A represents Adult. The non-linear smooth effects {             } follows a 

second-order random-walk model with precision parameters {  ,…,   }. The smooth 

spatially structured effects       and spatially unstructured effects        are defined in the 

same way as in models (3) to (5). There is a relationship between the distribution of fish 

species and the relationship changes with quarter as well as age class. Low catches of 

haddock has a positive effect in quarter three compared to quarter one. However, as log 

(CPUE +1) for haddock increase, there is no difference in between quarter one and quarter 

three. The relationship between cod and whiting is similar to the one for haddock and 

whiting. Low catches of haddock are associated with higher catches of whiting with more 

catches of the whiting being from the adult age class. The same result was also observed for 

the relationship between cod and whiting.  

 

The relationship between depth of location and catches is such that in quarter three, there are 

less catches for a one metre increases in depth compared to quarter one. In addition, as depth 

increases, log (CPUE) for adult whiting is higher by 0.005 times compared to juveniles. 

There is an overall reduction in catches over time which become significant in 2003 (time 9) 
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Spatial effects suggest that there is some pattern not explained by the covariates in the model 

that explain high abundance of fish in parts of the sea between 9 degrees to 13 degrees 

longitude. There is a reduction in the variance of spatially unstructured effects compared to 

the one model presented in table 1. This shows that the model which include other species as 

covariates better explain variation in abundance of whiting species.  

 

Table 4: Posterior mean, standard deviation (SD) and quantiles for the relationship between 

whiting and other species 

Variable Mean SD 2.5% 

quantile 

97.5% 

quantile 

Intercept 0.700 0.022 0.658 0.743 

Depth 0.029 0.001 0.028 0.030 

Quarter 3 0.374 0.022 0.332 0.417 

Adults 0.205 0.022 0.162 0.247 

Depth*Quarter 3 -0.006 0.001 -0.007 -0.005 

Depth*Adults 0.005 0.001 0.004 0.006 

Variance Estimates 

Response 8.352 0.099 8.156 8.547 

Time 2.1E-04 2.2E-04 0.2E-04 8.9E-04 

Log(Haddock + 1) 0.002 0.001 0.001 0.004 

Log(Cod + 1) 0.003 0.002 0.001 0.007 

Q3*log(Haddock + 1)
1 

0.002 0.001 0.001 0.004 

Q3*log(Cod+ 1)
1 

0.003 0.002 0.001 0.007 

Adult* log(Haddock + 1) 0.002 0.001 0.001 0.004 

Adult* log(Cod+ 1) 0.003 0.002 0.001 0.007 

Spatial Structured 4.9E-05 3.0E-05 1.4E-05 1.2E-04 

Spatial unstructured 1.8E-05 1.7E-05 0.7E-05 3.7E-05 
1
 Q3 represent Quarter 3 
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(a) Posterior mean of smooth effect of Haddock (b) Posterior mean of smooth effect of Cod 

  

(c) Posterior mean of smooth effect of time 
(d) Posterior mean of the smooth spatial 

effects 

Figure 7: Estimated smooth effects for relationship between whiting and other species 
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3.3.2 Relationship between haddock and other species 

Posterior means together with other statistics for linear effects and variance estimates for the 

model describing the relationship between haddock and other species are shown in table 5. 

This model has a DIC value of 172 193.7 with the response being the log transformed catch 

counts plus one. The structured additive predictor    of the model is defined 

       
                                                

                                                                                              

The vector of parameters   as well as linear effects   is defined as in model (6). The letter W 

in model (7) represents (log (CPUE + 1))/10 for whiting whilst the rest of the letters remain 

the same as they were described in model (6). The smooth effects also follow a second-order 

random-walk model. The spatially structured       and unstructured effects        are 

modelled as a CAR distribution and independent and identically distributed Gaussian 

respectively.  

 

There is an effect of depth on catches of haddock controlling for the presence of other 

species. This effect differs by age class as well as quarter. For a one metre increase in depth, 

there are more catches of compared to adults. Similarly, as depth increases, there are more 

catches in quarter one compared to quarter three and the difference in catches is 0.01 on the 

logarithmic scale. Low catch of whiting below (log (catch +1))/10 of 0.3 has negative effect 

on haddock abundance that differ by age class and quarter. For values of (log (catch +1))/10 

above 0.3, there is no relationship between catches of whiting and catches of haddock. 

Similarly, low catch of cod below (log (catch + 1))/10 of 0.2 has negative effect on haddock 

catch that differ by age class and quarter (figure 8 and A12). There are fluctuations in fish 

abundance over time between year 1994 and year 2000. After year 2000, there is a decline in 

haddock abundance till 2005. Spatially structured effect show that there are regions of the sea 

associated with high catches of haddock. 
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Table 5: Posterior mean, standard deviation (SD) and quantiles for the relationship between 

haddock and other species 

Variable Mean SD 2.5% 

quantile 

97.5% 

quantile 

Intercept 0.459 0.042 0.376 0.459 

Depth 0.047 0.001 0.046 0.047 

Quarter 3 0.882 0.047 0.789 0.882 

Adults -0.100 0.048 -0.195 -0.005 

Depth*Adults -0.011 0.001 -0.012 -0.011 

Depth*Quarter3 -0.009 0.001 -0.010 -0.009 

Variance Estimates 

Response 4.625 0.045 4.528 4.701 

Time 0.014 0.011 0.003 0.043 

Log (cod+1)/10 0.534 0.545 0.057 2.233 

Log (whiting+1)/10 0.510 0.396 0.102 1.578 

Q3*log (cod+1)/10 0.561 0.591 0.055 2.366 

Q3*log (whiting+1)/10 0.511 0.389 0.100 1.547 

Adult* log(cod+1)/10 0.479 0.470 0.047 1.817 

Adult* log(whiting+1)/10 0.504 0.386 0.105 1.546 

Spatial structured 0.012 0.003 0.013 0.026 

Spatial unstructured 0.011 0.001 0.008 0.014 
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(a) Posterior mean of smooth effect of Whiting (b) Posterior mean of smooth effect of Cod 

  

(c) Posterior mean of smooth effect of time (d) Posterior mean of the spatial effects 

Figure 8: Estimated smooth effects for relationship between haddock and other species 
 

  



 

27 
 

4 DISCUSSION AND CONCLUSION 

This study aims at establishing the relationship between fish abundance and environmental 

correlates, the relationship between distribution of fish species as well as temporal effects in 

fish abundance. In this report, three species were considered namely whiting, haddock and 

cod. Catch counts from the North Sea for the period from 1994 to 2005 were extracted from 

the NS-IBTS fish database.  

 

The surveys were carefully planned so as to cover the entire North Sea. In each statistical 

rectangle, there were supposed to be at least two locations where data on catch count were 

collected and this was independent of previous measurements of fish CPUE at a location. In 

such cases, there is no interest in modelling locations hence these would be treated as fixed. 

However, this might not be the case all the time. In commercial fishing where fishermen tend 

to visit locations were they think they will have more catches, it will be important to model 

the locations where fishermen visit. One strategy is to perform joint modelling of fishing 

location as well as catches using the marked point pattern methodology (Illian et al., 2011). In 

this case, the locations are modelled as a point process and the catch at the locations as marks 

Fish abundance at locations where fishermen visit might not correspond to the amount the 

fishermen expected hence this need to be incorporated into the model by adding a fishermen 

error component (Pennino et al., 2012).  

 

When using INLA, there is no distinction between spatial data type since all data are 

converted to lattice data for analysis. It has the flexibility of modelling data on both a regular 

grid as well as on non-regular grids. Data on regular grids are easily handled in the current 

version of INLA package and users have the ability to change the size of the grids to make 

them finer thus making approximations very accurate but at the expense of computational 

time (Simpson et al, 2011). For the North Sea surveys, locations are already defined within 

ICES rectangles and these were used as the grids for the analysis. This could have been 

improved if the locations were not systematically visited by changing the size of the grid for 

to accurately predict fish abundance. However, in this case the area of the grid has to be 

considered when modelling hence INLA users would run into boundary problems where the 

area of grids on shore is not the same as those off shore. 
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Recent developments in spatial analysis using INLA focus on the use of Stochastic Partial 

Differential Equations (SPDE) as a way to deal with grids on the boundary of the survey 

region. This involves discretization of the survey region and creating Delaunay triangulation 

using the observation locations as vertices. Another advantage is that other vertices which are 

not observation locations can be used for prediction purposes (Lindgren et al., 2011).  

 

There are other environmental variables not measured in the survey that could have had an 

effect of the fish abundance in certain location. Only depth was recorded and results show 

that there is an association between fish abundance and depth which differs depending on 

quarter as well as age class. Temperature levels could also have had an effect on fish 

abundance since other studies have established the association (Järvalt et al., 2005). Further 

to this, different eutrophication levels at different locations within the North Sea might 

explain some of the spatial patterns in fish abundance.  

 

There is a relationship between the three species studied taking into account the depth as well 

as the quarter of survey. Low catches of haddock are associated with high expected catches of 

whiting and low catches of cod are also associated with high expected catches of whiting 

controlling for the spatial distribution of whiting. For the model with haddock as response, 

low catches of whiting are associated with low expected catches of haddock and low catches 

of cod are associated with low catches of haddock as well. This relationship could further be 

improved by looking at the relationship between the effects of adults one species on the 

juvenile of the other species. There is a reduction in fish abundance from the period 1994 to 

2005 for all the species. There is an increase in fish abundance for whiting and haddock in 

1998 and 2000 which is then followed by a further decline.  

 

In conclusion, INLA is a powerful inferential tool for latent Gaussian models. However, for 

large datasets with many non-linear smooth effects, more computer memory required. 

Overall, there is an overall reduction in fish abundance in the North sea for the species 

considered here. In addition, these species are more abundant in certain parts of the sea. 

Results from this study could be used by fishermen to visit locations where fish are more 

abundant and modelling of such data will have a reduced fishermen error. If there is need to 

conserve any species reported here, the results will be useful in identification of areas and 

habitats to protect 
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6. APPENDIX 

Additional Figures 

 

Figure A1: Number of hauls per year 

 

 

 

 
(a) Haddock 

 

 
(b) Cod 

Figure A2: Distribution of catch in 1994 and 2005 by species 
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(a) Catches by quarter and year- Whiting (b) Catches by age and year- Whiting 

 
 

(a) Catches by quarter and year- Haddock (b) Catches by age and year- Haddock 

 
 

(c) Catches by quarter and year- Cod (d) Catches by age and year-Cod 

Figure A3: Distribution of total catch per year by species, quarter and age class 
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Whiting 

(a) 
 

(b) 

Haddock 

 
(c) 

 
(d) 

Cod 

 
(e) 

 
(f) 

Figure A4: Plot of number of catches per unit of effort at a particular location, size of circle 

reflect catches 
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(a) Whiting (b) Haddock 

 

 

(c) Cod  

Figure A5: Scatter plots of depth and total catch at a location 

 

 

 
Figure A6: Smooth effect of interaction between time and age class, and time and quarter 
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(a) Predicted juvenile catches 1994 (b) Predicted adult catches 1994 

  

(c) Predicted juvenile catches 2005 (d) Predicted adult catches 2005 

Figure 7: Predicted catches of Whiting by year and age class 
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(a) Predicted catches in quarter 1, 1994 (b) Predicted catches in quarter 3, 1994 

 
 

(c) Predicted catches in quarter 1, 2005 (d) Predicted catches in quarter 3, 2005 

Figure A8: Predicted catches of Haddock by year and quarter 
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(a) Predicted juvenile catches 1994 (b) Predicted adult catches 1994 

 

 

(c) Predicted juvenile catches 2005 (d) Predicted adult catches 2005 

Figure A9: Predicted catches of Haddock by year and age class 
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(a) Predicted catches in quarter 1, 1994 (b) Predicted catches in quarter 3, 1994 

  
(c) Predicted catches in quarter 1, 2005 (d) Predicted catches in quarter 3, 2005 

Figure A10: Predicted catches of Cod by year and quarter 
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(a) Predicted juvenile catches 1994 (b) Predicted adult catches 1994 

  
(c) Predicted juvenile catches 2005 (d) Predicted adult catches 2005 

Figure A11: Predicted catches of Cod by year and age class 
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Figure A11: Smooth effects for the difference in effects of species for two quarters and age classes for 

relationship between whiting with other species 
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Figure A12: Smooth effects for the difference in effects of species for two quarters and age classes for 

relationship between haddock with other species 
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DIC values for selected models 

Distribution 
Species: DIC 

Whiting Haddock Cod 

Lognormal * 204503.7 161637.8 76260.41 

Negative binomial 204911.9 162810.3 77056.47 

Zero Inflated NB 204914.2 162812.6 77059.59 

Poisson 27440301 13249129 836478.8 

Zero inflated Poisson 27088868 12797896 766136.2 

*Adjusted for the log transformation 

 

R-code for whiting model (3) 
library(spdep) 

library(foreign) 

library(INLA) 

setwd("C:\\Users\\Maxwell\\Documents\\HASSELT\\YEAR 2\\thesis\\CPUE") 

 

# read shape files 

nseacomb.shp<-  readShapeSpatial("nseacomb.shp", IDvar="ID") 

 

# read whitting data 

dwtemp<- read.dta("speciesint.dta") 

attach(dwtemp) 

 

# log of catch 

dwtemp$log.whitcatch<- (log(dwtemp$whitcatch+1)) 

dic.whit.const=2*sum(dwtemp$log.whitcatch) 

 

# add one column for the unstructured spatial effect 

dwtemp$rec.unstr  =  dwtemp$recID 

 

# rescale time 

dwtemp$year1=year-1994 

 

# bin quarter 

dwtemp$Q.bin= ifelse(dwtemp$quarter>1, c(1),c(0)) 

 

# Interaction between quarter and year 

dwtemp$Q.year <- dwtemp$year 

 

# interaction between depth and year 

dwtemp$D.year<- dwtemp$depth*dwtemp$year1 

 

# generate binary age 

dwtemp$A.bin= ifelse(dwtemp$age>1, c(1),c(0)) 

 

# interaction between age and quarter 

dwtemp$Q.age= dwtemp$Q.bin*dwtemp$A.bin 
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# interaction between age and time 

dwtemp$A.year= dwtemp$year1 

 

Model for whiting 

fw5 = log.catch ~ 1 +  depth*Q.bin +  f(year1, model="rw2")+depth*A.bin + f(A.year, model="rw2", 

replicate=A.bin)   + f(Q.year, model="rw2", replicate=Q.bin) + 

f(recID, model="besag",graph="nbcomb.adj")  + f(rec.unstr,model="iid") 

 

m.fw5 = inla(fw5, data=dwtemp, control.fixed = list(prec.intercept = 0.001), family="gaussian",  

control.inla=list(diagonal = 100), control.compute=list(dic=TRUE,cpo=TRUE), verbose=T) 

 

#Variance estimates parameters: precision data stored in Stata format 

 

#save precision data 

write.dta(as.data.frame(m.fhs4$marginals.hyperpar$"Precision for the Gaussian observations"), 

"Gprec.dta") 

 

# convert precision into variance 

gaus<- read.dta("Gprec.dta") 

gaus.variance = inla.tmarginal(function(x) 1/x, gaus) 

summary(gaus.variance) 
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