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Abstract  
 
Estimation of treatment effect in observational studies is not straight forward due to lack of 

randomization. As a result blind comparison of treatment effects will lead to biased estimates. 

Another challenge that exists in observational studies is treatment crossover. In this project 

this was a major complication because some of patients were crossing between treatments of 

interest and after sometime they also crossed to other treatments too. Therefore analysis that 

does not take into account this issue will also result into biased estimates. 

The objective of this study was to estimate treatment effect of Combination Therapy in 

patients with multiple myeloma in three scenarios: (1) Ignore all sources of bias and estimate 

treatment effect (2) Control selection bias due to the fact that it is an observational study (3) 

Control of treatment crossover bias in estimation of treatment effect. 

There exist different methods for estimating treatment effect for observational studies. For this 

project ordinary models, propensity score methods, Censoring and weighted analysis were 

applied. Propensity score is a balancing score that is usually used in observational studies for 

balancing distribution of baseline and/or prognostic factors between treatment groups. After 

estimating these score different models can be fitted. In this project Cox proportional hazard 

model with stratified propensity score and weighted Cox PH model with (IPTW based on 

propensity scores) were applied. The censoring method is one of the traditional ways of 

dealing with treatment crossover. This method censors subjects/patients at the time they 

crossed treatment. There after treatment estimation was done in a normal way. For this 

analysis Cox PH model was fitted in order to estimate treatment effect. Finally the analysis 

based on weights was also fitted as a most plausible way of estimating treatment effect in 

presence of both selection bias and treatment crossover bias. The key idea for this weighted 

analysis is that; for those who are censored due to crossover will receive lower weight than 

those who stayed. By doing so it creates a population that would have been observed when 

there was no crossover. After estimating weights, weighted Cox PH model was fitted to 

estimate treatment effect. For this project three ways of estimating weights were applied to 

see their effect on the parameter of interest. 

Results showed that Ordinary and propensity score methods were supporting standard 

treatment (Mono Therapy), whereas weighted models showed treatment effect for 

Combination Therapy. Moreover as weights were modified, the more effect was observed for 

combination therapy. This treatment effect was strong for OS as compared to PFS. To 

summarise, for this projects weighted analysis was preferred for controlling both selection bias 

and treatment crossover bias. 
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1. Introduction 
 
Researchers in public health normally are interested in comparing treatments so that the 

treatment that performs better can be adopted. However comparing treatments in an 

observational study is not direct due to lack of randomization. As a result comparing 

treatments in this nature of data may simply reflect the underlying difference between 

treatment groups and not treatment effect (Curtis, Hammill, Eisenstein, Kramer, & Anstrom, 

2007).  

The main difference between experimental studies (randomized clinical trial) and 

observational studies is that; in experimental studies the assignment of the treatments to 

subjects in the study is controlled by the experimenter. He/she ensures that subjects receiving 

different treatments are comparable. Whereas an observational study investigator does not 

have control on the assignments of the treatments and therefore he/she cannot ensure that 

similar subjects receive different treatments (Rosenbaum, 2002). 

Generally literatures shows observational studies give an important knowledge of disease and 

its cause in public health. Observational studies are preferred over experimental studies for 

different reasons namely (1) Ethics issues: in some studies it is unethical to conduct 

experimental study for example lung cancer studies. In this type of studies experimenter is not 

allowed to expose subjects to smoke so that he/she can be able to study causal effect between 

smoking and lung cancer (Rosenbaum, 2002). (2) Refusal: sometimes people may refuse to be 

assigned in control group for different reasons that experimenter cannot control as a result the 

experimental study cannot be conducted in such situation (Rosenbaum, 2002). (3) Rare 

diseases: conducting experimental studies for rare disease is not practical due to few cases of 

such disease. As result one opts for observational study for instance studying the effect of the 

medication of such disease. One may start from the available treated cases and then follow 

their disease history retrospectively for related symptoms and their healing process 

(Wikipedia, 2012).  

As it has been explained above it follows that observational studies can be used as an 

alternative studies to be conducted when experimental studies cannot be conducted. Or one 

might plan an observational study as well. However due to lack of randomization, 

observational studies are prone to different sources of bias namely (1) Selection bias (2) 

treatment crossover bias and (3) time-dependent confounders(Faries & Kadziola (2010), 

Hernan, Brumbeck & Robis (2000), Hernan et al (2006), Rosenbaum (2002), Wikipedia 

(2012) and Delea et al (2011)). Selective bias is a bias introduced by the way subjects are 

recruited which makes the results not be representative. While confounders are risk factor for 
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disease of interest and also is associated with exposure of interest (Hammer, Du-Prel, & 

Blettner, 2009).  

Treatment crossover in observational study is a tendency of patients to change treatments as 

recommended by their physicians. In observational studies this crossover depends on how 

physician evaluates patient’s improvements. Further reasons for treatment crossover can be, 

(1) Experimental treatment is doing better than it was expected, as a result control patients are 

also allowed to receive that treatment. (2) Patients are not doing well in the treatment they 

were assigned and therefore physician has to change their treatments.  

Therefore treatment crossover bias is the bias that is introduced due to the fact that subjects 

contribute information in all treatments of interest and sometimes they can cross to other 

treatments as well. Therefore it is difficult to know actual effect of a certain treatment if this 

bias is not controlled during estimation of treatment effect. 

The objective of this study is to estimate treatment effect of Combination Therapy 

(Experimental treatment) for patients with multiple myeloma in three scenarios; 

 Ignoring all sources of bias and estimate treatment effect 

 Control selection bias due to the fact that it is observational study 

 Control treatment crossover bias in estimating treatment effect 

The structure of this report starts with introduction, data description, exploratory data 

analysis, methodology, statistical results, assessment of estimated crossover probabilities and 

weights, discussion and conclusion, limitation and recommendation for further research.  
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2. Data Description 
 
The data set of this study comes from observational study with two survival end points 

namely; OS and PFS. It consists of 509 patients with multiple myeloma. These patients were 

followed up for time to OS and time to PFS. The follow-up time started in 2006 up to 2011, 

but patients were having different follow-up time because they were entering the study at 

different time point. The follow-up ended in 2011. Therefore censoring for no events was due 

to end of follow-up, dropout and lost follow-up. 

Data set contained two treatments of interest namely, Mono therapy which was a standard 

treatment group while Combination therapy was experimental treatment group. Patients 

were followed after every two weeks, three weeks and monthly depending on how physician 

decides for a patient. Table 1 summarises all variables in the data set, their description and 

coding.  

 

Table 1: Summary of variables in the data set 

Variable Name Description Code 

Time_to_death Time to OS   

Status_death Patient’s death status  1=event (death) and 0=no 
event 

Time_to_PFS Time to PFS   
Status_PFS Patient’s disease progression status 1=event (PFS) and 0=no event 

Treatment Patients initiated treatment A=1 for Combination and A=0 
for Mono Therapy 

Albumin_cat Albumine level at baseline (categorical) 1 >3.5 mg/dl, 2  3.5 mg/dl  
and 9=Unknown 

B2Microglob_cat Beta 2 Microglobulines at baseline  
(categorical) 

1 <3.5 mg/dl , 2=3.5- 5 mg/dl, 
3 >5mg/dl, and 9=Unknown 

Gender Gender  1=Male and 2=Female 

LOT Line of treatments 

 2=Second line, 3=Third Line, 
4=Fourth line, 5=5+line, 
6=Best Supportive Care and 
9=Unknown 

MMStage_common Stage of disease at baseline 1=Stage 1 , 2=Stage 2 , 3= stage 
3  and 9=Unknown 

creatclear_cat Creatinine clearance (categorical) 

1 <20ml/min , 2= 20 - <40 
ml/min , 3=40 - <60 ml/min , 
4=60 - <80 ml/min and 9 
=Unknown  

date_crossover Date for crossover between treatments 
of interest   

date_nxtMMtrtmnt Date of initiation other treatments 
course  
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3. Exploratory Data Analysis 
 
Exploratory data analysis was performed so as to get insight of the data. In this part of 

analysis cross tabulation, correlation and survival summaries and plots were explored. 

Percentage of events for both end points for all covariate were summarised in Table 2. The 

table showed that there were 58.35% male patients and 41.65% female patients. For the case 

of treatment groups, Mono Therapy had 134 patients and Combination Therapy had 375 

patients.  

In simple exploratory data analysis, number of events for both end points was explored by 

treatment groups. In OS, it was observed that in Mono therapy group there were 49 patients 

died and in Combination therapy there was 152 patents died. Whereas for PFS 102 patients 

got disease progression in Mono therapy while in Combination therapy 253 patients 

experienced disease progression.  

Furthermore frequency distribution by status of each end point was also explored. For disease 

stage covariate results showed that 39.49% of all patients died, while 69.74% of all patients 

experienced disease progression during follow-up time. Many patients who were in disease 

stage 3, had experienced disease progression (38.7% of all patients) and it was followed by 

disease stage 2 (17.09% of all patients).  

Another covariate that was of interest was line of treatments that patient received prior to 

entry into the study. In OS end point, 14.93% of all patients died in second line of 

treatments. While for PFS end point, 31.43% of all patients experienced disease progression in 

the same line of treatment.  

For the case of Albumine level covariate, OS end point, 17.88% of all patients died and all 

these patients were in Albumine level  3.5 mg/dl. Further in the same Albumine level, 

36.15% of all patients experienced disease progression.  

Another important covariate was Beta 2 Microglobulines, for OS end point 22.59% of all 

patients died and these patients were in unknown category. Same category of Beta 2 

Microglobulines had many patients who had experienced disease progression (38.31%). It 

followed by <3.5mg/dl category whereby 14.31% patients had disease progression.  

Last but not least covariate was creatinine clearance. In this covariate about 19% of all 

patients died in 60 - <80 ml/min category. While 38.51% of all patients experienced disease 

progression in the same category during follow-up time.  

Assessing disease progression, the same table showed that in all covariates majority of patient 

experienced progression as compared with those who did not have progression. The only 

exception was observed in unknown level of line of treatments covariate whereby few 

patients had progression as compared to those who did not get progression. 
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Table 2: Number (%) of patients for all baseline covariates by OS and PFS endpoints 

Covariates 
OS   PFS 

Alive Died   No Progression Progression 

        Disease stage 
Stage1 71(13.95) 16(3.14)   41(8.06) 46(9.04) 
Stage2 78(15.32) 51(10.02)   42(8.25) 87(17.09) 
Stage3 147(28.88) 116(22.79)   66(12.97) 197(38.7) 

Unknown 12(2.36) 18(3.54)   5(0.98) 25(4.91) 
        Gender 

Male 
173 

(33.99) 124(24.36)   82(16.11) 215(42.24) 

Female 135(26.52) 77(15.13)   72(14.15) 140(27.5) 
   Line of treatment 

Second line 160(31.43) 76(14.93)   76(14.93) 160(31.43) 
Third Line 76(14.93) 75(14.73)   34(6.68) 117(22.99) 
Fourth Line 24(4.72) 28(5.5)   11(2.16) 41(8.06) 

5+ Line 16(3.14) 11(2.16)   7(1.38) 20(3.93) 
Best Supportive 

Care 
6(1.18) 9(1.77)   3(0.59) 12(2.36) 

Unknown 26(5.11) 2(0.39)   23(4.52) 5(0.98) 
      Albumine Level 

>3.5 mg/dl 190(37.33) 91(17.88)   97(19.06) 184(36.15) 
<=3.5 mg/dl 81(15.91) 85(16.7)   41(8.06) 125(24.56) 

Unknown 37(7.27) 25(4.91)   16(3.14) 46(9.04) 
 Beta 2 Microglobulines  

<3.5 mg/dl 98(19.25) 33(6.48)   58(11.39) 73(14.34) 
3.5 - 5 mg/dl 27(5.3) 12(2.36)   14(2.75) 25(4.91) 

>5 mg/dl 43(8.45) 41(8.06)   22(4.32) 62(12.18) 
Unknown 140(27.5) 115(22.59)   60(11.79) 195(38.31) 

 Creatinine Clearance 
<20 ml/min 13(2.55) 19(3.73)   6(1.18) 26(5.11) 

20 - 40 ml/min 12(2.36) 22(4.32)   5(0.98) 29(5.7) 
40 - <60 ml/min 74(14.54) 52(10.22)   39(7.66) 87(17.09) 
60 - <80 ml/min 199(39.1) 97(19.06)   100(19.65) 196(38.51) 

Unknown 10(1.96) 11(2.16)   4(0.79) 17(3.34) 
 

 

Exploring pairwise correlation between covariates to be considered in the analysis, Spearman 

correlation coefficient was summarized in Table 3. It has been observed that gender was 

negatively correlated with disease stage of the patients. Further negative correlation was 

observed between gender and Albumine level. All covariates were negatively correlation with 
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Creatinine clearance covariates except for Albumine. However the correlation matrix did not 

reveal any serious pairwise correlation between covariates. 

 

Table 3: Spearman Correlation Coefficients for all covariates  

Covariates 
Disease 
stage Gender LOT Albumin B2Microglob creatclear 

Disease stage 1 -0.08833 -0.01228 0.08589 0.06511 -0.00167 

Gender   1 -0.01871 -0.05365 0.00451 -0.03808 
LOT     1 0.02239 0.04312 -0.04768 
Albumin       1 0.18814 0.04284 
B2Microglob         1 -0.13903 
creatclear           1 
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4. Methodology  
 
In this section methods that are used to estimate treatment effect in observational studies with 

treatment crossover were reviewed. Few models that were applicable to this project were 

applied to estimate treatment effects as per objectives. Before proceeding with reviews and 

model formulation lets describe a process of data transformation that was done in this project 

in order to fit weighted Cox PH models. 

The original data set was survival data structure with one observation per subject. Due to 

nature of the weights to be estimated (Weights are time specific) standard software for fitting 

Cox model cannot be used for this type of analysis. In order to fit weighted Cox PH model 

with this type of weights, survival data structure needs to be transformed into panel 

(Longitudinal) data (Hernan, Brumbeck & Robis (2000) and Delea et al (2011)).  

In this project data transformation was done based on observed time to event. That time to 

event was recorded in days and therefore it was divided into six months (180 days) interval 

for both end points. However due to computational difficulties (presence of quasi complete 

separation in some time interval) due to the fact that there was no event in some time 

intervals especially last time intervals. The Last 4 time intervals were combined into one time 

interval. Therefore last time intervals for both end points were longer than others (contains 

two years). In all estimation, time interval estimation was done based on binary time points. 

Furthermore for the case of Status_death and Status_PFS in this transformation, for subjects 

with events this event was pushed to last time interval (the assumption here is that all events 

were observed in last time intervals), for instance [0,0,0,0,0,1]. For those who were censored 

for these end points were having zeros in all time intervals [0,0,0,0,0,0].  

Treatment history variable, when subjects changed treatment this variable was also changing. 

Therefore for this case this was a vector of all treatments that was used by patients in all time 

intervals. Whereas for treatment crossover indicator variable those subjects who crossed 

treatment were censored at that time interval of which they crossed treatment. For instance 

[1,1,1,0,0,0] or [1,0,0,0,0,0] or [1,1,1,1,1,1] or [1,1,1,1,1,0]. Baseline covariates remained at they 

were by only repeating the same values in all time intervals. All statistical analysis was done in 

SAS version 9.2 and plots were done in R version 2.14.2 and one plot in Excel. Level of 

significance used was 5%. 

 

4.1. Model Formulation of Ordinary Cox PH  
 
Before adjusting for selection bias and crossover bias, two Cox PH models were fitted for the 

purpose of comparison with models that take into account complications of this project. First 
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model was Cox PH with only baseline treatment and second model was Cox PH with 

baseline treatment and baseline covariates. These models were formulated as follows: 

Cox PH model with baseline treatment only 

0( | ) ( )exp( )i i ih t A h t A  

Cox PH model with baseline treatment and baseline covariates 

0( | , ) ( )exp( )i i i i ih t A V h t A V    

Where: : Is the vector of unknown parameters for baseline covariates to estimated. 

  : Is unknown parameter of treatment effect to be estimated. 

 iV :Is a vector of baseline covariates. 

 iA : Is an indicator variable for baseline treatment. 

 0( )h t : Is the baseline hazard at time t. 

 ( | , )i i ih t A V : Is the hazard function of subject i . 

 

4.2. Review of Methods that are Applicable in Observational Studies  
 

The overt bias is the bias that can be seen in observational study. This type of bias can be 

controlled using stratification or marching based on the covariate that make control group 

and treated group to differ (Rosenbaum, 2002). By doing so, people with similar 

characteristics in treated and control group will become comparable. There exist different 

methodologies for estimating treatment effect in observational studies where there is overt 

bias and hidden bias. Rosenbaum (2002) discussed on methods that can be applied in 

observational studies when there is overt bias. First: the use of the stratification on observed 

covariates which ensures treated and control subjects belong in the same categories. Second 

method is matching on observed covariates (see Rosenbaum (2002) for details).  

Another popular method for dealing with selection bias in observational studies is propensity 

score method. Rosenbaum (2002) defined propensity score as the conditional probability of 

receiving treatment given the observed covariates. It can be seen in this definition this score 

explains the probability of being in the experimental treatment arm given all observed 

covariates at baseline (or prognostic factors at baseline). This score is used as a balancing score 

that helps the distribution of observed covariates to be similar between treatment groups that 

are compared.  

After estimating this scores, there various methods that can be applied so that the treatment 

effect can be estimated in observational data. Austin (2011) discussed different methods of 



11 
 

using propensity score as a way of reducing bias in observational studies. Methods discussed 

were propensity score matching, stratification on the propensity score, IPTW using propensity 

score and covariate adjustment using propensity score.  

 The assumption of this propensity score is that there is no hidden bias in the data set, in other 

word bias dealt with this method is the one caused by imbalance of baseline characteristics. 

Therefore this method tends to balance based on observed covariates but in reality there 

might be imbalances due to unobserved covariates.  

 

4.2.1. Model Formulation for Propensity Score  
 
Literatures showed that for observational studies propensity score is unknown. Therefore it is 

normally estimated from the data by fitting Logistic regression with dependent variable being 

treatment indicator regressed on observed baseline covariates and/or prognostic factors (for 

details see Rosenbaum (2002) and Austin (2011)). In this project there were two treatments 

and therefore a logistic regression for binary (treated=1 and control=0) was fitted as follows; 

[ ( ) | ]i ilogit x V V     

Where: ( ) ( 1)x prob Treat   : Is the probability of receiving treatment (Combination).       

  : Is unknown vector of parameters to be estimated. 

 

4.2.1.1. Cox PH Adjusting for Stratified Propensity Score  
 
Having estimated propensity scores as predicted probabilities of the above model, the 

estimated propensity scores were stratified. Rosenbaum and Rubin (1984) explained that 

stratifying on the quintiles of the propensity score eliminates approximately 90% of the bias 

due to the measured confounders when estimating a linear treatment effect. Therefore for this 

project estimated propensity score was stratified in five strata, each stratum was containing 

about 100 patients. The assumption here is that within stratum patients have similar 

propensity scores and therefore if propensity scores were correctly estimated, in each stratum 

there will balance of distribution of observed baseline covariates between experimental 

treatment group and control group.  

That will allow estimating treatment effect by fitting a regression model with survival 

outcome as dependent variable and treatment indicator variable as a covariate, adjusting for 

stratified propensity scores. In this project Cox PH model was fitted in order to estimate 

treatment effect of combination therapy. The fitted model was formulated as follows: 

0( | , ) ( )exp( )i i i i ih t A S h t A S    
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Where: : Is unknown parameter for stratified propensity score. 

  : Is unknown parameter of treatment effect to be estimated. 

 iS : Is the covariate that contains stratified propensity scores for subject i . 

 iA : Is an indicator variable for baseline treatment for subject i . 

 

4.2.1.2. Weighted Cox PH model with IPTW based on Propensity Score 
 
Another approach that is commonly used to estimate treatment effect in observational studies 

is IPTW using estimated propensity scores. In this approach, weights for all patients were 

calculated as an inverse of the probability of receiving the treatment that they actually 

received (Lanehart, et al., 2012). In this procedure those patients who received experimental 

treatment will receive weight which equals to the inverse of estimated propensity scores. 

Those who received standard treatment their weights were equals to inverse of the 1 minus 

estimated propensity score.  

After estimating these weights, a weighted Cox PH model with response being death status 

and disease progression status was regressed on baseline treatment and observed baseline 

covariates. This model was fitted on transformed data. Austin (2011) discussed that parameter 

estimate that are obtained in this model have causal interpretation which is part of the MSM 

family. The weighted Cox PH model fitted was formulated as follows: 

0[ ( ( ) 1) | , ]i i i i ilogit D t A V A V        

 

Where: ( )iD t : Is a vector of patient status for all time points, (Event=1 and No event=0). 

 0 : Is intercept. 

  : Is the parameter estimate for baseline treatment effect. 

  : Is the vector of parameter estimates for baseline covariates. 

 

4.3. Review of Methods for Handling Treatment Crossover Bias  
 
Despite of bias that comes from the nature of data, this data set had also additional 

complexity that patients were crossing treatment arms based on physician recommendation. 

Contrasting experimental studies, in observational studies people do not necessarily follow 

prescribed treatment regime (Hernan, Lanoy, Costagliola, & Robins, 2006). As a result 

conventional statistical methods of estimating treatment effect in this situation will produce 
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biased estimate of treatment effect due to confounding that comes from crossover. Therefore 

one must consider methods of estimation that take into account this complexity.  

For this kind of complication, there exist different methods for estimating treatment effect in 

presence of treatment crossover, namely (1) excluding patients who crossed treatments (2) 

inclusion of crossover as a covariate in statistical model (3) Censoring patients at the time of 

crossover (4) In observational studies with crossover MSM using IPTW and IPCW and Nested 

NSM with g-estimation are normally applied.  

Literature showed that the applications of MSM are often used for treatment effect estimation 

in observational studies with treatment crossover. Hernan et al (2006) explained possible 

solutions for dealing with time-varying treatment in observational studies. One of the 

solutions was modelling causal effects which were MSM and NSM. Marginal Structural Cox 

PH model using IPTW and IPCW are causal models and popular in literature, whereby many 

researches have been done using the model.  

In general, the idea of IPTW and IPCW of estimating causal effect is that for subjects with 

similar baseline characteristics and they didn’t drop or cross treatment, the IPTW and IPCW 

methods assigns bigger weights to “re-create” the population that would have been observed 

without crossover (Delea, Duh, Wei, & Robins, 2011). Assumptions for weighted Cox PH with 

both IPTW and IPCW assume no unmeasured baseline confounders as well as no model 

misspecification.  

In this project major focus was based on these two methods IPTW and IPCW and simple 

method like censoring at the time of crossover was performed for comparison purpose only. 

Before weighted analysis, un-weighted logistic regression was fitted on transformed data for 

the purpose of comparison with ordinary Cox PH models that does not take into account 

selection bias and crossover bias. 

 

4.3.1. Model Formulation for Un-weighted Logistic Regression Models 
 
In this analysis, two un-weighted logistic regression were fitted. First model was fitted with 

response being event (event=1 and no event=0) which was regressed on baseline treatment 

and baseline covariates. Second model was fitted on treatment history and baseline 

covariates. These two models were formulated as follows: 

Un-weighted logistic regression with baseline treatment 

0[ ( ( ) 1) | , ]i i i i ilogit D t A V A V        

Where: ( )iD t : Is a vector of patient status for all time points, (Event=1 and No event=0) 

 0 : Is intercept. 
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  : Is the parameter estimate for baseline treatment effect. 

  : Is the vector of parameter estimates for baseline covariates. 

Un-weighted logistic regression with treatment history 

0[ ( ( ) 1) | ( ), ] ( )i i i i ilogit D t A t V A t V        

Where: ( )iA t : Is a vector of treatment history used for all time points. 

 

4.3.2. Cox PH model for Censoring at the Time of Crossover  
 
As it has been introduced previously, this approach censors subjects at the time of treatment 

crossover. In this project there are two types of treatment crossover, first crossover between 

treatment of interest and second crossover to other treatments. Censoring due to treatment 

crossover was a minimum time to crossover between time of crossover between treatments of 

interest and time to crossover to other treatments. Two types censoring variables were 

created namely (1) artificial censoring indicator that shows whether subject crossed treatment 

or not (2) censoring indicator that contained all types of censoring as well as crossover 

censoring. In this case here those who had event were those who stayed in their treatments 

assigned at baseline. Moreover for those who crossed after observing an event especially for 

PFS endpoint were also considered that they didn’t cross for that endpoint. In this approach 

censoring is not independent because it was linked to reasons for crossover.  

Therefore censoring method applied here uses second type of censoring indicator for both 

end points. This analysis was done in the original survival data set because at this stage there is 

no need to transform the data set. The fitted Cox PH model was formulated as follows: 

 

0( | , ) ( )exp( )i i i i ih t A V h t A V    

 

4.3.3. Weighted Cox PH with IPTW  
 
Marginal structural Cox PH model using IPTW method was introduced by Hernan et al 

(2000). They explained that traditional methods for estimating treatment effect have biased 

estimates for causal inference in the presence of time-dependent confounders. But Marginal 

Structural Cox PH model has unbiased estimate for causal inference even in the presence of 

time-dependent confounders and selection bias. 

 Hernan, et al (2000) further explained weighted Cox PH model using IPTW for estimating 

treatment effect. In this method weights are estimated using 4 logistic regressions with 

observed baseline covariates and time-dependent confounders. First two models are fitted by 
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assuming there is no censoring; whereby weight 1 is estimated as a ratio of two models. For 

numerator treatment history is regressed on previous treatment and observed baseline 

covariates. For denominator the treatment history is regressed on the observed baseline 

covariates, previous treatment and time-dependent confounders. While for weight 2, logistic 

regression models are fitted by assuming there is censoring. Here Censoring indicator is the 

response. Therefore weight 2 is a ratio of two models with censoring indicator as response 

regressed on baseline covariates and previous treatment for numerator weight. For 

denominator censoring indicator is regressed on baseline, previous treatment and time-

dependent covariates. In all these models predicted probabilities are estimated and used for 

estimating weight 1 and 2. Therefore final weight was the product of weight 1 and 2.   

Moreover Hernan, et al (2000) also distinguished between non-stabilized weights and 

stabilized weights. Non-stabilized weight is the one that replace numerator predicted values 

by 1 in both weights whereas stabilized weight is the one that has numerator predicted values. 

Further they continued explaining that both weights have consistent causal estimate for 

treatment effect but the stabilized weight has narrower confidence interval as compared to its 

counterpart. 

The application of this IPTW and IPCW methods of estimation to data set at hand was done 

on the transformed panel data. However the data set had no observed time-dependent 

covariate. Due to that reason it restricted the direct application of the IPTW and IPCW with 

stabilized weights, because the direct application of stabilized weights will produce weights 

equal to 1 for all patients. Therefore in this analysis weights that was applied was non-

stabilized.  

 

4.3.3.1. Model Formulation for Weighted Cox PH Model with IPTW  
 
In this analysis the probabilities are estimated by fitting two models; (1) logistic regression 

model with treatment history regressed on baseline covariates and previous treatment and (2) 

logistic regression for probability of remaining uncensored whereby censoring indicator (The 

one contains all types of censoring) was regressed on baseline covariates and previous 

received treatments. Therefore weights were estimated as an inverse of the estimated 

probabilities. The logistic models used for estimating weights from these probabilities were 

formulated as follows: 

Model 1: Assuming there is no censoring in the data set. 

1 2[ ( ( ) 1) | ( 1), ] ( 1)i i i i ilogit A t A t V A t V          
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Model 2: Assuming there is censoring due to crossover, dropout, lost follow-up and     

administrative censoring 

1 2[ ( ( ) 1) | ( 1), ] ( 1)i i i i ilogit c t A t V A t V          
 
After estimating weights, the weighted Cox PH model was formulated as follows; 

0[ ( ( ) 1) | ( ), ] ( )i i i i ilogit D t A t V A t V        

 

Where: ( )iD t : Is a vector of patient status for all time points, (Event=1 and No event=0) 

 ( )iA t : Is a vector of treatment history used for all time intervals.  

 iV : Is a vector of all baseline covariates. 

 0 : Is intercept. 

  : Is the parameter estimate for treatment effect. 

  : Is the vector of parameter estimates for baseline covariates. 

 

4.3.4. Weighted Cox PH with IPCW 
 
Hernan, et al (2006) also explained another approach for estimating weight using IPCW. This 

method creates a scenario of missing follow-up data by censoring the follow-up of each 

subject at the time of crossover (Delea, Duh, Wei, & Robins, 2011). For this method subject 

who stayed in their initially assigned treatments will receive weight greater than 1 if there exist 

another subject with similar baseline/prognostic factors and who crossed treatment. 

Probabilities for estimating weights were estimated by fitting logistic regression with 

dependent variable being censoring indicator for treatment crossover (Delea, Duh, Wei, & 

Robins, 2011). However this method also requires time-dependent covariates in estimating 

weights.  

For IPCW method weight 1 is estimated as a ratio of two regression models. For numerator 

weight, artificial censoring due to crossover was regressed on baseline treatments, baseline 

covariates and normal censoring indicator. While for denominator weight, regression has 

additional variable called time-dependent. Weight 2 is estimated based on two models. For 

numerator weight, normal censoring indicator was regressed on baseline treatments, baseline 

covariates and artificial censoring indicator for crossover. While for denominator, additional 

time-dependent variable is required (Hernan, Lanoy, Costagliola, & Robins, 2006). Therefore 

final weight is the product of weight 1 and 2. 
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4.3.4.1. Model Formulation of Weighted Cox PH with IPCW 
 
The weighted Cox PH used here is the same as the one used in IPTW method. Further in this 

analysis non-stabilized IPCW were also used. Therefore logistic models for estimating weights 

were formulated as follows; 

Model 1: Estimating probabilities to remain uncensored for artificial censoring ( ( )N t ) 

1 2 3[ ( ( ) 1) | ( ), , ] ( )i i i i i ilogit N t c t A V c t A V          

 

Model 2: Estimating probabilities to remain uncensored for a normal censoring ( ( )c t ) 

1 2 3[ ( ( ) 1) | ( ), , ] ( )i i i i i ilogit c t N t A V N t A V          

Where: ( )c t : Is the censoring indicator that contains all types of censoring. 

 ( )N t : Is the artificial censoring due to treatment crossover. 

 's  are parameter estimates for treatment and baseline covariates.  

 

4.3.5. Weighted Cox PH Model with Crossover Probabilities 
 
The final method for estimating weights uses inverse crossover probabilities. For this method 

probabilities of crossing were estimated in different assumptions for treatment crossover. 

Models used for estimating crossover probabilities were formulated as follows: 

Prob 1: The assumption is that crossover probability is independent of treatment received. 

[ ( ( ) 0) | ]i ilogit N t V V      

Prob 2: The assumption is that crossover probability depends on the baseline treatment and 

baseline covariates 

[ ( ( ) 0) | , ]i i i ilogit N t A V A V        

Prob 3: The assumption is that crossover probability depends on treatment history and 

baseline covariates 

[ ( ( ) 0) | ( ), ] ( )i i i ilogit N t A t V A t V        

Prob 4: The assumption is that crossover probability depends on the previous treatment and 

baseline covariates 

[ ( ( ) 0) | ( 1), ] ( 1)i i i ilogit N t A t V A t V          
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Where: : Is the vector of unknown parameter estimates for baseline covariates 

  , and  : Are parameter estimate for treatment in different crossover assumptions. 

 ( ( ) 0)N t  : Is the probability of crossing treatments. 

The weighted Cox PH model was fitted for each estimated weight. The fitted model was the 

same as the one used in IPTW and IPCW methods. 
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5. Statistical Results 
 

5.1. Exploring Crossover Patterns 
 
Assessing the magnitude of treatment crossover (between treatments of interest and other 

treatments), crossover pattern was explored for all types of crossover that exist in the data 

set.  It was observed that in this study patients were crossing treatments in three ways, first: 

patients were crossing between treatments of interest (Mono and Combination therapy), 

second: patients were crossing from either Mono or Combination therapy direct to other 

treatments and third: patients were crossing twice, first between treatments of interest and 

later they were crossing to other treatments.  

In general there was 375 (73.67%) patients switched from their initially assigned treatment to 

either Mono therapy or Combination therapy and then to other treatments or direct to other 

treatments or even crossing between treatments of interest only. Table 4 summarises all types 

of crossover for all patients with their initially assigned treatment groups and median time for 

treatment crossover. Results showed that many patients crossed from treatments of interest 

direct to other treatments (52 patients in Mono therapy and 131 patients for Combination 

therapy). Another crossover was for those patients who were crossing twice, for Mono 

therapy there were 40 patients whereas for Combination therapy there were 101 patients. 

There were very few patients crossing between treatments of interest only that is 8 patients in 

Mono therapy and 43 patients in Combination therapy. 

In general 144 patients who were initially assigned to Combination therapy crossed to Mono 

therapy and 48 patients who were initially assigned in Mono Therapy crossed to 

Combination therapy. Patients who crossed to other treatments from Mono therapy were 92 

and those who crossed to other treatments from Combination therapy were 232 patients. 

Moreover median time for cross over between treatments of interest was 42 days while the 

median time for crossover to other treatments was 210 days. Being explored both types of 

crossover, it has been observed that patients were crossing between experimental treatments 

quickly (Mono therapy median time for crossover was 51 days and Combination therapy 

median time for crossover was 31.5 days) as it was compared to time used to cross to other 

treatments (median time for crossing from Mono therapy was 243 days and for Combination 

therapy was 201 days). 
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Table  4: Description of crossover pattern by  treatments groups 

Types of Crossover Mono Therapy Combination Therapy 

Crossover between treatments of interest and then 
to other treatments 40 101 

Stayed on treatment 34 100 

Crossover  from treatments of interest direct to 
others treatments  

52 131 

Crossover between treatments of interest 8 43 

Total Patients 134 375 

Crossover to Combination therapy 48 

 Crossover to Mono therapy 
 

144 

Crossover from Mono to Other Treatment 92 

Crossover from Combination to Other Treatments 232 

Median Time to crossover between treatments of  
interest 42 Days  

Median Time to crossover other treatments 210 Days 
Median time for Crossover to either Combination 
or Mono therapy 

51 Days 31.5 Days 

Median time for Crossover from either 
Combination or Mono Therapy to Other 
Treatments 

243 Days 201 Days 

 
 
Further, it was observed that for Mono therapy 100(74.6%) of all patients in the study 

crosses to either treatments of interest or to other treatments or crossed twice while for 

Combination therapy 275 (73.3%) also crossed treatments. Therefore during the study period 

for both Mono therapy and Combination therapy only few patients stayed in their initially 

assigned treatments up to the end of follow up. Figure 1 summarises all types of crossover as 

compared to those who stayed. 
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Figure 1: A plot of all types of treatment crossover by their initially assigned treatment groups 
 
 
Exploratory data analysis on crossover by disease stage and line of treatment was also 

performed and summarised in Table 5. This was done because disease stage shows how 

severe the patient was and for line of treatments showed the more lines of treatments the 

more severe the patient was. This gave an idea what type of patients was crossing treatment.  

For disease stage at baseline the crossover between treatments of interest and/or to other 

treatments was higher in all disease stages, but there were many patients (39.69%) crossed 

who were  in disease stage 3 as compared to other disease stages. It was followed by stage 2 

(18.47% of all patients). Moreover Table 5 showed that for the case of line of treatment at 

baseline many patients were crossing either between treatments of interest and/or other 

treatments in all categories of line of treatments. But majority of patients in second lines of 

treatments (34.58%) crossed treatment. 
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Table 5:  Count (%) of crossover by disease stage and lines of treatments 

Covariates 
Crossover 

Total 
Yes No 

Disease stage       

Stage 1 61(11.98) 26(5.11) 87(17.09) 

Stage 2 94(18.47) 35(6.88) 129(25.34) 

Stage 3 202(39.69) 61(11.98) 263(51.67) 

Unknown 18(3.54) 12(2.36) 30(5.89) 

Line of Treatment    
Second Line 176(34.58) 60(11.79) 236(46.37) 

Third Line 115(22.59) 36(7.07) 151(29.67) 

Fourth Line 35(6.88) 17(3.34) 52(10.22) 

5+ Line 20(3.93) 7(1.38) 27(5.3) 

Best Supportive Care 9(1.77) 6(1.18) 15(2.95) 

Unknown 20(3.93) 8(1.57) 28(5.5) 

Total 375(73.67) 134(26.33) 509 

 

 

Moreover, Kaplan-Meier plots by treatment groups for both end points were also explored. 

Figure 2 showed that in both end points survival curves were touching and even crossing, 

especially for PFS plot whereby curves crossed in early time of follow-up. Moreover these 

plots also showed lack of proportionality in estimated curves, which suggests violation of 

proportional hazards assumption. As a result all conventional survival analysis such as Logrank 

test for comparing survival curves and Cox proportion model are no longer appropriate for 

this type of data set. In these Kaplan-Meier plots it should be noted that patients who crossed 

treatment contribute information in both curves.  
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Figure 2: Kaplan-Meier Survival curves plots for the original data, horizontal line represents 
median survival probability 
 
 

5.2. Statistical Analysis 
 

5.2.1. Models Fitted for OS End Point 
 
Ordinary Cox PH models: Results for OS end point showed these models had positive 

parameter estimates which were supporting standard treatment. The difference between 

estimates for model with only baseline treatment and the one with baseline treatment and 

baseline covariates was small. But Confidence interval for model with baseline treatment and 

baseline covariates was a bit wider as compared to its counterpart. 

Propensity score methods: Estimates that were based on propensity score methods (Cox PH 

with stratified propensity score and weighted Cox PH with IPTW on propensity score model) 

showed the estimates with same direction with previous models. Further it was observed that 

estimate of Cox PH model with stratified propensity score was close to ordinary Cox PH 

model with baseline covariates and baseline treatment. While using weighted Cox PH with 
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IPTW based on propensity score, estimate was smaller compared to all previous Cox PH 

models. In both models there was no statistical evidence for treatment effect. 

Un-weighted logistic regression: In this analysis un-weighted logistic regression model (for 

baseline treatment and treatment history) was fitted in a transformed data set. For the case of 

un-weighted logistic model with baseline treatment, estimate was close to ordinary Cox PH 

model (0.2486). This shows these two models are estimating the same thing. For the case of 

un-weighted logistic model with treatment history, estimated treatment effect was -0.3843, 

which was now supporting combination therapy. For this model the parameter estimate was 

statistically significant. 

Censoring method for handling crossover bias: In this analysis it has been observed that 

estimate for OS end points was -0.161 but its confidence interval was wider as compared to 

other methods of estimating treatment effect. There was not statistical evidence of treatment 

effect. 

Weighted Cox PH with IPTW and IPCW: For these analyses non-stabilizing weights were 

estimated as explained previously. In OS end point results showed that estimates for both 

weights were in the same direction (supporting combination Therapy). However for IPCW 

weight estimate was more negative as compared to result of IPTW. For both methods of 

estimating weights, confidence intervals for parameter estimates were wider. This was 

expected because literatures explained that non-stabilized IPTW and IPCW produce consistent 

parameter estimates but with wider confidence interval as compared to stabilized weights. 

Different conclusion was also observed, for IPTW there was no statistical evidence of 

treatment effect. Whereas IPCW method, there was statistical evidence of treatment effect. 

Weighed Cox PH models based on crossover probability (Prob 1 to 4): In these analyses the 

probability for crossing treatment were estimated in four different assumptions as explained in 

methodology part. Under all estimated probabilities for crossover it was observed that time 

was associated with probability of crossing treatment. Whereas all other baseline covariates 

were not associated with the probability of crossing (results not shown). Further adding 

treatment at baseline (model for Prob 2) crossover probability was not associated with 

baseline treatment. Model for Prob 3, it was observed that treatment history was associated 

with crossover probabilities. Finally model for Prob 4, it was also observed that previous 

treatment was associated with probability of treatment crossover. 

Under all these assumptions, weighted Cox PH models were fitted in order to estimate 

treatment effect. In assumption 1 and 2 for OS end point estimate were similar, and estimates 

were both statistically significant. Further it was observed that as probabilities for crossing 
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treatment was modified (assumption 3 and 4) the parameter estimate for treatment was 

becoming more negative (meaning more treatment effect for Combination therapy).  

Parameter estimates for treatment effect and their confidence intervals for all fitted models of 

OS end point are summarised in Table 6. Forest plot was used to plot these estimates with 

their confidence interval (see Figure 3).  

Having discussed on how the parameter estimate for treatment effect was changing in 

different in all fitted models. Other adjusted covariates were also evaluated (see detailed 

results for all fitted models and parameter estimates in Appendix).  

Ordinary Cox PH model adjusting for baseline covariates, disease stage and Beta 2 

Microglobulines covariates were statistically significant for OS. For the case of weighted Cox 

PH with IPTW based on propensity score, Albumine level and disease stage were associated 

with OS end point.  

Un-weighted logistic models (for treatment at baseline and treatment history) fitted on panel 

data, in these models Albumine level, disease stage and Beta 2 Microglobulines were 

associated with OS end point.  

Moreover those models that were taking into account treatment crossover, for censoring 

methods only disease stage was associated with OS. Whereas weighted Cox model with IPTW 

and IPCW, disease stage, Albumine, Beta 2 Microglobulines and Creatinine clearance were 

associated with OS.  

Finally for models that were fitted using weight that was estimated as inverse crossover 

probability time, Albumine, disease stage and Beta 2 Microglobulines were also associated 

with OS end point. In all fitted models there was no statistical evidence of gender effect in OS 

end point. 
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Table 6: Parameter estimates for treatment (Combination therapy) with 95% confidence limits  for 
OS end point 

Models  Estimate 95% Confidence Limits 

Ordinary, Propensity Score and Un-weighted Models 
Ordinary Cox PH (Treatment at baseline only) 0.2963 (-0.0263, 0.619) 
Ordinary Cox PH (Baseline treatment and baseline 
covariates) 0.2864 (-0.0566, 0.6297) 

Cox PH adjusting for stratified propensity score 0.3107 (-0.0294, 0.6508) 

Weighted Cox PH(IPTW on propensity scores) 0.1239 (-0.2485, 0.4964) 

Un-Weighted Logistic(Treatment at baseline) 0.2486 (-0.1156, 0.6129) 

Un-Weighted Logistic(Treatment history) -0.3843 (-0.7007, -0.0678) 

Censoring and Weighted Cox PH Models For Crossover 

Censoring at the time of Crossover -0.161 (-0.803, 0.4812) 

Weighted Cox PH with IPTW (Weight 1: Non-Stabilizing 
weight) -0.463 (-0.9358, 0.0099) 

Weighted Cox PH with IPCW (Weight 2: Non-Stabilizing 
weight) 

-0.6971 (-1.237, -0.1572) 

Weighted Cox PH Model 1 (Weight 1: Equal Probability to 
crossover) 

-0.3908 (-0.7471, -0.0345) 

Weighted Cox PH Model 2 (Weight 2: Probability to 
crossover depend on baseline treatment) -0.3895 (-0.7456, -0.0334) 

Weighted Cox PH Model 3 (Weight 3: Probability to 
crossover depend on treatment history) 

-0.4111 (-0.755, -0.0673) 

Weighted Cox PH Model 4 (Weight 4: Probability to 
crossover depend on previous treatment ) -0.4458 (-0.8152, -0.0764) 
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Figure 3: A plot that summarises estimates of hazard ratio of treatment effect with 95% 
confidence limits for all fitted models of OS end point 

 
 
 

5.2.2. Models Fitted for PFS End Point 
 
In this analysis, all results for PFS end point are summarized in Table 7 and Figure 4 

summarises results in terms of plot. 

Ordinary Cox PH model: This analysis showed that estimate of treatment effect was 

supporting combination therapy. Estimates of ordinary Cox PH with baseline treatment only 

was smaller than for ordinary Cox PH with baseline treatment and baseline covariates. In 

both models there was no statistical evidence of treatment effect. 

Propensity score methods: These models showed results that were in same direction as the 

one obtained in ordinary Cox PH models. Estimate for Cox PH adjusting for stratified 

propensity scores was similar to the ordinary Cox PH model. Whereas weighted Cox PH with 

IPTW based on propensity score was smaller than all previous models. Its confidence interval 

was a little bit wider as compared to its counterpart. In both models there was no statistical 

evidence of treatment effect. 

Un-weighted logistic regression models: In this analysis small difference was observed for 

parameter estimates as compared previous analysis. Even confidence intervals were similar 

except for un-weighted logistic regression with treatment history whereby estimated 

confidence interval was narrower. There was no statistical evidence of treatment effect. 
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Censoring Methods: Parameter estimates for this was close to the one obtained in ordinary 

Cox PH model with baseline treatment and baseline covariates (-0.0583). However it 

confidence interval was very wide compared to previous analysis. This may be explained as a 

result of losing a lot of information due to censoring those who crossed treatment. 

Weighted Cox PH with IPTW and IPCW: Results for PFS showed that estimates were larger 

and for IPCW model it was even positive (0.3774) which was supporting Mono therapy. 

Confidence interval for IPTW was more or less narrower than IPCW. However in both 

models there was no statistical evidence of significant treatment effect.  

Weighed Cox PH models based on probability to crossover (Prob 1 to 4): Results for prob 1 

to 4, for PFS end point there was more or less similar trend except for parameter estimate 

under assumption 3 which had slightly larger estimate (-0.2358) as compared to other 

estimates in other assumptions. Estimate under assumption 4 was smaller as compared to all 

other assumptions.  

Other adjusted covariates for PFS end point were also evaluated (see details for all fitted 

models and parameter estimates in Appendix). Ordinary Cox PH model adjusting for baseline 

covariates, disease stage and Beta 2 Microglobulines covariates were statistically significant for 

PFS. For the case of Weighted Cox PH with IPTW based on propensity score, disease stage 

and Beta 2 Microglobulines were associated with PFS end point.  

Un-weighted logistic models (for treatment at baseline and treatment history) fitted on panel 

data, in these models disease stage, line of treatment and Beta 2 Microglobulines were 

associated with PFS end points. Moreover models that were taking into account treatment 

crossover, for censoring methods only disease stage was associated with PFS. For weighted 

Cox PH model with IPTW and IPCW Albumine level, disease stage and Beta 2 

Microglobulines were associated with PFS. 

Finally weighted models based on weight that was estimated as inverse probability of crossing 

treatment; time, Albumine, disease stage and Beta 2 Microglobulines were associated with PFS 

end point. In all fitted models for PFS there was no statistical evidence of gender effect for 

this end point. 
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Table 7: Parameter estimates for treatment (Combination Therapy) with 95% confidence limits  for 
PFS end point 

Models  Estimate 95% Confidence Limits 

Ordinary, Propensity Score and Un-weighted Models 
Ordinary Cox PH (Treatment at baseline only) -0.1131 (-0.3439, 0.1169) 
Ordinary Cox PH (Baseline treatment and baseline 
covariates) -0.0649 (-0.3065, 0.1765) 

Cox PH adjusting for stratified propensity score -0.0751 (-0.3175, 0.1672) 
Weighted Cox PH(IPTW on propensity scores) -0.1202 (-0.4007, 0.1603) 
Un-Weighted Logistic(Treatment at baseline) -0.1308 (-0.4007, 0.1392) 
Un-Weighted Logistic(Treatment history) -0.1065 (-0.3701, 0.1572) 
Censoring and Weighted Cox PH Models For Crossover 
Censoring method at the time of Crossover -0.0583 (-0.4732, 0.357) 
Weighted Cox PH with IPTW (Weight 1: Non-Stabilizing 
weight) 

-0.1468 (-0.4822, 0.1886) 

Weighted Cox PH with IPCW (Weight 2: Non-Stabilizing 
weight) 

0.3774 (-0.1335, 0.8882) 

Weighted Cox PH Model 1 (Weight 1: Equal Probability to 
crossover) 

-0.3209 (-0.6136, -0.0281) 

Weighted Cox PH Model 2 (Weight 2: Probability to 
crossover depend on baseline treatment) 

-0.2955 (-0.588, -0.003) 

Weighted Cox PH Model 3 (Weight 3: Probability to 
crossover depend on treatment history) 

-0.2358 (-0.5277, 0.0561) 

Weighted Cox PH Model 4 (Weight 4: Probability to 
crossover depend on previous treatment ) -0.5398 (-0.8401, -0.2394) 
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Figure 4: A plot that summarises estimates of hazard ratio of treatment effect with 95% 
confidence limits for all fitted models of PFS end point 
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6. Diagnosis of Estimated Probabilities and Weights 

6.1. Assessment of the Estimated Propensity Scores by Treatment Groups 
 
The estimated propensity scores for the analysis which uses propensity scores for balancing 

baseline difference treatment groups were assessed using box plot as explained by Rosenbaum 

and Rubin (1984). In Figure 5, it was observed that the distributions of estimated scores in 

both treatment arms were overlapping. This was an indication of balance of the baseline 

covariates by treatment that was assigned to patients. This makes the two treatment groups to 

be comparable based on the observed baseline covariates. However there were few patients 

in Combination therapy that were having large values of estimated propensity score and 

some with small values. The estimated median propensity score for patients in combination 

therapy were relatively higher as compared to Mono therapy median propensity scores.   

 
Figure 5: A boxplot for estimated propensity scores by treatment groups 
 
 

6.2. Assessment of Estimated Weights for IPTW and IPCW 
 
Weights that were estimated by IPTW and IPCW were also assessed for presence of outliers 

and their distributional trend. Figure 6 summarises all these weights for all time intervals. In 

this plot log weights was used in order to reduce scale for the estimated weights. It was 

observed that there were some outlying weights for both weights. For IPCW it was also 

observed that as time increases weights were also increasing. This means that probability to 

stay in treatment that they were assigned at baseline was becoming smaller as time increases. 
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Weights that were estimated using IPTW cannot be interpreted directly because it had 

probability to be in experimental treatment and probability to remain uncensored. Moreover 

for weights that was estimated based on propensity scores were also assessed (Results not 

shown) and there were no outliers present in estimated weights. 

 
 

 
 
Figure 6: A plot for weights that were used in weighted Cox PH model with IPTW and IPCW 
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earlier majority were crossing treatments at time interval 2. Reasons for crossing treatment 

might be treatment failure, toxicity, metastasis etc. Moreover similar trend were reflected for 

weights that were estimated based on these probabilities in both end points (see Figure 8 and 

9). These plots showed big drop of weights from time interval 1 to 2 but from there weights 

remained constant and few outlying weights were also observed in both end points.  

 

Figure 7: Estimated Probabilities to cross treatment for few selected patients, patient 1 and 2 
correspond to patient ID 192 and 340 for OS and patient 3 and 4 corresponds to patient ID 
222 and 451 for PFS 
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Figure 8: A plot for weights that were used in weighted Cox PH model with 4 assumptions 
for OS end point 
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Figure 9: A plot for weights that were used in weighted Cox PH model with 4 assumptions 
for PFS end point 
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7. Discussion and Conclusion 
 
Ordinary Cox PH model fitted here assumes that patients were randomized in treatment 

arms. In this analysis treatment effect that is estimated is biased because it ignores the nature 

study (observational study). However even if there was randomization the estimates would 

have been biased due to treatment crossover.  

Propensity score methods have been widely applied as a way of balancing baseline difference 

of treated group and control group. Models fitted by using this method control selection bias 

in observational studies based on observed baseline covariates. The drawback of these 

methods is that if it happens that there are unmeasured confounders for a given end point; 

estimates will still be biased unless unobserved confounders are highly correlated with one of 

the observed (Stukel, et al., 2007). Further for IPTW based on propensity score method 

sometimes may produce very large weights due to extreme propensity scores as a results 

weights become unstable. However the advantage this method over matching on propensity 

scores or stratification on propensity scores is that it includes all subjects in the analysis 

(Lanehart, et al., 2012).  

For Censoring at the time of crossover methods, in OS end points estimate was different from 

others. This can be explained as a result of throwing a lot of information by censoring 

patients that crossed treatment before experiencing events. In exploratory data analysis for 

crossover (Table 4) showed in both treatment groups there few patients that remained in 

their initially assigned treatment groups. Therefore by censoring all those patients that crossed 

treatments, the analysis will be based on only few patients. For those few patients there will 

be very few events especially for OS. As a result power of the test becomes very low to detect 

treatment effect because in survival analysis number of event is important for power of the 

test. Note that for PFS estimate was close ordinary Cox PH model and Cox PH adjusting for 

propensity scores, because here some patients with larger time to crossover than time to 

progression as a result for this end point they were considered that they did not cross 

treatments. 

Weighted Cox with IPTW and IPCW models are widely used for observational data with 

treatment crossover. The modified version of that model was fitted using non-stabilised 

weights. The only weakness of this model is that using non-stabilized weight has wider 

confidence interval as compared to stabilized weights, but the parameter estimates are 

consistent. Challenge for this method is that it uses patients that stayed in modelling it’s not 

clear for a situation where many patients crossed treatment and only few stayed whether the 

estimate will still be okay as compared to a situation whereby no many patients crossed. 
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Furthermore models that were fitted based on weights that were estimated based on the 

probability to crossover, these models showed similar trend of treatment effect. However as 

the weights were modified the treatment effect were also improving.  

In all weighted Cox PH models, it has been observed that weights had larger impact for OS as 

compared to PFS. Investigators explained that, this was expected because patients who were 

crossing treatments majority had experienced disease progression already. 

To summarise the discussion, it has been observed that weighted analysis restores the diluted 

treatment effect due to crossover and selection bias. Therefore methods that were adjusting 

for a problem of crossover in the analysis were preferred for this study. Furthermore 

Interpreting Kaplan-Meier plot in exploratory data analysis in this project is wrong because 

those patients who crossed treatment were contributing information of both treatment 

groups. As a result treatments groups cannot be compared because it’s difficult to disentangle 

treatment effect from standard effect. 
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8. Limitations and Recommendations 
 
The applications of MSM with inverse probability weighting and NSM using g-estimation with 

stabilized weights were limited for this project due to absence of time-dependent covariates. 

These covariates are the one used by physician to change treatment for patients. Therefore 

further research can be done if this information will be available and compare results with 

results obtained in this project.  

Moreover the literature showed that valid confidence interval for estimates that uses MSM 

and NSM is the one obtained by bootstrapping. Therefore it is recommended in future to 

estimate confidence intervals for parameter estimate using bootstrap. 
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Appendix 
 
Table 8: Estimates (se) for Ordinary Cox PH model for baseline treatment and baseline covariates 

Covariate 

OS  PFS 

Estimate (se) P-Value 

95% Hazard 
Ratio 

Confidence 
Limits 

  Estimate (se) P-Value 

95% Hazard 
Ratio 

Confidence 
Limits 

Baseline 
Treatment(Combination) 0.28644(0.17521) 0.1021 (0.945, 1.877)  -0.06489(0.12302) 0.5978 (0.736, 1.193) 

Albumine        
>3.5 mg/dl 0.0068(0.27356) 0.9802 (0.589 ,1.721)  -0.0517(0.19445) 0.7903 (0.649, 1.39) 

<=3.5 mg/dl 0.52642(0.27064) 0.0518 (0.996, 2.877)  0.26035(0.19755) 0.1875 (0.881, 1.911) 
Gender (Female) 0.00168(0.15093) 0.9911 (0.745, 1.346)  -0.04077(0.1135) 0.7194 (0.769, 1.199)  
Line of Treatment -0.01378(0.04464) 0.7575 (0.11, 0.441)  -0.06358(0.03462) 0.0663 (0.234, 0.643) 

Disease Stage        
Stage 1 -1.51198(0.35338) <.0001 (0.28, 0.855)  -0.94594(0.25763) 0.0002 (0.358, 0.896) 
Stage 2 -0.71431(0.28432) 0.012 (0.305, 0.861)  -0.56835(0.23423) 0.0152 (0.393, 0.935) 
Stage 3 -0.66801(0.26476) 0.0116 (0.662, 3.531)  -0.50029(0.22078) 0.0235 (0.676, 2.534) 

Creatinine Clearance        
<20 ml/min 0.42424(0.42721) 0.3207 (0.529, 2.935)  0.26925(0.33697) 0.4243 (0.687, 2.709) 

20 - 40 ml/min 0.22(0.43713) 0.6148 (0.329, 1.575)  0.31072(0.35001) 0.3747 (0.476, 1.59) 
40 - <60 ml/min -0.32868(0.39932) 0.4105 (0.27, 1.201)  -0.13921(0.30759) 0.6509 (0.461, 1.448) 
60 - <80 ml/min -0.56252(0.38053) 0.1393 (0.395, 0.91)  -0.20243(0.29202) 0.4882 (0.451, 0.803) 

Beta 2 Microglobulines        
<3.5 mg/dl -0.51097(0.21263) 0.0163 (0.408, 1.367)  -0.50831(0.14717) 0.0006 (0.475, 1.113) 

3.5 - 5 mg/dl -0.29152(0.30834) 0.3444 (0.739, 1.552)  -0.31845(0.21724) 0.1427 (0.662, 1.211) 
>5 mg/dl 0.06828(0.18948) 0.7186 (0.904, 1.076)   -0.11016(0.15393) 0.4742 (0.877, 1.004) 
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Table 9: Estimates (se) for Cox PH model adjusting for  stratified propensity score  

Covariate 

OS   PFS 

Estimate (se) P-Value 
95% Hazard Ratio 
Confidence Limits   Estimate (se) P-Value 

95% Hazard Ratio 
Confidence Limits 

Baseline 
Treatment 

(Combination) 
0.31069(0.17357) 0.0734 (0.971, 1.917)  -0.07509(0.1236) 0.5435 (0.728, 1.182) 

PS Stratum -0.01396(0.05351) 0.7943 (0.888, 1.095)   -0.03965(0.04015) 0.3234 (0.888, 1.04) 
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Table 10: Estimates (Empirical se) for weighted Cox PH with IPTW on propensity scores for treatment at baseline 

Covariate 
OS  PFS 

Estimate (se) P-Value  95% Confidence 
Limits 

  Estimate (se) P-Value  95% Confidence 
Limits 

Intercept -1.7992(0.4872) 0.0002 (-2.754, -0.8443)  -0.5595(0.4172) 0.1799 (-1.3772, 0.2582) 

Baseline 
Treatment(Combination) 

0.1239(0.19) 0.5143 (-0.2485, 0.4964)  -0.1202(0.1431) 0.4011 (-0.4007, 0.1603) 

Time Interval 2 0.6733(0.327) 0.0395 (0.0323, 1.3143)  1.2362(0.1848) <.0001 (0.8741, 1.5983) 
Time Interval 3 0.8913(0.2652) 0.0008 (0.3715, 1.4111)  1.3851(0.2183) <.0001 (0.9572, 1.813) 
Time Interval 4 1.0117(0.3208) 0.0016 (0.383, 1.6404)  0.4371(0.3138) 0.1636 (-0.1779, 1.052) 
Time Interval 5 0.9029(0.4186) 0.031 (0.0826, 1.7233)  0.9817(0.3775) 0.0093 (0.2417, 1.7216) 
Time Interval 6 0.6379(0.3677) 0.0828 (-0.0827, 1.3585)  0.2087(0.4521) 0.6443 (-0.6774, 1.0948) 

Line of Treatment  -0.0045(0.0536) 0.9327 (-0.1097, 0.1006)  -0.0518(0.0446) 0.2452 (-0.1391, 0.0355) 
Albumine 

       
>3.5 mg/dl 0.2705(0.3215) 0.4001 (-0.3596, 0.9007)  0.137(0.2216) 0.5362 (-0.2972, 0.5713) 

<=3.5 mg/dl 0.8501(0.3294) 0.0098 (0.2046, 1.4956)  0.3548(0.2362) 0.1331 (-0.1082, 0.8178) 
Gender (Female) -0.1252(0.1802) 0.4873 (-0.4784, 0.2281)  -0.1086(0.1497) 0.468 (-0.402, 0.1848) 

Disease Stage 
       

Stage 1 -1.8209(0.411) <.0001 (-2.6265, -1.0154)  -1.133(0.3447) 0.001 (-1.8085, -0.4574) 
Stage 2 -0.5509(0.3145) 0.0798 (-1.1674, 0.0655)  -0.7067(0.3094) 0.0224 (-1.313, -0.1003) 
Stage 3 -0.6584(0.3041) 0.0304 (-1.2545, -0.0623)  -0.532(0.2932) 0.0696 (-1.1066, 0.0426) 

Creatinine Clearance 
       

<20 ml/min 0.1053(0.6601) 0.8733 (-1.1886, 1.3992)  -0.0166(0.3924) 0.9662 (-0.7858, 0.7525) 
20 - 40 ml/min 0.1535(0.5151) 0.7657 (-0.8562, 1.1632)  -0.0172(0.3667) 0.9625 (-0.7359, 0.7014) 

40 - <60 ml/min -0.6728(0.4999) 0.1783 (-1.6527, 0.307)  -0.3137(0.3163) 0.3212 (-0.9337, 0.3062) 
60 - <80 ml/min -1.0294(0.4533) 0.0232 (-1.9178, -0.1409)  -0.5447(0.2818) 0.0532 (-1.0969, 0.0076) 

Beta 2 Microglobulines 
       

<3.5 mg/dl -0.2057(0.2978) 0.4897 (-0.7895, 0.378)  -0.4984(0.2307) 0.0307 (-0.9505, -0.0463) 
3.5 - 5 mg/dl -0.2237(0.3202) 0.4849 (-0.8513, 0.404)  -0.4215(0.2378) 0.0763 (-0.8877, 0.0446) 

>5 mg/dl -0.0219(0.2389) 0.9268 (-0.4902, 0.4463)   -0.1874(0.1996) 0.348 (-0.5786, 0.2039) 
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Table 11: Estimates (Empirical se) for un-weighted logistic regression model with baseline treatment for panel data 

Covariate 
OS  PFS 

Estimate (se) P-Value  95% Confidence 
Limits   Estimate (se) P-Value  95% Confidence 

Limits 

Intercept -1.8282(0.4682) <.0001 (-2.7458,-0.9106)  -0.5166(0.397) 0.1932 (-1.2947, 0.2616) 
Baseline 

Treatment(Combination) 
0.2486(0.1858) 0.1809 (-0.1156, 0.6129)  -0.1308(0.1377) 0.3425 (-0.4007, 0.1392) 

Time Interval 2 0.705(0.2051) 0.0006 (0.3029, 1.1071)  1.1741(0.1492) <.0001 (0.8816, 1.4665) 
Time Interval 3 0.8897(0.2126) <.0001 (0.473, 1.3064)  1.2618(0.1759) <.0001 (0.917, 1.6065) 
Time Interval 4 0.8468(0.2424) 0.0005 (0.3716, 1.3219)  0.652(0.2436) 0.0074 (0.1747, 1.1294) 
Time Interval 5 0.6613(0.3034) 0.0293 (0.0667, 1.2559)  0.9756(0.2978) 0.0011 (0.3921, 1.5592) 
Time Interval 6 0.649(0.332) 0.0506 (-0.0018, 1.2998)  0.1905(0.4188) 0.6492 (-0.6303, 1.0113) 

Albumine        
>3.5 mg/dl 0.0185(0.2581) 0.943 (-0.4874, 0.5244)  0.0007(0.1916) 0.997 (-0.3749, 0.3763) 

<=3.5 mg/dl 0.5613(0.262) 0.0322 (0.0478, 1.0749)  0.3349(0.2063) 0.1046 (-0.0696, 0.7393) 
Gender (Female) -0.031(0.1571) 0.8436 (-0.3389, 0.2769)  -0.0843(0.124) 0.4963 (-0.3274, 0.1587) 
Line of treatments -0.0193(0.0463) 0.6764 (-0.11, 0.0714)  -0.0843(0.0387) 0.0294 (-0.1601, -0.0085) 

Disease Stage        
Stage 1 -1.6204(0.3698) <.0001 (-2.3451, -0.8957)  -1.0834(0.322) 0.0008 (-1.7145, -0.4523) 
Stage 2 -0.7666(0.2899) 0.0082 (-1.3348, -0.1985)  -0.6881(0.2933) 0.019 (-1.2629,-0.1133) 
Stage 3 -0.6811(0.2703) 0.0117 (-1.2108, -0.1514)    -0.5699(0.2772) 0.0398 (-1.1133, -0.0265) 

Creatinine Clearance        
<20 ml/min 0.4116(0.4544) 0.3651 (-0.4791, 1.3023)  0.1849(0.3555) 0.603 (-0.5119, 0.8817) 

20 - 40 ml/min 0.2265(0.4479) 0.613 (-0.6513, 1.1043)  0.2403(0.3467) 0.4882 (-0.4392, 0.9199) 
40 - <60 ml/min -0.392(0.3936) 0.3193 (-1.1634, 0.3794)  -0.3053(0.3066) 0.3193 (-0.9063, 0.2956) 
60 - <80 ml/min -0.6225(0.3642) 0.0874 (-1.3363, 0.0914)  -0.3622(0.2837) 0.2018 (-0.9182, 0.1939) 

Beta 2 Microglobulines        
<3.5 mg/dl -0.5035(0.223) 0.024 (-0.9406, -0.0663)  -0.5334(0.1645) 0.0012 (-0.8559, -0.2109) 

3.5 - 5 mg/dl -0.3119(0.3091) 0.3131 (-0.9178, 0.294)  -0.3673(0.2247) 0.1021 (-0.8077, 0.0731) 
>5 mg/dl 0.0859(0.209) 0.681 (-0.3237, 0.4956)   -0.0725(0.1758) 0.6801 (-0.4171, 0.2721) 
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Table 12: Estimates (Empirical se) for un-weighted logistic regression with treatment history for panel data 

Covariate 
OS  PFS 

Estimate (se) P-Value  
95% Confidence 

Limits   Estimate (se) P-Value  
95% Confidence 

Limits 

Intercept -1.4361(0.4672) 0.0021 (-2.3519, -0.5204)  -0.5074(0.3904) 0.1937 (-1.2727, 0.2578) 
Treatment History 

(Combination) -0.3843(0.1614) 0.0173 (-0.7007, -0.0678)  -0.1065(0.1345) 0.4286 (-0.3701, 0.1572) 

Time Interval 2 0.6095(0.2055) 0.003 (0.2066, 1.0123)  1.1555(0.155) <.0001 (0.8517, 1.4592) 
Time Interval 3 0.7929(0.216) 0.0002 (0.3694, 1.2163)  1.2383(0.1808) <.0001 (0.8839, 1.5927) 
Time Interval 4 0.7444(0.2474) 0.0026 (0.2595, 1.2293 )  0.6203(0.2452) 0.0114 (0.1398, 1.1008) 
Time Interval 5 0.5554(0.3089) 0.0722 (-0.0501, 1.1608)  0.9536(0.2991) 0.0014 (0.3675, 1.5398) 
Time Interval 6 0.5208(0.33) 0.1145 (-0.1259, 1.1675)  0.1839(0.4222) 0.6631 (-0.6435, 1.0113) 

Albumine 
       

>3.5 mg/dl 0.0359(0.2564) 0.8886 (-0.4666, 0.5384)  -0.0874(0.039) 0.025 (-0.1639, -0.011) 
<=3.5 mg/dl 0.5547(0.2598) 0.0327 (0.0455, 1.0639)  0.0151(0.1926) 0.9377 (-0.3624, 0.3925) 

Gender (Female) -0.0252(0.1574) 0.8729 (-0.3338, 0.2834)  0.3304(0.2068) 0.1102 (-0.075, 0.7357) 
Line of Treatments -0.0207(0.0474) 0.662 (-0.1136, 0.0722 )  -0.0748(0.1237) 0.5456 (-0.3172, 0.1677) 

Disease Stage 
       

Stage 1 -1.616(0.3748) <.0001 (-2.3506, -0.8815)   -1.1088(0.3169) 0.0005 (-1.73, -0.4877) 
Stage 2 -0.7698(0.2883) 0.0076 (-1.3348, -0.2047)  -0.728(0.2887) 0.0117 (-1.2939, -0.1621) 
Stage 3 -0.6761(0.2673) 0.0114 (-1.2001, -0.1521)  -0.6117(0.2702) 0.0236 (-1.1412, -0.0822) 

Creatinine Clearance 
       

<20 ml/min 0.4702(0.4608) 0.3075 (-0.4329, 1.3733)  0.1795(0.3533) 0.6113 (-0.5128, 0.8719) 
20 - 40 ml/min 0.2554(0.4506) 0.5708 (-0.6277, 1.1386)  0.2145(0.3463) 0.5357 (-0.4643, 0.8933) 

40 - <60 ml/min -0.3803(0.3916) 0.3315 (-1.1478, 0.3873)  -0.3056(0.3076) 0.3204 (-0.9085, 0.2973) 
60 - <80 ml/min -0.6377(0.3629) 0.0789 (-1.349, 0.0737)  -0.373(0.2842) 0.1895 (-0.9301, 0.1842) 

Beta 2 Microglobulines 
       

<3.5 mg/dl -0.491(0.2175) 0.024 (-0.9172, -0.0648)  -0.5599(0.1625) 0.0006 (-0.8783, -0.2414) 
3.5 - 5 mg/dl -0.2797(0.305) 0.3591 (-0.8774, 0.318)  -0.3687(0.2245) 0.1005 (-0.8087, 0.0712) 

>5 mg/dl 0.0795(0.2117) 0.7073 (-0.3355, 0.4945)   -0.0764(0.1753) 0.6629 (-0.4201, 0.2672) 
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Table 13: Estimates (Empirical se) for weighted Cox PH model for weights estimated under assumption 1 

Covariate 
OS  PFS 

Estimate (se) P-Value  95% Confidence 
Limits 

  Estimate (se) P-Value  95% Confidence 
Limits 

Intercept -1.1111(0.5516) 0.044 (-2.1923, -0.0299)  -0.4646(0.4564) 0.3087 (-1.3592, 0.4299) 
Treatment History 

(Combination) -0.3908(0.1818) 0.0316 (-0.7471, -0.0345)  -0.3209(0.1494) 0.0317 (-0.6136, -0.0281) 

Time Interval 2 0.672(0.2129) 0.0016 (0.2547, 1.0892)  1.1351(0.1588) <.0001 (0.8238, 1.4463) 
Time Interval 3 0.8535(0.2226) 0.0001 (0.4172, 1.2898)  1.2128(0.1854) <.0001 (0.8495, 1.5762) 
Time Interval 4 0.8025(0.2551) 0.0017 (0.3024, 1.3025)  0.5611(0.2506) 0.0251 (0.07, 1.0522) 
Time Interval 5 0.5976(0.3158) 0.0584 (-0.0213, 1.2165)  0.8972(0.3077) 0.0036 (0.2941, 1.5003) 
Time Interval 6 0.5701(0.3385) 0.0922 (-0.0935, 1.2336)  0.1371(0.4283) 0.7488 (-0.7023, 0.9765) 

Albumine        
>3.5 mg/dl 0.1176(0.2806) 0.6751 (-0.4323, 0.6675)  0.1487(0.2036) 0.4651 (-0.2504, 0.5479) 

<=3.5 mg/dl 0.7619(0.2845) 0.0074 (0.2044, 1.3195)  0.5643(0.218) 0.0096 (0.137, 0.9915) 
Gender (Female) -0.159(0.1808) 0.3793 (-0.5134, 0.1954)  -0.1219(0.1375) 0.3751 (-0.3914, 0.1475) 
Line of Treatment -0.0552(0.0513) 0.2814 (-0.1557, 0.0452)  -0.0672(0.0422) 0.1117 (-0.1499, 0.0156) 

Disease Stage        
Stage 1 -1.6666(0.4117) <.0001 (-2.4736, -0.8596)  -1.0541(0.3162) 0.0009 (-1.6739, -0.4343) 
Stage 2 -1.0165(0.3419) 0.0029 (-1.6866, -0.3465)  -0.7604(0.2856) 0.0078 (-1.3202, -0.2006) 
Stage 3 -0.8588(0.3109) 0.0057 (-1.4681, -0.2495)  -0.7146(0.2654) 0.0071 (-1.2348, -0.1944) 

Creatinine Clearance        
<20 ml/min 0.7159(0.4964) 0.1492 (-0.257, 1.6889)  0.3228(0.4058) 0.4264 (-0.4726, 1.1182) 

20 - 40 ml/min 0.3313(0.4968) 0.5049 (-0.6424, 1.3049)  0.224(0.3942) 0.57 (-0.5487, 0.9966) 
40 - <60 ml/min -0.2988(0.4535) 0.5099 (-1.1877, 0.59)  -0.2333(0.3578) 0.5143 (-0.9346, 0.4679) 
60 - <80 ml/min -0.7048(0.4219) 0.0948 (-1.5317, 0.1221)  -0.4502(0.3364) 0.1808 (-1.1095, 0.2091) 

Beta 2 Microglobulines        
<3.5 mg/dl -0.5954(0.2505) 0.0175 (-1.0865, -0.1044)  -0.5422(0.1807) 0.0027 (-0.8964, -0.1879) 

3.5 - 5 mg/dl -0.5688(0.3598) 0.1139 (-1.2739, 0.1364)  -0.5205(0.2446) 0.0334 (-1, -0.041) 
>5 mg/dl 0.0301(0.2333) 0.8974 (-0.4271, 0.4873)   -0.0602(0.1856) 0.7457 (-0.424, 0.3036) 
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Table 14: Estimates (Empirical se) for weighted Cox PH model for weights estimated under assumption 2 

Covariate 
OS  PFS 

Estimate (se) P-Value  95% Confidence 
Limits 

  Estimate (se) P-Value  95% Confidence 
Limits 

Intercept -1.1088(0.5516) 0.0444 (-2.19, -0.0277) 
 

-0.4814(0.4559) 0.291 (-1.3748,  0.4121) 
Treatment History 

(Combination) -0.3895(0.1817) 0.0321 (-0.7456, -0.0334) 

 

-0.2955(0.1492) 0.0477 (-0.588, -0.003) 

Time Interval 2 0.6726(0.2128) 0.0016 (0.2555, 1.0897) 
 

1.1445(0.1586) <.0001 (0.8337, 1.4553) 
Time Interval 3 0.8549(0.2226) 0.0001 (0.4186, 1.2912) 

 
1.2233(0.1852) <.0001 (0.8603, 1.5863) 

Time Interval 4 0.8041(0.2551) 0.0016 (0.3041, 1.304) 
 

0.5684(0.2502) 0.0231 (0.078, 1.0587) 
Time Interval 5 0.599(0.3157) 0.0578 (-0.0197, 1.2178) 

 
0.9042(0.3074) 0.0033 (0.3016, 1.5067) 

Time Interval 6 0.5711(0.3385) 0.0915 (-0.0923, 1.2346) 
 

0.1455(0.4277) 0.7337 (-0.6927, 0.9837) 
Albumine    

 
   

>3.5 mg/dl 0.1157(0.2809) 0.6805 (-0.4349, 0.6662) 
 

0.1445(0.204) 0.4789 (-0.2554, 0.5443) 
<=3.5 mg/dl 0.7609(0.2849) 0.0076 (0.2026, 1.3192) 

 
0.5562(0.2184) 0.0109 (0.1281, 0.9844) 

Gender (Female) -0.1602(0.1809) 0.3758 (-0.5147, 0.1943) 
 

-0.1227(0.1374) 0.3717 (-0.392, 0.1466) 
Line of Treatment -0.0554(0.0513) 0.2801 (-0.1558, 0.0451) 

 
-0.0679(0.0421) 0.1065 (-0.1504, 0.0146) 

Disease Stage    
 

   
Stage 1 -1.6675(0.4117) <.0001 (-2.4743, -0.8607) 

 
-1.0557(0.3172) 0.0009 (-1.6773, -0.434) 

Stage 2 -1.0157(0.3418) 0.003 (-1.6856, -0.3458) 
 

-0.7604(0.2866) 0.008 (-1.3221, -0.1987) 
Stage 3 -0.8581(0.3109) 0.0058 (-1.4674, -0.2488) 

 
-0.7124(0.2665) 0.0075 (-1.2347, -0.19) 

Creatinine Clearance    
 

   
<20 ml/min 0.7144(0.4969) 0.1505 (-0.2594, 1.6882) 

 
0.3252(0.405) 0.422 (-0.4686, 1.119) 

20 - 40 ml/min 0.3299(0.4971) 0.507 (-0.6445, 1.3043) 
 

0.228(0.3937) 0.5624 (-0.5435, 0.9996) 
40 - <60 ml/min -0.3002(0.454) 0.5085 (-1.1901, 0.5897) 

 
-0.23(0.357) 0.5194 (-0.9298, 0.4697) 

60 - <80 ml/min -0.7065(0.4223) 0.0943 (-1.5343, 0.1212) 
 

-0.4427(0.3359) 0.1875 (-1.1009, 0.2156) 
Beta 2 Microglobulines    

 
   

<3.5 mg/dl -0.5935(0.2507) 0.0179 (-1.0849, -0.1022) 
 

-0.5339(0.1813) 0.0032 (-0.8892, -0.1787) 
3.5 - 5 mg/dl -0.5689(0.3594) 0.1135 (-1.2734, 0.1356) 

 
-0.5207(0.2443) 0.0331 (-0.9996, -0.0418) 

>5 mg/dl 0.0312(0.2333) 0.8937 (-0.4261, 0.4884)   -0.0593(0.1854) 0.7493 (-0.4227, 0.3041) 
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Table 15: Estimates (Empirical se) for weighted Cox PH model for weights estimated under assumption 3 

Covariate 
OS   PFS 

Estimate (se) P-Value  95% Confidence 
Limits 

  Estimate (se) P-Value  95% Confidence 
Limits 

Intercept -1.2373(0.7558) 0.1016 (-2.7186, 0.2441)  -0.4466(0.5814) 0.4424 (-1.5861, 0.6929) 
Treatment History 

(Combination) -0.4111(0.1754) 0.0191 (-0.755, -0.0673)  -0.2358(0.1489) 0.1133 (-0.5277, 0.0561) 

Time Interval 2 0.6115(0.2256) 0.0067 (0.1693, 1.0538)  1.3926(0.1768) <.0001 (1.046, 1.7391) 
Time Interval 3 0.8751(0.2332) 0.0002 (0.418, 1.3322)  1.4047(0.1993) <.0001 (1.0141, 1.7954) 
Time Interval 4 0.8342(0.2649) 0.0016 (0.3151, 1.3533)  0.6582(0.262) 0.012 (0.1446, 1.1718) 
Time Interval 5 0.6573(0.321) 0.0406 (0.0281, 1.2865)  1.1136(0.3188) 0.0005 (0.4887, 1.7385) 
Time Interval 6 0.5473(0.3412) 0.1087 (-0.1215, 1.2161)  0.3204(0.4419) 0.4684 (-0.5457, 1.1865) 

Albumine 
       

>3.5 mg/dl 0.2382(0.3186) 0.4546 (-0.3862, 0.8626)  0.4335(0.2458) 0.0778 (-0.0483, 0.9154) 
<=3.5 mg/dl 0.8517(0.3247) 0.0087 (0.2154, 1.488)  0.786(0.2598) 0.0025 (0.2767, 1.2953) 

Gender (Female) -0.134(0.2235) 0.5487 (-0.5721, 0.304)  -0.2022(0.1734) 0.2435 (-0.542, 0.1376) 
Line of Treatment -0.0225(0.058) 0.698 (-0.1363,  0.0912)  -0.0558(0.0434) 0.1984 (-0.1408, 0.0292) 

Disease Stage 
       

Stage 1 -1.3209(0.4488) 0.0032 (-2.2006, -0.4413)  -1.0897(0.3751) 0.0037 (-1.8249, -0.3545) 
Stage 2 -0.988(0.4152) 0.0173 (-1.8018, -0.1742)  -0.7261(0.3557) 0.0412 (-1.4232, -0.0291) 
Stage 3 -0.8424(0.3605) 0.0195 (-1.5491, -0.1358)  -0.9051(0.3291) 0.0059 (-1.55, -0.2602) 

Creatinine Clearance 
       

<20 ml/min 0.4904(0.6238) 0.4318 (-0.7322, 1.713)  0.042(0.4968) 0.9327 (-0.9318, 1.0157) 
20 - 40 ml/min 0.2828(0.6176) 0.6471 (-0.9278, 1.4933)  -0.1171(0.4984) 0.8143 (-1.094, 0.8598) 

40 - <60 ml/min -0.4207(0.575) 0.4644 (-1.5476, 0.7063)  -0.4316(0.4597) 0.3478 (-1.3325, 0.4694) 
60 - <80 ml/min -0.8685(0.547) 0.1123 (-1.9406, 0.2035)  -0.6029(0.4393) 0.1699 (-1.4639, 0.258) 

Beta 2 Microglobulines 
       

<3.5 mg/dl -0.8147(0.3191) 0.0107 (-1.4401, -0.1894)  -0.7635(0.2214) 0.0006 (-1.1975, -0.3295) 
3.5 - 5 mg/dl -0.4855(0.4704) 0.302 (-1.4076, 0.4365)  -0.7265(0.306) 0.0176 (-1.3262, -0.1267) 

>5 mg/dl 0.1291(0.2681) 0.6302 (-0.3963, 0.6545)   -0.0175(0.2259) 0.9384 (-0.4602, 0.4253) 



51 
 

Table 16: Estimates (Empirical se) for weighted Cox PH model for weights estimated under assumption 4 

Covariate 
OS 

 
PFS 

Estimate (se) P-Value  
95% Confidence 

Limits   Estimate (se) P-Value  
95% Confidence 

Limits 
Intercept -1.1264(0.5772) 0.051 (-2.2577, 0.005)  -0.327(0.4819) 0.4974 (-1.2715, 0.6176) 

Treatment History 
(Combination) -0.4458(0.1885) 0.018 (-0.8152, -0.0764)  -0.5398(0.1532) 0.0004 (-0.8401, -0.2394) 

Time Interval 2 0.6136(0.2183) 0.0049 (0.1858, 1.0414)  1.1018(0.1631) <.0001 (0.782, 1.4215) 
Time Interval 3 0.8266(0.2271) 0.0003 (0.3814, 1.2718)  1.165(0.1888) <.0001 (0.795, 1.5351) 
Time Interval 4 0.77(0.2591) 0.003 (0.2621, 1.2779)  0.4913(0.2554) 0.0544 (-0.0094, 0.992) 
Time Interval 5 0.5698(0.3187) 0.0738 (-0.0548, 1.1944)  0.8711(0.3138) 0.0055 (0.256, 1.4862) 
Time Interval 6 0.5165(0.3425) 0.1316 (-0.1549, 1.1878)  0.0688(0.4346) 0.8741 (-0.783, 0.9207) 

Albumine 
       

>3.5 mg/dl 0.2145(0.273) 0.432 (-0.3206, 0.7496)  0.2238(0.2095) 0.2854 (-0.1868, 0.6345) 
<=3.5 mg/dl 0.8423(0.2754) 0.0022 (0.3025, 1.382)  0.6707(0.2241) 0.0028 (0.2314, 1.11) 

Gender (Female) -0.1427(0.1853) 0.4413 (-0.5059, 0.2205)  -0.1155(0.1432) 0.4202 (-0.3962, 0.1653) 
Line of Treatment -0.0509(0.0521) 0.3289 (-0.153, 0.0512)  -0.0611(0.0438) 0.1625 (-0.1469, 0.0247) 

Disease Stage 
       

Stage 1 -1.6159(0.4212) 0.0001 (-2.4415, -0.7903)  -1.012(0.3259) 0.0019 (-1.6508, -0.3733) 
Stage 2 -1.0295(0.3512) 0.0034 (-1.7178, -0.3411)  -0.7432(0.2963) 0.0121 (-1.3239, -0.1625) 
Stage 3 -0.8979(0.3169) 0.0046 (-1.5189, -0.2769)  -0.7314(0.275) 0.0078 (-1.2704, -0.1924) 

Creatinine Clearance 
       

<20 ml/min 0.7015(0.5012) 0.1616 (-0.2809, 1.6838)  0.2688(0.428) 0.53 (-0.5701, 1.1077) 
20 - 40 ml/min 0.3361(0.5003) 0.5017 (-0.6445, 1.3167)  0.1461(0.416) 0.7254 (-0.6693, 0.9616) 

40 - <60 ml/min -0.2969(0.4547) 0.5137 (-1.1881, 0.5942)  -0.2691(0.3794) 0.4781 (-1.0127, 0.4744) 
60 - <80 ml/min -0.6998(0.4245) 0.0993 (-1.5319, 0.1322)  -0.5381(0.3563) 0.1309 (-1.2364, 0.1602) 

Beta 2 Microglobulines 
       

<3.5 mg/dl -0.6644(0.2571) 0.0098 (-1.1683, -0.1604)  -0.621(0.1845) 0.0008 (-0.9826, -0.2593) 
3.5 - 5 mg/dl -0.5904(0.3802) 0.1204 (-1.3356, 0.1547)  -0.5678(0.2556) 0.0263 (-1.0688, -0.0668) 

>5 mg/dl -0.0023(0.2373) 0.9923 (-0.4674,0.4628)   -0.091(0.1931) 0.6374 (-0.4695, 0.2875) 
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Table 17: Estimates (se) for Cox PH model for Censoring method at time of crossover 

Covariate 

OS  PFS 

Estimate (se) P-Value 

95% Hazard 
Ratio 

Confidence 
Limits 

  Estimate (se) P-Value 

95% Hazard 
Ratio 

Confidence 
Limits 

Baseline 
Treatment(Combination) 

-0.16101(0.32751) 0.623 (0.448, 1.618) 

 

-0.05832(0.21182) 0.7831 (0.623, 1.429) 

Albumine    
 

   
>3.5 mg/dl -0.5613(0.50002) 0.2616 (0.214, 1.52) 

 
-0.06361(0.33707) 0.8503 (0.485, 1.817) 

<=3.5 mg/dl 0.39619(0.46529) 0.3945 (0.597, 3.699) 
 

0.49923(0.33294) 0.1338 (0.858, 3.164) 
Gender (Female) -0.26619(0.29603) 0.3686 (0.429, 1.369) 

 
-0.25216(0.1958) 0.1978 (0.529, 1.141) 

Line of Treatment -0.01898(0.08177) 0.8165 (0.836, 1.152) 
 

-0.05094(0.05628) 0.3654 (0.851, 1.061) 
Disease Stage    

 
   

Stage 1 -1.25041(0.57686) 0.0302 (0.092, 0.887) 
 

-0.78587(0.38909) 0.0434 (0.213, 0.977) 
Stage 2 -1.14927(0.49386) 0.02 (0.12, 0.834) 

 
-0.73404(0.36118) 0.0421 (0.236, 0.974) 

Stage 3 -0.94749(0.44309) 0.0325 (0.163, 0.924) 
 

-0.79511(0.33943) 0.0192 (0.232, 0.878) 
Creatinine Clearance    

 
   

<20 ml/min 0.70756(0.6821) 0.2996 (0.533, 7.725) 
 

0.28851(0.51547) 0.5757 (0.486, 3.665) 
20 - 40 ml/min 0.63335(0.72749) 0.384 (0.453, 7.84) 

 
0.37305(0.53917) 0.489 (0.505, 4.178) 

40 - <60 ml/min -0.29643(0.67722) 0.6616 (0.197, 2.804) 
 

-0.24185(0.48522) 0.6182 (0.303, 2.032) 
60 - <80 ml/min -0.97008(0.65489) 0.1385 (0.105, 1.368) 

 
-0.6467(0.46558) 0.1648 (0.21, 1.304) 

Beta 2 Microglobulines    
 

   
<3.5 mg/dl -0.59505(0.51361) 0.2466 (0.202, 1.509) 

 
-0.30511(0.25896) 0.2387 (0.444, 1.224) 

3.5 - 5 mg/dl 0.19049(0.55101) 0.7296 (0.411, 3.562) 
 

-0.53027(0.43491) 0.2227 (0.251, 1.38) 
>5 mg/dl 0.11034(0.34334) 0.7479 (0.57, 2.189)   -0.02743(0.24337) 0.9103 (0.604, 1.568) 
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Table 18: Estimates (Empirical se) for weighted Cox PH model with non-stabilized weights(IPTW) 

Covariate 

OS   PFS 

Estimate (se) P-Value  95% Confidence 
Limits   Estimate (se) P-Value  95% Confidence 

Limits 

Intercept -1.0027(0.6178) 0.1046 (-2.2135, 0.2081)  0.1659(0.5634) 0.7685 (-0.9384, 1.2701) 

Treatment History 
(Combination) -0.463(0.2413) 0.055 (-0.9358, 0.0099)  -0.1468(0.1711) 0.391 (-0.4822, 0.1886) 

Time Interval 2 -0.1288(0.3192) 0.6866 (-0.7544, 0.4968)  0.6799(0.2065) 0.001 (0.2752, 1.0846) 
Time Interval 3 0.2939(0.3418) 0.3899 (-0.376, 0.9637)  0.6504(0.2303) 0.0047 (0.1989, 1.1018) 
Time Interval 4 -0.0254(0.406) 0.9501 (-0.8212, 0.7704)  0.4211(0.3142) 0.1801 (-0.1947, 1.0369) 
Time Interval 5 0.0967(0.5049) 0.8481 (-0.8928, 1.0863)  0.5194(0.3668) 0.1568 (-0.1995, 1.2382) 
Time Interval 6 -0.6477(0.4594) 0.1586 (-1.5481, 0.2527)  -0.2956(0.5392) 0.5836 (-1.3523, 0.7612) 

Albumine        
>3.5 mg/dl -0.6252(0.4279) 0.144 (-1.4639, 0.2136)  -0.6072(0.2649) 0.0219 (-1.1264, -0.088) 

<=3.5 mg/dl -0.2785(0.4453) 0.5317 (-1.1513, 0.5943)  -0.3069(0.2824) 0.2772 (-0.8604, 0.2466) 
Gender (Female) -0.1675(0.2727) 0.539 (-0.7021, 0.367)  -0.0818(0.1826) 0.6542 (-0.4397, 0.2761) 
Line of Treatment -0.1658(0.0783) 0.0342 (-0.3192, -0.0124)  -0.1713(0.056) 0.0022 (-0.281, -0.0616) 

Disease Stage        
Stage 1 -0.8559(0.537) 0.111 (-1.9084, 0.1966)  -0.7059(0.5234) 0.1775 (-1.7317, 0.32) 
Stage 2 -0.3776(0.409) 0.3558 (-1.1792, 0.424)  -0.3799(0.4785) 0.4272 (-1.3178, 0.5579) 
Stage 3 -0.2817(0.3435) 0.4121 (-0.955, 0.3915)  -0.4365(0.4674) 0.3503 (-1.3526, 0.4795) 

Creatinine Clearance        
<20 ml/min 1.0667(0.6236) 0.0871 (-0.1555, 2.2888)  0.0323(0.4653) 0.9447 (-0.8797, 0.9443) 

20 - 40 ml/min 1.2656(0.7037) 0.0721 (-0.1138, 2.6449)  0.6575(0.463) 0.1556 (-0.2499, 1.5649) 
40 - <60 ml/min 0.9456(0.5425) 0.0813 (-0.1176, 2.0089)  -0.0415(0.4398) 0.9249 (-0.9035, 0.8206) 
60 - <80 ml/min 0.4051(0.4892) 0.4077 (-0.5538, 1.364)  -0.1211(0.4101) 0.7677 (-0.925, 0.6827) 

Beta 2 Microglobulines        
<3.5 mg/dl -0.3059(0.3324) 0.3573 (-0.9573, 0.3455)  -0.5602(0.2284) 0.0142 (-1.0078, -0.1126) 

3.5 - 5 mg/dl -0.2769(0.3733) 0.4582 (-1.0086, 0.4548)  -0.2138(0.2994) 0.4752 (-0.8006, 0.373) 
>5 mg/dl -0.0514(0.341) 0.8801 (-0.7197, 0.6168)   -0.2432(0.2532) 0.3369 (-0.7395, 0.2532) 



54 
 

 
Table 19: Estimates (Empirical se) for weighted Cox PH model with non-stabilized weights (IPCW  ) 

Covariate 
OS  PFS 

Estimate (se) P-Value  95% Confidence 
Limits 

  Estimate (se) P-Value  95% Confidence 
Limits 

Intercept -1.1506(0.7006) 0.1005 (-2.5237,0.2225)  -1.2698(0.5961) 0.0331 (-2.4381, -0.1015) 
Treatment History 

(Combination) 
-0.6971(0.2755) 0.0114 (-1.237, -0.1572)  0.3774(0.2606) 0.1476 (-0.1335, 0.8882) 

Time Interval 2 0.9882(0.2635) 0.0002 (0.4718, 1.5047)  1.4002(0.186) <.0001 (1.0357, 1.7647) 
Time Interval 3 1.0984(0.2844) 0.0001 (0.541, 1.6558)  1.5687(0.2188) <.0001 (1.1397, 1.9976) 
Time Interval 4 1.0112(0.2979) 0.0007 (0.4273, 1.5952)  0.8141(0.2828) 0.004 (0.2599, 1.3683) 
Time Interval 5 0.7156(0.3739) 0.0557 (-0.0173, 1.4484)  1.7128(0.424) <.0001 (0.8818, 2.5438) 
Time Interval 6 0.5776(0.3617) 0.1103 (-0.1314, 1.2866)  1.0753(0.5008) 0.0318 (0.0937, 2.0569) 

Line of treatments 0.1241(0.0685) 0.07 (-0.0101, 0.2583)  -0.0633(0.0518) 0.2211 (-0.1648, 0.0381) 
Albumine        

>3.5 mg/dl 0.4791(0.3731) 0.1991 (-0.2522, 1.2105)  0.0554(0.2561) 0.8287 (-0.4465,0.5573) 
<=3.5 mg/dl 1.0061(0.4075) 0.0136 (0.2074, 1.8049)  0.3767(0.2874) 0.19 (-0.1867, 0.94) 

Gender (Female) -0.1708(0.241) 0.4786 (-0.6432, 0.3016)  -0.0991(0.2434) 0.6839 (-0.5762, 0.378) 
Disease Stage        

Stage 1 -2.9096(0.5465) <.0001 (-3.9807, -1.8385)  -1.4041(0.5367) 0.0089 (-2.4561, -0.3521) 
Stage 2 -0.5129(0.3912) 0.1898 (-1.2796, 0.2538)  -0.458(0.4654) 0.3251 (-1.3702, 0.4543) 
Stage 3 -0.7272(0.3604) 0.0436 (-1.4336, -0.0209)  -0.1133(0.4305) 0.7924 (-0.9571, 0.7305) 

Creatinine Clearance        
<20 ml/min -0.3675(0.7391) 0.6191 (-1.8162, 1.0812)  0.4504(0.3865) 0.2439 (-0.3071, 1.208) 

20 - 40 ml/min -0.9429(0.6863) 0.1695 (-2.2881, 0.4023)  0.2686(0.4127) 0.5151 (-0.5402, 1.0775) 
40 - <60 ml/min -1.3763(0.6182) 0.026 (-2.5881, -0.1646)  -0.2952(0.3762) 0.4327 (-1.0325, 0.4422) 
60 - <80 ml/min -1.437(0.5759) 0.0126 (-2.5656, -0.3083)  -0.2546(0.3267) 0.4358 (-0.8949, 0.3857) 

Beta 2 Microglobulines        
<3.5 mg/dl -0.5083(0.3195) 0.1116 (-1.1345, 0.1179)  -0.0979(0.2408) 0.6842 (-0.5699, 0.3741) 

3.5 - 5 mg/dl -0.2381(0.4183) 0.5692 (-1.058, 0.5817)  -0.5922(0.3811) 0.1202 (-1.3391, 0.1547) 
>5 mg/dl 0.3809(0.3458) 0.2707 (-0.2969, 1.0588)   -0.1431(0.2858) 0.6167 (-0.7032, 0.4171) 
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SAS CODES 
OS End Point 
/*Fitting Ordinary Cox PH model 
for OS Treat only*/ 
proc phreg data=Data_original; 
model 
time_to_death*status_death(0)= 
A/risklimits; 
run; quit; 
/*Fitting Ordinary Cox PH model 
Treat and covariates*/ 
proc phreg data=Data_original; 
model 
time_to_death*status_death(0)= A 
Albumin_cat1 Albumin_cat2  Gender 
MMStage_common1  
MMStage_common2 MMStage_common3 
creatclear_cat1 creatclear_cat2 
creatclear_cat3 creatclear_cat4 
B2Microglob_cat1  
B2Microglob_cat2 B2Microglob_cat3 
LOT/risklimits; 
 
Albumin_cat1=(Albumin_cat=1); 
Albumin_cat2=(Albumin_cat=2); 
MMStage_common1=(MMStage_common=1)
; 
MMStage_common2=(MMStage_common=2)
; 
MMStage_common3=(MMStage_common=3)
; 
creatclear_cat1=(creatclear_cat=1)
; 
creatclear_cat2=(creatclear_cat=2)
; 
creatclear_cat3=(creatclear_cat=3)
; 
creatclear_cat4=(creatclear_cat=4)
; 
B2Microglob_cat1=(B2Microglob_cat=
1); 
B2Microglob_cat2=(B2Microglob_cat=
2); 
B2Microglob_cat3=(B2Microglob_cat=
3); 
 
 
 
Albumin_cat: test Albumin_cat1, 
Albumin_cat2; 
MMStage_common: test 
MMStage_common1, MMStage_common2, 
MMStage_common3; 
creatclear_cat: test 
creatclear_cat1, creatclear_cat2, 
creatclear_cat3, creatclear_cat4; 
B2Microglob_cat: test 
B2Microglob_cat1, 
B2Microglob_cat2, 
B2Microglob_cat3; 
run; quit; 

/*Cox Model for adjusting for the 
stratified propensity score*/ 
proc phreg data=PS_strata; 
model 
time_to_death*status_death(0)= A 
stratum/risklimits; 
run; quit; 
/*Weighted Cox PH with IPTW based 
on Propensity scores*/ 
proc genmod data=PSdata1 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A_BL(ref=first)/param=ref; 
model Event = Treat_A_BL Time2 
Time3 Time4 Time5 Time6 LOT 
Albumin_cat Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt PS_weight; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Un-Weighted logistic regression 
with baseline treatment*/ 
proc genmod data=OS descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A_BL(ref=first)/param=ref; 
model Event = Treat_A_BL Time2 
Time3 Time4 Time5 Time6 LOT 
Albumin_cat Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Un-Weighted logistic regression 
with treatment history*/ 
proc genmod data=OS descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with non-
stabilized IPTW*/ 
proc genmod data=OS_Weight_IPTW 
descending; 
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class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt nstb_weight; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with non-
stabilized IPCW*/ 
proc genmod data=OS_Weight_IPCW 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt non_stb_weight; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with Weight 1 
(Crossover probabilities)*/ 
proc genmod data=OS_Weight 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt w1; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with Weight 2 
(Crossover probabilities)*/ 
proc genmod data=OS_Weight 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 

creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt w2; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with Weight 3 
(Crossover probabilities)*/ 
proc genmod data=OS_Weight 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt w3; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with Weight 4 
(Crossover probabilities)*/ 
proc genmod data=OS_Weight 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt w4; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
 
PFS End Point 
/*Fitting Ordinary Cox PH model 
for OS Treat only*/ 
proc phreg data=Data_original; 
model time_to_PFS*status_PFS(0)= 
A/risklimits; 
run; quit; 
 
/*Fitting Ordinary Cox PH model 
with treat and covariate*/ 
proc phreg data=Data_original; 
model time_to_PFS*status_PFS(0)= A 
Albumin_cat1 Albumin_cat2 Gender 
MMStage_common1  
MMStage_common2 MMStage_common3 
creatclear_cat1 creatclear_cat2 
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creatclear_cat3 creatclear_cat4 
B2Microglob_cat1  
B2Microglob_cat2 B2Microglob_cat3 
LOT/risklimits; 
 
Albumin_cat1=(Albumin_cat=1); 
Albumin_cat2=(Albumin_cat=2); 
MMStage_common1=(MMStage_common=1)
; 
MMStage_common2=(MMStage_common=2)
; 
MMStage_common3=(MMStage_common=3)
; 
creatclear_cat1=(creatclear_cat=1)
; 
creatclear_cat2=(creatclear_cat=2)
; 
creatclear_cat3=(creatclear_cat=3)
; 
creatclear_cat4=(creatclear_cat=4)
; 
B2Microglob_cat1=(B2Microglob_cat=
1); 
B2Microglob_cat2=(B2Microglob_cat=
2); 
B2Microglob_cat3=(B2Microglob_cat=
3); 
Albumin_cat: test Albumin_cat1, 
Albumin_cat2; 
MMStage_common: test 
MMStage_common1, MMStage_common2, 
MMStage_common3; 
creatclear_cat: test 
creatclear_cat1, creatclear_cat2, 
creatclear_cat3, creatclear_cat4; 
B2Microglob_cat: test 
B2Microglob_cat1, 
B2Microglob_cat2, 
B2Microglob_cat3; 
run; quit; 
 
/*Cox Model for adjusting for the 
stratified propensity score*/ 
proc phreg data=PS_strata; 
model time_to_PFS*status_PFS(0)= A 
stratum/risklimits; 
run; quit; 
 
/*Weighted Cox PH with IPTW based 
on Propensity scores*/ 
proc genmod data=PSdata3 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A_BL(ref=first)/param=ref; 
model Event = Treat_A_BL Time2 
Time3 Time4 Time5 Time6 LOT 
Albumin_cat Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 

scwgt PS_weight; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Un-Weighted logistic regression 
with baseline treatment*/ 
proc genmod data=PFS descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A_BL(ref=first)/param=ref; 
model Event = Treat_A_BL Time2 
Time3 Time4 Time5 Time6 LOT 
Albumin_cat Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Un-Weighted logistic regression 
with treatment history*/ 
proc genmod data=PFS descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with non-
stabilized IPTW*/ 
proc genmod data=PFS_Weight_IPTW 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt nstb_weight; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
 
/*Weighted Cox PH with non-
stabilized IPCW*/ 
proc genmod data=PFS_Weight_IPCW 
descending; 
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class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt non_stb_weight; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with Weight 1 
(Crossover probabilities)*/ 
proc genmod data=PFS_Weight 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt w1; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with Weight 2 
(Crossover probabilities)*/ 
proc genmod data=PFS_Weight 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt w2; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with Weight 3 
(Crossover probabilities)*/ 
proc genmod data=PFS_Weight 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 

creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt w3; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
/*Weighted Cox PH with Weight 4 
(Crossover probabilities)*/ 
proc genmod data=PFS_Weight 
descending; 
class PatientID Albumin_cat 
MMStage_common creatclear_cat 
B2Microglob_cat 
Treat_A2(ref=first)/param=ref; 
model Event = Treat_A2 Time2 Time3 
Time4 Time5 Time6 LOT Albumin_cat 
Gender MMStage_common 
creatclear_cat B2Microglob_cat/ 
link=logit dist=bin; 
scwgt w4; 
repeated subject=PatientID/ 
type=Ind;  
run;quit; 
 
R Codes for Plots 
Kaplan-Meire Plots 
par(mfrow=c(2,1)) 
 
library(survival) 
Surv(survival.data$time_to_death, 
survival.data$status_death) 
km.estimates<-
survfit(Surv(time_to_death,status_death)~A, 
type="kaplan-meier", conf.type="log-log", 
data=survival.data) 
 
plot(km.estimates, conf.int=F, ylab="Survival 
Probabilities",xlab="Time (Days)",  
     main="Survival curves by treatment groups 
OS",lwd=2,cex.main=0.9,cex.lab=0.9,cex=0.
5,lty=1:2,col=c("blue","red")) 
legend(100, 0.52, lty=1:2, 
lwd=2,col=c("blue","red"), 
c("MonoTherapy","Combination 
Therapy"),bty="n") 
abline(h=0.5) 
 
km.estimates1<-
survfit(Surv(time_to_PFS,status_PFS)~A, 
type="kaplan-meier", conf.type="log-log", 
data=survival.data) 
 
plot(km.estimates1, conf.int=F, ylab="Survival 
Probabilities",xlab="Time (Days)",  
     main="Survival curves by treatment groups 
PFS",lwd=2,cex.main=0.9,cex.lab=0.9,cex=0.
5,lty=1:2,col=c("blue","red")) 
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legend(900, 0.988, lty=1:2, 
lwd=2,col=c("blue","red"), 
c("MonoTherapy","Combination 
Therapy"),bty="n") 
abline(h=0.5) 
 
#Forest plots for each end point 
#OS end point  
 
method.OS<-c("OS","Ordinary, Propensity 
Score and Unweighted 
Models","Empty","Ordinary Cox PH(Baseline 
Treatment)","Ordinary Cox PH(Baseline 
covariates and Treatment)","Cox PH(Stratified 
Propensity Score)","Weighted Cox PH(IPTW on 
Propensity Score)","UnWeighted 
Logistic(Baseline Treatment)","UnWeighted Cox 
PH(Treatment History)", 
            "Empty","Censoring and Weighted Cox 
PH Models for 
crossover","Empty","Censoring(Crossover)","Wei
ghted Cox PH with IPTW(Non-Stab 
Weight)","Weighted Cox PH with IPCW(Non-
Stab Weight)","Weighted Cox PH 
Model1(Weight 1)","Weighted Cox PH 
Model2(Weight 2)","Weighted Cox PH 
Model3(Weight 3)","Weighted Cox PH 
Model4(Weight 4)") 
 
new.OS<-cbind(est.OS,method.OS) 
 
library(rmeta) 
forestplot(new.OS,Mean,Lower,Upper,zero=0,
clip=c(-2,2), xlog=TRUE,xlab="Hazard Ratio", 
           
col=meta.colors(box="royalblue",line="darkbl
ue",zero="black")) 
 
 
#PFS end point 
 
method.PFS<-c("PFS","Ordinary, Propensity 
Score and Unweighted 
Models","Empty","Ordinary Cox PH(Baseline 
Treatment)","Ordinary Cox PH(Baseline 
covariates and Treatment)","Cox PH(Stratified 
Propensity Score)","Weighted Cox PH(IPTW on 
Propensity Score)","UnWeighted 
Logistic(Baseline Treatment)","UnWeighted Cox 
PH(Treatment History)", 
              "Empty","Censoring and Weighted 
Cox PH Models for 
Crossover","Empty","Censoring(Crossover)","We
ighted Cox PH with IPTW(Non-Stab 
Weight)","Weighted Cox PH with IPCW(Non-
Stab Weight)","Weighted Cox PH 
Model1(Weight 1)","Weighted Cox PH 
Model2(Weight 2)","Weighted Cox PH 

Model3(Weight 3)","Weighted Cox PH 
Model4(Weight 4)") 
 
new.PFS<-cbind(est.PFS,method.PFS) 
 
forestplot(new.PFS,Mean,Lower,Upper,zero=0
,clip=c(-2,2), xlog=TRUE,xlab="Hazard 
Ratio", 
           
col=meta.colors(box="royalblue",line="darkbl
ue",zero="black")) 
 
##Plotting a box plot for estimated propensity 
scores by treat 
is.factor(ps_score$Treat) 
is.numeric(ps_score$Treat) 
treat.f<-factor(ps_score$Treat, 
labels=c("Mono","Combination")) 
ps.score<-cbind(ps_score,treat.f) 
 
boxplot(P_score ~ treat.f, data = ps.score, 
        pars = list(boxwex = 0.3, staplewex = 
0.5, outwex = 0.5), 
        col = "royalblue", 
        main = "Estimated propensity score by 
treatment groups", 
        xlab = "Treatment group", 
        ylab = "Propensity Score", 
        ylim = c(0, 1),cex.main=1.0, cex.lab=1.0, 
cex.axis=0.9) 
 
boxplot(P_score ~ stratum, data = ps.score, 
        pars = list(boxwex = 0.3, staplewex = 
0.5, outwex = 0.5), 
        col = "royalblue", 
        main = "Estimated Propensity score by 
strata", 
        xlab = "Strata", 
        ylab = "Propensity Score", 
        ylim = c(0, 1),cex.main=1.2, cex.lab=1.2, 
cex.axis=1.2) 
 
##IPTW weights for Cox PH Model 
par(mfrow=c(2,2)) 
##OS end point 
boxplot(log_weight ~ Time, data = os.IPTW, 
        pars = list(boxwex = 0.3, staplewex = 
0.5, outwex = 0.5), 
        col = "royalblue", 
        main = "Estimated IPTW for OS", 
        xlab = "Time Interval", 
        ylab = "Log Weight", 
        ylim = c(-7.5, 3),cex.main=0.8, 
cex.lab=0.9, cex.axis=1.0) 
 
##PFS end point 
boxplot(log_weight ~ Time, data = pfs.IPTW, 
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        pars = list(boxwex = 0.3, staplewex = 
0.5, outwex = 0.5), 
        col = "royalblue", 
        main = "Estimated IPTW for PFS", 
        xlab = "Time Interval", 
        ylab = "Log Weight", 
        ylim = c(-4, 3),cex.main=0.8, 
cex.lab=0.9, cex.axis=1.0) 
 
##IPCW for weighted cox 
##OS end point 
boxplot(log_weight ~ Time, data = os.IPCW, 
        pars = list(boxwex = 0.3, staplewex = 
0.5, outwex = 0.5), 
        col = "royalblue", 
        main = "Estimated IPCW for OS", 
        xlab = "Time Interval", 
        ylab = "Log Weight", 
        ylim = c(0, 8),cex.main=0.8, 
cex.lab=0.9, cex.axis=1.0) 
 
##PFS end point 
boxplot(log_weight ~ Time, data = pfs.IPCW, 
        pars = list(boxwex = 0.3, staplewex = 
0.5, outwex = 0.5), 
        col = "royalblue", 
        main = "Estimated IPCW for PFS", 
        xlab = "Time Interval", 
        ylab = "Log Weight", 
        ylim = c(0, 7),cex.main=0.8, 
cex.lab=0.9, cex.axis=1.0) 
 
##Ploting Crossover Probabilities  
par(mfrow=c(2,2)) 
 
for(i in 1:4){ 
  interaction.plot(Time[PatientNumber==i], 
Prob[PatientNumber==i], 
Prob_Cross[PatientNumber==i], 
                   type="l",col=c(1,2,3,4),legend=F, 
ylim=c(0, 1), 
                   xlab="Time Interval", 
ylab="Crossover Probability",lwd=3, 
                   lty=1, las=1, 
main=paste("PatientNumber ", i)) 
 
  
legend("bottomright",c("Prob1","Prob2","Prob3"
,"Prob4"),bty="n",lty=1,lwd=3, 
                   
col=c(1,2,3,4),title="Probabilities") 
              } 
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