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Abstract

Background

Health refers to an individual’s mental, physical and social well-being. Every individual

strives to improve his/her quality of health despite the odds like diseases that are quite often

encountered in our daily life. The actual feelings such as stress, pain, anxiety experienced by

an individual are used to quantify and rate quality of health. Therefore, special instruments

widely used to measure quality of life include Visual Analogue Scale(VAS) and EQ5D.

Objectives

A survey was conducted in the general population residing in Flanders (Belgium) in order

to determine and explain their HRQoL. In particular, it was of interest to identify factors

that were significantly associated to their HRQoL, and also develop a statistical model to

explain the relationship between these factors and HRQoL.

Methodology

Since there were many covariates from the study; regression trees, random forest and lasso

regression were used as preliminary tools to reduce the number of variables. Thereafter,

relationships between the responses and these factors were modelled using beta regression and

one inflated beta regression (for VAS and EQ5D outcomes respectively). Linear predictors

of these models were extended to polynomials and fractional polynomials.

Results and Conclusions

Age was significantly associated to the responses and was found to be a major factor in

explaining Health Related Quality of Life for individuals in Flanders. Moreover, individuals

who had suffered severe illnesses before had significantly lower HRQoL as compared to

corresponding individuals of the same age who had not suffered any severe illnesses before.

Keywords: beta regression, EQ5D, fractional polynomials, HRQoL, one inflated beta re-

gression, polynomials, VAS.

ii



Contents

1 Introduction 1

1.1 Measurement of HRQoL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 EuroQol 5 Dimensions (EQ5D) . . . . . . . . . . . . . . . . . . . . . 2

1.1.2 Visual Analogue Scale (VAS) . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Description of Survey Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Covariates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.5 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Methods and Results 5

2.1 Variable Selection Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Regression trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Random forest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Least Absolute Shrinkage and Selector Operator (Lasso) Regression . 6

2.2 Variable Selection Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Exploratory of the response (HRQoL) . . . . . . . . . . . . . . . . . . 7

2.2.2 Exploratory and Selection of Explanatory Variables . . . . . . . . . . 8

2.3 Statistical Modelling of VAS and EQ5D HRQoL outcomes : Methods . . . . 11

2.3.1 Beta Regression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.2 One inflated Beta Regression . . . . . . . . . . . . . . . . . . . . . . 13

2.3.3 Link Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.4 Polynomials and fractional polynomials . . . . . . . . . . . . . . . . . 14

iii



2.3.5 Model Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.6 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Statistical Modeling Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.4.1 Modelling of VAS HRQoL outcomes:Results . . . . . . . . . . . . . . 16

2.4.2 Statistical Modelling of EQ5D HRQoL outcomes:Results . . . . . . . 23

3 Discussion 29

4 Appendix 31

References 39

iv



List of Tables

1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

2 Lasso regression coefficient estimates . . . . . . . . . . . . . . . . . . . . . . 9

3 Model comparisons based on AIC and Likelihood Ratio Tests . . . . . . . . . 16

4 Model Coefficients, Standard Errors and Significance Tests . . . . . . . . . . 19

5 Bootstrap, Bias corrected and Reduced model estimates . . . . . . . . . . . . 22

6 Model comparisons based on AIC and Likelihood Ratio Tests . . . . . . . . . 23

7 Model Coefficients, Standard Errors and Significance Tests . . . . . . . . . . 27

8 EQ5D Health States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

9 Possible sets of models for modelling VAS and EQ5D HRQoL outcomes . . . 32

10 Variable Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

v



List of Figures

1 Distribution of VAS and EQ5D outcomes respectively . . . . . . . . . . . . . 7

2 Regression trees for VAS and EQ5D outcomes respectively . . . . . . . . . . 8

3 Scatterplots for raw VAS HRQoL Scores vs. Age by Disease1 and Gender

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Scatterplots for raw EQ5D HRQoL Scores vs. Age by Disease1 and Gender

respectively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

5 Averages of VAS and EQ5D scores vs. age . . . . . . . . . . . . . . . . . . . 11

6 Graphical representation of the best fits for polynomial and fractional polyno-

mial models under different link functions . . . . . . . . . . . . . . . . . . . 18

7 Final model VAS HRQoL predictions by Disease1 and gender , and 95% pre-

diction Confidence interval . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Graphical representation of the best fits for polynomial, fractional polynomial

and cubic spline models under different link functions . . . . . . . . . . . . . 26

9 Final model weighted mean EQ5D HRQoL predictions by Disease1 and gender 28

10 Mean EQ5D HRQoL predictions by Disease1 and gender based on beta regres-

sion sub model, and 95% prediction band. . . . . . . . . . . . . . . . . . . . . 29

11 Boxplots for HRQoL by age categories . . . . . . . . . . . . . . . . . . . . . 37

12 Boxplots for HRQoL by disease1 . . . . . . . . . . . . . . . . . . . . . . . . . 38

13 Boxplots for HRQoL by gender . . . . . . . . . . . . . . . . . . . . . . . . . 38

14 EQ5D HRQoL prediction by logistic submodel . . . . . . . . . . . . . . . . . 38

15 Random forests for VAS and EQ5D HRQoL Scores respectively . . . . . . . 39

vi



1 Introduction

The World Health Organisation’s constitution (1948) defines health as : ‘A state of complete

physical, mental and social well-being and not merely the absence of disease or infirmity ’.

While Health Related Quality of Life (HRQoL) - refers to - wholesome quality of life with

respect to physical and mental health, which can be influenced over time by diseases, ageing

process among other risk factors. It is also possible to understand this concept at a popu-

lation level, and can be viewed as a population’s health and functional status influenced by

policies, conditions and resources (WHO, 1948).

A number of factors such as education, technological and medical advancements in the mod-

ern society are perceived to have contributed both positively and negatively to quality of

health in a population, but these merits and demerits are debatable. Considering merits

of such advancements, it is true that research conducted in medical science have resulted

to cures of chronic diseases which have given a boost to quality of health in the general

population (Singh & Dixit, 2010).

Aspects of health such as pain, anxiety/depression among others are considered important.

These health aspects are experienced by an individual and may be quite difficult to measure

externally with an instrument. Therefore, it is increasingly becoming acceptable in clinical

and health services research that information concerning health state be provided by an

individual himself/herself , and not provided on his/her behalf so that the actual experience

is captured (Brazier, Ratcliffe, Salomon & Tsuchiya, 2007).

Surveillance of a population’s health have become a common and important practice among

governments and health agencies since 1980s. It forms valid scientific evidence and basis

under which health improvements and interventions are carried out. Particularly, captured

HRQoL measures help in determining burden of diseases which are preventable, disabilities

and might result to valuable information concerning association between risk factors and

HRQoL(CDC). Moreover, the HRQoL data facilitates the identification of subgroups with

poorer health status and this may point out the need of curbing serious subsequent eventu-

alities in such particular subgroups.
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HRQoL study results may help in enforcing health policy needs, allocation of resources,

formulation of best health strategic plans and monitor intervention mechanisms and their

effectiveness. In health economics and epidemiology, HRQoL is used to estimate Quality

Adjusted Life Years achieved through medical interventions. These are used in turn in cost

effectiveness analyses to inform policy makers on how to prioritize between different inter-

ventions in health care (CDC).

1.1 Measurement of HRQoL

Presented here are two generic instruments which were used to measure the HRQoL in

Flanders. Studies concerning HRQoL have resulted to instruments that are able to detect

minimal effects that are important in clinical trials and for investigating the quality of health

in a population, the most important being EuroQoL 5 Dimensions (EQ5D) and the Visual

Analogue Scale (VAS), (Guyatt, Feeny & Patrick, 1993).

1.1.1 EuroQol 5 Dimensions (EQ5D)

This instrument was developed by international collaboration of health researchers from

Europe (EuroQoL). The group was established to design non-disease specific , simple , com-

prehensive and standardized quality of health measure to be used by the entire European

community (EuroQol Group, 1990) . EQ5D captures health profiles and also generate health

utilities. It has five questions referred to as dimensions, each expressing a given health di-

mension : mobility, capability to carry out daily activities, pain, anxiety/ depression and

self -care. Each question has three possible responses which yield different possible states

for health (see appendix table 8). The instrument has different modes of administration :

telephone interviews, face to face, proxies, self-complete et cetera (Frayback, 2010).

Cleemput(2010) derived a preference valuation set for EQ5D Health states from the general

population in Flanders. This was expressed as: EQ5D = 1−(0.152+0.074MO+0.083SC+

0.031UA + 0.084PD + 0.103AD + 0.253N3),where : MO-Mobility, SC-Selfcare, UA-Daily
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Activities, PD-Pain/Discomfort, AD- Anxiety/Depression , N3-penalty term if any of the

dimensions has a score of 3. Each of the scores is down weighed by subtracting 1. For

instance if an individual filled 22113 in the EQ5D questionnaire (shown in appendix table

8) , then that person had an EQ5D score equal to:1 − (0.152 + (0.074 ∗ 1) + (0.083 ∗ 1) +

(0.031 ∗ 0) + (0.084 ∗ 0) + (0.103 ∗ 2) + 0.253) = 0.485. The intercept in this algorithm was

interpreted as a decrement due to any move from perfect health. Therefore, 0.152 was not

subtracted for individuals who filled 11111 since they had perfect health. However, negative

scores are also possible which would represent an unimaginable health condition worse than

death.

1.1.2 Visual Analogue Scale (VAS)

VAS refers to a psychometric scale used to measure response , and this can be included in

a questionnaire. It is also known as thermometer scale whose range lies between 0 (‘worst

imaginable health state ’) and 100 (‘best imaginable health state ’) both inclusive. This

instrument has been widely used to collect HRQoL data due to its simplicity and practical

applicability (Shmueli, 2005). It is also noted that VAS results to high response rate and

high levels of completion (Brazier, Ratcliffe, Salomon & Tsuchiya, 2007).

1.2 Description of Survey Data

This survey was conducted in a random sample of 2204 individuals of all ages (22.38% relates

to children less than 12 years, 61.17% relates to adults and 16.45% to elderly individuals of

60 years and above). For a subsample of 430 individuals (19.5%), information was collected

for all members of their household whereas the other 1777 respondents each belonged to a

unique household. There were also specific questions which were asked to each of three age

categories (Children, Adults and Elderly).

The mode of data collection was through self-administered questionnaires, where these ques-

tionnaires were sent by post to selected individuals to participate in the study and sampling

was done through random digit dialing. See below and appendix table 10 for detailed de-

scription of the measured variables.
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1.3 Response

Respondents were asked to fill in both the EQ5D and the VAS. Health utility scores were

calculated based on Cleemput algorithm assuming these utilities were additive. VAS in-

strument gave a single overall score for the HRQoL. Hence in total two different response

variables are considered.

1.4 Covariates

The following general socio-demographic factors were considered in the exploratory anal-

ysis in order to examine their impact on an individual’s HRQoL ; age, gender, household

size, previous sickness status, nationality, province, number of animals kept, number of par-

ents. Besides, the data presented additional sub group covariates as follows: (1) Children

: mother’s education (2) Adults : smoking status, profession, education level, whether the

adults worked/had worked for a health care facility and (3) Elderly : alcohol consumption

frequency, frequencies children and grandchildren visited them, work status, whether the

elderly had worked for a health care facility, education level and smoke status.

1.5 Objectives

i. To determine which covariates are significantly associated to either or both HRQoL

outcome measures.

ii. To develop a statistical model describing the relationship between characteristics of

respondents and their HRQoL experience.
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2 Methods and Results

2.1 Variable Selection Methods

A combination of techniques was used to explore the response and possible covariates from

the data, including: graphical techniques (boxplots, scatterplots and histograms), regression

trees, random forest and lasso regression. These methods were used in order to address

primary objective 1. Regression trees, random forests and lasso regression were used for

selection since there was need to obtain a subset of covariates from the many variables in

the data; in which some variables had many levels. Below is a brief overview of the stated

techniques.

2.1.1 Regression trees

These are models which predict numeric responses to the given data. Predictions are based

on decisions from the root node and down to subsequent daughter nodes. Suppose data con-

tains a response yi and t inputs xi for each observation; that is to say, (xi, yi) for i=1,. . . ,N

,with xi = (xi1, . . . , xit) , then the algorithm decides automatically on the split points ,

splitting variables and shape of the tree, this may be based on variable that gives minimum

impurity. The response is modeled as a constant cm in each of the partitioned M regions

(R1, . . . , RM) : f(x) =
∑M

m=1 cmI{xǫRm}. Best estimate ĉm for least square criterion is the

average of yi in region Rm: cm = (yi|xiǫRm), (Hastie, Tibshirani & Friedman, 2009).

Regression trees represent information in a way that is intuitive and easily visualized. Major

advantages of using this technique include: insensitivity to outliers, automatic modeling of

interactions as implied by the hierarchical structure of the trees, and the fact that model

outcomes are not affected by different scales and transformations of predictors (Elith, Leath-

wick & Hastle, 2008).
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2.1.2 Random forest

This algorithm uses an ensemble of regression trees ( Breiman, 2001). It implements boot-

strapping approach for data sampling. Based on the bootstrapped data samples, each of

the regression trees is generated and at each split the candidate set of variables is a random

subset of the variables; which as well can be specified (Diaz-Uriarte & Andres, 2005). The

correlation between trees is reduced without too much increment in the variability, which

is made possible by the process of growing trees through randomly selecting the input vari-

ables. These trees are allowed to grow fully in order to obtain trees with low bias (Hastie,

Tibshirani & Friedman, 2009) . The algorithm results to an ensemble obtained through

averaging over lowly correlated trees with low bias.

For this analysis, a list was generated from random forest showing importance of variables

based on node impurity and mean square error. The importance measures show how much

impurity or mean square error increase when that variable is randomly permuted. If a vari-

able is permuted and predictions done, then some change in impurity or mean square error

will be observed, otherwise no much change will be noticed.

2.1.3 Least Absolute Shrinkage and Selector Operator (Lasso) Regression

Lasso is considered as a shrinkage technique and a selection method in linear regression

analysis. Some coefficients are shrunken and others set to zero under this regression method,

thus interplaying between ridge regression and subset selection (Tibshirani et al., 1996). The

lasso estimate expressed in Lagrangian form is defined by :

β̂lasso =
argmin

β {1
2

∑N

i=1(yi − β0 −
∑p

j=1 xijβj)
2 + λ

∑p

j=1 |βj|}. It minimizes the usual error

sum of squares, with a restricted sum of the absolute coefficients (Hastie, Tibshirani &

Friedman, 2009). Tibshirani (1996) states that both ridge regression and subset selection

methods for improving the ordinary least squares have limitations. Subset selection can be

extremely variable since small changes in the data can result to different selected models

thus lowering its prediction accuracy . While ridge regression does not set any coefficient to

zero hence resulting to a model which is not easily interpretable.
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2.2 Variable Selection Results

2.2.1 Exploratory of the response (HRQoL)

(a) Distribution of VAS scores
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(b) Distribution of Cleemput EQ5D scores
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Figure 1: Distribution of VAS and EQ5D outcomes respectively

The distribution of HRQoL as captured by Visual Analogue Scale and Cleemput EQ5D

showed high negative skewness (Figures 1 (a) and (b)). Highest peaks observed at 1 for

the EQ5D criterion and at 0.8 to 1 for VAS. The distribution of VAS scores showed a uni-

modal density with one local maximum, whereas a gap was observed in the histogram of

EQ5D outcomes with more than one local maxima. Thus implying existence of two sub

populations, with one sub population dominated by HRQoL scores of 1. Similar distribution

patterns of the response (HRQoL) exhibited in figures 1 (a) and (b) pointed out an underlying

concordance between VAS and EQ5D (Cleemput) measurement instruments. Concordance

correlation between these two techniques was estimated to be 51.17% with a 95% confidence

interval of [0.4831, 0.5393], this indicated a moderate concordance as pertains to precision

and accuracy of measurements.
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2.2.2 Exploratory and Selection of Explanatory Variables

The regression trees considering VAS and EQ5D as response measures similarly selected two

variables at the population level (Age and disease1), and some of the few splits shown were

quite sensible since health related quality of life of an older respondent who had suffered

from a severe illness before was lower than HRQoL of a respondent of the same age who had

not suffered any severe illness (figure 2 (a) and (b)). Additionally, variable importance plots

considered age and disease1 to be very important since poor predictions would be yielded

without them in the model and both explained much of the reduction in node impurity

(appendix figure 15).

Figure 2: Regression trees for VAS and EQ5D outcomes respectively

Lasso regression assigned higher absolute coefficients to age and disease1, while other co-

variates had lower coefficients in each of the response cases (table 2). Generally, the three

methods selected two mentioned covariates to be possible factors which would influence

quality of life at the population level, and their association with the responses will further

be investigated in the subsequent sections. Even though gender was accorded the least

weight and thus dropped by these three techniques, a study by Kirchengast & Haslinger

(2008) showed there could be possible gender differences in HRQoL among healthy aged and

elderly in Austria, thus it was deemed appropriate to use it as a covariate in this analysis.
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Table 2: Lasso regression coefficient estimates

Effect Coefficient (VAS) Coefficient (EQ5D)

Age -0.0272 -0.0258

Disease1 -0.0761 -0.1181

Disease2 -0.0235 -0.0155

Gender -0.00000 .

Householdsize 0.0027 0.0028

Parents . .

Animal -0.0082 -0.0063

Normalday -0.0148 -0.0006

Belgian 0.0232 .

Another EU country . .

Antwerp . .

Limburg . 0.0092

Vlaams.Brabant -0.00000 0.00004

West.Vlaandren . -0.005

Further trends were investigated for population level covariates (age and disease1) using

scatterplots. Figures 3(a) and 4(a) are in agreement with results obtained using regression

trees that individuals who had suffered severe illnesses before seemed to have lower health

related quality of life as compared to corresponding individuals who had not suffered any

severe illnesses. Gender on the other hand seem not to have any influence on VAS outcomes

(figure 4(b)), while some pattern is observed for EQ5D outcomes as many males have HRQoL

scores of 1(figure 4(b)).

Age is shown as a major predictor by all the techniques for variable selection under population

covariates. The raw scatterplots in figures 3 and 4 do not show a clear trend of the health

scores across the ages. Therefore, averages of VAS and EQ5D health scores were plotted by

ages and loess curves fitted to the averages in order to clearly show trend and possible effect

of age (figures 5 (a) and (b)). HRQoL decreases across the ages, younger respondents seem

to have higher health scores compared to older respondents who have considerably lower

health scores. Individuals above 60 years of age had a rapid decline in their HRQoL scores.
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Figure 3: Scatterplots for raw VAS HRQoL Scores vs. Age by Disease1 and Gender respec-

tively
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Figure 4: Scatterplots for raw EQ5D HRQoL Scores vs. Age by Disease1 and Gender respec-

tively

Different plotted points in figures 5 (a) and (b) represented number of individuals replicating

for a particular age, whose HRQoL scores were averaged. It is observed that for both VAS

and EQ5D, most of the individuals considered for the analysis were between 0 and 60 years

old.

Boxplots of EQ5D and VAS as a function of every covariate were made, and most of them

did not seem to affect EQ5D and VAS (not included in the report). See appendix figures 11,

12 and 13 showing how the HRQoL scores varied by age categories, disease1 and gender.
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Figure 5: Averages of VAS and EQ5D scores vs. age

2.3 Statistical Modelling of VAS and EQ5D HRQoL outcomes :
Methods

Modelling techniques discussed in subsections 2.3.1 and 2.3.2 below were deemed suitable to

address primary objective 2.

2.3.1 Beta Regression

The Beta distribution is a continuous probability distribution that offers high flexibility

to accommodate densities with varying skewness. This flexibility allows for the estimation

of distributions with intractable skewness, making normalizing transformations impossible.

Furthermore, the support for the Beta distribution lies within (0, 1) interval, making it suit-

able for modeling proportions, percentages and any form of continuous outcome that lies

within the (0,1) interval.

If a dependent variable is presumed to follow beta distribution, then beta regression can

be derived by expanding the generalized linear model (GLM) to regress predictor variables

on that dependent variable (Swearing, Castro & Bursac, 2011). Paolin (2001) explains

that beta regression provides efficient and more accurate parameter estimates when com-
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pared to ordinary least squares regression; when the underlying distribution for the depen-

dent variable is skewed or when there is existence of heteroskedasticity. A random vari-

able Y follows a beta distribution with parameters p,q >0, with the density denoted as :

f(y; p, q) = Γ(p+q)
ΓpΓq

y(p−1)(1 − y)q−1, yǫ(0, 1),whereΓ(.) is a gamma function and E(Y ) = p

p+q

and V ar(Y ) = pq

(p+q)2(p+q+1)
. Since this distribution is characterized by two parameters p and

q, it was necessary to re-parameterize it to allow the expression of this distribution in terms

of its mean and scaling(precision) parameter. Therefore, Ferrari and Cribari-Neto (2004)

defined the following re-parameterization; µ = p

p+q
and φ = p+ q . Thus if Y ∼ B(µ, φ) then

E(Y ) = µ and V ar(Y ) = µ(1−µ)
(1+φ)

, where φ is the precision parameter. This allows for infer-

ences to be drawn with respect to changes in the dependent variable’s mean and precision

(Simas, Souza & Rocha, 2008).

Although beta regression naturally models dispersion, it is necessary to consider further re-

gressors in the dispersion sub model to explain heteroskedasticity (Simas et al., 2010). Thus

implying the extension of beta regression to variable dispersion model which jointly models

location and dispersion parameters. The VAS HRQoL scores ranged from 0 to 100 both

inclusive. These were rescaled by dividing each of the scores by 100 in order to fit in the

support of beta distribution. Beta regressions with and without dispersion covariates ( as

formulated in appendix table 9) were considered for analysis of VAS quality of health scores.

Maximum likelihood estimates from skewed distributions are not necessarily unbiased (Smith-

son & Verkuilen, 2005). Likelihood estimation degenerates at the boundaries for beta dis-

tribution and some corrections should be done for observations lying at the boundaries.

Smithson & Verkuilen (2005) suggested proportional shrinkage of the outcome range to a

sub-range nearly covering the unit interval or addition of a small value to 0 and subtracting

the same from 1. Both methods are likely to bias the estimates towards no effect. The latter

technique was used in this analysis and as such, there was need to validate the obtained esti-

mates. Simas et al. (2010) derived general formulae for second-order biases of the maximum

likelihood estimators and used them to define bias-corrected and reduced estimators for beta

regression variable dispersion model. These were implemented together with non-parametric

bootstrapping technique to investigate possible biases in the VAS outcome model.
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2.3.2 One inflated Beta Regression

Data measured on a continuous scale between 0 and 1 (both inclusive) quite often contain

non negligible number of observations at either 0 or 1 or at both points. Health related

quality of life data almost always result to left skewed distribution , with a possibility of

inflated observations at 1. This is indeed the case for the EQ5D survey data. As such it is

worth accounting for this scenario in analysis. However, the beta distribution discussed in

subsection 2.3.1 does not allow positive probability for observations lying at the boundaries.

This might not be appropriate for modeling one inflated data since it does not satisfactorily

model the entire outcome space and does not take into account the influence of the concen-

trated probability mass at 1.

Ospina & Ferrari (2007) considered a modeling approach using a mixture of continuous and

discrete distributions. These two distributions result to a one inflated beta distribution

which sufficiently models the entire outcome space without any adjustments to the original

response. Therefore, mixture density is defined by:

f(y;α, µ, φ) =

{
(1− α)f(y;µ, φ), if 0<y<1

α, if y = c

where α is the mixing parameter which accounts for probability mass at 1 , f(y;µ, φ) is the

beta density and c=1. The mean and variance of the response in this case is given by :

E(y) = αc + (1 − α)µ, which is a weighted average of the mean of a Bernoulli distribution

at c=1 and the corresponding mean given by beta distribution with weights α and (1 − α)

respectively;- while : V ar(y) = (1− α)V (µ)/(φ+ 1) + α(1− α)(c− µ)2.

Inflated number of observations at 1 (shown in figure 1 (b)) motivated modelling of the

EQ5D outcomes using a mixture of Bernoulli and beta distributions. First part modelled

the ones using a logistic regression, while the second part modelled the outcomes less than

one using beta regression. These two sub models were jointly modelled together with the

dispersion sub model. Several models as outlined in appendix table 9 were formulated and

fitted, with logistic and beta regressions having similar location covariates.
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2.3.3 Link Functions

The VAS and EQ5D HRQoL responses lie in the 0 and 1 interval, as such indicating the

necessity for link function(s). Therefore, various possible link functions were used; logit,

probit and cloglog for location sub models, while log and identity link functions were used for

dispersion sub models with and without covariates respectively. Log link was used principally

in the dispersion sub models to avoid negative variances.

2.3.4 Polynomials and fractional polynomials

Linear predictors for both VAS and EQ5D outcomes were extended to polynomials and frac-

tional polynomials in order to allow for more functional forms of the responses. Polynomials

contain squared and higher order terms of the continuous predictor variable(s), making the

response function curvilinear. But this does not interfere with the linearity of the parame-

ters. Royston & Sauerbrei (2008) asserts that parsimonious higher order polynomials (models

without over-fitting) result into better fits, but they will frequently deteriorate rapidly out-

side the range of the data (KUTNER,2005). Instead of using conventional polynomials (only

integer powers), one can also use fractional polynomials. Although many different combina-

tions of powers are possible in fractional polynomial models, it has been suggested that it

is often adequate to consider only a subset of the powers, S = {-2, -1, -0.5, 0, 0.5, 1, 2, 3

}. This subset provides flexible shapes of curves for most practical model fitting purposes.

Curves in this subset include linear, reciprocal, square root, square and logarithmic transfor-

mations. If the values of the powers are known, then fitting a fractional polynomial model is

similar to fitting a conventional linear regression model. However, these powers are usually

unknown and should be estimated from the data. The fractional polynomials differ from

the conventional polynomials in that the power(s) can be a non integer number (Cui, et al.,

2008).
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2.3.5 Model Selection

Models under each response were compared based on Akaike Information Criteria (Akaike,1974)

: AIC = −2L(β̂(R)) + 2K.

Because of the minus sign in the formula above, smaller AIC values imply better models.

The last term on the right hand side is a penalization term for the number of parameters

in the model. Likelihood ratio tests were performed to test the need for interactions and as

well as inclusion of covariates in the dispersion sub models.

2.3.6 Software

SAS was used for data management and R (betareg and gamlss packages) used for the

analyses.
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2.4 Statistical Modeling Results

2.4.1 Modelling of VAS HRQoL outcomes:Results

Several models were fitted (as formulated in appendix table 9) and results for their comparisons in terms of AIC and likelihood

ratio tests presented in table 3 below.

Table 3: Model comparisons based on AIC and Likelihood Ratio Tests

polynomials

Polynomial Model Model with Model with Dispe- AIC Models compared Likelihood

Order interactions rsion covariates Based on logit Ratio Test

link function (p value)

Logit Probit Cloglog

1 1 Yes Yes -6773.087 -6774.32 -6775.35 (1) vs.( 2) <0.0001

2 Yes No -6691.223 -6697.152 -6702.921 (1) vs.( 3) <0.0001

3 No Yes -6741.802 -6742.034 -6741.366 (3 ) vs (4) <0.0001

4 No No -6679.052 -6685.900 -6691.465 (2 ) vs. (4) 0.0004

2 5 Yes Yes -6773.432 -6773.312 -6772.902 (5 ) vs. (6) <0.0001

6 Yes No -6708.495 -6709.152 -6709.459 (5 ) vs. (7) <0.0001

7 No Yes -6748.689 -6747.674 -6745.710 (7) vs (8) <0.0001

8 No No -6700.606 -6701.036 -6699.966 (6 ) vs. (8) 0.0031

3 9 Yes Yes -6787.665 -6785.900 -6783.952 (9) vs.(10) <0.0001

10 Yes No -6711.297 -6708.714 -6706.331 (9) vs.(11) <0.0001

11 No Yes -6758.620 -6756.233 -6752.760 (11) vs. (12) <0.0001

12 No No -6710.365 -6707.374 -6703.228 (10) vs.( 12) 0.0368
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Fractional polynomials

Fractional Power Model with Model with Dispe- AIC Models compared Likelihood

Polynomial of interactions rsion covariates Based on logit Ratio Test

Degree age link function (p value)

Logit Probit Cloglog

0.5 (1) Yes Yes -6773.563 -6773.091 -6772.784 (1) vs.( 2) <0.0001

1 0.5 (2) Yes No -6706.393 -6708.569 -6706.393 (1) vs.( 3) <0.0001

0.5 (3) No Yes -6745.117 -6742.54 -6742.535 (3 ) vs (4) <0.0001

0.5 (4) No No -6699.653 -6698.659 -6694.694 (2 ) vs. (4) 0.0014

(0.5,3) (5) Yes Yes -6776.933 -6775.307 (5 ) vs. (6) <0.0001

2 (0.5,3) (6) Yes No -6709.036 -6710.999 (5 ) vs. (7) <0.0001

(0.5,3) (7) No Yes -6748.933 -6747.875 (7) vs (8) <0.0001

(0.5,3) (8) No No -6700.049 -6702.674 (6 ) vs. (8) 0.0068

2 (0,0.5) (5) Yes Yes -6775.910 (9) vs.(10) <0.0001

(0,0) (6) Yes No -6710.113 (9) vs.(11) <0.0001

(0,0.5) (7) No Yes -6747.094 (11) vs. (12) <0.0001

(0,0) (8) No No -6701.665 (10) vs.( 12) 0.01167

3 (2,2,3) (9) Yes Yes -6798.743 -6797.754

(10)Yes No -6727.181 -6725.487

(11) No Yes -6769.662 -6768.785

(12) No No -6723.113 -6721.819

3 (2,3,3) (9) Yes Yes -6798.219

(10)Yes No -6730.897

(11) No Yes -6773.021

(12) No No -6724.304
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Tests based on both polynomial and fractional polynomial models indicated that interactions

may be needed. Moreover, the tests for the need of regressors in dispersion sub models under

polynomials of order 1, 2 and 3 all resulted to significant likelihood ratio tests with a p-value

of <0.0001. This indicated the necessity of incorporating regressors in the dispersion sub

models to account for the underlying heterogeneity. Based on AIC values, it can be seen that

polynomials and fractional polynomials of order 3 and degree 3 yielded remarkable better

fits than models of orders and degrees 1 and 2 ; since they had the least AIC values. Com-

paratively, selected best models under each link function seemed to fit the data equally well

(figures 6 (a) and (b)). Predictions using best fractional polynomial models were possible

only for individuals older than zero years.
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Figure 6: Graphical representation of the best fits for polynomial and fractional polynomial

models under different link functions

Therefore, logit polynomial of order 3 (model 9: AIC=-6787.665) was selected among the

fitted polynomial and fractional polynomial models, since inferences based on it would cover

the whole data.

The parameter estimates and associated standard error estimates for the selected model are

presented in table 4, together with the p-values based on the Wald Chi-square test.
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Table 4: Model Coefficients, Standard Errors and Significance Tests

Selected Model Final Model

Parameter Coefficients s.e p value Coefficients s.e p value

Location

submodel

β0 (Intercept) 2.7500 0.1933 < 0.0001 2.6970 0.1026 <0.0001

β1 (A1) -0.0582 0.0174 0.0008 -0.0502 0.0076 <0.0001

β2 (A2) 0.0013 0.0004 0.0005 0.0009 0.0002 <0.0001

β3 (A3) -0.000009 0.000003 0.0047 -0.000006 0.000002 <0.0001

β4 (G-Male) -0.1847 0.2586 0.4750 -0.0071 0.0603 0.9070

β5 (D-Yes) -0.9660 0.4200 0.0214 -0.6649 0.0695 <0.0001

β6 (A1*G) 0.0181 0.2191 0.4066 - - -

β7 (A1*D) 0.0083 0.2886 0.7732 - - -

β8 (A2*G) -0.0006 0.0005 0.2909 - - -

β9 (A2*D) -0.0002 0.0006 0.7354 - - -

β10 (A3*G) 0.000004 0.000004 0.2475 - - -

β11 (A3*D) 0.000002 0.000004 0.6538 - - -

β12 (G*D) 0.3086 0.1450 0.0333 - - -

Precision

submodel

d0 (Intercept) 0.8594 0.1985 <0.0001 0.6111 0.0820 <0.0001

d1 (A1) -0.0149 0.0185 0.4208 0.0107 0.0016 <0.0001

d2 (A2) 0.0009 0.0005 0.0646 - - -

d3 (A3) 0.000009 0.000004 0.0138 - - -

d4(G-Male) -0.2706 0.2667 0.3104 0.1445 0.0725 0.0461

d5(D-Yes) 0.4919 0.4516 0.2761 0.4517 0.1150 <0.0001

d6 (A1*G) 0.0268 0.0243 0.2679 - - -

d7 (A1*D) -0.4004 0.0336 0.2344 - - -

d8(A2*G) -0.0006 0.6279 0.3181 - - -

d9 (A2*D) 0.0009 0.0007 0.2196 - - -

d10 (A3*G) 0.000005 0.000004 0.2444 - - -

d11(A3*D) -0.000004 0.000005 0.4293 - - -

d12 (G*D) -0.5715 0.1838 0.0018 -0.5490 0.1507 0.0003

Clearly the covariate capturing whether a person had suffered a severe illness before as well

as age had significant effects at α = 5%. This observation is noted both in the location

and precision sub models. However, gender is significant in the precision sub model and not
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significant in the location sub model. Even though it does not have an effect in the location

sub model, it contributes in accounting for variability in the mean of VAS HRQoL scores.

Figures 7 (a) and (b) show VAS HRQoL predictions based on the final model. A difference

in health scores is noted between individuals who had suffered severe illnesses and those

who had not, and the difference is larger for older individuals. While there is no notable

difference in HRQoL scores between males and females. The prediction confidence band

shown in figure 7 (c) is narrower at the beginning and wider at the end.
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Figure 7: Final model VAS HRQoL predictions by Disease1 and gender , and 95% prediction

Confidence interval

Bias corrected , bias reduced and non-parametric bootstrap estimates based on the selected

model are shown in table 5 below.
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Table 5: Bootstrap, Bias corrected and Reduced model estimates

Parameter Bias Corrected Bias Reduced Non-parametric Bootstrap

Estimates Estimates Estimates

Location

submodel

β0 (Intercept) 2.6970(0.1026) 2.6980(0.1026) 2.6967(0.1091)

β1 (A1) -0.0504(0.0076) -0.0504(0.0076) -0.0502(0.0129)

β2 (A2) 0.0009(0.0001) 0.0009(0.0001) 0.0009(0.0004)

β3 (A3) -0.000006(0.000001) -0.000006(0.000001) -0.000006(0.000002)

β4 (G-Male) -0.0073(0.0605) -0.0078(0.0605) -0.0071(0.0530)

β5 (D-Yes) -0.6649(0.0697) -0.6651(0.0698) -0.6648(0.0738)

Precision

submodel

d0 (Intercept) 0.6093(0.0820) 0.6102(0.0820) 0.6111(0.0959)

d1 (A1) 0.0107(0.0017) 0.0107(0.0017) 0.0108(0.0021)

d4 (G-Male) 0.1440(0.0725) 0.1434(0.0605) 0.1445(0.0928)

d5 (D-Yes) 0.4433(0.1149) 0.4428(0.1149) 0.4517(0.1808)

d12 (G*D) -0.5479(0.1505) -0.5481(0.1505) -0.5490(0.2490)

The obtained bias corrected and bias reduced estimates were similar to the proposed model

estimates. This could have resulted due to the considerable large sample size used for the

analysis. Stability was further confirmed by the non-parametric bootstrap estimates (based

on 1500 bootstrap samples) which were quite similar to selected model estimates presented

in table 4.
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2.4.2 Statistical Modelling of EQ5D HRQoL outcomes:Results

Table 6 below presents AIC results for models fitted under polynomials and fractional polynomials.

Table 6: Model comparisons based on AIC and Likelihood Ratio Tests

polynomials

Polynomial Model Model with Model with Dispe- AIC Models compared Likelihood

Order interactions rsion covariates Based on logit Ratio Test

link function (p value)

Logit Probit Cloglog

1 1 Yes Yes 1496.067 1497.503 1503.868 (1) vs.( 2) <0.0001

2 Yes No 1602.195 1603.950 1611.873 (1) vs.( 3) 0.0009

3 No Yes 1506.058 1508.327 1517.693 (3 ) vs (4) <0.0001

4 No No 1605.632 1608.179 1618.567 (2 ) vs. (4) 0.0017

2 5 Yes Yes 1402.973 1402.278 1404.214 (5 ) vs. (6) <0.0001

6 Yes No 1545.833 1545.462 1552.039 (5 ) vs. (7) 0.0675

7 No Yes 1396.832 1396.127 1399.689 (7) vs (8) <0.0001

8 No No 1537.864 1538.469 -1545.164 (6 ) vs. (8) 0.2830

3 9 Yes Yes 1406.404 1405.659 1410.018 (9) vs.(10) <0.0001

10 Yes No 1530.520 1529.846 1537.266 (9) vs.(11) <0.0798

11 No Yes 1395.047 1395.424 1537.266 (11) vs. (12) <0.0001

12 No No 1525.601 1526.041 1531.611 (10) vs.( 12) 0.0718
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Fractional polynomials

Fractional Power Model with Model with Dispe- AIC Models compared Likelihood

Polynomial of interactions rsion covariates Based on logit Ratio Test

Degree age link function (p value)

Logit Probit Cloglog

3 (1) Yes Yes 1433.095 1432.939 1436.032 (1) vs.( 2) <0.0001

1 3 (2) Yes No 1559.465 1559.638 1559.951 (1) vs.( 3) <0.0105

3 (3) No Yes 1431.686 1431.909 1434.186 (3 ) vs (4) <0.0001

3 (4) No No 1557.053 1557.587 1562.357 (2 ) vs. (4) 0.0171

(3,3) (5) Yes Yes 1402.283 1401.554 1404.024 (5 ) vs. (6) <0.0001

2 (3,3) (6) Yes No 1529.075 1528.885 1533.715 (5 ) vs. (7) <0.0700

(3,3) (7) No Yes 1396.032 1396.120 1399.136 (7) vs (8) <0.0001

(3,3) (8) No No 1526.715 1526.945 1532.198 (6 ) vs. (8) 0.2756

3 (-1,3,3) (5) Yes Yes 1395.739 1396.141 (9) vs.(10) <0.0001

(-1,3,3) (6) Yes No 1524.349 1524.804 (9) vs.(11) <0.0798

(-1,3,3) (7) No Yes 1393.913 1394.773 (11) vs. (12) <0.0001

(-1,3,3) (8) No No 1521.817 1522.730 (10) vs.( 12) 0.2542

3 (-2,3,3) (9) Yes Yes 1397.900

(-2,3,3) (10)Yes No 1529.356

(-2,3,3) (11) No Yes 1396.302

(-2,3,3) (12) No No 1527.740
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Tests for interactions based on order 1 polynomial and degree 1 fractional polynomial (p

values = 0.0017 and 0.0171) indicated the need for interactions, while tests in second and

third order polynomials had non-significant p values indicating that interactions were pos-

sibly not useful (p values = 0.2830 and 0.0718). This deduction was similarly observed for

fractional polynomial models. Besides, significant likelihood ratio tests showed that inclusion

of regressors was important in the dispersion sub models.

Predictions based on best models under each link function in table 6 were shown in figure 8

(a and b). Since there was existence of two sub groups for EQ5D response, another modeling

technique that could be considered is non-linear piecewise regression but this was alterna-

tively modeled non parametrically using cubic splines which resulted to equally a good fit

to the data (figure 8 c). These parametric and non-parametric techniques resulted to mod-

els which gave almost equivalent fits to the data. It is important to note that prediction

based on best fractional polynomial model was only possible for individuals whose ages were

greater than zero years. Even though fractional polynomial model was the best in terms of

AIC (1393.913), inferences based on it could not offer full coverage to the data.
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Figure 8: Graphical representation of the best fits for polynomial, fractional polynomial and

cubic spline models under different link functions

Therefore, order three logit polynomial (AIC=1395.047) was selected whose predictions and

inferences would cover the whole data. The non-significant parameters were systematically

eliminated from the model by backward selection. As such the resulting final model was a

polynomial which is a special case of degree 2 fractional polynomial with powers 1 and 3.

Thus table 7 presents the final model estimates.
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Table 7: Model Coefficients, Standard Errors and Significance Tests

Selected Model Final Model

Parameter Coefficients s.e p value Coefficients s.e p value

Location

submodel

β0 (Intercept) 1.8310 0.2020 <0.0001 1.6810 0.1468 <0.0001

β1 (A1) -0.0344 0.0201 0.0878 -0.0128 0.0049 0.0096

β2 (A2) 0.0006 0.0005 0.2707 - - -

β3 (A3) 0.000007 0.000004 0.0957 -0.000003 0.0000008 0.0006

β4 (G-Male) 0.1780 0.1068 0.0957 0.1783 0.1068 0.0953

β5 (D-Yes) -1.1970 0.1392 <0.0001 -1.1870 0.1388 <0.0001

Beta

Regression

submodel

β0(Intercept) 0.7770 0.1074 <0.0001 0.6979 0.0749 <0.0001

β1 (A1) 0.0002 0.0091 0.9846 0.00928 0.0023 <0.0001

β2 0.0002 0.0002 0.2944 - - -

β4 (A3) -0.000004 0.000001 0.3545 -0.000002 0.0000003 <0.0001

β4(G-Male) -0.0568 0.0473 0.2303 -0.0541 0.0472 0.2522

β5 (D-Yes) -0.3881 0.0604 <0.0001 -0.3868 0.0604 <0.0001

Dispersion

submodel

d0 (Intercept) 2.3940 0.2275 <0.0001 2.426 0.1845 <0.0001

d0 (A1) 0.0445 0.0188 0.0181 0.0410 0.0076 <0.0001

d2 (A2) -0.0006 0.0004 0.1761 -0.00053 0.00007 <0.0001

d3 (A3) 0.0000007 0.000003 0.8245 - - -

d4 (G-Male) -0.3534 0.1091 0.0012 -0.3463 0.1086 0.0015

d5 (D-Yes) -0.9429 0.1180 <0.0001 -0.9379 0.1179 <0.0001
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The logistic sub model showed that a unit difference in age resulted to a decrease in odds for

HRQoL by 0.98 times when considering younger to older individuals. Cubic function of age

was significant in both of the mean models and denoted a decrease in HRQoL of life with age.

Additionally, logistic regression resulted to a notable decrease in odds for HRQoL by 0.305

times for individuals who had previously suffered severe illnesses compared to individuals

who had not suffered any severe illnesses. Predicted mean scores were weighted averages

from these two models. Considering the dispersion sub model, quadratic function of age,

gender and disease status explained reduction in variability for the mean.

Figure 10 shows weighted mean predictions for HRQoL by disease status and gender using

the final fitted model shown in table 7. A clear difference in HRQoL is shown between those

who had suffered severe illnesses before and those who had not. While no serious notable

difference in HRQoL for males and females, if any then the little non-significant difference

observed for individuals of 80 years old and above. The male and female HRQoL predictions

coincided with the average prediction for the population.
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Figure 9: Final model weighted mean EQ5D HRQoL predictions by Disease1 and gender

The beta regression sub model showed positive and negative significant effects of age and

cubic function of age respectively on HRQoL scores. Therefore, it was important to draw
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meaningful interpretations from the prediction plots for the individuals who had EQ5D

HRQoL scores less than one.
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Figure 10: Mean EQ5D HRQoL predictions by Disease1 and gender based on beta regression

sub model, and 95% prediction band.

A positive effect is observed for a unit difference in age for individuals between 0 and 38

years, while negative effect noted for individuals of 38 years and above. The confidence band

in figure 10(c) is a bit wider at the beginning and at the end. This is observed due to the

few individuals at these points.

Appendix figure 14, shows predictions for the whole data using logistic regression sub model.

Generally a decrease in HRQoL is observed for a unit increase in age.

3 Discussion

It was of interest to determine and explain quality of health in the general population in

Flanders. It is important to note that EQ5D instrument used in this region has gained

widespread acceptance as a tool for measuring HRQoL in clinical trials, analyses leading to

decisions in health economics and many population surveys. Its main strength is reliability

since it takes into account the underlying uncertainties of quality of health in terms of
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dimensions. On the other hand, VAS is perceived as a latent measurement instrument

and its reliability is gradually gaining acceptance (Brazier, Ratcliffe, Salomon & Tsuchiya,

2007).

The methods discussed under data exploratory; regression trees, random forest and lasso

regression have an underlying assumption of normality. However, the data did not conform

to this assumption thus were used as mere exploratory tools.

Polynomials of up to order 3 and fractional polynomials of up to degree 3 were investigated.

Models for the latter turned out to be the best fitting models for EQ5D and VAS outcomes

based on compared AIC values even though both still achieved considerably better fits for

the two outcome measures. Predictions based on polynomials covered the whole range of

the data while predictions based on fractional polynomials neglected individuals at age zero.

Therefore, best polynomial models were considered suitable for the data other than fractional

polynomials which had poor predictions for a section of the data even though they had

relatively lower AIC values.

Statistical analyses both for VAS and EQ5D HRQoL outcomes showed significant effects

at 5% for age and covariate indicating whether an individual had suffered a severe disease

previously or not. VAS outcomes showed that there was a rather gradual decrease in HRQoL

for individuals between 0 to 20 years, and also between 60 to 100 years. However, EQ5D

outcomes showed that individuals between 0 to 5 years old had almost similar HRQoL

scores and a gradual decrease observed in the scores for individuals beyond 5 years to 100

years. Individuals who had suffered severe illnesses before had lower predicted quality of

health scores compared to corresponding individuals of the same age who had not suffered

any severe disease previously. Gender as a factor was not significant but a little difference

though not significant was observed for males and females older than 80 years. Despite its

non-significance, it was retained in the model since it was considered as a confounder.

Analysis was performed at the population level only, and possible extension can be considered

for sub groups present in the data (children, adults and the elderly). Other modelling

techniques such as non-linear modelling and p splines can be explored for comparable fits.
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4 Appendix

Table 8: EQ5D Health States

Mobility Score Self-care Score

I have no problem walking around 1 I have no problems to take care of myself 1

I have some problems walking around 2 I have some problems to take care of myself to wash or dress 2

I am bed ridden 3 I myself am unable to wash or dress 3

Daily Activities Score Pain/Symptoms Score

I have no problem with my daily activities 1 I have no pain or other symptoms 1

I have some problems with my daily activities 2 I have moderate pain or other symptoms 2

I am unable to perform my daily activities 3 I have very severe pain or other symptoms 3

Anxiety/Depression Score

I am not anxious or depressed 1

I am moderately anxious or depressed 2

I am very anxious or depressed 3
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Table 9: Possible sets of models for modelling VAS and EQ5D HRQoL outcomes

Polynomial Model Location Model Covariates Dispersioon Model Covariates

Order

1 1 A1,G, D,A1*G, A1*D,G*D A1,G, D,A1*G, A1*D,G*D

2 A1,G, D,A1*G, A1*D,G*D -

3 A1,G,D A1,G, D

4 A1,G, D -

2 5 A1,A2,G,D,A1*G,A1*D,A2*G,A2*D,G*D A1,A2,G,D,A1*G,A1*D,A2*G,A2*D,G*D

6 A1,A2,G,D,A1*G,A1*D,A2*G,A2*D,G*D

7 A1,A2,G,D A1,A2,G,D

8 A1,A2,G,D

3 9 A1,A2,A3,G,D, A1,A2,A3,G,D,

A1*G,A1*D,A2*G,A2*D,A3*G,A3*D,G*D A1*G,A1*D,A2*G,A2*D,A3*G,A3*D,G*D

10 A1,A2,A3,G,D, -

A1*G,A1*D,A2*G,A2*D,A3*G,A3*D,G*D -

11 A1,A2,A3,G,D A1,A2,A3,G,D

12 A1,A2,A3,G,D -

(A1-Age; A2-A1**2 ;A3=A1**3; G-Gender; D-Disease1)
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Table 10: Variable Description

Population level Variables (Child, Adult and Elderly shared variables) : n=2204

Variable Levels % Type Remarks

Gender Female 46.71 categorical Gender of respondent

Male 53.29

missing -

Nationality Belgian 96.64 categorical

From Another EU 2.31 (nominal)

Non-european 0.86

Missing 0.19

Province Vlaams-Brabant 14.86 Categorical Regions

(nominal)

Antwerpen 27.63

Limburg 15.40

West-Vlaanderen 18.29

Oost-Vlaanderen 23.27

Missing 0.87

Animal Yes 62.03 categorical Shows whether a family

No 37.38 kept animals or not

Missing 0.59

Normalday Normal 76.45 categorical Shows Normal

Not normal 23.05 day or non-normal

day due to Sickness

or other reason

Missing 0.50

Agecat /Age Child 22.38 Agecat

(categorical) Age category

of a person

Adult 61.17 Age Age in years

(continuous)

Elderly 60+ yrs 16.45

Missing -
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Householdsize 1 13.91 Categorical Size of the

(ordinal) household

2 22.02

3 20.66

4 29.18

5 10.78

6 2.49

7 0.41

8 0.13

9 0.04

11 0.04

12 0.04

Missing 0.27

HouseholdID Observed 100 Household unique

ID

Missing -

Parents 1 19.93 Categorical Indicates whether

the number of Parents

in a family is 1 and 2

2 76.16

Missing 3.89

Disease1 Yes 15.04 categorical Ever been confronted

with severe

No 78.93 disease of yourself

Missing 6.03

Disease2 Yes 45.58 categorical Ever confronted with

severe disease of someone

in the family

No 44.77

Missing 9.65
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Child level additional variables : n=494

mumEducation None 0.61 categorical Education level for

(nominal) a childs Mother

Primary 0.81

Vocational 10.73

Lower technical 2.23

Lower Secondary 2.43

Upper technical 8.30

Upper Secondary 13.97

Non-university

higher education 42.91

Graduate/postgraduate 18.02

Missing -

Adults and elderly shared variables: n=1710

Smokestatus Smoker 16.46 categorical Indicates respondent’s

(nominal) smoke status

Quit smoker 22.01

Non-smoker 60.89

Missing 0.64

WorkedinHCare Yes 22.24 categorical Indicates whether

an individual works/had

No 76.94 worked in a health

care facility or not

Missing 0.82

Disease3 Yes 8.48 Categorical Ever confronted with severe

No 63.69 disease because caring for

missing 27.83 someone else
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Profession craftsman with no employees 3.62 categorical Respondents

profession

craftsman with less than 5 employees 1.17 (nominal)

business leader with 6 or more employees 0.99

professional clerk 2.86

senior member of general management 2.45

middle, not part of the general management 13.66

other employee 32.81

worker with vocational training 8.69

worker without vocational training 6.13

housewife/househusband 6.13

disabled 2.10

retired 1.57

student 9.52

unemployed 2.81

rentier 0.12

missing 5.37 Missingness

include

persons with

profession>1

Elderly level additional variables: n=360

Working Yes 5.51 Categorical elderly

work status

No 92.28

missing 2.21

Freq1 daily 14.84 Categorical

(nominal) Children

visit freq

a few times a week 38.37

a few times a month 25.45

once a month 2.24

a few times a year 4.76

once a year 0.56

less than once a year 1.68

missing 12.10
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Freq2 daily 6.44 Categorical

(nominal) grandchildren

visit freq

a few times a week 26.89

a few times a month 26.61

once a month 7.56

a few times a year 9.80

once a year 1.40

less than once a year 2.52

missing 18.78

Freq3 1 or 2 glasses daily 16.25 Categorical Freq with which elderly

(nominal) Consumed alcohol

more than 2 glasses daily 4.76

1 or 2 glasses a few times a week 17.93

More than 2 glasses a week 5.04

a few times a month 16.25

a few times a year 8.41

missing 31.37

Response variables

VAS Observed 95.84 Continuous Outcome measures

by VAS

Missing 4.16

CLMPT EQ5D Observed 98.28 Continuous Outcome measures

by Cleemput

Missing 1.72 EQ5D

1 2 3

0.0
0.2

0.4
0.6

0.8
1.0

VAS

Age Category

HR
Qo

L S
cor

e

1 2 3

0.0
0.2

0.4
0.6

0.8
1.0

EQ5D 

Age Category

Figure 11: Boxplots for HRQoL by age categories
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Figure 12: Boxplots for HRQoL by disease1

Female Male

0.0
0.2

0.4
0.6

0.8
1.0

VAS

Gender

HR
Qo

L S
cor

e

Female Male

0.0
0.2

0.4
0.6

0.8
1.0

EQ5D 

Gender

Figure 13: Boxplots for HRQoL by gender
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Figure 14: EQ5D HRQoL prediction by logistic submodel
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Figure 15: Random forests for VAS and EQ5D HRQoL Scores respectively
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