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Abstract 
 

Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics 

can save lives. There have been various attempts to educate the public about appropriate use 

of antibiotics through public campaign. Because the resistance to antibiotics is a major Europe 

and global public-health problem and antibiotic use is being increasingly recognized as the 

main selective pressure driving this resistance. 

In this report, total outpatient antibiotic use (J01) and outpatient penicillin use (J01) data from 

27 European countries during 1997 to 2009 were used for further analysis. These data were 

collected by the European Surveillance of Antimicrobial Consumption (ESAC) project. The 

antibiotic use data were expressed as the number of defined daily doses (DDD) per 1000 

inhabitants per day (DID). 

The main objective of the study is to develop an appropriate statistical model and to identify 

possible change points while accounting for country-specific global use as well as seasonal 

effect. In order to achieve the goal of the study adaptive change point mixed model is 

proposed. 

Gibbs sampling is used for inference. Trace plot, Brooks-Gelmen-Rubin (BGR) diagnostic 

plot, and Geweke diagnostics plot used to assess the convergence of the model. Moreover, 

DIC were used as model selection tool. 

In conclusion, addition to the trend over time and seasonal variation, two change points were 

found in total outpatient antibiotic use data and one random change point was found in 

penicillin use data. These change points were found in the period when there were public 

campaigns.  

 

Keywords: antibiotic use, campaign, change point model, linear trend in time, seasonal 

variation, convergence. 
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1. Introduction 
 

Antibiotics are powerful medicines that fight bacterial infections. Used properly, antibiotics 

can save lives. They either kill bacteria or keep them from reproducing (Midline Plus).  The 

most common misuse and abuse of antibiotics are: physicians prescribing antibiotics for viral 

infections and not finishing the full dosage of the antibiotic (American Collage of Physician). 

The antibiotic misuse sometimes called antibiotic abuse or antibiotic overuse is a contributing 

factor to the creation of multidrug-resistance bacteria, informally called "super bugs": 

relatively harmless bacteria can develop resistance to multiple antibiotics and cause life-

threatening infections (Harrison and Svec, 1998).  

Resistance to antibiotics is a major Europe and global public-health problem and antibiotic 

use is being increasingly recognized as the main selective pressure driving this resistance. The 

increase in resistance rate of many pathogens to currently most available antibiotics has now 

been recognized as a universal health hazard and potentially life threatening problem. A large 

number of studies strongly suggested that this increase is directly related to the actual use of 

antibiotics (Goossens et al., 2005; Malhotra-Kumar et al., 2007; Costelloe et al., 2010). In 

high-income countries the majority of antibiotics for use in human beings are prescribed in 

the ambulatory-care setting for upper respiratory tract infections; a substantial proportion of 

these prescriptions are unnecessary (Gonzales et al., 2001).  

There have been various attempts to educate the public about appropriate use of antibiotics. In 

November 2001, the European Union (EU) Health Ministers adopted a Council 

Recommendation on the prudent use of antimicrobial agents in human medicine (Council of 

the European Union) which stated that EU Member States should inform the general public of 

the importance of prudent use of antimicrobial agents by, in particular, raising awareness of 

the problem of antimicrobial resistance and encouraging realistic public expectations for the 

prescription of antimicrobial agents. 

According to Huttner et al. (2010), during 2001-2006 there were national campaigns from 

simple low cost internet to expensive mass-media in many European countries at least once 

(for example in Belgium, France, Germany, Greece, Luxemburg, Norway, Portugal, Spain 

and United Kingdom ). The goals of the campaigns were antibiotics awareness, prudent use of 

antibiotics and about not taking antibiotics for viral infections such as colds and flu.  
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In Belgium and France, national awareness campaigns to educate the public and primary care 

prescribers about appropriate outpatient antibiotic use have successfully resulted in a decrease 

in antibiotic prescriptions (Bauraind et al., 2004; Coenen et al., 2008; Goossens et al., 2008; 

Earnshaw et al., 2009). Additionally, in both countries, the savings from reductions in 

antibiotic expenses for the national insurance system as a result of the public campaign 

largely outweighed the cost of the public campaign itself (Goossens et al., 2006; Coenen et 

al., 2007). The success of these campaigns stimulated a European initiative coordinated by the 

European Centre for Disease Prevention and Control (ECDC), and named “European 

Antibiotic Awareness Day” (EAAD), to take place each year on 18 November since 2008. 

The focus of the first EAAD campaign was about not taking antibiotics for viral infections 

such as colds and flu (Earnshaw et al., 2009). 

The field of drug utilization research has attracted increasing interest since its infancy in the 

1960s. At a symposium in Oslo in 1969 entitled “The Consumption of Drugs”, it was agreed 

that an internationally accepted classification system for drug consumption studies was 

needed. Then, Norwegian researchers developed a system known as the Anatomical 

Therapeutic Chemical (ATC) classification. In the ATC classification system, the active 

substances are divided into different groups according to the organ or system on which they 

act and their therapeutic, pharmacological and chemical properties. Drugs are classified in 

groups at five different levels. The drugs are divided into fourteen anatomical main groups (1
st
 

level), with therapeutic subgroups (2
nd

 level). The 3
rd

 levels are pharmacological subgroups; 

the 4
th

 levels are the chemical subgroups and the 5
th

 level is the chemical substance (WHO 

Collaborating Center for Drug Statistics Methodology).  

In order to measure drug use, it is important to have both a classification system and a unit of 

measurement. To deal with the objections against traditional units of measurement, a 

technical unit of measurement called the Defined Daily Dose (DDD) to be used in drug 

utilization studies was developed. The DDD is the assumed average maintenance dose per day 

for a drug used for its main indication in adults. A DDD will only be assigned for drugs that 

already have an ATC code. Doses for individual patients and patient groups will often differ 

from the DDD and will necessarily have to be based on individual characteristics (e.g. age and 

weight) and pharmacokinetic considerations. The purpose of the ATC/DDD system is to serve 

as a tool for drug utilization research in order to improve quality of drug use. One component 

of this is the presentation and comparison of drug consumption statistics at international and 

other levels (WHO Collaborating Center for Drug Statistics Methodology).  
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Use data were expressed in DDD per 1000 inhabitants per day (DID) and packages per 1000 

inhabitant per day (PID). In most of the participating countries, the denominator was based on 

the World Health Organization (WHO) mid-year population (WHO Regional Office for 

Europe). 

The features of antibiotic use data has the non-linearity of the relationship between response 

(DID or PID) and time (quarterly collected), in longitudinal data context. Thus, they require a 

careful modeling strategy that compromises both best fit of the data and also delivering the 

seasonally interpretability of the parameters of interest. So that, in such situations, a non-

linear mixed model was appropriate. Moreover, because of some campaign and some policies 

change, the overall trend would change after some point of time. Thus, the adaptive change 

point mixed model was proposed. The models are implemented in R using R2WinBUGS 

package. 

The main objective of the study is to develop an appropriate statistical model and to identify 

possible change points while accounting for country-specific global use as well as seasonal 

effect. 

In Section 2, the relevant background literature related to an antibiotic use and change point 

model are presented. In Section 3, the data sets are described. In Section 4, the statistical 

methodology will be elaborated, including adaptive change point model, prior specification, 

Gibbs sampling for Bayesian inference, convergence of Markov chain and model selection. In 

section 5, the result for total outpatient antibiotic use (J01) and outpatient penicillin use 

(J01C) are presented. And finally, discussions and conclusions are presented in Section 6.   
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2. Literature Review 
 

In this section of literature review, literatures related to total outpatient antibiotic use, 

outpatient penicillin use and random change point models are discussed. 

Goossens et al. (2005) investigated total outpatient antibiotic use in Europe that provided 

internationally comparable distribution or reimbursement data, between Jan 1, 1997, and Dec 

31, 2002 using DID measurement. They showed that the use of antibiotics in primary care in 

Europe varied by a factor of 3.2 between 28 countries, with highest (32.2 DID) use in France 

and lowest (10.0 DID) use in the Netherlands. They also noted seasonal fluctuation with 

heightened winter peaks in countries with high yearly use in antibiotic. In addition, they 

showed higher rates of antibiotic resistance in high consuming countries, probably related to 

the higher consumption in Southern and Eastern Europe than in northern Europe. 

Adriaenssens et al. (2011) described and analyzed the statistical trend of total outpatient 

antibiotic use in Europe from 1997 to 2009 using longitudinal data analysis. They showed that 

the total antibiotic use in 2009 varied by a factor 3.8 between 33 countries, with highest (38.6 

DID) use in Greece and lowest (10.2 DID) use in Romania. In addition, they found significant 

increase in total outpatient antibiotic use, as well as significant seasonal variation, which 

decreased over time from 1997 to 2009. 

Versporten et al. (2011) also described and analyzed the statistical trend of outpatient 

penicillin use in Europe from 1997 to 2009 using longitudinal data analysis. They showed that 

outpatient penicillin use in 2009 varied by a factor 3.8 between 33 countries, with highest 

(16.08 DID) use in France and lowest (4.23 DID) use in Russian Federation). They also found 

a significant increase in total outpatient antibiotic use, as well as significant seasonal 

variation. They also noted that penicillin represented the most widely used antibiotic 

subgroup. 

Likewise, the longitudinal data analysis of the pharmacological subgroups, which are the 

therapeutic subgroup of J01, were done in different literatures. Such as J01M Quinolone 

(Adriaenssens et al., 2011), J01D Cephalosporin (Versporten et al., 2011), J01A Tetracycline, 

J01E Sulfonamides and J01X other antibacterials (Coenen et al., 2011), and J01A 

Tetracycline (Minalu et al., 2011). The results of those literatures showed either increase or 

decrease of the overall trend. 
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However, those results could cover the effect of campaign and the policy change. Thus, the 

change point model is appropriate. The general form of the change point problem is to 

determine the unknown location , based on an ordered sequence of observation            

such that the two group observation                           follow distinct models, 

the index of ordering frequently refers to time but in general, it can be associated with any 

variable (Armitage, P., and Colton, T. (editors), 1998). So that the purpose of the change point 

model is to detect breaks in an event window. 

Random change point models have previously been used in several bioscience applications. 

These include studies of progression of HIV infection using CD4 T-Cell numbers (Lange et 

al., 1992; Kiuchi et al., 1995), development of prostate specific antigen (PSA) levels as a 

marker for prostate cancer (Slate and Turnbull, 2000) and cognitive function in old age (Hall 

et al., 2003). Moreover, adaptive change point mixed models has been applied to data on 

outpatient Tetracycline use in Europe which is under revision (Minalu et al., 2011). 

Due to the nonlinearity of the response function in the random change point model, the 

likelihood does not have a closed-form expression, which complicates maximum likelihood 

estimation. Possible solutions to this problem include approximate likelihood methods and 

sampling-based inference methods (Dominicus et al., 2008). 

Hall et al. (2003) compared the Bayesian approach with the profile likelihood approach for 

modeling cognitive function over time, and pointed out that the Bayesian method has an 

advantage over the profile likelihood method in that it does not require all subjects to have the 

same change-point.  

Therefore, in this paper the adaptive Bayesian change point mixed model is proposed, where 

the change points are data-driven and can vary across countries.  
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3. The antibiotic Use Data 

3.1. Total outpatient antibiotic Use Data (J01) 
 

The Antibacterial for systemic use (ATC code J01) is the total outpatient antibiotic use, which 

is the therapeutic subgroup of the anatomical group J (Anti-infective for systemic use). 

Quarterly data on total outpatient antibiotic use were collected by the European Surveillance 

of Antimicrobial Consumption (ESAC) project for the period 1997–2009 from 27 European 

countries. Antibiotic use data is expressed as the number of defined daily doses (DDD - a 

standardized consumption measure) per 1000 inhabitants per day (DID). This data set consists 

of 1404 observation. However, some profiles start later in time and others show intermediate 

missing parts. In total 420 (30%) observations are missing. The country with the least number 

of observations is Cyprus (with four observations). Missing at random (MAR) is assumed, 

and the analysis was based on all available data. 

Some countries were only able to provide total care (TC) data that is including both 

ambulatory and hospital care data, for example Cyprus and Lithuania. Greece provided TC 

data for 2004 – 08, Bulgaria and Iceland up to 2005 and Estonia for 2001. These data were, 

however, also included, because ambulatory care use data represent 90% of the total use 

(Goossens et al., 2005). 

3.2. The outpatient Penicillin use data (J01C) 
 

The beta-lactam antibacterial penicillin (J01C) is a pharmacological subgroup of the 

therapeutic group J01. The quarterly data was collected also by ESAC like total outpatient 

antibiotic use data with the similar general information. 
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4. Methodology  

4.1.  Exploratory data analysis 
 

Explanatory data analysis plays an enormous role to get insight about the data set, and even 

used as vehicle for further statistical analysis. Country profile plot for antibiotic use in DID 

was used to see the pattern of the outpatient antibiotic use on a country specific level. 

In section 4, methodology, the term “antibiotic use” is used as a collective name for both 

“total outpatient antibiotic use” and “outpatient penicillin use” 

4.2.  Adaptive change point models 
 

Country profile plots for antibiotic use in DID (Figures 2 and 9) show the variability across 

repeated measurements from the same country as well as variability between countries. In 

addition to that, it shows a non-linear pattern of seasonal variation in each year. Thus, the 

nonlinear mixed model with sinusoidal component over time to account for seasonal variation 

is introduced. In addition to this, to address the effect of campaigns and policy changes, the 

nonlinear mixed model is extended by including the change point components. All models are 

fitted in a Bayesian paradigm. 

4.2.1. Nonlinear mixed model 
 

The following nonlinear mixed model is proposed to the antibiotic use in DID (   ) for the 

country   (        ) at time points                 . Time,       correspond to the 

start of the study for the      country (first quarter of 1997). 

                         (                    )    (      )                 

          

            

where                     is a vector of fixed effects,    is the global intercept,    the 

global slope describing the marginal linear time trend,    is the fixed amplitude of the 

seasonal variation,    is the amplitude varying over time,   (in radians) the angular frequency 

that is a known constant (      where P(=4) is the period or the length of each cycle for 

the sine curve which means the number of seasons in each year),   is the phase shift which is 

unknown parameter,                       is the country-specific vector of random effects 
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where     is the country-specific random intercept,     is the country-specific random slope 

for time,     is the country-specific random slope for amplitude and     is the country specific 

damping effect on the seasonal variation. The matrix   is a general covariance matrix with 

elements        .     is the unexplained error term, usually assumed independent and 

normally distributed with mean zero and variance   . 

4.2.2. Adaptive change point model 
 

The general mixed model with country specific mean can be written as  

      (   )                                              

  (   )    
 (   )    

 (   )                                                                                         (2) 

where     is antibiotic use in DID for country   at time point    ,   
 (   ) is the trend 

component,   
 (   ) is the seasonal component and     is the measurement error. The country 

specific mean components    
 (   ) and    

 (   ) are modeled as:  

  
 (   )                         

  (   )                                                     (3.a) 

  
 (   )  (                    )    (      ),                                          (3.b) 

where   
  (   ) in (3.a) is a change point component given by  

  
  (   )  ∑                           

 
                                                             (4)  

where   is the unknown number of change points;                            is 

        if     is greater than or equal to    , zero otherwise.        or         or 

           where         ;    denotes a global change point,      is a country 

specific random change point and     is a country specific random change point effect, it is 

normally distributed with mean zero and the variance     

 . If   
  (   )   , then there are no 

change points and the model reduces to model (1).  

Substituting equation (3.a), (3.b) and (4) in equation (2) yields the model      

                         ∑                           
 
        

 (                    )    (      )        (5) 
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where   (                       ) is a vector of fixed effects,    the global slope 

describing the marginal linear time trend before the first change point,        is the difference  

in the linear time trend before and after the change point.                             

     is the  -dimensional vector of country specific random effects and is normally distributed 

with mean vector zero and covariance matrix  .     is the country-specific random slope for 

time before the first change point and         is the country-specific random difference in the 

linear time trend before and after the change point. Random effects for global level of use, the 

trend effects, the amplitude of the seasonal effect, and the location of the change point are 

used to account for heterogeneity across the countries.  

A graphical representation of the model with the meaning of fixed effect parameter is given in 

Heuristic figure (Figure 1).  

 

Figure1. Antibiotic use data. The heuristic figure for interpretation of model  parameters  
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4.2.3. Prior Specification  
 

The unique features that make the Bayesian paradigm attractive is, it allows for incorporation 

of prior knowledge in a statistical analysis. In contrast, its critics the necessity of specifying a 

prior makes the Bayesian approach unsuitable for research because of the introduction of 

subjectivity. The following non-informative prior distributions were used for the fixed effects. 

This prior is a function which is used in place of a subjective prior distribution when little or 

no prior information is available.  

                                        , independent where          

The term “non-informative" is used to connote the lack of subjective beliefs used in 

formulating such a prior. Non-informative is better called weakly informative prior. Thus, 

loosely speaking the non-informative prior in the normal case is a normal distribution with a 

very large variance.  

               , independent where          

For random effects, a multivariate normal prior was used. 

            where   is the variance covariance matrix for random effects.  

          where   inverse scaled     matrix and       degree of freedom.  

Inverse Wishart distribution (IW) used as the conjugate prior for covariance matrix of a 

multivariate normal distribution. However, because of no convergence, some random effects 

used a normal prior separately. 

                 

   

                        

    

                
    

Conjugate prior distributions are restrictive in their ability to represent the prior knowledge. 

Extending the flexibility in conjugate priors can be done by giving the parameters of the 

conjugate also a prior distribution. Thus, the hyperparameter in the prior distribution were 

chosen. An independent inverse gamma distribution with shape parameter           and a 

scale parameter          was used for the variance parameters. 

    

         

     
    

                      , independently  
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where                that means   ⁄  has the gamma distribution, 

  ⁄                 with mean   ⁄  and variance    ⁄ . 

4.2.4. Gibbs Sampling for Bayesian Inference 
 

Analytical calculation of the posterior distribution and its summary measure is prohibitive 

because of the difficulty in determining the integration constant. Calculating the integral using 

numerical integration method is a practical alternative if only a few parameters are involved. 

Nevertheless, it becomes (nearly) impossible for problems that are encountered in real life 

application where the number of dimensions is often high.  

An alternative to numerical integration is to take a Bayesian perspective and to perform 

Markov Chain Monte Carlo (MCMC) simulation to approximate the posterior distribution of 

the parameter. A Gibbs sampler (Geman Geman, 1984; Gelfand and Smith, 1990) to construct 

Markov chains was used. The Gibbs sampler (Gelman et a., 2004; Chib and Greenberg, 1995) 

is a special case of the Metropolis-Hastings (MH) algorithm where by the d sub steps of 

Gibbs sampling procedure can be seen as MH-algorithms with acceptance rate equal to 1. 

Given a starting position       
    

      
   , the multivariate version of the Gibbs sampler 

has the following iterative scheme. At iteration         

1. Sample   
    from        

     
        

    
     

2. Sample   
    from        

       
        

    
     

. 

. 

. 

d. Sample   
    from        

       
          

       

The conditional distributions of        
       

           
         

        
    

     are called 

full conditional distributions, because    is conditioned on all other parameters. 

4.2.5. Convergence of a Markov chain 
 

Convergence for Markov chain is an asymptotic property and implies that the distribution of 

  ,      , becomes the target distribution of        for    . This means that    

 (            )    with        a distance measure between two distributions for   large 
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and for a given small value of  . Thus, the convergence criteria assess the closeness of two 

distributions (Lesaffre and Lawson, 2012). In practice, checking convergence for Markov 

chain involves two aspects: stationarity of the chain and accuracy of the posterior summary 

measure. Among convergence of MCMC diagnostics, the following were used.   

Trace plot 

Trace plots of samples versus the simulation index can be very useful in assessing 

convergence. The trace plot shows whether the chain has not yet converged to its stationary 

distribution that is, if it needs a longer burn-in period. A trace can also show whether the 

chain is mixing well. A chain might have reached stationarity if the distribution of points is 

not changing as the chain progresses that is the plot appears as a horizontal strip and the 

individual moves are hardly discernible. The aspects of stationarity that are most recognizable 

from a trace plot are a relatively constant mean and variance. 

Brooks-Gelmen-Rubin (BGR) diagnostic 

The diagnostic is based on the multiple simulated MCMC chains by comparing the variance 

within the chain and the variance between the chains. Large deviation between two variances 

indicates nonconvergence. (Gelman and Rubin 1992; Brooks and Gelman 1998). 

Mathematically, if all chains have reached the target distribution, the posterior marginal 

variance estimate should be very close to the within chain variance. So the ratio is expected to 

be close to one. The square root of this ratio is referred to as the potential scale reduction 

factor (PSRF).  

Geweke convergence diagnostics 

Geweke (1992) suggests to formally testing the stationarity of a Markov chain by comparing 

the means of early and late part of the realized chain using a (frequentist) significant test. He 

suggests to take for early part the initial 10% of iterations and for the late part the last 50%, 

assuming that this creates enough distance to ensure the independence of the Markov chain. 
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4.2.6. Model selection  
 

A natural way to compare models is to use a criterion based on the trade-off between the fit of 

the data to the model and the corresponding complexity of the model. Spiegelhalter et al. 

(2002) proposed a Bayesian model comparison criterion based on this principle: 

        Deviance Information Criterion, DIC = ‘goodness of fit’ + ‘complexity’ 

Then, the fit measured via deviance  

                    

And complexity measured by estimate of ‘effective number of parameters”: 

       [ ]   (    [ ]) 

  ̅     ̅  

That is posterior mean deviance minus deviance evaluated at the posterior of the parameters.  

The DIC is then defined as analogously to AIC as 

       ̅     

      ̅     

Models with smaller DIC are better supported by the data (Spiegelhalter et al., 2002). 
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5. Results 

5.1. Result for Total Outpatient Systemic Antibiotic Use Data (J01) 
 

The quarterly total outpatient antibiotic use data (Figure 2) shows the variability across 

repeated measurements from the same country (within-country variability) as well as 

variability between countries (between-country variability). In addition to that, it shows a 

non-linear pattern of seasonal variation in each year. Therefore, to study the country specific   

outpatient antibiotic consumption, a nonlinear mixed model that integrates the trend 

component and sinusoidal component is needed. Because of this reason, the series of papers 

on outpatient antibiotic use in Europe (1997-2009) were published using a nonlinear mixed 

model that consists of a trend and a seasonal component.   

In addition to the trend over time and seasonal variation, it is important to assess any change 

of the trend at a specific time because of campaigns, policy changes or others. Minalu et al. 

(2011) extended that nonlinear mixed model by incorporating the change point component to 

identify the possible change points on outpatient tetracycline use data.   

 

Figure 2. Total outpatient antibiotic data J01. Observed country-specific evolution for total 

outpatient antibiotic use in DID 
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Thus in this section, a change point model was fitted for total outpatient antibiotic use (J01). It 

was formulated from simple (model with no change point) to complex (model with two 

change point) adaptively using Bayesian approach. In the progression of model building: 

careful selection of starting values; inclusion and exclusion of random effects; and changing 

the variance and covariance matrix of the random effect was considered until the model 

convergence obtained. As well as choice of prior specification was considered. 

Two independent chains of MCMC using Gibbs sampler were run, with different starting 

value. For each chain, 331,000 iterations were used, of which the first 11,000 iterations were 

discarded (burn in) and then the chain was thinned to every 40
th 

sample, as there was 

autocorrelation for some parameters.   

The following models were considered under the general change point model (equation 5, 

Section 4.2.2) with no random effect for country specific damping effect on seasonal variation 

(   ), because with the inclusion of this component no convergence was obtained. The model 

with the covariance matrix of random effects for all covariance equal to zero except between 

            was considered as a parsimonious model, where     is the country specific 

random intercept, and     is the country specific random slope for amplitude.  

   Model 1: Non-linear mixed model without a change-point, 

  
  (   )    

Model 2: Non-linear mixed model with one unknown common change-point (C1), 

  
  (   )                    

Model 3: Non-linear mixed model with two unknown common change-points (C1 and 

C2), 

  
  (   )          (      )                     

Model 4: Non-linear mixed model with unknown random change points and one 

known common change-point (    and      ), 

  
  (   )          (       ) 

                    

Model 5: Non-linear mixed model with unknown random change points and one 

known common change-point (    and      ), 

  
  (   )          (       )                     
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Model 6: Non-linear mixed model with unknown random change points and one 

known common change-point (    and      ), 

  
  (   )          (       )                     

Model 7: Non-linear mixed model with unknown random change points and one 

unknown common change-point (    and   ), 

  
  (   )          (       )                     

The results of Model 1 – 7 are shown in Table 3 (see Appendix I). The total outpatient 

antibiotic use data has been analyzed by Adriaenssens et al. (2011) using longitudinal data 

analysis to assess trend over time and seasonal variation. The result of this longitudinal data 

analysis was used as a starting value for Model 1, which is a model without change point. The 

result of Model 1 compared with the result of Adriaenssens et al. (2011) is nearly similar. 

However, this model got little support with highest DIC=3940.8. 

Since the random of the change point is not yet known, Model 2 (with one unknown change 

point) was fitted by extending Model 1.  Better DIC = 3856.8 was obtained and the estimate 

for the unknown common change point (  ) was 26.56 (≈ between the 2
nd

 and 3
rd

 quarter of 

2003).  Note that a lower DIC is better. In addition, the Model 3 that included two unknown 

common change points  was fitted, using uniform prior distribution over the total range of the 

time for the first unknown common change point and again  uniform prior distribution over 

the above of the first change point to the end range of the time for the second unknown 

common change point. It provides a better DIC=3813.1 as compared to Model 2. The 

estimated unknown change points were 26.96 (≈ the 3
rd

 quarter of 2003) and 45.95 (≈ the 2
nd

 

quarter of 2008).  

A model that included three unknown common change points was tried; however, statistical 

convergence was not achieved. Furthermore, a model that included two common unknown 

change points with random change point effect was fitted; again, the model did not converge. 

It is recognized from Huttner et al. (2010) that in many of Europe country there was a nation-

wide campaign experience at least once between year 2000 to year 2006. Therefore, that it 

may have country wide effect. In November 2008 (≈ 4
th

 quarter of 2008 = (time = 48)) there 

were European wide campaign, so that it could have European wide effect. Hence it elicited to 

build a model that have one country-specific random change points to account for the nation-

wide campaigns and one common change point to account for a European wide campaign. 
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Because there was a European campaign at 4
th

 quarter of 2008 (time = 48) and from Model 3 

the second change point estimate was 2
nd

 quarter of 2008 (time = 46), the Model 4 – 6 was 

fitted by fixing the second change point in between these periods (time = 46 to time = 48). 

From them the better DIC=3765.3 was exhibited on Model 6 (known change point, time = 

46). 

Furthermore, it was realized that in Model 4 – 6, the first change point happened before the 4
th

 

quarter of 2006 (time = 40). As a result, the final model (Model 7) was formulated to estimate 

the change points from the data by using uniform prior distribution between time = 1 to time 

= 40 for the first change point and uniform prior distribution between time = 40 to time = 52 

for the second change point. The estimate of the first unknown random change point is listed 

in Table 4 (see Appendix I) and the second unknown common change point is 46.14 (≈ 2
nd

 

quarter of 2008). There was no substantial difference between DIC of Model 6 (3765.3) and 

Model 7 (3767.7) though Model 7 was more in parameter. 

The convergence of the Markov chains for Model 7 was assessed as follow.   

 

 

Figure 3. Total outpatient antibiotic data use J01. Trace plots for fixed effect parameters of 

Model 7 
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Figure 4. Total outpatient antibiotic use data J01. BGR diagnostic plots for fixed effect 

parameters of Model 7 

 

 

 

 

 

Figure 5. Total outpatient antibiotic use data J01. The Geweke diagnostic plots for fixed 

effect parameters of Model 7  
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The suitable diagnostics to evaluate the mixing and the convergence of the sampler are used. 

Trace plots (Figure 3) show the horizontal and the individual moves are hardly discernible, it 

tells the stationarity of Markov chain. 

To assess convergence, the BGR diagnostic plots are shown in the Figure 4. It shows 

convergence under stationarity as red line (ratio of the length of total chain interval to average 

length of the within-chain interval) is equal to one for all parameters. As well as the estimated 

potential scale reduction factor (PSRF) was approximate to 1.0 for all parameters.   

In addition to that, the Geweke formal diagnostics shows the stationarity of the Markov chain 

because the majority of Z-values were inside the interval (Figure 5). 

Therefore, there is no problem in the convergence of the Markov chain. Moreover, it shows a 

better DIC.  

Ultimately, Model 7 is the best for Total Outpatient Antibiotic Use Data (J01) to assess the 

possible change points. 

                                    (       ) 

         (      )  (              )    (      )  

                   

In this model, the fixed effects (                   ) accounted for the European wide 

while the random effects (                   ) accounted for a country specific total 

outpatient antibiotic use. In the case of change points,     gives the country specific change 

point while    gives the common change point in Europe wide. Since two change points are 

found, the model will implement under three time subspace, which are 1 to    ,     to   , and 

   to 52.  Then 

 

The posterior estimate for mean, standard error and credible interval of the parameters for 

fixed effect and the parameter for variance-covariance components are presented in Table 1.  



  

20 

 

 

Table 1. Total outpatient antibiotic use data J01. Parameter estimate: posterior mean, 

standard error, and 95% credible interval for the parameters of fixed effects and the 

parameter of variance-covariance components. 

Effects parameters Mean S.e 2.5%, 97.5% 

    18.8947 1.044 16.820,  20.910 

    -0.0259 0.035 -0.095,  0.045 

    0.1214 0.049 0.022,  0.215 

    -0.1323 0.105 -0.349,  0.073 

 *C1i - - - 

 C2 46.1385 0.951 44.130,  47.830 

    4.1687 0.385 3.424,  4.935 

    -0.0107 0.005 -0.021,   -0.0004 

   0.4181 0.130 0.382,  0.454 

             24.4105 7.987 13.020,  43.880 

              0.0148 0.007 0.005,  0.032 

              0.0312 0.014 0.011,  0.068 

              0.1655 0.101 0.038,  0.423 

             3.0624 0.948 1.708,  5.399 

                 7.1047 2.432 3.606,  13.010 

            2.5256 0.130 2.282,  2.793 

 *C1i -The random change point of J01 are presented in Table 4 (appendix I) 

Table 1 shows the posterior parameter estimates (standard error) and 95% credible interval. 

The fixed effect    indicates that there was decreasing in global trend of total antibiotic use in 

DID before the first change point.    indicates positive global difference in the linear trend 

before and after the first country specific random change point.     indicates the negative 

global difference in linear trend before and after the second common change point (2
nd

 quarter 

of 2008).     indicates overall seasonal variation and also    shows overall seasonal variation 

trend over time. In addition to that it’s found that there is positive correlation between random 

intercept and random slope for amplitude. It indicates a country which has high total 

outpatient antibiotic use at 1
st
 quarter of 1997 could have high seasonal variation in antibiotic 

use. 
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The graphical presentation of the change points is shown on Figure 6. It shows a clear picture 

of the estimate of country specific random change points and the common change point. The 

first country specific random change points  obtained in between year 2000 to year 2004. The 

second common change point was 2
nd

 quarter of 2008. 

 

Country abbreviations 

AT: Austria       BE: Belgium      CY: Cyprus        CZ: Czech Republic    DE: Germany  

DK: Denmark     EE: Estonia        ES: Spain            FI: Finland               GR: Greece  

HR: Croatia       HU: Hungary     IE: Ireland            IL: Israel                 IS: Iceland         

IT: Italy            LT: Lithuania     LU: Luxembourg  LV: Latvia       NL: Netherlands 

PL: Poland        PT: Portugal       RU: Russian Federation   SE: Sweden  SI: Slovenia 

SK: Slovakia UK: United Kingdom 

Figure 6. Total outpatient antibiotic use data J01.  Scatter plot of estimate of country specific 

random change point and the common change point obtained from Model 7.  
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The estimated linear trend, the estimated change point model from Model 7 and the observed 

average DID for Europe, are shown in Figure 7.  The predicted mean is based on the predicted 

outcomes from the posterior distribution of the country-specific random effects. The Figure 

show how well the model fit the data. The total outpatient antibiotic use in Belgium and the 

observed average DID in Europe were compared (Figure 16, see Appendix III).  It shows the 

total antibiotic use in Belgium is higher. In contrast, the decreasing linear trend in time higher 

in Belgium before the first change point. In addition the first change point is obtained earlier 

in observed average DID in Europe. After the second change point the linear trend in time is a 

bit higher in Belgium as compared to the observed average DID in Europe.  

 

Figure 7. Total outpatient antibiotic use data J01.  The observed average DID (stars), the 

predicted mean profile (solid line), and the predicted linear trend (dashed line) and 

the change points (dense triangle) obtaining from fitting Model 7.   

Moreover, to see how well the Model 7 fits the data in country specific, it has explored for 

some of the selected courtiers using the parameter estimate in Table 1 for fixed effect and in 

Table 4 (Appendix I) for country specific random effect. The observed country specific 

profiles and the predicted country specific profiles from model for three selected countries 

(Belgium, Spain and the Netherlands) are shown in Figure 8. As can been seen from the 

Figure 8, the predicted country specific profiles follow closely the observed country specific 

DID values 
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Figure 8 Total outpatient Antibiotic use data: The observed country-specific DID (stars, dot), 

the predicted country-specific profiles (solid lines) , the country-specific predicted 

linear trends (dashed lines) and the change points (dense pictures) obtained from 

fitting Model 7 for three selected countries (Belgium, Spain  and Netherlands from 

top to bottom) 

5.2. Result for Penicillin Use Data (J01C) 
 

The quarterly outpatient penicillin use data J01C (Figure 9) shows a nearly similar pattern 

compared to total antibiotic use data (J01). This means it shows the within country variability 

and the between country variability and also the seasonal variability. 

To assess the possible change points the similar mechanism is used. So that two independent 

chains of MCMC using Gibbs sampler were run. 410,000 iteration, 11,000 burn in and 40 

number of thin was used. The model with the covariance matrix of random effects for all 

covariance equal to zero except between             was considered as a parsimonious 

model, where     is the country specific random intercept, and     is the country specific 

random slope for amplitude. 
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Figure 9. Outpatient penicillin use data J01C. Observed country-specific evolution for 

outpatient penicillin use in DID 

The following models were considered under the general change point model (equation 5, 

Section 4.2.2) in order to get the best model that fit the data with possible change points. 

Model 1*: Non-linear mixed model without a change-point, 

  
  (   )    

Model 2*: Non-linear mixed model with one unknown common change-point (C1), 

  
  (   )                    

Model 3*: Non-linear mixed model with unknown random change points  

  
  (   )          (       )   

The results of Model 1* – 3* are shown in Table 5 (see Appendix II). The Model 1* was 

fitted without including the change point component. Versporten et al. (2011) analyzed the 

outpatient penicillin use data using the longitudinal data analysis to assess the trend over time 

and the seasonal variation. Hence, the result of the longitudinal analysis was use again as 
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initial value for model one. As expected the result of Model 1* and Versporten et al. (2011) 

for outpatient penicillin use were close to similar though it was supported by highest DIC = 

2830.3.  

Since a change point is possible in outpatient penicillin use, the Model 1* is extended by 

including one unknown common change point component in the model (Model 2*). 

Convergence of the model was obtained. The result shows a better DIC=2699.2 and the 

estimated unknown common change point was 25.82 (≈ 2
nd

 quarter of 2003). It is closed to 

the first unknown common change point of total antibiotic use data (J01) in Model 2 (between 

the 2
nd

 and 3
rd

 quarter of 2003). Thus it is an indication that penicillin is accounted for the first 

change point in total antibiotic use (J01). 

Though Model 2* was extended by including two unknown change points, the convergence 

didn’t obtained. On the other hand the model 1* was extended by including the unknown 

random change point component. And the better fit was obtained with DIC = 2635.7. Because 

the model that included two change point model failed to converge, Model 3* choose as best 

model.  

The convergence of the Markov chains for Model 3* was assessed as follow.   

 

 

Figure 10. Outpatient penicillin use data J01C.. Trace plots for fixed effect parameters of 

Model 3* 
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Figure 11. Outpatient penicillin use data J01C. BGR diagnostic plots for fixed effect 

parameters of Model 3* 

 

 

 

 

Figure 12. Outpatient penicillin use data J01C. The Geweke diagnostic plots for fixed effect 

parameters of Model 3*  
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The convergence of the Markov chain was assessed using trace plot, Geweke diagnostic plots, 

BGR interval based and PSRF. Thus, the trace plots (Figure 10) shows thick pen test and 

since chain are highly mixed, it’s hardly discernible. Thus, staitionarity is achieved. The BGR 

plots (Figure 11) show the ratio (red line) is equal to 1 for all parameters. In addition from the 

result, the PSRF value for each parameter was near to 1.0. And the last the Geweke plot 

(Figure 12) is clear that most of Z value are inside the interval. So, from these diagnostics 

results, its notice that the model obtained the convergence.    

Therefore, the Model 3* considered as best model because it is converged with lower DIC.  

                                    (       )  (         

                               )    (      )             

With similar fashion in this model also, the fixed effects (                   ) accounted 

for the European wide while the random effects (                       ) accounted for a 

country specific outpatient penicillin use. In the outpatient penicillin use data only one change 

point was found and which is a country specific random change point. The model could 

implemented under two time subspace which are 1 to    ,     to 52.  Then, 

 

The posterior estimate for mean, standard error and 95% credible interval of the parameters 

for fixed effect and the parameter for variance-covariance components are presented in Table-

2. The fixed effect     indicates that there was increasing in global trend of outpatient 

penicillin use in DID before the change point.    also indicates the positive difference in 

linear trend after and before the change point. So that the trend of outpatient penicillin use 

before and after the change point is increasing. So that the increasing linear trend in time  is 

higher after the change point. 

 

  



  

28 

 

Table 2. Outpatient penicillin use data J01C. Parameter estimate: posterior mean, standard 

error, and 95% credible interval for the parameters of fixed effects and the parameter 

of variance-covariance components. 

Effects parameters Mean s.e 2.5%,  97.5% 

    8.3176 0.627 7.107,  9.592 

    0.0144 0.018 -0.022,  0.049 

    0.0350 0.033 -0.031,  0.101 

 *C1i - - - 

    1.8596 0.212 1.442,  2.291 

    -0.0009 0.005 -0.011,  0.009 

   0.3797 0.022 0.337,  0.422 

             8.8341 2.942 4.638,  16.030 

              0.0047 0.002 0.0018,  0.0100 

              0.0169 0.007 0.0074,  0.0345 

             0.8423 0.319 0.394,  1.640 

             0.0004 0.0002 0.0002,  0.0008 

                 2.6066 0.896 1.338,  4.809 

            0.8193 0.039 0.745,  0.901 

*C1i -The random change point of J01C were presented in table 6(appendix II)  

 

Figure 13. Outpatient penicillin use data J01C.  Scatter plot of estimate of  country specific 

random change point and the common change point obtained from Model 3*. 
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The graphical presentation of the change points with the corresponding country shown on 

Figure 13. It shows a clear picture on the estimate of country specific random change point. In 

addition, it seems most of country had change points in antibiotic in between year 2003 and 

year 2004.   

The estimated linear trend, the estimated change point model from Model 3* and the observed 

average DID for Europe, are shown in Figure 14. The predicted mean is based on the 

predicted outcomes from the posterior distribution of the country-specific random effects. The 

Figure show how well the model fit the data. The outpatient penicillin use in Belgium and the 

observed average DID in Europe were compared (Figure 17, see Appendix III).  It shows the 

outpatient penicillin use in Belgium is higher, specifically after the first change point. 

Moreover, the increasing linear trend in time moderately higher in Belgium after the first 

change point. 

 

Figure 14. Outpatient penicillin use data J01.  The observed average DID (stars), the 

predicted mean profile (solid line), and the predicted linear trend (dashed line) and 

the change point (dense triangle) obtaining from fitting Model 3*.   
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Moreover, in order to see how well the Model 4 fits the data in country specific, it was 

explored for some of the selected courtiers using the parameter estimate in Table 2 for fixed 

effect and in Table 6 (Appendix II) for country specific random effect. The observed country 

specific profiles and the predicted country specific profile from model for two selected 

countries (Belgium, United Kingdom) are shown in Figure 15. As can been seen from the 

Figure 15, the predicted country specific profiles follow closely the observed country specific 

DID values. So it may give a support how well the model fitted the data. 

 

Figure 15. Outpatient penicillin use data J01C. The observed country-specific DID (stars, 

dot), the predicted country-specific profiles (solid lines) , the country-specific 

predicted linear trends (dashed lines) and the change points (dense triangle) 

obtained from fitting Model 3* for three selected countries (Belgium and United 

Kingdom from top to bottom) 

Note: In order to see the effect of missing data, the very beginning models (Model 1 and 

Model 1*) which didn’t include the change point component were compared with and without 

Cyprus( a country which has only 4 observation) data (Table 7 and 8, see Appendix IV). In 

both case, total outpatient antibiotic use and outpatient penicillin use resulted in better DIC 

when the data exclude Cyprus.. It may be an indication for the influence of missing data. 
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6. Conclusion and Discussion 
 

Though these data were analyzed by Adriaenssens et al. (2011) and Versporten et al. (2011), 

it was required to see the effects of public campaign on antibiotic or policy changes on it. This 

was the core motivation of this study. To do that adaptive change point mixed models were 

used in order to explore the possible change points.  

Thus, two change points were found in total outpatient antibiotic use data. Additionally, one 

random change point was found in penicillin use data. These change points were found in the 

period when there were public campaigns.  

Positive correlation coefficient in between random intercept and random slope in time was 

found in both total outpatient antibiotic use and outpatient penicillin use. So that a country 

which has high antibiotic use (J01, J01C) at 1
st
 quarter of 1997 could have high seasonal 

variation in antibiotic use (J01, J01C).  

Since penicillin is the most widely used antibiotic subgroup, it is expected to account on 

change points of total outpatient antibiotic use. So it appear to have had significant account on 

the first change point. The second change point of total antibiotic use will be accounted by the 

remain subgroup of antibiotic use. 

In case of total outpatient antibiotic date: for the second common change point it could have 

mixed interpretation of seasonal effect and campaign effect. Through the period of 1997 to 

2009 the 2
nd

 and the 3
rd

 quarter of the year exhibit lower use of antibiotics so they could pull 

the linear time trend down ward, in another way the 1
st
 and the 4

th
 quarter of the year exhibit 

higher use of antibiotics, and could pull the linear time trend upward.   There was a European 

wide campaign in the 4
th

 quarter of 2008. Decreasing antibiotic use then might have resulted 

in decreasing upward pull of linear time trend. So the change point of linear time trend may 

appear before the 4
th

 quarter of 2008..  

The total outpatient antibiotic use in Belgium is higher as compared to the observed average 

DID in Europe. In contrast, the decreasing linear trend in time higher in Belgium before the 

first change point. In addition the first change point is obtained earlier in observed average 

DID in Europe. After the second change point the linear trend in time is a bit higher in 

Belgium as compared to the observed average DID in Europe. 
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The outpatient penicillin use in Belgium is also higher as compared to the observed average 

DID in Europe, specifically after the first change point. Moreover, the increasing linear trend 

in time higher in Belgium after the first change point. 

 The adaptive change point model could be extended with more change points. However, for 

the penicillin use data, the convergence was not reached when including two change points. 
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Appendix 
Appendix I: Models for Total outpatient antibiotic use data  

Table 3. Total outpatient Antibiotic data. Parameter estimate: posterior mean (and standard error), and Model comparison: DIC values 

Effects parameters Model 1 Model 2 Model 3 Model  4 Model 5 Model 6 Model 7 

    18.0647(1.044) 18.9167(1.039) 18.9827(1.048) 18.8219(1.047) 18.8373(1.036) 18.9097(1.046) 18.8947(1.044) 

    0.0447(0.023) -0.0060(0.028) -0.0094(0.028) -0.0136(0.034) -0.0192(0.034) -0.0198(0.034) -0.0259(0.035) 

    - 0.0858(0.034) 0.1087(0.039) 0.1121(0.051) 0.1257(0.052) 0.1301(0.052) 0.1214(0.049) 

    - - -0.1369(0.334) -0.1469(0.145) -0.1658(0.119) -0.1483(0.101) -0.1323(0.105) 

 C1 - 26.5634(1.913) 26.9678(1.766)    
     

     
     

  

 C2 - - 45.9568(0.953) 48* 47* 46* 46.1385(0.951) 

    4.1799(0.390) 4.1666(0.389) 4.1878(0.386) 4.1819(0.384) 4.1607(0.381) 4.1845(0.383) 4.1687(0.385) 

    -0.0110(0.005) -0.0103(0.005) -0.0109(0.005) -0.0110(0.055) -0.0104(0.005) -0.0106(0.005) -0.0107(0.005) 

   0.4139(0.019) 0.4130(0.018) 0.4176(0.0182) 0.4165(0.0184) 0.4180(0.018) 0.4191(0.018) 0.4181(0.130) 

             27.3681(8.767) 25.7841(8.401) 25.4338(8.325) 24.6926(8.166) 24.7127(8.107) 24.5340(8.078) 24.4105(7.987) 

              0.0125(0.004) 0.0149(0.005) 0.0151(0.005) 0.0144(0.006) 0.0142(0.006) 0.0147(0.006) 0.0148(0.007) 

              - 0.0200(0.008) 0.0257(0.011) 0.0315(0.015) 0.0311(0.015) 0.0331(0.017) 0.0312(0.014) 

              - - 0.1631(0.096) 0.2947(0.155) 0.2049(0.105) 0.1491(0.075) 0.1655(0.101) 

             3.0955(0.979) 3.0651(0.948) 3.0626(0.946) 3.0714(0.955) 3.0656(0.956) 3.0647(0.947) 3.0624(0.948) 

                 7.0138(2.531) 7.2507(2.490) 7.1893(2.473) 7.1034(2.470) 7.1293(2.4521) 7.1003(2.443) 7.1047(2.432) 

            2.9808(0.140) 2.6957(0.130) 2.5293(0.124) 2.5516(0.131) 2.5349(0.1297) 2.5218(0.128) 2.5256(0.130) 

DIC  3940.8 3856.8 3813.1 3783.4 3770.7 3765.3 3767.7 

   
  - random change point , to account National-wide  campaigns.  46*( 2

nd
 quarter of 2008), 47*(3

rd
  quarter of 2008),48*(4

th
 quarter of 2008) 

known common change point to account the Europe-wide campaign  
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Table 4. Total outpatient Antibiotic data. Parameter estimates: posterior mean (and standard error) for the country specific and random effect 

obtained from Model 7.   

 Country *                                

AT 21.691 (5.012) -5.478 (1.304) -0.051 (0.066) 0.097 (0.081) 0.089 (0.225) -0.836 (0.456) 

BE 31.303 (3.531) 7.390 (1.173) -0.072 (0.047) 0.218 (0.094) 0.076 (0.251) 2.248 (0.448) 

CY 13.633 (9.991) 2.807 (3.324) 0.121 (0.109) 0.115 (0.152) -0.004 (0.406) 0.289 (0.941) 

CZ 29.779 (9.341) -0.045 (1.239) -0.054 (0.055) 0.036 (0.106) 0.239 (0.259) -0.079 (0.469) 

DE 21.143 (9.316) -4.260 (1.987) -0.056 (0.088) 0.030 (0.100) 0.047 (0.229) -0.372 (0.506) 

DK 18.404 (9.357) -6.574 (1.184) 0.024 (0.072) 0.016 (0.082) -0.061 (0.224) -1.994 (0.449) 

EE 23.543 (8.851) -5.556 (2.050) -0.075 (0.081) 0.038 (0.100) -0.137 (0.229) -1.065 (0.495) 

ES 21.024 (4.517) 2.491 (1.204) -0.130 (0.061) 0.104 (0.077) 0.007 (0.227) 0.528 (0.455) 

FI 21.868 (12.523) 0.143 (1.157) -0.010 (0.063) -0.083 (0.092) 0.119 (0.229) -1.706 (0.452) 

GR 23.415 (5.034) 5.638 (1.203) 0.285 (0.068) 0.208 (0.085) -1.178 (0.371) 2.082 (0.474) 

HR 23.262 (9.984) -1.342 (1.994) 0.159 (0.122) -0.218 (0.171) -0.164 (0.250) 0.163 (0.473) 

HU 23.595 (12.160) 1.829 (1.237) -0.051 (0.068) -0.200 (0.104) 0.264 (0.252) 1.539 (0.454) 

IE 17.119 (10.561) -1.605 (2.153) 0.050 (0.093) 0.012 (0.110) -0.297 (0.240) -0.999 (0.539) 

IL 17.763 (11.008) -0.842 (2.167) 0.039 (0.091) -0.025 (0.114) 0.104 (0.234) -0.795 (0.561) 

IT 22.396 (11.190) 5.291 (2.131) 0.029 (0.083) 0.041 (0.102) -0.093 (0.379) 2.234 (0.538) 

LT 31.074 (6.269) 1.693 (2.807) 0.005 (0.0790 0.282 (0.148) -0.185 (0.395) 1.724 (0.672) 

LU 22.908 (11.150) 6.109 (2.277) -0.002 (0.082) 0.032 (0.105) 0.177 (0.244) 2.933 (0.546) 

NL 22.200 (10.518) -8.683 (1.167) -0.008 (0.063) -0.010 (0.083) 0.071 (0.232) -2.624 (0.450) 

PT 23.640 (5.348) 4.913 (1.186) 0.085 (0.056) -0.307 (0.081) 0.294 (0.237) 1.382 (0.453) 

RU 25.041 (10.543) -7.149 (2.643) -0.066 (0.082) 0.030 (0.128) 0.432 (0.276) -2.266 (0.611) 

SE 19.867 (12.223) -3.562 (1.153) 0.019 (0.067) -0.114 (0.090) -0.108 (0.225) -2.265 (0.452) 

SI 19.290 (12.341) 0.077 (1.176) -0.032 (0.074) -0.139 (0.103) -0.009 (0.224) -0.284 (0.448) 

SK 22.717 (10.120) 7.286 (1.465) -0.067 (0.073) -0.030 (0.104) 0.116 (0.244) 2.814 (0.515) 

UK 22.291 (7.571) -2.573 (1.215) -0.069 (0.068) 0.072 (0.080) 0.206 (0.234) -1.967 (0.449) 

IS 19.140 (10.158) 3.441 (1.205) -0.053 (0.067) -0.063 (0.092) -0.088 (0.224) -0.824 (0.454) 

LV 21.353 (11.193) -2.906 (2.501) -0.090 (0.085) -0.087 (0.124) 0.076 (0.245) -0.670 (0.601) 

PL 20.654 (11.897) 2.276 (1.298) 0.094 (0.086) -0.039 (0.175) 0.002 (0.404) 1.030 (0.550) 
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Appendix II: Models for Outpatient penicillin use data   

Table 5. Outpatient penicillin use data J01C. Parameter estimate: posterior mean (and 

standard error), and Model comparison: DIC values 

Effects parameters Model 1* Model 2* Model 3* 

    8.1027(0.654) 8.3220(0.627) 8.3176(0.627) 

    0.0287(0.139) 0.0131(0.016) 0.0144(0.018) 

    - 0.0324(0.025) 0.0350(0.033) 

 C1 - 25.8179(1.404) C1* 

    1.8937(0.222) 1.9587(0.258) 1.8596(0.212) 

    -0.0021(0.005) -0.0035(0.005) -0.0009(0.005) 

   0.3845(0.023) 0.3830(0.022) 0.3797(0.022) 

             10.4820(3.324) 9.8328(3.278) 8.8341(2.942) 

              0.0047(0.0016) 0.0050(0.002) 0.0047(0.002) 

              - 0.0124(0.005) 0.0169(0.007) 

             0.9089(0.338) 1.4182(0.4676) 0.8423(0.319) 

             0.0004(0.0002) 0.0004(0.0002) 0.0004(0.0002) 

                 2.6685(0.948) 2.2592(0.998) 2.6066(0.8964) 

            0.9582(0.045) 0.8205(0.040) 0.8193(0.039) 

DIC  2830.3 2699.2 2635.7 
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Table 6. Outpatient penicillin use data J01C.  Parameter estimates: posterior mean (and standard error) for the country specific and random effect 

obtained from Model 3*. 
Country *                              

AT 22.694 (11.735) -4.062 (0.793) -0.007 (0.044) 0.044 (0.061) -1.179 (0.302) 0.013 (0.009) 

BE 25.229 (2.532) 1.191 (0.699) -0.005 (0.029) 0.184 (0.044) 0.358 (0.269) 0.026 (0.009) 

CY 24.714 (15.144) 2.142 (1.978) 0.053 (0.057) 0.021 (0.116) 0.591 (0.606) -0.012 (0.017) 

CZ 35.177 (9.999) -0.092 (0.744) -0.054 (0.029) 0.063 (0.074) -0.019 (0.286) -0.005 (0.009) 

DE 28.847 (15.573) -3.472 (1.021) -0.033 (0.044) -0.014 (0.078) -1.001 (0.369) 0.010 (0.010) 

DK 25.807 (16.695) -1.232 (0.694) 0.026 (0.040) -0.010 (0.077) -0.413 (0.268) -0.004 (0.008) 

EE 28.443 (15.011) -3.408 (1.067) -0.034 (0.047) -0.010 (0.080) -0.950 (0.374) 0.011 (0.011) 

ES 19.381 (2.764) 3.099 (0.716) -0.093 (0.035) 0.129 (0.047) 0.969 (0.279) -0.012 (0.009) 

FI 30.744 (14.639) -2.795 (0.688) -0.017 (0.031) 0.010 (0.072) -0.974 (0.284) -0.005 (0.009) 

GR 27.446 (10.867) 0.294 (0.700) 0.060 (0.033) 0.037 (0.069) 0.085 (0.269) -0.022 (0.009) 

HR 28.306 (1.831) -0.965 (0.967) 0.140 (0.038) -0.263 (0.055) -0.144 (0.331) 0.005 (0.010) 

HU 28.372 (12.547) 0.873 (0.744) -0.038 (0.035) -0.082 (0.075) 0.473 (0.294) 0.006 (0.009) 

IE 27.604 (15.956) -0.324 (1.229) 0.037 (0.050) -0.023 (0.087) -0.137 (0.408) -0.004 (0.011) 

IL 29.984 (13.719) 2.252 (1.426) 0.023 (0.049) -0.071 (0.090) 0.589 (0.462) -0.016 (0.012) 

IT 24.489 (12.747) 1.762 (1.355) 0.038 (0.054) 0.070 (0.075) 0.564 (0.432) 0.015 (0.012) 

LT 32.283 (6.768) 1.645 (1.840) -0.010 (0.050) 0.203 (0.092) 0.640 (0.580) 0.032 (0.015) 

LU 25.688 (13.635) 1.114 (1.353) 0.018 (0.053) 0.049 (0.072) 0.397 (0.440) 0.023 (0.012) 

NL 29.280 (15.734) -4.511 (0.693) -0.015 (0.032) -0.001 (0.073) -1.358 (0.293) -0.001 (0.009) 

PT 20.667 (7.389) 2.185 (0.715) 0.063 (0.036) -0.125 (0.054) 0.728 (0.276) -0.005 (0.009) 

RU 33.382 (10.798) -5.061 (1.793) -0.041 (0.051) 0.098 (0.084) -1.487 (0.563) 0.007 (0.013) 

SE 29.685 (16.255) -1.026 (0.692) -0.017 (0.035) -0.026 (0.077) -0.535 (0.289) -0.021 (0.009) 

SI 24.514 (17.247) 2.377 (0.713) -0.017 (0.051) -0.052 (0.086) 0.611 (0.281) -0.009 (0.009) 

SK 16.987 (9.917) 7.386 (0.972) -0.045 (0.064) -0.169 (0.082) 2.234 (0.406) -0.022 (0.011) 

UK 24.683 (9.685) -1.105 (0.718) -0.046 (0.037) 0.059 (0.052) -0.460 (0.277) -0.007 (0.009) 

IS 31.154 (15.091) 2.251 (0.685) -0.007 (0.031) -0.062 (0.076) 0.488 (0.285) -0.018 (0.009) 

LV 26.178 (15.518) -0.435 (1.548) -0.049 (0.052) -0.068 (0.087) -0.103 (0.490) 0.001 (0.012) 

PL 25.467 (15.529) 0.049 (0.768) 0.074 (0.052) -0.001 (0.123) 0.077 (0.289) 0.015 (0.016) 
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Appendix III: Comparison between Belgium and observed average  DID in Europe 

 

Figure 16. Total outpatient antibiotic use data J01. Comparison of the predicted mean profile 

(solid line), and the predicted linear trend (dashed line) and the change point 

(dense triangle) between Belgium and observed average DID in Europe  

 

Figure 17. Outpatient penicillin use data J01C. Comparison of the predicted mean profile 

(solid line), and the predicted linear trend (dashed line) and the change point 

(dense triangle) between Belgium and observed average DID in Europe  
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Appendix IV: Comparison of antibiotic use model without change point by including and 

excluding the data from Cyprus 

Table 7.  Total outpatient antibiotic use data J01. Comparison of Model 1 between  including 

and excluding the Cyprus data.   

Effects paramete

rs 

Model 1 with 

Cyprus 

Model 1 without 

Cyprus 

    18.0647(1.044) 17.8849(1.0781) 

    0.0447(0.023) 0.0339(0.0223) 

    4.1799(0.390) 4.1588(0.4103) 

    -0.0110(0.005) -0.0107(0.0058) 

   0.4139(0.019) 0.4159(0.0197) 

             27.3681(8.767) 26.6392(8.4866) 

              0.0125(0.004) 0.0113(0.0037) 

             3.0955(0.979) 3.1943(1.0134) 

                 7.0138(2.531) 7.1730(2.5449) 

            2.9808(0.140) 2.9772(0.1404) 

DIC  3940.8 3922.4 

 

Table 8.  Outpatient penicillin use data J01C. Comparison of Model 1 between  including and 

excluding the Cyprus data.   

Effects parameters Model 1* with 

Cyprus 

Model 1* without 

Cyprus 

    8.1027(0.654) 8.0477(0.6424) 

    0.0287(0.139) 0.0259(0.0135) 

    1.8937(0.222) 1.8487(0.2107) 

    -0.0021(0.005) -0.0011(0.0050) 

   0.3845(0.023) 0.3876(0.0236) 

             10.4820(3.324) 10.1976(3.2719) 

              0.0047(0.0016) 0.0043(0.0015) 

             0.9089(0.338) 0.8135(0.3164) 

             0.0004(0.0002) 0.0003(0.0002) 

                 2.6685(0.948) 2.7203(0.9451) 

            0.9582(0.045) 0.9597(0.0459) 

DIC  2830.3 2815.1 
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Appendix V: R and WinBUGS codes 

 
################################################################################## 

############# Model  7 for Total outpatient antibiotic use data############################## 

################################################################################## 

 

####### for WinBUGS####### 

 

model{   

                

#####  Basic model ###### 

for (i in 1:N){  

Y[i] ~ dnorm(mu[i],tau) 

mu[i]<- (B0 + b[ID[i],4]) + 

(B1 + b[ID[i],1])*T[i] +   

(B2 + b[ID[i],2])*(T[i]-C1[ID[i],1])*(step(T[i]-C1[ID[i],1])) + 

(B3 + b[ID[i],3])*(T[i]-C2)*(step(T[i]-C2)) +   

(alpha + b[ID[i],5] + alphaTime*T[i])*sin(omega*T[i] + delta) 

      } 

 

#### Priors for fixed effects ##### 

B0   ~   dnorm(0,0.0001)                                      

B1   ~   dnorm(0,0.0001)                                      

B2   ~    dnorm(0,0.0001)                                      

B3   ~    dnorm(0,0.0001)                                      

alpha~   dnorm(0,0.0001)        

alphaTime~ dnorm(0,0.0001)                                      

delta ~   dnorm(0,0.0001)                                                                

 C2  ~   dunif(40,52)  

 

####  Priors for random effects #### 

for (j in 1:M){  

b[j,1] ~     dnorm(0,b1.tau)  

b[j,2] ~     dnorm(0,b2.tau)                                   

b[j,3]~      dnorm(0,b3.tau)  

b[j,4:5] ~  dmnorm(mean[],b.tau[1:2, 1:2])  

C1[j,1] ~   dunif(1, 40)                                                              

          }  

 

##### prior for random change point #### 

for (j in 1:M){  

C1[j,1]~ dunif(1, 40)                                                              

          }  

 

                                                                                                        

#### Hyper priors #### 

tau   ~     dgamma(0.001, 0.001)                          

b1.tau ~  dgamma(0.001, 0.001)                     

b2.tau ~  dgamma(0.001, 0.001)   

b3.tau ~  dgamma(0.001, 0.001)   

 b.tau[1:2, 1:2]~ dwish(R[1:2,1:2],2) 

 

sigma <-      1/tau               

sigma_b1<- 1/b1.tau 

sigma_b2<- 1/b2.tau   

sigma_b3<- 1/b3.tau   

 sigma_b[1:2,1:2] <-inverse(b.tau[1:2, 1:2]) 

} 
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########## For R########### 

 

####The remove the contents of the workspace####         

rm(list=ls(all=TRUE)) 

 

####R2WinBUGS package ##### 

library(R2WinBUGS) 

 

####Set the directory #### 

setwd("C:\\Users\\tadele\\Desktop\\thesis\\Results\\results for total antibiotic use J01") 

BugsPath = "C:/Users/tadele/Desktop/deskttop/WinBUGS14" 

 

#### Import the original data #### 

dat = read.table("data1.txt",header=TRUE) 

names(dat) 

dat<-dat[order(dat[,3],dat[,1]), ] 

attach(dat) 

 

#### Create the data for the WinBUGS model #### 

country=as.data.frame(unique(dat[,2])) 

Y=dat$DID 

T=dat$time 

ID=dat$country_ID 

M=length(unique(dat$country_ID)) 

N=length(T) 

 

data<-list(N=N,M=M,Y=Y,ID=ID,T=T,omega=1.570796, mean = c(0,0), 

           R = structure(.Data = c(0.01, 0,   

                                                       0, 0.01), .Dim = c(2,2))) 

 

#### Give initial values #### 

inits1=list(B0=18.9827, B1=-0.0094, B2=0.1082, B3=-0.1369,  C2=47, alpha=4.1878, alphaTime=-0.0109, 

delta=0.4176, 

            tau=(1/2.5293), b1.tau=(1/0.0151), b2.tau=(1/0.0257), b3.tau=(1/0.1631),   

            b.tau = structure(.Data = c((1/25.4338), (1/7.1893),  

                                         (1/7.1893), (1/3.0626)), .Dim = c(2, 2)), 

            b=structure(.Data=c(rep(0,each=5,times=M)),.Dim=c(M,5)), 

            C1=structure(.Data=c(rep(29,each=1,times=M)),.Dim=c(M,1))) 

inits2=list(B0=20.0007, B1=-0.0054, B2=0.1097, B3=-0.1352, C2=48, alpha=4.1851, alphaTime=-0.0115, 

delta=0.4165, 

            tau=(1/2.5303), b1.tau=(1/0.0155), b2.tau=(1/0.0255), b3.tau=(1/0.1636),  

            b.tau = structure(.Data = c((1/25.2838), (1/7.2193),  

                                        (1/7.2193), (1/3.1826)), .Dim = c(2, 2)), 

            b=structure(.Data=c(rep(0,each=5,times=M)),.Dim=c(M,5)), 

            C1=structure(.Data=c(rep(27,each=1,times=M)),.Dim=c(M,1))) 

inits=list(inits1,inits2) 

 

 

####Give the parameters you want to monitor#### 

parameters=c("B0","B1","B2","B3","C1","C2","alpha","alphaTime","delta","sigma","sigma_b1","sigma_b2", 

"sigma_b3", "sigma_b", "b") 

 

####Give the model (.txt file) #### 

modelex="Model 5C-c-C1.txt" 

 

####MCMC parameters #### 

nchainex=length(inits)  

niterex=331000 

nburninex=11000 

nthinex=40 
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#### Call the bugs function #### 

sims1<-bugs(data, inits, parameters, modelex, nchainex, niterex, nburninex, nthinex, digits=4,   

bugs.directory=BugsPath, debug=T) 

 

#### display the output#### 

print(sims1,digits=4) 

 

################################################################################## 

############# Model 3* Outpatient penicillin use data #################################### 

################################################################################## 

 

####### for WinBUGS####### 

 

model{     

              

#### Basic model #### 

for (i in 1:N){  

Y[i] ~ dnorm(mu[i],tau)  

 mu[i]<- (B0 + b[ID[i],2]) +  

(B1 + b[ID[i],1])*T[i] +  

 (B2 + b[ID[i],5])*(T[i]-C1[ID[i],1])*step(T[i]-C1[ID[i],1]) + 

         (alpha + b[ID[i],3] + (alphaTime + b[ID[i],4])*T[i])*sin(omega*T[i] + delta)  

 } 

 

#### Priors for fixed effects #### 

B0  ~    dnorm(0,0.0001)                                      

B1  ~    dnorm(0,0.0001)  

B2  ~    dnorm(0,0.0001)                                     

alpha ~ dnorm(0,0.0001)                                      

alphaTime~dnorm(0,0.0001)    

delta ~  dnorm(0,0.0001)  

 

 

   ####  Priors for random effects #### 

for (j in 1:M){ 

             b[j,1] ~    dnorm(0,b1.tau)                                   

             b[j,4] ~    dnorm(0,bs.tau)  

             b[j,5] ~    dnorm(0,bc1.tau)  

            b[j,2:3] ~  dmnorm(mean[],b.tau[1:2, 1:2])             

    } 

 

##### prior for random change point #### 
for (j in 1:M){ 

  C1[j,1]~ dunif(1,52)                                 

               }   

                                                   

                                   

#### Hyper priors #### 

tau  ~         dgamma(0.001, 0.001)                          

b1.tau  ~    dgamma(0.001, 0.001)                     

bs.tau  ~    dgamma(0.001, 0.001)  

bc1.tau  ~  dgamma(0.001, 0.001)  

b.tau[1:2, 1:2] ~  dwish(R[1:2,1:2],2) 

 

sigma <-         1/tau               

sigma_b1<-    1/b1.tau 

sigma_bs<-    1/bs.tau  

sigma_bc1<-  1/bc1.tau  
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sigma_b[1:2,1:2] <- inverse(b.tau[1:2, 1:2]) 

 

} 

 

 

########## For R########### 

 

####The remove the contents of the workspace ####          

rm(list=ls(all=TRUE)) 

 

####R2WinBUGS package#### 

library(R2WinBUGS) 

 

#####Set the directory#### 

setwd("C:\\Users\\tadele\\Desktop\\thesis\\Results\\results for total antibiotic use J01C") 

BugsPath = "C:/Users/tadele/Desktop/deskttop/WinBUGS14" 

setwd("C:\\Users\\tadele\\Desktop\\thesis\\Results\\results for total antibiotic use J01C\\last ok") 

 

####Import the original data#### 

dat = read.table("data_J01C.txt",header=TRUE) 

names(dat) 

dat<-dat[order(dat[,3],dat[,1]), ] 

attach(dat) 

 

####Create the data for the WinBUGS model#### 

country=as.data.frame(unique(dat[,2])) 

Y=dat$DID 

T=dat$time 

ID=dat$country_ID 

M=length(unique(dat$country_ID)) 

N=length(T) 

data<-list(N=N, M=M, Y=Y, ID=ID, T=T,R = structure( 

  .Data = c(0.1, 0,   

                     0, 0.1), .Dim = c(2,2)), omega=1.570796, mean = c(0,0)) 

 

####Give initial values ##### 

inits1=list(B0=8.1027, B1=0.0131, B2=0.0324, alpha=1.9587, alphaTime=-0.0035, delta=0.3830, 

            tau=(1/0.8205), b1.tau=(1/0.0050), bs.tau=(1/0.0004), bc1.tau =(1/0.0124),  

            b.tau = structure( 

              .Data = c((1/9.8328), (1/2.2592),  

                        (1/2.2592), (1/1.4182)), .Dim = c(2, 2)), 

            b=structure(.Data=c(rep(0,each=5,times=M)),.Dim=c(M,5)), 

            C1=structure(.Data=c(rep(26,each=1,times=M)),.Dim=c(M,1))) 

inits2=list(B0=8.1077, B1=0.0134, B2=0.0327, alpha=1.9581, alphaTime=-0.0039, delta=0.3825, 

            tau=(1/0.8221), b1.tau=(1/0.0051), bs.tau=(1/0.000405), bc1.tau =(1/0.0126),  

            b.tau = structure( 

              .Data = c((1/9.9328), (1/2.3592),  

                        (1/2.3592), (1/1.4152)), .Dim = c(2, 2)), 

            b=structure(.Data=c(rep(0,each=5,times=M)),.Dim=c(M,5)), 

            C1=structure(.Data=c(rep(26,each=1,times=M)),.Dim=c(M,1))) 

inits=list(inits1,inits2) 

 

####Give the parameters you want to monitor##### 

parameters=c("B0","B1","B2","C1","alpha","alphaTime","delta","sigma","sigma_b","sigma_b1", "sigma_bs",  

"sigma_bc1","b") 

 

#### Give the model (.txt file) #### 

modelex="Model 1c-rand.txt" 

 

#### MCMC parameters #### 
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nchainex=length(inits) 

niterex=410000 

nburninex=10000 

nthinex=40 

 

 

####Call the bugs function#### 

sims1<-bugs(data, inits, parameters, modelex, nchainex, niterex, nburninex, nthinex, digits=4, 

bugs.directory=BugsPath, debug=T) 

 

#### display the output#### 

print(sims1,digits=4) 
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