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Abstract 

The goal of this study was to quantify the longitudinal differences in the brain scans between 

APP/PS1 and wild type mice strains. Magnetic resonance images (MRI) were obtained using 

Diffusion Kurtosis Imaging (DKI) and Diffusion Tensor Imaging (DTI) from 34 mice aged 

between 2 and 8 months at two months intervals, from 15 regions from both white and grey 

matter in the brain. 

Univariate linear mixed-effects models for each DKI or DTI parameter and region as well as 

joint random effects models for the bivariate DKI and DTI pairs were considered and different 

covariance structures explored.  

Univariate results indicated that while much of the differences are detected as from four 

months, DKI was more sensitive to differences in grey matter as compared to DTI. Moreover, 

for the bivariate models, while the correlation between DKI and DTI is region dependent, it is 

strongest at four months for all regions and lowest at six months. 

Keywords: DKI, DTI, Linear Mixed-effects models, longitudinal data, MRI
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1 Introduction 

Human beings are distinct from most of the other living organisms due to their advanced 

mental development, which enable them to not only, learn, but also to achieve a lot more 

brain-controlled functionality (Higbee & Higbee, 2001). Pathophysiological changes in the 

human brain occur naturally as we age resulting to reduced mental response/performance. 

There is an increase in the volume of white matter (WM) and a reduction in grey matter 

(GM) during adolescence and early adulthood, while as we age, both white and grey matter 

reduce. These structural changes have been associated with the changes in cognitive ability 

(Falangola, et al., 2008). 

 Alzheimer’s disease (AD) is one common age-related mental disorder. There has been a lot of 

interest in AD, probably because of the impact it has on the ageing population. The World 

Alzheimer’s report (2011) documents that as of 2009, 36 million people worldwide were 

living with dementia, with the numbers projected to double every 20 years to 66 million by 

2030. AD is therefore one of the most significant social, health and economic crises of the 21st 

century requiring urgent and sustainable interventions (Prince, Bryce, & Ferri, 2011). 

Although not age dependent, AD is a progressive age-related disorder that develops 

systematically and is characterised by majorly extracellular amyloid proteins deposits as well 

as intraneuronal neurofibrillary changes. Progression occurs in stages and the pattern is 

different in both white and grey matter of the brain. The initial onset of dementia is 

characterized by memory lapses, disorientation, impaired performance on daily tasks, 

impaired speech and judgement, changes in moods, behaviour and personality amongst 

others (Agronin, 2007). The difficulty in early diagnosis of AD is partly due to the fact that 

these symptoms are associated with non-dementia diagnoses as well. 

Some of the benefits associated with early diagnosis of AD include; provides a basis for 

evidence-based treatment, care and support as the disease progresses, enables the patients to 
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plan ahead when they still have the mental capacity to make important decisions about their 

future care, early therapeutic intervention can be effective in improving cognitive function, 

delaying institutionalisation amongst other benefits (Prince, Bryce, & Ferri, 2011). 

Due to the predictable nature of spread of amyloid deposits and intraneuronal neurofibrillary 

changes, the analysis of age related staging of AD is possible as was demonstrated by Braak 

and Braak (1996). Initially, amyloid protein deposits occur in the less myelinated areas of the 

basal cortex then spreads to adjoining areas and eventually to the hippocampus. On the other 

hand, intraneuronal lesions develop initially in the transentorhinal region, spreading in a 

predictable manner. While either amyloid protein deposits or intraneuronal changes are 

expected at specific stages of the disease, some individuals exhibit these changes earlier. It 

could therefore be of interest in making early diagnosis for AD (Braak & Braak, 1997). 

Transgenic models  of AD are popular in studying the disease since most of the human disease 

features have been shown to be represented in the mice. Although the mice model falls short 

of showing the Tau pathology and extensive cell loss, they are excellent for amyloidosis. AD is 

associated with genetic mutation including the amyloid precursor protein (APP) gene and the 

presenilins (PS) amongst others (Duff & Suleman, 2004). APP/PS1 mice are double transgenic 

and have excellent prerequisites for imaging Aβ-amyloid proteins even at a young age 

(Kießling, 2011). 

Magnetic resonance imaging (MRI) is a technique commonly used to study the changes in 

brain cells structure. In particular magnetic resonance (MR) diffusion tensor imaging (DTI) has 

been shown to provide unique structural information in characterizing tissue microstructure 

non-invasively. This has made DTI a popular technique in the diagnosis of brain related 

complications. DTI relies on measuring the water diffusivity in cells, under the assumption that 

water diffusivity follows a Gaussian distribution. However, DTI is sensitive to tissue 

anisotropy and has therefore largely been restricted to use in white matter. Diffusion-
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weighted magnetic resonance imaging provides considerably more information unlike the 

standard DTI metrics: mean diffusivity (MD) and fractional anisotropy (FA) (Falangola, et al., 

2008). 

Deviations from the Gaussian diffusivity can be attributed to presence of diffusion barriers in 

cells such as cell membranes and organelles and both intracellular and extracellular water 

compartments (Falangola, et al., 2008). Diffusion kurtosis imaging (DKI) is a dimensionless 

measure that has been proposed to capture the deviation of water diffusion profiles from the 

Gaussian distribution. DKI has been shown to provide better characterisation of changes in the 

neural tissue structures, with the extra advantage of ease of implementation ( (Cheung, et al., 

2009); (Falangola, et al., 2008); (Hui, Cheung, Qi, & Wu, 2008)). 

DTI is characterised by a matrix of nine values each corresponding to a gradient orientation. 

In DTI, only six of these tensor values are measured plus the non-diffusion weighted   base 

value. Diffusivity is then described by three Eigen values describing the axes of an ellipsoid 

(for anisotropic diffusion). The Eigen values for DTI matrix define the axial diffusivity (AD), 

radial diffusivity (RD) and MD. The 4th order kurtosis tensor (KT) is fully symmetric with 15 

independent components. Orthogonal transformation of KT is used to compute the diffusion 

kurtosis along the three Eigen vectors directions of the 2nd order DT. The corresponding DKI 

measures mean kurtosis (MK), axial kurtosis (AK) and radial kurtosis (RK) have been 

compared with the DTI parameters -for sensitivity in detecting developmental and 

pathological changes in neural tissues (Hui, Cheung, Qi, & Wu, 2008).  

The goal of this study is to quantify the longitudinal differences between two mice strains 

using DTI and DKI. Focus will be on the mean response as well as the variability of this mean 

response for eight DKI and six DTI parameters measured at four timepoints in 15 different 

brain regions of interest (in both white and grey matter). The correlation between DTI and 

DKI outcomes over time will be explored as well. 
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2 Data description 

The sample comprised of 34 mice of varying ages between two and eight months and of 

either the APP/PS1 or wild type (WT) genotype. APP/PS1 mice comprised the experimental 

arm, while the control arm comprised of WT mice. 

Magnetic resonance imaging of 15 predefined regions in the brain was done for eight DKI 

parameters and six DTI parameters. Measurements were scheduled to be done on four 

equally spaced time points, corresponding to when the mice were 2, 4, 6 or 8 months old. As 

is the case in most longitudinal settings, missingness was reported with only 5 mice having 

measurements at all scheduled timepoints. The reason for missingness was due to 

unavailability of the mice at the time of measurement. Table 1 provides a summary of the 

variables. A comprehensive list of the coding for the parameters and regions of interest is 

presented in Appendix 1. 

Table 1: Summary of variables in the dataset 

variable name Description 

Animalnr_unique A unique identifier for the mice 

Genotype Mice genotype: APP/PS1 (Experimental arm), WT (Wild type-Control) 

Mean_ROI Mean response for parameter-ROI combination 

Parameter Response indicator for either DKI(8 parameters) or DTI(6 parameters) 

ROI 15 regions (on white and grey matter) on which measurements are based  

Timepoint Age at which measurement was taken (2 months,4 months,6 months,8 

months) 

SD_ROI Standard deviation of Mean_ROI 

 

2.1 Statistical software 

Statistical analysis will be performed using SAS version 9.2 and R version 2.12. All statistical 

tests will be performed at 5% significance level, and where applicable, 95% confidence 

intervals will be computed.  
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3 Scope of the study 

The main objective of this study will be to quantify the longitudinal differences in the mean 

response between two mice strains using DTI and DKI. Furthermore, the variability of the 

mean response will be explored for differences in the two mice strains using DTI and DKI. The 

correlation between pairs of DTI and DKI variables will be explored through joint modelling 

of the multivariate longitudinal data.  

Specific objectives 

In order to meet the overall objective outlined above, the problem will be broken down into 

specific subsections namely; 

i. Univariate analysis of the longitudinal effect of DTI parameters by region for both 

mean and variance. 

ii. Univariate analysis of the longitudinal effect of DKI parameters by region for both 

mean and variance. 

iii. Exploration of the correlation between DTI and DKI pairs of variables through joint 

modelling of the multivariate longitudinal responses by region. 

Chapter 4 will discuss the statistical methodology to be applied, while the results of the 

analysis will be presented in chapter 5. Chapter 6 is dedicated to discussing some 

computational challenges while chapter 7 will provide a brief discussion of the foregoing 

results and a conclusion 
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4 Statistical methodology 

4.1 Exploratory data analysis 

As a starting point, exploration of the obtained data will be performed majorly using 

graphical tools for visualizing the trends, distributional properties, variability amongst others. 

Summary statistics will be tabulated where appropriate and discussed. 

4.2 Univariate longitudinal data analysis 

Classical statistical methods such as linear regression analysis and analysis of variance 

(ANOVA) amongst others presume independence of the responses for a particular subject 

(Kutner, Nachtsheim, Neter, & Li, 2005). There are instances however; that this assumption is 

violated particularly due to the way the data is collected. Whenever more than one 

measurement per subject is collected, the responses from the same subject are no longer 

independent. There is need for specialized methods for handling such data. Correlated data 

may either be multivariate data-measurements from different response variables on the same 

subject, repeated measures- measurements from the left and right ear for each subject, 

clustered measurements-observations from litters of each mother, longitudinal data-

measurements taken on the same subject at different timepoints, or spatial data- 

measurements taken from different districts in a province (Verbeke & Molenberghs, 2000). 

Data for a particular DKI or DTI parameter and region of interest was obtained at four 

timepoints (equally spaced) hence longitudinal. Like in most longitudinal settings, there was 

incompleteness in the responses both intermittent and dropout missingness. In their work of 

1987, Little and Rubin discussed various missingness mechanisms and ways for handling it. 

Moreover, Verbeke and Molenberghs (2000) have presented a comprehensive discussion on 

validity of inferences under ignorability, as well as possible ways of mitigating missingness. For 

this study, direct likelihood approach will be applied; consequently the missingness 

mechanism is assumed to be missing at random (MAR) - indicating that the distribution of the 

missing data is independent of unobserved data (Verbeke & Molenberghs, 2000). 
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The general linear mixed effects model while assuming the response vector has a Gaussian 

distribution, allows for the correct handling of the multivariate responses characteristic of 

longitudinal data. A linear mixed-effects model (LMM) is defined as;

1 , 1

~ ( , )
                                      (1)

~ (0, )

...... ....  independent

i i i i i

i

i i

N N

X Z b

N D

N

β ε

ε

ε ε

= + +





∑



Y

b 0

b b

 

i i

i i i i

With Y  the n  dimensional response vector for subject i, 1 i N, N is the number of subjects,
 
X and Z  are the (n xp) and (n xq) dimensional matrices of known covariates,  is a 

p-dimensional vector 

β

≤ ≤

i

i i i

of fixed effects, b  is a q-dimensional vector of random effects,

and  is an n -dimensional vector of residual components. D and  are the 

covariance matrices for the random and fixed effects respec

ε ∑

tively.

 

The univariate models to be considered have an unstructured mean (An estimate at each time 

point). The resulting general multivariate model fitted in this case can be denoted by  

i i

                                                                                                       (2)

1 if APP/PS1
X =  is an n x1 matrix (Since the model has no intercept) 

0 if WT

 is

i i iX β ε

β

= +





Y

i

 a vector of regression coefficients 

 is an n  dimensional vector of responses for each parameter; i=1,2,..8 for DKI and i=1,2...6 for DTI iY

 

The covariance structure for the residuals is modelled flexibly using both unstructured and 

compound symmetry covariance matrix. The two structures can be denoted as follows; 

Unstructured 

covariance 

2

1 12 13 14

2

2 23 24 th th

2

3 34

2

4

         

              
 where  is the covariance between the i  and j  measurement 

                    

                          

                      

ij

σ σ σ σ

σ σ σ
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σ σ
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               for a given subject
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Compound 

symmetry 

2 2 2 2 2

2 2 2 2

i 1 2

2 2 2

2 2

+                        

             +               
  is a subject s

                            +      

                                          +

i i i i

i

i

i i

i

σ σ σ σ σ

σ σ σ σ
σ

σ σ σ
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 
 
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2

pecific variance component,

                                                             while  is the residualσ

 

 

The model is implemented in SAS Proc Mixed with the variance estimation using restricted 

maximum likelihood (REML). Verbeke and Molenberghs (2000) have extensively discussed 

the theoretical basis of REML as applied to general linear mixed-effects models. In brief, REML 

estimation involves breaking down the estimation problem into estimation of fixed effects 

parameters and variance components parameters simultaneously. This can be achieved by 

maximizing the REML likelihood function with respect to all parameters simultaneously 

(Verbeke & Molenberghs, 2000).  

Due to the high number of univariate models to be fitted (15*14=210 models), a SAS macro 

titled “Modelfit” will be developed and the resulting output saved in a data file for further 

processing graphically or otherwise. Key findings from this section will be highlighted. 

4.2.1 Correction for multiple testing 

Estimation of differences between the two genotypes at each time point will be performed, 

resulting into four comparisons per parameter-region combination. There is need to correct 

for multiple testing, to guarantee the validity of the resulting inferences (Kutner, Nachtsheim, 

Neter, & Li, 2005). Correction for multiple comparisons will be achieved using a procedure 

False Discovery Rate (FDR) proposed by Benjamin and Hochberg (1995).  

While conventional familywise procedures are considered more conservative that FDR 

especially for large families of comparisons, FDR is more powerful since it controls the 

expected proportion of falsely rejected hypothesis under the assumption of the tests being 

independent. There is a version however, for positively correlated tests (Verhoeven, Simonsen 

, & McIntyre, 2005).  
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In correcting for multiple testing, various approaches could be adopted including, correcting 

for tests within a parameter-region combination (Which was performed in this analysis), 

correcting for all parameters simultaneously or correcting for all regions simultaneously. 

4.3 Joint modelling of multivariate longitudinal data 

While classical longitudinal data analysis as described in section 4.2 has been popular, there 

are instances when joint modelling of multivariate longitudinal data is necessary. Multivariate 

data poses additional modelling challenges in capturing the correlation between the 

responses. Methodology for joint modelling of longitudinal data as well as statistical 

computing capability has expanded tremendously. Possible approaches to simultaneously 

analyze multivariate outcomes include conditional models, shared-parameter models, 

methods based on dimension reduction and random effects models amongst others 

(Rizopoulos, Verbeke, & Molenberghs, 2010). Standard statistical procedures such as SAS Proc 

Mixed, Proc NLMIXED and Proc GLIMMIX can be used to implement multivariate 

longitudinal mixed models, with slight modification to the syntax 

One popular approach to joint modelling is using random effects. This is a flexible approach 

that can handle multiple outcomes of varying nature by using Generalized Mixed Models 

while assuming that conditional on the random effects, the different outcomes are 

independent. The vector of all random effects is typically given a joint multivariate normal 

distribution and the correlation between the vectors of random effects, depicts the correlation 

between the different sets of outcomes (Faes, et al., 2008). Some of the benefits of this 

approach are its ability to handle unequally spaced (Unbalanced) data and to combine linear, 

non-linear general and generalized mixed models in joint modelling.  

As the number of response vectors increase, so does the complexity in estimating the joint 

distribution, due to the high number of parameters to estimate.  Fieuws and Verbeke (2006), 

proposed a Pseudo-likelihood based pairwise random effects model for multivariate 

continuous longitudinal data whose pitfalls they later highlighted (Fieuws & Verbeke, 2004). 
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Extensions of the pairwise fitting approach to non-Gaussian and the mix between the two 

were demonstrated by Faes, et al. (2008). For this report, the distribution of the response is 

Gaussian, which makes it possible to use classical SAS Proc Mixed with only slight 

modifications on the presentation of the data and syntax. Moreover, for the problem at 

hand, we shall consider response pairs of DKI and DTI parameters (Bivariate models). 

Extending equation 2 for each parameter by adding a random effect parameter, the resulting 

joint linear mixed models for DTI and DKI pairs can be denoted as follows:   

1 1 1

2 2 2

2

2

1

  ..... For DKI parameter

  ..... For DTI parameter

~ ,                

~ (0, )

....  independent

i i i i

i i i i

i
a ab

i

ab bi

ij ij

j Nj

X a

X b

a
MVN D

b

N

β ε

β ε

σ σ

σ σ

ε

ε ε

 = + +

 = + +



      
    = =            


 ∑




Y

Y

0

b

0

         (3)  

All the parameters in equation 3 have the same meaning as before. The matrix of random 

effects in this case however, is multivariate normal with the correlation between the random 

effects ab

a b

σ
ρ

σ σ
= . If 0ρ = , the two response vectors are independent and 1ρ = simplifies the 

bivariate model to a shared random effect model. One of the advantages of using the 

random effects model formulation is that a wide array of covariance structures can be 

implemented, over and above the fact that different inter-marker and intra-marker 

correlations can be specified, unlike while using the Kroneker Product covariance structure 

formulation (Gao , Thompson, Xiong, & Miller, 2006). 

The correlation between the random effects will be of interest since its effect on the 

computation of the variance-covariance matrix of a subject determines the nature and 

strength of correlation between the two biomarkers. For instance, if the correlation between 
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the random effects is zero, then the responses in the joint model are independent and the 

problem reduces to univariate analysis per response. 

Two covariance structures- unstructured and compound symmetry were applied and the 

results compared. An unstructured covariance structure for the bivariate model implies an 

unstructured covariance within a response and between the two responses as shown below. 

 Y1 Y2 
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2 23 24
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3 34
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Note:  
k ' for Yij ij kYσ σ≠ ≠  

While unstructured covariance allows for estimation of different values for correlation 

between the two responses, compound symmetry assumes a constant correlation between the 

two responses. Under compound symmetry therefore, the resulting variance matrix would 

have blocks of the form 

2 2 2 2 2

2 2 2 2
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 in the diagonal blocks (Possibly 

unique matrices for each response) and a constant correlation matrix 
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between the two responses.  
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5 Results 

5.1 Exploratory data analysis 

There was a maximum of 12 mice of each genotype available at each timepoint with the 

distribution of mice being lowest at 8 months (Table 2). At all timepoints, the sample sizes in 

the two mice genotypes were relatively well balanced albeit with low sample sizes for 6 and 

8 months. 

Table 2: Sample size in each genotype per timepoint 

Genotype Time point 

  2 months 4 months 6 months 8 months 

WT 12 12 6 5 

APP/PS1 10 12 5 7 

Total 22 24 11 12 

 

5.1.1 Exploratory results for Mean_ROI 

In this section, the Mean_ROI for a particular parameter – ROI will be referred to as the 

response. Boxplots of the response for each parameter and region combination indicated no 

significant differences between the genotypes at most timepoints. There was however more 

variability from the average response value in both genotypes for regions 1-5(majorly white 

matter) as compared to regions 11-15 (grey matter). Moreover, for most parameters, there 

was more variability in the WT mice as compared to APP/PS1 mice in each region. Results are 

presented here for DKI_MD and DTI_MD for the four timepoints (Figure 1). For some 

regions, there were a few outlying observations.  
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Figure 1: Boxplots for DKI_MD and DTI_MD at each timepoint 

 

Subject specific as well as average evolution profiles were obtained from which it was 

observed that the evolution of the response varied with parameter as well as region of 

interest. From the subject specific profiles for DKI_MD and DTI_MD in Figure 2, within a 

region, there was no much difference in the evolution profiles between the two genotypes. 

Moreover, the evolution profiles for a particular parameter were dependent on the region of 

interest with regions 1-5 having a higher decline in response over time. 

 For most parameter-region of interest combinations, the population averaged evolution 

profiles indicated lack of a significant difference in the profiles for APP/PS1 and WT mice. For 

the few that exhibited a difference in the profiles, the general trend was that there was clearly 

no difference in response for the two genotypes at 2 months and at 8 months, while the 

profiles were well separated and changed direction at 4 and 6 months - hence crossing. In 

particular, while at 4 months APP/PS1 mice recorded a higher value than WT mice, at 6 
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months, WT mice reported a higher mean value, resulting in the characteristic crossing of 

profiles. The population averaged profiles for DKI_MD and DTI_MD are presented in (Figure 

3). 

Figure 2: Subject Specific Profiles by Region and Genotype for DKI_MD and DTI_MD 

 

 

Figure 3: Profiles by Region for DKI_MD and DTI_MD 
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From the results of section 5.1.1, it was clear that while there seems not to be significant 

differences in the population averaged evolution profiles in most regions of interest, DKI 

parameters were more sensitive to differences within regions 1-5 as compared to DTI 

parameters. In particular, DKI_RK, DKI_MK, DKI_AD and DKI_K23 profiles suggested 

differences in regions 1-5, while only DT_RD and DTI_L3 had signs of differences in the 

profiles of the two genotypes. 

5.1.2 Exploratory results for SD_ROI 

Histograms of the standard deviation indicated that the distribution of the standard deviation 

for a given parameter and region at any time point was right skewed. Logarithmic 

transformation of the standard deviation was performed, making it more symmetric in line 

with the Gaussian data assumption for linear mixed-effects modelling performed in this 

report. The Gaussian assumption on the log transformed standard deviation (Henceforth in 

this section referred to as the response) was further confirmed with a Kolmogorov-Smirnov 

test for each parameter at each timepoint. 

Boxplots for the response (Log transformed SD) indicated that while the variability of the 

response was region dependent, there was more variability in the response in regions 1-5, 

with minimal differences between the genotypes per region (Figure 4). Outliers were also 

present in some regions, which on further analysis were identified to be mainly from subjects 

6, 16 and 27 at 4 months and 6, 20, 25 and 34 at 6 months.  
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Figure 4: Boxplots at each timepoint for Parameters DKI_MD and DTI_MD 

 

The population averaged profiles for log (SD) indicated that there were minimal differences in 
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Figure 5: Population averaged Profiles for Log (SD) by Region for DKI_MD and DTI_MD 
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5.2.1 Univariate models for Mean_ROI  

5.2.1.1  Unstructured covariance 

This model provides an estimate of the mean response at each time point as well as estimates 

of the difference in mean response between the two genotypes at each time point  (By using 

ESTIMATE statement in SAS Proc Mixed). Confidence intervals for the estimated differences 

were obtained and the results summarized graphically. Convergence of the models was 

however a challenge, with only models with parameters DKI_MK, DKI_AD and DTI_FA 

attaining convergence in all the regions. 

Figure 6 presents the estimated difference at each time point with the corresponding 

confidence intervals for parameters DKI_MK, DKI_AD and DTI_FA in 9 selected regions. For 

different parameter –region combinations, at each time point, most of the confidence 

intervals included zero-an indication of no significant difference between the genotypes 

images. Confidence intervals for grey matter regions such as the cortex were however, 

narrower as compared to those for white mater regions for all DKI parameters, while for DTI, 

there was no much difference in the width of the confidence intervals between WM and GM 

regions. 
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Figure 6: Estimated differences (With 95% Confidence intervals) per timepoint        

    

These confidence intervals are however based on tests not adjusted for multiplicity and may 

therefore be misleading. On adjusting for multiplicity using FDR, significant differences were 

detected in some regions for different parameters as summarized in Figure 7. While much of 

the difference is detected at six and eight months, most of the DKI parameters detected 

differences in most of the GM regions as compared to DTI parameters. 
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Figure 7: Significant (P-value <0.05) FDR Adjusted P-values 

 

5.2.1.2 Compound symmetry  

Convergence was attained for all models under this structure. As in the previous section, 

without adjusting for multiple tests, most of the confidence intervals contained zero hence 

not significant. The estimates with their confidence interval for parameters DKI_MD, DKI_RD, 

DTI_MD and DTI_RD in nine of the 15 WM and GM regions of interest are presented in 

Figure 8, from which it is evident that WM regions have wider confidence intervals as 

compared to GM regions in both DKI and DTI. For the parameters presented here however, 

within the same region, DKI provides wider confidence intervals as compared to DTI. 
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Figure 8: Estimated differences (With 95% Confidence intervals) per timepoint 

 

Upon adjusting for multiplicity using FDR, some significant differences were detected 

especially at six and eight months for four DKI and four DTI parameters in different regions as 

indicated in Figure 9. The differences were mainly detected in the grey matter sub-regions. 
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Figure 9: Significant (P-value <0.05) FDR Adjusted P-values 

 

5.2.25.2.25.2.25.2.2 Univariate models for the variability    

In modelling the variability of the mean response, a logarithmic transformation of the 

standard deviation was used since it was more symmetric. Like in the previous section, 

unstructured and compound symmetry covariance structures were considered. 

5.2.2.1 Unstructured covariance 

For all DKI and DTI parameters, convergence was not attained in at least one region of 

interest. However, where the models converged successfully, there was no significant 

difference in the genotypes with regards to the results not adjusted for multiplicity. Figure 10 

presents the estimated differences with the corresponding confidence intervals in nine selected 

regions for parameters DKI_MD, DKI_RD, DTI_MD and DTI_RD. 
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Figure 10: Estimated differences (With 95% Confidence intervals) per timepoint 

 

The confidence intervals included zero, with those of white matter regions being wider than 

the ones from grey matter regions. 

Upon adjusting for multiplicity using FDR as before, for all parameters, significant differences 

were detected in at least one region and timepoint, as summarized in Figure 11. 
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Figure 11: Significant (P-value <0.05) FDR Adjusted P-values 

 

5.2.2.2 Compound symmetry  

Upon simplifying the covariance structure, convergence was attained in all regions unlike in 

section 5.2.2.1. The unadjusted results however, didn’t detect any significant differences 

between the genotypes as can be seen in Figure 12 for some selected parameters. 
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Figure 12: Estimated differences (With 95% Confidence intervals) per timepoint 

 

P-values adjusted for multiplicity detected significant differences at different timepoints as 

summarized in Figure 13. 

Figure 13: Significant (P-value <0.05) FDR Adjusted P-values 
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5.3     Joint modelling of bivariate longitudinal DKI and DTI pairs by region  

This step was performed only on the corresponding parameter pairs in both DTI and DKI in 

order to assess the suitability of DKI as a biomarker for the corresponding DTI parameter. Out 

of the eight DKI and six DTI parameters, only MD, RD and AD parameter pairs from both 

DKI and DTI were considered, resulting into three bivariate models of the form provided in 

model 3. 

The correlation within a biomarker for a particular subject can be modelled through either (or 

both) of the variance components of the variance covariance matrix '
i i i i

V Z DZ= +∑  . In this 

case, the residuals were assumed to be uncorrelated conditional on the random effects. This 

assumption can later be relaxed by allowing the residuals to be correlated, through one of the 

many correlation structures available. Serial correlation can also be accounted for if need be. 

Additionally, heterogeneous residuals were specified for the response vectors pair, thus 

assuming , ,i DKI i DTI∑ ≠ ∑ .  

Various between and within biomarker correlation structures were explored starting with 

unstructured and simplifying further by imposing additional assumptions on the correlation 

structure. In particular a compound symmetry structure allowing for the estimation of a 

constant correlation parameter within each biomarker was fit. As will be discussed in section 

5.4, two options for unstructured in PROC Mixed were implemented; UN (Variances 

bounded) and UNR (Correlations bounded). Models (a-c) were implemented for each region 

separately, and a summary of key results per model follow. 

5.3.1 DKI_MD vs DTI_MD 

An unstructured variance-covariance matrix not only allowed for the estimation of unique 

variance components at each timepoint within a biomarker, but also provided timepoint 

specific estimates for the correlation between the biomarkers, thus enabling us to study the 

evolution of the association between the biomarkers. Models for all regions converged under 

CS, while for UNR the joint model for the brainstem (Region seven) did not attain 
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convergence. UN however had a high convergence failure rate with convergence being only 

attained in regions 1, 2, 3, 5, 7 and 9. Comparison of the Akaike Information Criterion (AIC) 

values for models with these three covariance structures (UN, UNR and CS) revealed very 

little gain/loss in AIC values across the models. For demonstration purposes, results for the 

parameter estimates for fixed effects as well as the covariance estimates for the random effects 

of the second subject (ROI=bulbus) under UNR are first presented in Table 3 and Table 4.     

Table 3: Estimated V Correlation Matrix for Subject 2 (UNR) 

    

DKIDKIDKIDKI    DTIDTIDTIDTI    

    

Timepoint 2 4 6 8 2 4 6 8 

DKIDKIDKIDKI    

2 1 0.3736 0.2758 0.351 0.3876 0.391 0.5558 0.5596 

4 

 

1 0.329 0.4187 

 

0.4664 0.663 0.6676 

6 

  

1 0.309 

  

0.4894 0.4928 

8 

   

1 

   

0.6272 

DTIDTIDTIDTI    

2 

    

1 0.4839 0.6878 0.6926 

4 

     

1 0.6938 0.6986 

6 

      

1 0.9931 

8 

       

1 
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Table 4: Parameter estimates for DKI_MD and DTI_MD from the Joint Model 

Response Genotype Timepoint Estimate 

Standard 

Error 

Lower 

CL 

Upper 

CL 

DKI_MD 

APP/PS1 2 months 768.5 16.669 735.22 801.79 

APP/PS1 4 months 780.06 17.6372 744.84 815.27 

APP/PS1 6 months 708.18 16.9991 674.24 742.12 

APP/PS1 8 months 672.46 9.4622 653.57 691.35 

WT 2 months 778.9 15.7609 747.43 810.37 

WT 4 months 730.04 17.9229 694.26 765.83 

WT 6 months 722.2 16.1752 689.9 754.49 

WT 8 months 692.85 10.2579 672.37 713.33 

DTI_MD 

APP/PS1 2 months 579.92 9.8884 560.17 599.66 

APP/PS1 4 months 584.77 9.8491 565.1 604.43 

APP/PS1 6 months 538.21 12.1362 513.98 562.44 

APP/PS1 8 months 510.62 6.7648 497.11 524.13 

WT 2 months 587.77 9.502 568.8 606.74 

WT 4 months 563.19 10.1149 543 583.39 

WT 6 months 552.26 11.5593 529.18 575.33 

WT 8 months 527.29 7.3185 512.68 541.9 

 

From the block correlation matrix in Table 3, the diagonal blocks comprise of the intra-

marker correlation matrices while the off diagonal block is the inter-marker correlation 

matrix. The diagonal elements of the inter-marker correlation matrix provides the correlation 

between DKI and DTI parameters at corresponding timepoints, thus enabling us to study the 

evolution of the association between the two markers. Evolution profiles for the association 

between the DKI_MD and DTI _MD biomarker pair in the 15 regions of interest are presented 

in Figure 14 for the first two subjects, from which it was observed that correlation for a 

particular region of interest is highest at four months and lowest at six months in most 

regions. Save for a few regions whose correlation increases linearly over time, the correlation 

at eight months is slightly lower than that at 2 months. A similar trend is observed for the 

correlations with the markers.  
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Figure 14: Correlation Profiles for the bivariate model for MD 

 

For the fixed effects parameters, the estimates and standard errors obtained for each outcome 

from joint modelling are quite similar to those obtained from the respective univariate 

models. If interest lies in inference for each outcome separately, there is clearly no gain from 

this multivariate analysis. Should inference be based on the joint responses, the parameter 

estimates can be averaged, while the standard errors for the joint response estimates can be 

computed using asymptotic theory (Fieuws & Verbeke, 2006). 

Worth reflecting upon is the estimates of the variance components for this bivariate model 

especially the covariance matrix of random effects
514.99 339.15

339.15 223.35
D

 
=  
 

. The resulting 

correlation coefficient is
339.15

1
(514.99*223.35)

ab

a b

σ
ρ

σ σ
= = = , thus reducing the problem to a 

shared random effects model. Model (3) can therefore be implemented directly as a shared 

random effects model. 

5.3.2 DKI_RD vs DTI_RD 

As before, model (3) was implemented using UN, UNR and CS covariance structures. For UN, 

better convergence than in model (a) was obtained, with only models for regions 9, 13 and 

14 not converging. For UN convergence was attained for all regions, while for CS the model 
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for region 5 (corpus_callosum_splenium) did not converge. The AIC values under the three 

covariance structures (Table 5) are quite similar. As before, the results for UNR are discussed 

further. 

Table 5: AIC values for the bivariate model for MD using UN, UNR and CS 

ROI UN UNR CS 

1 1245.4 1246.2 1251.3 

2 1501.8 1511.1 1499.9 

3 1405.9 1403.9 1405.8 

4 1143.1 1145.5 1143.6 

5 1461.3 1478.9 . 

6 1146.9 1149.4 1149.2 

7 1206.1 1204.1 1205.2 

8 1342 1359.7 1358.1 

9 . 1231.7 1229.7 

10 1188 1188.7 1187 

11 1179 1180.7 1178.7 

12 1190.2 1196.9 1195 

13 . 1144.5 1144.7 

14 . 1214.9 1213.1 

15 1181.7 1184.5 1183.8 

 

Profiles for the correlations between the DKI and DTI pairs at each timepoint in selected WM 

and GM regions for the first two subjects are shown in Figure 15. The trend is similar to that 

earlier observed with most regions exhibiting the highest correlation between the biomarkers 

at four months while at six months, the correlation was quite low. There was however no 

correlation between the two biomarkers in corpus_callosum_body and the brainstem. There 

was a positive correlation between the biomarkers in moist regions apart from the 

corpus_callosum_splenium. 
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Figure 15: Correlation Profiles for the bivariate model for RD 

 

5.3.3 DKI_AD vs DTI_AD 

As before, convergence was a challenge for UN with models for regions 1, 4, 6, 7, 8 and 13 

not attaining convergence. With CS, only model for region 5 (corpus_callosum_splenium) 

didn’t converge, while for UNR models for all regions converged. As before, there was no 

much difference in the AIC values amongst the models with UN, UNR and CS. The 

correlation plots in Figure 16 had a similar trend as those in section 5.3.1 and 5.3.2 with the 

correlation being highest at 4 months. There were also regions with negative correlations 

indicating that an increase in one response resulted in a decrease in the other. 

Figure 16: Correlation Profiles for the bivariate model for AD 
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5.4 Computational challenges in modelling 

In fitting both the univariate and multivariate linear mixed models, one of the challenges 

encountered was in attaining model convergence. For the univariate models, models with an 

unstructured covariance failed to converge for most regions. An attempt to increasing the 

maximum number of iterations for the estimation algorithm was unsuccessful in resolving the 

convergence problems. However, simplifying the covariance structure by reducing the 

number of variance components to estimate resulted to convergence in all the univariate 

models as well as for the bivariate models. 

Additionally for the bivariate joint modelling, two variants of unstructured covariance were 

implemented in Proc Mixed: UN and UNR. While both options results in the estimation of 

the same number of parameters, they have some subtle differences, which we illustrate with 

output from the second subject for model (a) in section 5.3.1.  

According to the SAS documentation, UN constrains the variances to be non-negative while 

the covariance parameters are unconstrained. Further, the structure is not constrained to be 

positive definite hence can often cause convergence problems. In this setting, the correlation 

between the random effects may exceed one as is evident from Table 6. The covariance 

matrix in this case is parameterized in terms of variances and covariance. 

UNR on the other hand parameterizes the covariance matrix with variances and correlations, 

hence a slightly different parameterization from UN. The correlations in this case are 

constrained to satisfy the condition | | 1ijρ < . The choice between UN and UNR when the 

covariance matrix is not near any boundary constraint is purely for simplicity in computing 

the correlation between the random effects as was demonstrated in Molenberghs & Verbeke ( 

2005). For such cases, the parameter estimates are invariant of the choice made. In our case, 

though, the estimated corelations fall within the boundary hence some variations in the 

parameter estimates, as well as on the fit statistics was expected. 
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Table 6: Comparison of SAS UN and UNR covariance structure options 

Covariance Parameter Estimates (UNR)Covariance Parameter Estimates (UNR)Covariance Parameter Estimates (UNR)Covariance Parameter Estimates (UNR)    

Cov ParmCov ParmCov ParmCov Parm    EstimateEstimateEstimateEstimate    Standard ErrorStandard ErrorStandard ErrorStandard Error    Z ValueZ ValueZ ValueZ Value    Pr ZPr ZPr ZPr Z    LowerLowerLowerLower    UpperUpperUpperUpper    

Var(1) 954.12 351.94 2.71 0.0034 517.94 2310.41 

Var(2) 498.2 180.13 2.77 0.0028 273.23 1180.99 

Corr(2,1) 1 0 . . . . 

Covariance Parameter Estimates (UN)Covariance Parameter Estimates (UN)Covariance Parameter Estimates (UN)Covariance Parameter Estimates (UN)    

Cov ParmCov ParmCov ParmCov Parm    EstimateEstimateEstimateEstimate    Standard ErrorStandard ErrorStandard ErrorStandard Error    Z ValueZ ValueZ ValueZ Value    Pr ZPr ZPr ZPr Z    LowerLowerLowerLower    UpperUpperUpperUpper    

UN(1,1) 889.61 360.77 2.47 0.0068 459.13 2404.11 

UN(2,1) 687.07 248.54 2.76 0.0057 199.95 1174.19 

UN(2,2) 459.07 180.83 2.54 0.0056 240.72 1197.5 

 

UNR directly provides the correlation output which in this case is one due to rounding off as 

can be seen from the computations using values in the G matrix ;

689.45
0.999998

(954.12*489.2)

ab

a b

σ
ρ

σ σ
= = =

 

. For UN the correlation estimate given by 

687.07
1.075

(889.61*459.07)

ab

a b

σ
ρ

σ σ
= = = which is beyond the correlation boundaries.  
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6  Implementation of the models in SAS 

6.1 Univariate longitudinal models 

SAS Proc Mixed was used to fit the 210 univariate models for each response (Mean_ROI and 

SD_ROI). SAS macro programming was used for ease of looping through the models and 

results output as datasets for further processing. The basic model code used is presented 

hereunder: 

/*Univariate Linear mixed model*/ 

proc mixed data=dki  method=reml; 

class genotype timepoint; 

 

*MODEL statement specifies an UNstructured mean:Estimate at each timepoint 

and outputs the results to a file; 

 

model Mean__ROI_=genotype*timepoint/noint s outp=predicted 

outpm=meanprediction cl; 

 

*REPEATED statement specifies the within sibject correlation Structure; 

 

repeated timepoint/subject=Animalnr_unique type=un ; 

 

*ESTIMATE statements used to compute an estimate of the difference between 

genotypes at each timepoint; 

 

estimate "Treat diff at 2 months"  genotype*timepoint 1 0 0 0 -1  0  0  

0/cl ; 

estimate "Treat diff at 4 months"  genotype*timepoint    0 1 0 0  0  -1  0  

0/cl; 

estimate "Treat diff at 6 months"  genotype*timepoint    0 0 1 0  0   0 -1  

0/cl; 

estimate "Treat diff at 8 months"  genotype*timepoint   0 0 0 1  0   0  0 -

1/cl; 

 

*Output Estimates and Contrasts to a file; 

ods output estimates=est; 

run;quit; 

/*Proc Multtest Multiple comparisons adjustment*/ 

data est; 

set est; 

rename probt=RAW_P; 

run; 

proc multtest pdata=est holm hoc bon fdr out=est; 

run; 
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6.2 Bivariate longitudinal models  

Having adopted the data for joint modelling as suggested in various literature ( (Gao , 

Thompson, Xiong, & Miller, 2006), (Fieuws & Verbeke, 2006), (Molenberghs & Verbeke, 

2005)) the three bivariate models of section 4.3 were implemented for each region of interest 

through a SAS macro using SAS Proc Mixed. The core syntax was as shown hereunder: 

proc mixed data=joint  method=reml covtest noclprint cl; 

class genotype timepoint parameter Animalnr_unique; 

model Mean__ROI_=genotype*timepoint*parameter /noint s outp=predicted 

outpm=meanprediction cl; 

 

*Residual covariance structure specified using REPEATED; 

 

repeated timepoint/subject=Animalnr_unique(timepoint) type=simple  r  

group=parameter*timepoint; 

 

*Covariance between the random effects of each response captured using the 

RANDOM statement; 

 

random parameter/subject=Animalnr_unique type=unr   v=2 vcorr=2 g gcorr; 

 

*Files output for further processing; 

*Output final variance-covariance matrix for the two parameters and RE 

covariance matrix to a file; 

 

ods output covparms=oneparcovest; 

ods output vcorr=variancepars; 

ods output fitstatistics=aicval; 

run;quit; 
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7 Discussion and conclusions 

While the mental well –being of the population cannot be over emphasized, it’s generally 

expected that the mental capacity deteriorates as we age. The volume of both white and grey 

matter increases during the youthful age and declines as we age, hence affecting the neuro-

cognitive status. Alzheimer’s disease is one popular age related irreversible dementia whose 

early diagnosis could have benefits to the patient. Using mice of two genotypes (APP/PS1 and 

WT), MRI for their brains was done using two techniques (DKI and DTI) resulting into the 

dataset used in this report. We sought for potential differences in between the two genotypes 

of mice aged 2 to 8 months. 

Data exploration suggested lack of a significant difference in the evolution profiles in most 

regions of interest, although DKI parameters seemed more sensitive to differences within 

regions 1-5 as compared to DTI parameters. In particular, DKI_RK, DKI_MK, DKI_AD and 

DKI_K23 profiles suggested differences in regions 1-5, while only DT_RD and DTI_L3 had 

signs of differences in the profiles of the two genotypes. Variability was further explored from 

which there were minimal differences in evolution of variability between the two genotypes. 

From Figure 5, it was evident that although there was minimal variability in APP/PS1 profiles, 

WT mice exhibited much variability in the profiles over time.  

Linear mixed effects models for the univariate longitudinal data were fitted under different 

covariance structures using an unstructured mean. An unstructured mean model provided 

estimates at each timepoint thus making it possible to evaluate differences across the 

timepoints. A compound symmetry covariance structure (which assumes constant variability 

and constant correlation within a subject) was deemed the most appropriate since it assured 

us of convergence in all regions of interest. Results indicated that DKI was able to detect 

differences (Most of the detectable differences were in the grey matter) especially at later 

timepoints as compared to DTI. 
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Similarly, the variability of the responses was modelled using linear mixed effects model, with 

the results indicating little differences in the variability across the genotypes. There were 

however detectable differences in the variability in majorly grey matter sub-regions.  

To ensure validity of inference, correction for multiple tests within the univariate models was 

done using FDR. While most multiple comparison corrections adjust for the familywise error 

rate, FDR controls the false discovery rate- the proportion of tests that are falsely claimed to 

be significant, while they are not. The impact of correcting for multiplicity was evident from 

the results of unadjusted estimates in section 5.2.1 and 5.2.2, whose confidence intervals 

mostly included zero, hence not detecting any significant differences in all regions. 

Joint modelling of multivariate longitudinal data was also implemented with an aim of 

seeking the correlation between corresponding DTI and DKI parameters. While there was a 

positive correlation between DKI and DTI MD responses, there were regions with negative 

correlations for AD and RD bivariate models. Moreover, DKI and DTI RD parameters were 

independent of each other in the corpus_callosum_body and the brainstem, indicating that in 

these regions, DKI cannot act as a biomarker for DTI. 

In conclusion, this study provided some evidence of the possibility of using DKI as a 

biomarker for DTI in different regions of the brain. However, treating the different brain 

sections as independent entities may be misleading considering that the grey and white matter 

regions have a particular spatial structure, which may introduce particular dependencies. 

Future developments should therefore seek to account for these dependencies. The sample 

size used should also be explored further regarding its appropriateness, and an optimal 

sample size computed. 
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Appendix 

 

Appendix 1: Coding scheme for parameters and regions of interest in the brain 

Value Region of Interest Value Parameter 

1 bulbus 1 DKI_MK 

2 corpus_callosum_genu 2 DKI_RK 

3 corpus_callosum_body 3 DKI_K23 

4 Hippocampus_dorsal 4 DKI_AK 

5 corpus_callosum_splenium 5 DKI_KA 

6 Hippocampus_CA_layers 6 DKI_MD 

7 brainstem 7 DKI_RD 

8 cerebellum 8 DKI_AD 

9 hypothalamus 9 DTI_FA 

10 Caudate_Putamen 10 DTI_MD 

11 Thalamus 11 DTI_RD 

12 cortex_motor 12 DTI_AD 

13 cortex_ss 13 DTI_L2 

14 cortex_aud 14 DTI_L3 

15 cortex_vis     
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