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                                                      Abstract  

 

The aim of the study was to compare the evolution of medical costs over time for persons 

with a known positive isolate of streptococcus pneumoniae with the control group. The data 

set was used from the database from national alliance of Christian Sickness Fund (NACSF). 

We performed an age specific analysis using flexible modeling techniques. In this report, we 

present the flexible modeling techniques that take the correlation among measurements of the 

same subject in to account. We considered parametric and semiparametric models. First, 

mixed effect model with first-order fractional polynomial mean structure was fitted and, this 

was compared with the second-order fractional polynomial mean structure based on their AIC 

values. To generate fractional polynomial powers for the time variable, a MACRO was 

implemented. Once the fractional powers for the time variable were obtained, a mixed model 

was fitted using PROC MIXED statement in SAS. The fractional polynomial mixed model 

assumes the relationship between a covariate and a response is fully parametric. We extend 

this model to a semiparametric mixed effects models framework using penalized splines. One 

of the major benefits of the correspondence between penalized splines smoother and mixed 

model, is that software for mixed model analysis can be used for smoothing.  

In conclusion, the health-care costs incurred by diagnosed pneumococcal patients are larger 

than those incurred by undiagnosed matched patients for all age groups. 

 

Keywords: fractional polynomials, mixed effects model, penalized splines, Semiparametric 

mixed models, streptococcus pneumoniae 

 

 

 

 

 

 

 

 



iv 
 

   

Contents 
 

 

1. Introduction .............................................................................................................................. 1 

1.1. Background ............................................................................................................................ 1 

1.2. Objective of the study ............................................................................................................. 2 

1.3. Structure of the report ............................................................................................................ 2 

2. Dataset .......................................................................................................................................... 3 

3. Statistical Methodology ................................................................................................................. 6 

3.1. Exploratory data analysis ........................................................................................................ 6 

3.2. Linear Mixed model ................................................................................................................ 6 

3.3. Fractional Polynomial with Mixed Model ................................................................................ 7 

3.4. Derivation of cumulative costs ................................................................................................ 8 

3.5 Radial Basis function ................................................................................................................ 9 

3.6. Semiparametric mixed models .............................................................................................. 10 

3.7. Software ............................................................................................................................... 12 

4. Results ......................................................................................................................................... 13 

4.1. Exploratory data analysis ...................................................................................................... 13 

4.2. Covariance structure ............................................................................................................. 19 

4.3. Modeling the results based on degree one fractional polynomial .......................................... 19 

4.4. Second-degree Fractional Polynomials .................................................................................. 21 

4.5. Model diagnostics ................................................................................................................. 23 

4.6. Semiparametric Mixed Models ............................................................................................. 31 

5. Discussion and conclusion ........................................................................................................... 34 

References ...................................................................................................................................... 36 

Appendix ......................................................................................................................................... 38 

Appendix A: Tables ...................................................................................................................... 38 

Appendix B: Figures ..................................................................................................................... 40 

Appendix C: SAS Codes ................................................................................................................ 63 

 

 

 



v 
 

 

List of Figures 

Figure 1: Individual profiles in each age group for pneumococcal and matched patients based on the 

observed costs. .................................................................................................................................. 5 

Figure 2: linear radial basis functions where the positions of the knots are indicated by the black 

squares with 10 equally spaced knot points. ..................................................................................... 10 

Figure 3: Individual profiles in each age group for pneumococcal and matched patients based on the 

cumulative costs. ............................................................................................................................. 15 

Figure 4: Box-plots of the log cumulative cost with respect to each level of group. ........................... 16 

Figure 5: mean profile of cumulative cost over time by match group in each age category. ............... 17 

Figure 6: mean cost against measurement time across age categories for pneumococcal and matched 

groups. ............................................................................................................................................ 18 

Figure 7: Restricted likelihood distance (left panel for age group 1 and right panel for age group 4).

........................................................................................................................................................ 25 

Figure 8: observed and predicted mean profile in each match group. ............................................... 28 

Figure 9: prediction of individual profiles for pneumococcal and matched persons across age group.

........................................................................................................................................................ 29 

Figure 10: derivatives of the observed and predicted mean profile in each match group. .................. 30 

Figure 11: Observed and predicted mean cost in each match group based on spline model............... 32 

Figure 12: Observed mean cost for both pneumococcal and control group together with the fitted 

fractional polynomial mixed model and the fitted semiparametric mixed model. ............................... 33 

Figure 13: distribution of cumulative cost for each of the pneumococcal and control group across the 

age categories ................................................................................................................................. 40 

Figure 14: Individual profiles for pneumococcal and matched patients across age category based on 

the log cumulative costs ................................................................................................................... 41 

Figure 15: Observed and fitted evolutions by match with outliers ..................................................... 42 

Figure 16: Prediction of individual profiles for pneumococcal and matched group across age 

category. ......................................................................................................................................... 44 

Figure 17: Predicted cost against time across age categories for pneumococcal and matched groups 

based on the spline model. ............................................................................................................... 45 

Figure 18: Studentized residual for the lowest age group for before diagnosis .................................. 46 

 

 



vi 
 

 

List of Tables 

Table 1: Minimum and maximum cluster sizes (subjects) for the different age groups ....................... 6 

Table 2: Descriptive statistics of cost at each time point for the lowest age group ........................... 13 

Table 3: Selected fractional powers. ................................................................................................ 19 

Table 4: Parameter estimates (S.E.) based on the degree-one fractional polynomial model ............... 20 

Table 5: Selected powers- degree two .............................................................................................. 21 

Table 6: Parameter estimates (S.E.) based on the degree-two fractional polynomial model with outliers

........................................................................................................................................................ 22 

Table 7: Parameter estimates (S.E.) without outliers ......................................................................... 27 

Table 8: Descriptive statistics of cost for the lowest age group at each time point ........................... 38 

Table 9: Parameter estimates of semiparametric mixed model .......................................................... 39 

   



1 
 

1. Introduction 
1.1. Background  

 Streptococcus pneumoniae, or pneumococcus, is a type of bacteria that can attack different 

parts of the body and is a leading cause of illness and mortality among children worldwide 

and particularly in developing countries (Greenwood et al, 2007). It was estimated that 10.6 

million children less than 5 years present with pneumococcal disease every year (Black et al, 

2003). The most severe forms of the disease are the invasive diseases (IPD) that include 

meningitis, especially in infants and young children (an infection of the lining that covers the 

brain), especially in infants and young children, and bacteremia (blood stream infection).  

IPD affects the extreme ages of life, the young children and the elderly. The noninvasive 

diseases, comprising mainly pneumonia which is an infection of the lungs, and otitis (include 

middle-ear infection) are usually less severe, but considerably more common than IPD. These 

infections can be dangerous to very young children, the elderly and people with certain high 

risk health conditions. Otitis is mainly found in young children, and pneumonia affects all 

ages. Mortality and illness from IPD remain high nowadays, despite appropriate access to 

care and antibiotic treatment (Beutels et al, 2011). Although all age groups may be affected, 

the highest rate of pneumococcal disease occurs in young children and in the elderly 

population. In addition, persons with immune deficiencies are at an increased risk. 

 In some developing countries, for instance Southern India, 50% of infants has been occupied 

by Streptococcus pneumoniae by 2 months of age and 80% are carriers by the age of 6 

months (Coles et al, 2001). A study in South Africa showed that the prevalence of carriage 

was 30%, 44%, 51% and 61% in children aged 6 weeks, 10 weeks, 14 weeks and 9 months, 

respectively (Mbelle et al, 1999).  

The symptoms of pneumococcal pneumonia include high fever, cough, shortness of breath or 

chest pain and extreme tiredness while the symptoms of meningitis include stiff neck, high 

fever, headache, vomiting, extreme tiredness, and loss of appetite. Young children commonly 

develop middle ear infections when they have colds or other viral respiratory infections. The 

symptoms of Otitis include ear pain, fever, crying and runny nose.  

Infections spread from one person to another the same way as cold spreads, by droplets 

passed through the air from coughing, sneezing and through touching unwashed hands. The 

disease occurs most often during the winter months. In this thesis, we focus on the medical 
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costs incurred by people who acquire pneumococcal infections, which are so severe that they 

warrant diagnosis by a positive isolate.  

The data considered in this thesis falls within the frame-work of continuous longitudinal data, 

and hence it was modeled by use of a mixed effects model which will be described in section 

3.2. For the modeling of longitudinal data, mixed effects models are a widely used approach 

(Verbeke and Molenberghs, 2000). In this thesis we will focus on two modeling approaches; 

a mixed effect model with fractional polynomial mean structure to include the flexibility and 

a mixed model with splines as proposed by (Ruppert et al, 2003). First of all, the data was 

analyzed using linear mixed model where the mean structure of the cumulative costs was 

estimated using degree-one fractional polynomials.  In order to compare for a possible 

improvement in fit, the mean structure was estimated again using second-degree fractional 

polynomials and then the two models were compared by use of the model selection criterion.  

A major limitation of these methods is that the relationship of the longitudinal response to 

covariates is assumed fully parametric. To capture the irregular trends in the dataset, a more 

flexible model is needed. Several approaches can be used that allow flexibility in order to 

cope with the irregularities observed in the mean profiles.  Thus, a more flexible model which 

is the semiparametric mixed model was performed. In recent years, this has placed a strong 

demand where flexible functional forms can be estimated from the data to capture possibly 

complicated relationships between longitudinal outcomes and covariates.  

1.2. Objective of the study 
The aim of the study was to compare the health-care costs between the two study groups. One 

is pneumococcal and the other is matched group.  

1.3. Structure of the report 
The report has six sections. In section 2 the data used in the analysis is described followed by 

section 3 that gives a general description of the methods used. Explanations of the results 

obtained from the methods applied to the data are given in section 4. And finally concluding 

remarks and discussion will be given in section 5. Sample statistical codes used for the 

analysis are included in the appendix. 
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2. Dataset 

The dataset contains the total medical costs measured at fixed time points; they were 

followed over a monthly period. The database from national alliance of Christian Sickness 

Fund (NACSF) contains all resource use information of members of the largest sickness fund 

in Belgium. For this thesis, we considered medical costs of patients who have a positive 

culture taken between 1994 and 2004. The data set is used consisting of cases (members of 

NACSF) of whom a positive isolate of the pneumococcal was found, and controls (members 

of the NACSF) matched in terms of gender, age, municipality and social category. To study 

that evolution over time, the variable match was considered; which has two categories, 0 

represents pneumococcal group and 1 the control group, the response variable is the total 

medical cost of an individual incurred throughout the study, and cumulative cost is the 

cumulative of the original costs. The dataset contains information on 1752 patients, from 

these 876 diagnosed and 876 undiagnosed. The patients were divided in two four age groups 

based on the expected differences in levels of differences in levels of severity of experienced 

pneumococcal disease. The lowest age group consists of medical cost measurements of 632 

individuals over two groups: 316 individuals were measured in pneumococcal group while 

the remaining 316 comprise a control group and are displayed in Figure 1. The data 

represents 253 individuals in the pneumococcal group and the same number of persons in the 

control group under study with respect to the second age group. In the third age category, 

there are 113 numbers of individuals in the pneumococcal group and 113 in the control 

group, and the oldest age group consists of 194 individuals in the pneumococcal group and 

194 in the control group. The lowest age category consists of individuals younger than five 

years of age and the second age group between 5 and 49 years, the third category contains 

individuals between 49 and 64 where as the oldest age group consists of patients aged 65 

years or more. There are four data sets available for each of the age categories. Therefore age 

specific analysis is performed. Special interest lies in the oldest and youngest age groups, 

since these groups are known to have a highest risk of serious complications from their 

pneumococcal infections and from other unrelated illnesses.  

From the descriptive plot presented in figure 1, it is virtually impossible to model using 

parametric techniques describing the different picks. Therefore, the original costs are 

transformed in to cumulative costs.   
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Let 𝑌𝑖𝑗 be the cost for person i (this can be a diagnosed patient or a matched group) at month j, 

where j is negative before, and positive after diagnosis. The cumulative cost 𝑍𝑖𝑗 for person i at 

month j is defined as 

Zij =

 
 
 

 
 
 Yik ,    if j ϵ  0, 1, 2,…  ;

j

k=0

 Yik     if j ϵ  −1, −2,…  .

−1

k=j

  

The cost 𝑍𝑖𝑗 accumulates the original costs in two directions, from the time of diagnosis 

onwards. Before time point zero, the cumulative costs are decreasing until zero. From time 

zero onwards cumulative costs are increasing. Again, one can observe a difference between 

the pneumococcal group and the matched group, with higher cumulative costs in the 

pneumococcal group. 

There are a few reasons why the cumulative costs are chosen to model rather than the original 

costs. First, cumulative costs summarize the total cost up to a particular point in time, which 

is highly relevant for practical interpretations. Next, the incremental process is highly 

irregular, in its occurrences over time (Figure 1). Cumulative costs smooth out these 

incremental costs. The number of incremental costs as well as the times of their occurrences 

is highly variable over patients. Therefore, the data are highly unbalanced over patients. 

Fractional polynomials can then be used to describe this cumulative process in a flexible way. 

In the plots the time span was reduced to 30 months before and after diagnosis. However, for 

most patients, much more information is available. In performing the analysis, the time span 

was reduced in each age group. This avoids mean and correlation structure selection being 

highly influenced by a few outliers that have observations far from time point zero and the 

SAS macro in statistical modeling did converge on the selection.  
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Figure 1: Individual profiles in each age group for pneumococcal and matched patients 

based on the observed costs. 
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Table 1: Minimum and maximum cluster sizes (subjects) for the different age groups  

 

Table two shows the minimum and the maximum cluster sizes for each age group. 

Individuals in age group one are measured up to 34 times monthly before diagnosis where as 

they are measured for a longer time after diagnosis, that is they are measured a maximum of 

97 times. Similar numbers of measurements are found for the second age group as well. For 

those individuals who belong to the third age category, they are measured for a longer time 

before diagnosis compared to after diagnosis. Before the moment of diagnosis, the number of 

observations within subject is at most 132 while after diagnosis the maximum number of 

measurements is 84 for the oldest age category.   

3. Statistical Methodology  

3.1. Exploratory data analysis 

In this report, an exploratory data analysis (EDA) was performed to explore the data. Before 

starting statistical modeling to obtain some useful insights in the structure of the data and an 

idea about a possible statistical model, descriptive statistics as well as graphical displays such 

as individual profiles and mean profiles by match group were used to address the research 

question.  

3.2. Linear Mixed model 

In this section, we briefly examine the general linear mixed-effects model. Longitudinal data 

arise frequently in many medical applications. They generally involve a collection of data at 

different time points for several subjects, and they are characterized by the dependence of 

repeated observations over time within the same subject. Statistical models taking the 

repeated nature of the data in to account will be presented. Since observations coming from 

 Before   After   

Age group  Minimum  Maximum  Minimum  Maximum  

1  1 34 1 97 

2 1 34 1 97 

3 1 120 1 70 

4 1 132 1 84 
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the same subject tend to be more alike than observations from different subjects, they are said 

to be correlated. This correlation needs to be taken into account when analyzing longitudinal 

data. The general linear mixed model is a commonly used statistical tool to study the 

relationship between a normally distributed dependent variable and one or more independent 

variables. The name mixed model comes from the fact that the model contains both fixed-

effects parameters and random-effect parameters. Linear mixed models provides a flexible 

framework to model longitudinal data parametrically (Laird and Ware, 1982). 

A linear mixed effects model (LMM) then assumes that 𝑌𝑖  satisfies: 

𝒀𝑖 = 𝑿𝑖𝜷 + 𝒁𝑖𝒃𝑖 + 𝜺𝑖  

where Yi is the 𝑛𝑖  dimensional vector of measurements available for subject 𝑖 = 1, … ,𝑁, 𝑋𝑖  

and 𝑍𝑖  are the (𝑛𝑖 × 𝑝) and (𝑛𝑖 × 𝑞) dimensional matrices of the predictor variables and the 

random effect variables respectively, β is  a p dimensional vector of fixed effects, bi  is the q-

dimensional vector of subject specific random effects and 𝜀𝑖  is an 𝑛𝑖  dimensional vector of 

residual components. Finally, D is a general 𝑞 × 𝑞 covariance matrix for random effects and 

Σi  corresponds to (𝑛𝑖 × 𝑛𝑖) covariance matrix for the error terms.  

The distributional assumptions made by the mixed model are as follows: 

 
𝒃𝑖  ~ 𝑁 𝟎, D ,                          

𝜺𝑖  ~ 𝑁 𝟎, Σi ,                         
𝒃𝑖  and 𝜺𝑖  are independent.

  

and they are independent. The fixed effects have population-average regression coefficients 

and the 𝑏𝑖 ′𝑠 (random effects) have subject specific regression coefficients.  

3.3. Fractional Polynomial with Mixed Model 

Fractional polynomials allow very flexible models, extending the classical polynomials. 

Fractional polynomials were proposed by Royston and Altman (1994) as a flexible 

parametric modeling approach. In addition to having the flexible properties of the classical 

polynomial models, the fractional polynomial models allow for non-integer powers and 

logarithmic functions and products of these (Aerts, 2006). Royston and Altman argued that in 

practice, fractional polynomials of order higher than 2 are rarely needed, since higher degrees 

do not mostly improve the model fit. The powers are selected so that conventional 

polynomials are a subset of the family. The powers of a best fractional model are selected 

from a suggested set of {-2, -1, -0.5, 0, 0.5, 1, 2, 3}. Thus all possible combinations of two 
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powers from this set were considered and the combination that gave the model with the 

lowest Akaike information criteria (AIC) was chosen.  

A fractional polynomial in x of degree m is defined as any function of the form 

                                       𝜙𝑚 (𝑋; ᵝ; 𝑝1, 𝑝2 , … , 𝑝𝑚 ) = ᵝ0 +  𝑗β𝐻𝑗 (𝑋)𝑚
𝑗=1 ,  

where the degree 𝑚 is a positive integer, 𝑝 is a real-valued vector of powers with 𝑝1 ≤ ⋯ ≤

𝑝𝑚  and ᵝ0, ᵝ1, … , ᵝ𝑚  are real-valued coefficients and 𝐻𝑗 (𝑋) is a transformation function given 

by 

𝐻𝑗  𝑋 =   

ln 𝑋                 𝑖𝑓 𝑝𝑗 = 0 𝑎𝑛𝑑 𝑝𝑗 ≠ 𝑝𝑗−1 ,

𝑋𝑝𝑗                                             𝑖𝑓 𝑝𝑗 ≠  𝑝𝑗−1 ,

𝐻𝑗−1 𝑋 ln 𝑋                       𝑖𝑓   𝑝𝑗 =  𝑝𝑗−1 .

  

A great advantage of fractional polynomials over classical polynomials is that they provide a 

wide range of functional forms and their behavior near the extreme values is often more 

reasonable. Fractional polynomials of Royston and Altman are frequently used. Another 

advantage of fractional polynomials is that they are straightforward to fit using standard 

methods.  

It should be noted at this point that the model discussed here has a restriction in the 

relationship between the response and the covariate is fitted parametrically. This does not 

make the flexibility of models like fractional polynomials optimal. In furthering our search, 

we also considered another model, the semi-parametric mixed model as an alternative which 

will be discussed in latter sections. We used a SAS MACRO to produce the yearning power 

of the time. The obtained powers are therefore used in the proc mixed procedure with both 

random and repeated statements. 

 

3.4. Derivation of cumulative costs 

Due to the highly skewed nature of the cumulative costs, logarithmic transformation is used 

and the model is fitted on this transformed response. Once the model is fitted on the 

logarithm of cumulative costs, we need to back transform for the original costs. In this case, 

we first transform to the cumulative costs. In order to compare the population-averaged 

marginal evolutions of the two groups on the original cost level, additional computations are 

needed. The marginal expected evolution of the cumulative costs measured at time point 𝑡𝑖𝑗  is 

given by 

𝐸 𝐶𝑆𝑖𝑗  = 𝐸  𝐸 𝐶𝑆𝑖𝑗  𝑏𝑖  ≠ exp ᵝ0 + ᵝ1𝑚𝑎𝑡𝑐𝑕 + ᵝ2𝑡
𝑝 + ᵝ3𝑚𝑎𝑡𝑐𝑕 ∗ 𝑡

𝑝  
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Since we have random effects in the non-linear function, calculation of the above equation 

requires numerical averaging technique; we follow this procedure with 1000 draws. We fitted 

by randomly drawing 1000 realized values for the random effects 𝑏𝑖 , taken from a bivariate 

normal distribution with mean vector zero and with covariance matrix equal to the fitted 

random-effects covariance matrix D given by: 𝑣𝑎𝑟 𝑏𝑖 = 𝐷 =  
𝑑11 𝑑12
𝑑21 𝑑22

 . 

The Cholesky decomposition of the covariance matrix (D), defined as the upper triangular 

matrix L such that 𝐿`𝐿 = 𝐷 and needed in the SAS code for drawing the 1000 random vectors 

𝑏𝑖  is given by: 𝐿 =  
𝑙11 𝑙12

0 𝑙22
 . For each of the 1000 realized random vectors 𝑏𝑖 , the 

conditional expectation exp ᵝ0 + 𝑏𝑜𝑖+ᵝ1𝑚𝑎𝑡𝑐𝑕 + ᵝ2𝑡
𝑝 + ᵝ3𝑚𝑎𝑡𝑐𝑕 ∗ 𝑡

𝑝 + 𝑏1𝑖  is computed, 

with fixed effects replaced by their fitted values. Once the logarithm of cumulative costs are 

transformed in to cumulative costs in this way, secondly interest also lies in the derivative of 

the cumulative cost function to back transform to the original costs. An estimate for 

unconditional mean at a given time point is then obtained from averaging the 1000 

conditional means, i.e., 

𝐸  𝐶𝑆 𝑡  =
1

1000
 exp ᵝ0 + 𝑏𝑜𝑖+ᵝ1𝑚𝑎𝑡𝑐𝑕 + ᵝ2𝑡

𝑝 + ᵝ3𝑚𝑎𝑡𝑐𝑕 ∗ 𝑡
𝑝 + 𝑏1𝑖  

1000

𝑖=1

, 

where the random slope 𝑏1𝑖  belongs to 𝑡𝑝 . 

3.5 Radial Basis function 

There is a clear essence to be able to handle the nonlinear relationships revealed in figure 1 

effectively through more flexible techniques such as splines. Although fractional polynomial 

terms can be used to handle nonlinearities, it should be kept in mind that their use can require 

a good deal of time. Thus, a more flexible approach which is situated within the mixed-model 

framework is through penalized splines (Ruppert et al, 2003). In this section we will look at 

some ways of freeing oneself of the restrictions of parametric models.   

The basis function which we used is the radial basis. Ruppert et al (2003) defines a radial 

basis function by 

                                    |𝑡 − 𝐾𝑘 |𝑝 = 𝑟(|𝑡 − 𝐾𝑘|),  

where 𝑟 𝑢 = 𝑢𝑝  for some function r, and a degree p. This shows that the basis functions 

|𝑡 − 𝐾𝑘 |𝑝  (1 ≤ k ≤ K) depend only on the distance (|𝑡 − 𝐾𝑘|) and the function r. Figure 2 

displays the function  𝑡 − 𝑘𝑘   for 10 equally spaced knots. This is not the only basis function. 
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Another set of basis functions with this property is the truncated lines basis with knots 

at 𝑘1, … , 𝑘𝐾. In principle, a change of basis does not change the fit. One of reasons for 

selecting one basis over another is ease of implementation (Ruppert et al, 2003). We 

considered radial basis function, the method of semiparametric mixed model which will be 

discussed in the next section, is easier to implement in the Glimmix procedure in SAS with 

radial basis as presented in the appendix. We can generalize this to a spline model of general 

degree.  

According to Ruppert, different choices of the smoothing parameter lead to different 

estimated models. When a linear mixed model is used as a scatter plot smoother, one does not 

need to use any additional procedure in order to select the smoothing parameter. The amount 

of smoothing is determined by 𝜆 = 𝜎ɛ
2/𝜎𝑏

2.  

 

                                                        Linear radial basis  

 

                          

 

 

 

 

 

 

                                                                                                

Figure 2: linear radial basis functions where the positions of the knots are indicated by the 

black squares with 10 equally spaced knot points.      

 

3.6. Semiparametric mixed models 

A simple and straightforward method to fit splines is by considering the coefficient of each 

knot as fixed effect, usually referred to as regression spline. However, this approach tends to 

over fit the data, leading to computational problems. This can be overcome by including 

splines in the mixed model framework, meaning that treating each knot point coefficient as 

random (Ruppert et al, 2003). As discussed in section 3.5 an appealing alternative to 

fractional polynomials is to model the irregular trends with a semiparametric smooth 
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function, f(t), which can be estimated with penalized splines.  Let 𝑌𝑖𝑗  denote the response 

taken from subject 𝑖, 𝑖 = 1,… ,𝑚 at time 𝑡𝑖𝑗  (𝑗 = 1,… , 𝑛𝑖). The model of interest can be 

expressed as 𝑌𝑖𝑗 = 𝑓 𝑡𝑖𝑗  + 𝑏0𝑖 + ɛ𝑖𝑗  for a smooth function 𝑓(. ) and subject-specific random 

intercepts 𝑏0𝑖  accounting for the clustered nature of the observations. The penalized spline 

representation, based on a linear radial basis, can be written as 

𝑌𝑖𝑗 = 𝛽0 + 𝛽1𝑡𝑖𝑗 +  𝑏𝑘 𝑡𝑖𝑗 − 𝑘𝑘 
𝐾
𝑘=1                   + 𝑏0𝑖 + ɛ𝑖𝑗

𝑓(𝑡𝑖𝑗 )

= 𝑓 𝑡𝑖𝑗  + 𝑏0𝑖 + ɛ𝑖𝑗   

Where 𝑘1, … , 𝑘𝐾are a set of distinct knots in the range of 𝑡𝑖𝑗 , 𝑏𝑘~𝑁(0, 𝜎𝑏
2) 

and 𝑏𝑜𝑖~𝑁 0, 𝜎𝑏0

2  . The two sets of random effects 𝑏𝑘  and 𝑏0𝑖  are assumed to be independent. 

This enables us to write the above equation as a semiparametric mixed model similar to 

𝒀𝑖 = 𝑿𝑖𝜷 + 𝒁𝑖𝒃𝑖 + 𝜺𝑖where now 

𝒁 =

 
 
 
 
 
 
𝒁1𝟏  0 …   0
𝒁2  0  𝟏…   0
 .     .    .          .
.     .    .          .
.     .     .         .
𝒁𝑚   .    .        𝟏𝑚  

 
 
 
 
 

 , 𝒁𝑖 =  

|𝑡𝑖1 − 𝑘1| ⋯ 𝑡𝑖1 − 𝑘𝐾
⋮ ⋱ ⋮

|𝑡𝑖𝑛 𝑖 − 𝑘1| ⋯ |𝑡𝑖𝑛 𝑖 − 𝑘𝐾|
 , 𝑏 =  𝑏1 , … , 𝑏𝐾 , 𝑏01 , … , 𝑏0𝑚  

𝑇  

and  

𝐺 =  
𝜎𝑏

2𝑰 0

0 𝜎𝑏0
2 𝑰
 , the vector of fixed effects 𝛽 = (𝛽0 , 𝛽1)𝑇 and the corresponding design 

matrix 𝑿 =  1  𝑡𝑖𝑗  . Fitting penalized splines by the mixed model approach has some 

appealing advantages, such as the automatic determination of the smoothing parameter and 

the flexibility with which the models can be extended. The method is usually implemented in 

the SAS procedure GLIMMIX. 

  

The semiparametric model discussed above implies that the mean response for each group 

can be represented by an additive model of two components, a linear component and a 

smooth component.  

We are interested in investigating whether there is a difference between the two study groups. 

In this modeling, we fit two separate curves which are assumed to be the fixed parts are 

different across the two groups but the non-parametric component, responsible for the 

smoothing, is identical. The penalized spline representation of the model in the two groups 

can be expressed as 
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𝑌𝑖𝑗 =  
𝛽0 + 𝛽1𝑡𝑖𝑗 +  𝑏𝑘  𝑡𝑖𝑗 − 𝑘𝑘 + 𝑏0𝑖 + ɛ𝑖𝑗 ,𝐾

𝑘=1                                𝑃𝑛𝑒𝑢𝑚𝑜𝑐𝑜𝑐𝑐𝑎𝑙 𝑔𝑟𝑜𝑢𝑝,

(𝛽0 + 𝛽01) + (𝛽1 + 𝛽11 )𝑡𝑖𝑗 +  𝑏𝑘  𝑡𝑖𝑗 − 𝑘𝑘 + 𝑏0𝑖 + ɛ𝑖𝑗 ,𝐾
𝑘=1            𝑀𝑎𝑡𝑐𝑕𝑒𝑑 𝑔𝑟𝑜𝑢𝑝.

    

where 𝑏0𝑖  is a subject-specific random effect, 𝛽01  is the difference in group specific 

intercepts, 𝛽11  is the difference in group specific slope and ɛ𝑖𝑗  are residuals. The covariance 

matrix for the random effects 𝑏1 , … , 𝑏𝐾 , 𝑏01 , … , 𝑏0𝑛 ) is defined as   

𝑮 =  
𝜎𝑏

2𝑰𝐾 0

0 𝜎𝑏𝑜
2 𝑰𝐾

 , 

where 𝜎𝑏
2 = 𝑣𝑎𝑟(𝑏𝑘) and 𝜎𝑏0

2 = 𝑣𝑎𝑟(𝑏0𝑖).The model takes into account within and between-

subject variability, as well as variability arising from smoothing.  

 

3.7. Software 

The main software used for data analysis was SAS, mostly PROC MIXED to fit linear mixed 

models. Moreover, important graphs were built using R package. The analysis of the spline 

modeling based on the radial basis function was performed using the GLIMMIX procedure in 

SAS.  

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

4. Results 

In this section we present the results obtained from the different techniques applied to address 

the research question. Based on the objective of the study, most of the exploratory results are 

presented for each of the groups. This is because it might be informative for the methods 

employed.  

4.1. Exploratory data analysis 

The table shown bellow represents descriptive statistics of costs at each time points for 

pneumococcal and the control group for the lowest age category. In descriptive statistics of 

the data; the mean, fifth, ninety fifth percentile values and the associated number of 

observations conditional on the particular group were presented. For the lowest age category, 

a total of 278 individuals are diagnosed with pneumococcal infection and their medical costs 

were compared with the control group. At the moment of diagnosis, cost differs among 

individuals. The cost of pneumococcal patients ranged between 0 euro and 18420.34 euro 

with mean cost of 1874.93 euro while that of the control group ranged between 0 euro and 

2940.37 euro with a mean of 61.233 euro. Thus on average the medical cost for 

pneumococcal patients is larger than that of matched group (Table 2).  The mean cost for 

pneumococcal patients are higher in every measurement time for before and after diagnosis. 

Only the results of before diagnosis are presented here, a full table showing before and after 

diagnosis is given in Appendix A (Table 8).  

Table 2: Descriptive statistics of cost at each time point for the lowest age group  

  Pneumococcal     Match     

Time 
points 

n Mean   Median P5 P95 n Mean   median P5 P95  

-30 51 245.422 16.86 0 2304.33 51  99.073 15.47 0 585.33 

-25 61 262.088 15.12 0 341.83  61 64.338 23.95 0 150.8 

-20 85 182.608 17.85 0 660.96 85  39.447 0 0 159.38  

-15 119 113.076  20.45 0 670.73  119 72.353 15.74 0 243.49 

-10 170 142.198 22.525 0 946.94 170  74.799 0 0 595.29 

-5 248  207.914 22.74 0 735.93 248  57.897 17 0 136.06 

0 278 1874.93  1245.08 15.3  6277.77  278 61.233 15.51 0  218.52  
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From table 2 it can be seen that except at the moment of diagnosis the fifth percentile is zero 

in every measurement time for diagnosed pneumococcal patients, for the control group it is 

zero in every measurement time, which indicates that large number of individuals have zero 

costs (incurred no medical costs). The 95
th

 percentiles give additional information in that, 

patients diagnosed for pneumococcal infections incurred higher health-care costs than that of 

the control persons in all the time points in both directions before and after diagnosis. Results 

for the other age groups are not shown here, but in all age groups the pneumococcal patients 

incurred more costs than those who belong to the control group. This might indicate that 

group has an impact on the cost; that is it seems that there is group difference. The cost data 

are taken every month and the number of measurements taken per individual are not fixed 

therefore we have unbalanced data set. 

Figure 1 depicts the individual profiles of the cost of individuals as a function of month at 

each age categories for each of the matched and pneumococcal groups. The profiles show 

substantial between as well as within subject variability. Given the individual profiles in 

Figure 1, it appears a suitable parametric function to describe the evolution may not be easily 

assumed. Therefore the cumulative costs are used. Figure 2 shows the profiles of the 

cumulative costs across age categories for pneumococcal as well as for the matched groups, 

which reflects the overall increasing trend of cumulative costs along measurement time, that 

means measurements are taken on a monthly basis.  The cumulative costs look higher in 

pneumococcal patients than matched persons. Different individuals follow different 

evolutions and there seems to be individuals in the pneumococcal groups are different from 

those of the matched groups in all age categories. Notice that the cumulative costs increases 

as time increases in both directions, before and after diagnosis, this is expected as the 

cumulative costs are the sum of costs at some time points. Looking at the plot, the variability 

between individuals increases over time. Although these plots also give us the variability at a 

given time, it also gives about the correlation between measurements of the same subject. The 

profiles show substantial between as well as within-subject variability. The profiles suggest a 

need for a flexible model, which would be able to capture the functional dependence of 

cumulative costs on time.  
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Figure 3: Individual profiles in each age group for pneumococcal and matched patients based 

on the cumulative costs. 
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As we can see from the plot, the linearity assumption is not reasonable for the data, and so the 

linear mixed model should be at least extended to the fractional polynomial mean structure.  

Based on the transformed costs a mixed model with fractional polynomial mean structure was 

used.  We observe that the individual profile of the cumulative cost against time in both the 

pneumococcal and the control groups present a non linear trend. So in order to capture the 

flexibility, discovered by the profiles of the two groups, we generated fractional polynomial 

powers. 

From the profiles, the variable group seems to have an effect that is there seems to be a 

difference between pneumococcal and matched groups. This has to be proven statistically 

that is we need to investigate formal statistical tests. 

 

 
 

Figure 4: Box-plots of the log cumulative cost with respect to each level of group. 

Box-plots of the cumulative costs on logarithmic scale with respect to each level of group 

(named match in the data set) are presented in Figure 4. The plots are used to identify 

whether the average cumulative cost is related to the match group. It is evident that there is 

some difference in the mean cumulative cost between pneumococcal and matched persons; 

the mean cumulative costs are slightly higher in pneumococcal patients than individuals who 

belong to the control group. 
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Figure 5: mean profile of cumulative cost over time by match group in each age category.  

The average evolution describes how the profile for the population evolves over time. The 

results of this exploration will be helpful in order to choose a fixed effects structure for the 

mixed model. Besides plotting the response over time, it is also useful to include the two 

groups on the same graph to illustrate the relationship between the response (cumulative cost) 

and an explanatory variable (group) over time. The red and blue colors correspond with 

pneumococcal and control groups respectively. This allows us to make a rough comparison 

between the two groups. Looking at the figure, the cumulative costs of the pneumococcal 

group are consistently higher than the control group in all age categories from the beginning 

to the end of the study.  Moreover the average profiles indicate an increase over time in both 

directions before and after the moment of diagnosis. Furthermore, there appears to be a 

relatively large difference between the pneumococcal and control groups. Note that a 

parametric modeling technique for these mean profiles might not be easily determined. Hence 

the need to use more flexible modeling, semi-parametric modeling techniques, is apparent.  
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Figure 6 depicts the cost over time under each of the age groups for pneumococcal and 

control groups. It gives further information in order to compare the costs of the four different 

age groups. 

 

Figure 6: mean cost against measurement time across age categories for pneumococcal and 

matched groups. 

The different age groups are represented in different colors. As it can be seen from the graph, 

after diagnosis, younger patients have the lowest cost whereas before diagnosis and some 

measurement times the second and third age groups have the lowest cost for the control 

group. For the control group, the highest age category incurred higher costs than any other 

groups throughout the measurement times before and after diagnosis. When we look at the 

plot of the pneumococcal patients, again after diagnosis the lowest age category incurred the 

lowest cost. Furthermore the oldest age category incurred highest costs but it is not regular 

throughout the measurement times. In general there is a slight difference in cost between the 

age categories for pneumococcal and control groups. In both groups, the oldest age group has 

the highest cost followed by the 3
rd

 age group. 
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4.2. Covariance structure  

One of the basic features of mixed models is the covariance structure such as simple, 

compound symmetry, AR(1) and unstructured. According to Molenberghs and Verbeke 

(2005), in the case of balanced data, i.e., when a fixed number of measurements are taken for 

all subjects and when measurements are taken at fixed time points, a useful covariance 

structure is the unstructured structure.  Depending on the context and actual data at hand, 

other choices may be appropriate. A first-order autoregressive model assumes that the 

covariance between two measurements 𝑦𝑖𝑗  and 𝑦𝑖𝑘  from the same subject 𝑖 is of the form 

𝜎2𝜌|𝑡𝑖𝑗 −𝑡𝑖𝑘 | for unknown parameters 𝜎2 and 𝜌. Another covariance structure is compound 

symmetry, which assumes that the correlation between observations is constant over time. 

For the choice of the covariance structure to the data at hand, we tried to compare different 

covariance structures based on the Akaike Information Criterion Molenberghs and Verbeke 

(2005) in order to select the best covariance structure. The unstructured covariance structure, 

ar(1) and compound symmetry leads to convergence problem. Hence the simple covariance 

structure was applied. Once the covariance structure is selected, and given that the mean 

profile revealed a non linear trend over time, we had to come out with the ideal power of the 

time variable. According to Royston and Altman, low order polynomials offer a limited 

family of shapes, and high order polynomials may fit poorly at the extreme values of the 

covariates. Fractional polynomials were therefore proposed as a solution by Royston and 

Altman (1994).  

4.3. Modeling the results based on degree one fractional polynomial 

The model described in Section 3.2 was fitted to the data. As a starting point, we fit a mixed 

model with the first-order fractional polynomial mean structure to the data. Moreover, second 

degree fractional polynomials were also taken in to account for possible improvements in fit.  

Table 3: Selected fractional powers. 

 Age1 Age2 Age3 Age4 

Before  0 0 0 0  

After  0 0.5 0.5 0.5 

 

As shown in Figure 13 in the appendix, the cumulative cost data is not normally distributed. 

Therefore, we used a logarithmic transformation.  Once the covariance structure is selected, 
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the mean structure of the log cumulative costs is estimated using fractional polynomials. An 

age specific analysis was conducted for before and after diagnosis separately. The selected 

fractional powers for each age group for before and after diagnosis are presented in Table 3.  

Table 4: Parameter estimates (S.E.) based on the degree-one fractional polynomial model  

 

The likelihood ratio test was used under REML for the inference of variance components. We 

considered the random-intercept and slope model, that is, a mixed model where the subject 

specific effects are intercepts and slopes.  We used likelihood ratio test to test if only random 

Effect  parameter Age1 after  Effect Age1 before Age2 after    Age2 before    Age2 after    Age2 before     

  Estimate(S.E.) p-value  Estimate  p-value 

Intercept       𝛽0  2.5728 (0.1759)  <.0001 Intercept  2.0011(0.1295) <.0001 

Match                                    𝛽1 3.4573 (0.2488)  <.0001 Match  2.8642 (0.1832) <.0001 

𝑡𝑝1  𝛽2 1.1344 (0.0492)  <.0001  𝑡𝑝1  1.5357 (0.0447) <.0001 

𝑡𝑝1 ∗match 𝛽3 -0.6143(0.0695)  <.0001 𝑡𝑝1 ∗match -0.7003 (0.0632) <.0001 

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  9.0571 (0.5916)   Var(𝑏1𝑖) 4.4873(0.2813)  

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -2.2982 (0.1625)   cov(𝑏1𝑖 , 𝑏2𝑖) -1.0404(0.0842)   

Var(𝑏2𝑖) 𝑑22  0.6936(0.0477)   Var(𝑏2𝑖) 0.4697(0.0342)  

  Age2 after   Age2 before    
Intercept        𝛽0  1.9551(0.1908)  <.0001 Intercept  1.7619(0.1695) <.0001  

Match  𝛽1 5.2484(0.2699)  <.0001 Match  3.1333(0.2398)  <.0001 

𝑡𝑝1  𝛽2 0.9904(0.0355)  <.0001  𝑡𝑝1  1.4486(0.0460)  <.0001 

𝑡𝑝1*match 𝛽3 -0.7551(0.0502)  <.0001  𝑡𝑝1 ∗match -0.6682(0.0651)  <.0001 

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  8.4435 (0.6520)   Var(𝑏1𝑖) 6.6730 (0.4492)   

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -1.2527 (0.1125)   cov(𝑏1𝑖 , 𝑏2𝑖) -1.4559 (0.1112)   

Var(𝑏2𝑖) 𝑑22  0.2755(0.0226)   Var(𝑏2𝑖) 0.4770 (0.0328)   

  Age3 after   Age3 before Age2 after    Age2 before    Age2 after    Age2 before     

Intercept       𝛽0  2.5064 (0.2174)  <.0001 Intercept  2.1972 (0.2226)   <.0001 

Match                                    𝛽1 5.3744 (0.3075)  <.0001 Match  4.0793 (0.3148)   <.0001 

𝑡𝑝1  𝛽2 0.9759 (0.0461)  <.0001  𝑡𝑝1  1.4371 (0.0596)   <.0001 

𝑡𝑝1 ∗match    𝛽3 -0.7202 (0.0652)  <.0001 𝑡𝑝1 ∗match -0.8186 (0.0838)     <.0001 

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  5.0388(0.504)  Var(𝑏1𝑖) 5.1428 (0.5100)    

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -0.7723(0.0933)   cov(𝑏1𝑖 , 𝑏2𝑖) -0.9239 (0.1183)   

Var(𝑏2𝑖) 𝑑22  0.2100(0.0234)   Var(𝑏2𝑖) 0.3539 (0.0361)     

  Age4 after   Age4 before  

Intercept        𝛽0  3.6544(0.1663)  <.0001 Intercept  3.2683 (0.1799) <.0001  

Match  𝛽1 4.3457 (0.2352)  <.0001 Match  2.8175 (0.2545)  <.0001 

𝑡𝑝1  𝛽2 0.8824 (0.0319)  <.0001  𝑡𝑝1  1.3063 (0.0433)  <.0001 

𝑡𝑝1*match   𝛽3 -0.5941 (0.0452)  <.0001  𝑡𝑝1 ∗match -0.5655 (0.0433)  <.0001 

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  4.9775(0.4366)   Var(𝑏1𝑖) 6.0505(0.4628)   

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -0.7095 (0.0766)   cov(𝑏1𝑖 , 𝑏2𝑖) -1.0997(0.1008)    

Var(𝑏2𝑖) 𝑑22  0.1669(0.0161)   Var(𝑏2𝑖) 0.3424 (0.0271)   
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intercept model can be specified. Let us now take first the analysis of before diagnosis for the 

first age group. A model with only random intercept had minus twice log likelihood of 

20987.2 while a model with both random terms included had a 17821.4. This will be 

compared with a 50:50 mixture of two chi-square distributions with 1 and 2 degree of 

freedom, respectively. The test statistic is 3165.8, yielding a highly significant result, 

implying the need for random slope. Similarly for each age group for before and after 

diagnosis, a model with a random intercept only is rejected. Therefore models with both 

random intercept and random slope were fitted across age groups.      

Table 4 presents the parameter estimates and their corresponding standard errors of the fitted 

mixed model based on the degree one fractional polynomial mean structure for each age 

group. We obtained a significant main as well as interaction effects. The interaction effect 

can be interpreted as there is a difference in cumulative cost over time between the 

pneumococcal and the control group. 

4.4. Second-degree Fractional Polynomials 

The fractional polynomial powers based on the restricted set of {-2, -1, -0.5, 0, 0.5, 1, 2, 3} 

were selected. For degree two fractional polynomials, all possible combinations of two 

powers from this set were considered and the combination that gave the model with the 

lowest AIC was selected. The model with the smallest AIC value is chosen. The best fit 

fractional polynomials of degree 2 have the same powers (0, 0) for the lowest age group at 

time before the moment of diagnosis while after diagnosis the powers are (0.5, 0.5).  

Table 5: Selected powers- degree two 

 Age1 Age2 Age3 Age4 

Before  0, 0 -2,0 0, 0  0, 0  

After  0.5, 0.5 -1, 0 -1, 0  0, 0 

 

A mixed model with degree two fractional polynomial mean structures were fitted with the 

selected powers from Table 5. The same procedures were followed for model building as in 

degree one fractional polynomial case.  The models based on degree one and degree two 

fractional polynomial mean structures were compared based on the information criterion. 

Models based on degree two fractional polynomials had smaller AIC values. Thus this model 
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showed an improvement over the former one. Table 6 presents the parameter estimates and 

their corresponding standard errors of the fitted models for each age group.  

Table 6: Parameter estimates (S.E.) based on the degree-two fractional polynomial model 

with outliers 

 

The same covariance structure was used as in degree one fractional polynomial model, and a 

significant group effect was obtained. Since the interaction between group and time was 

Effect  parameter Age1 after  Effect Age1 before Age2 after    Age2 before    Age2 after    Age2 before     

  Estimate(S.E.) p-value  Estimate  p-value 

Intercept       𝛽0  0.7435 (0.1354) <.0001 Intercept  2.0011(0.1295) <.0001 

Match                                    𝛽1 5.0546(0.1915) <.0001 Match  2.8642 (0.1832) <.0001 

𝑡𝑝1  𝛽2 2.1226 (0.0443) <.0001  𝑡𝑝1  1.5357 (0.0447) <.0001 

𝑡𝑝2  𝛽3 -0.3161 (0.0124) <.0001 𝑡𝑝1 ∗match -0.7003 (0.0632) <.0001 

𝑡𝑝1*match 𝛽4 -1.5515 (0.0626) <.0001 Covariances    

𝑡𝑝2*match  𝛽5 0.2612 (0.0175) <.0001  Var(𝑏1𝑖)   

Covariances     cov(𝑏1𝑖 , 𝑏2𝑖)   

Var(𝑏1𝑖) 𝑑11 4.3212(0.2610)  Var(𝑏2𝑖) 4.5045(0.2828)  

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -0.1882 (0.0133)  Intercept  -1.0448 (0.0846)  

Var(𝑏2𝑖) 𝑑22  0.0127 (0.0008)  Match  0.4719 (0.0344)  

  Age2 after   Age2 before    

Intercept        𝛽0  2.1577 (0.1825) <.0001 Intercept  1.7619 (0.1699) <.0001  

Match  𝛽1 5.1118 (0.2581) <.0001 Match  3.1332 (0.2403) <.0001 

𝑡𝑝1  𝛽2 1.3520 (0.0479)  <.0001  𝑡𝑝1  1.4486 (0.0461) <.0001 

𝑡𝑝1 ∗match 𝛽3 -1.0355 (0.0678) <.0001  𝑡𝑝1 ∗match -0.6682 (0.0652) <.0001 

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  7.7337 (0.6033)  Var(𝑏1𝑖) 6.7024 (0.4521)  

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -1.6140 (0.1507)  cov(𝑏1𝑖 , 𝑏2𝑖) -1.4624 (0.1119)  

Var(𝑏2𝑖) 𝑑22  0.5112 (0.0428)   Var(𝑏2𝑖) 0.4792 (0.0330)  

  Age3 after   Age3 before Age2 after    Age2 before    Age2 after    Age2 before     

Intercept       𝛽0  2.6843 (0.2202)  <.0001 Intercept  2.1972 (0.2236)  <.0001 

Match                                    𝛽1 5.2218 (0.3113)  <.0001 Match  4.0793 (0.3163)  <.0001 

𝑡𝑝1  𝛽2 1.3660 (0.0668)  <.0001  𝑡𝑝1  1.4371 (0.0596)  <.0001 

𝑡𝑝1 ∗match   𝛽3 -1.0093 (0.0944)  <.0001 𝑡𝑝1 ∗match -0.8186 (0.0842)  <.0001 

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  5.2119 (0.5353)   Var(𝑏1𝑖) 5.1927 (0.5173)   

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -1.1401 (0.1422)   cov(𝑏1𝑖 , 𝑏2𝑖) -0.9331 (0.1183)  

Var(𝑏2𝑖) 𝑑22  0.4549 (0.0502)  Var(𝑏2𝑖) 0.3574 (0.0366)   

  Age4 after   Age4 before  
Intercept        𝛽0  3.9205 (0.1501)  <.0001 Intercept  3.2683 (0.1805)  <.0001  

Match  𝛽1 4.2359 (0.2123)  <.0001 Match  2.8173 (0.2552)  <.0001 

𝑡𝑝1  𝛽2 1.1633 (0.0398)   <.0001  𝑡𝑝1  1.3063 (0.0435)  <.0001 

𝑡𝑝1 ∗match  𝛽3 -0.8136 (0.0562)  <.0001  𝑡𝑝1 ∗match -0.5655 (0.0615)  <.0001 

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  4.0780 (0.3397)  Var(𝑏1𝑖) 6.0859 (0.4668)   

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -0.7662 (0.0818)   cov(𝑏1𝑖 , 𝑏2𝑖) -1.1065 (0.1017)   

Var(𝑏2𝑖) 𝑑22  0.2663 (0.0243)    Var(𝑏2𝑖) 0.3445 (0.0273)   
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found to be significant with p-value <0.0001, the marginal interpretation of the group would 

depend on the interaction term. The fitted model can be written as:  

ln 𝑐𝑢𝑚𝑐𝑜𝑠𝑡 + 1 = ᵝ0 + 𝑏𝑜 + ᵝ1𝑚𝑎𝑡𝑐𝑕 + ᵝ2𝑡
𝑝

1 + ᵝ3𝑡
𝑝

2 + ᵝ4𝑚𝑎𝑡𝑐𝑕 ∗ 𝑡
𝑝

1 +  

ᵝ5𝑚𝑎𝑡𝑐𝑕 ∗ 𝑡
𝑝2 + 𝑏1𝑡

𝑝1 + 𝑏2𝑡
𝑝2 + ɛ𝑖𝑗  

When fitting the model with both fractional powers, with one of the fractional powers is 

found to be insignificant across age categories, before and after diagnosis. Therefore the 

models are refitted again after exclusion of the insignificant time effect.  

After simplification the following model is obtained: 

ln 𝑐𝑢𝑚𝑐𝑜𝑠𝑡 + 1 = ᵝ0 + 𝑏𝑜 + ᵝ1𝑚𝑎𝑡𝑐𝑕 + ᵝ2𝑡
𝑝

1 + ᵝ3𝑚𝑎𝑡𝑐𝑕 ∗ 𝑡
𝑝

1 +  

𝑏1𝑡
𝑝1 + ɛ𝑖𝑗  

The addition of one to cumulative cost avoids zero values which would prevent the use of 

logarithms and negative power transformations. When the best fitting power is (0, 0) 

logarithm of time and logarithm of time square were used, but a model with the highest 

fractional power (logarithm of time square) was found to be insignificant and hence excluded 

from the model. Thus, logarithm of time was used together with the interaction. This model 

appeared to have smaller AIC value and better fit compared to a model where both logarithm 

of time and logarithm of time square were included. In the case of fractional power (-1, 0), a 

model was fitted with both fractional powers that is logarithms of time and inverse of time 

was incorporated as a main effect and their interactions with group variable. However, the 

covariate (1/time) was not significant and removed from the model. For the analysis of the 

first age group, after diagnosis, the selected fractional power was (0.5, 0.5), in this case 

square root of time, and a combination of logarithm of time and square root of time were used 

and as a fixed effect, however when both terms are included as random effects the model did 

not converge. Therefore a model with random intercept and random slope (square root of 

time) was fitted. Similarly, for (-2, 0), only logarithmic term is significant. In general, as in 

the previous section random intercept and slope model is fitted across age groups. In all age 

groups, there is a significant main effect as well as interaction effect. Before interpreting a 

model, we are going to deal with model diagnosis which will be the focus of section 4.5.  

4.5. Model diagnostics  

Prior to interpreting the model, for the possible outliers were investigated. In order to identify 

the potential outlying observations of the data, residual plots were examined. The Studentized 
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residuals shown in the appendix confirmed that residuals outside of the interval -2 and 2 are 

observed, which is an indication that there are outliers. The key point is that whether they are 

influential or not? In this section the influence measures in mixed model will be investigated. 

Removing data points affects fixed effects as well as covariance parameter estimates. Update 

formulas for Leave-one-out estimates typically fail to account for changes in covariance 

parameters. Moreover in longitudinal studies one is often interested in multivariate influence 

rather than the impact of isolated points. Broadly defined, influence is understood as the 

ability of a single or multiple data points, through their presence or absence in the data, to 

alter important aspects of the analysis or yield different inferences.  

When determining the influence of an observation on the analysis, we must determine 

whether this is influence on the fixed effects for a given value of the covariance parameters, 

influence on the covariance parameters, or influence on both. The estimates of the fixed 

effects depend on the estimates of the covariance parameters.  

In linear mixed model the overall influence measure is the likelihood displacement. The 

likelihood displacement is a global summary measure expressing the joint influence of the 

influential observations on all parameters. If the global measure suggests that some 

observations are influential, then the next step is to determine the nature of that influence. 

The influential points can affect the estimates of fixed effects, the estimates of the precision 

of the fixed effects, the estimates of the covariance parameters and the estimates of the 

precision of the covariance parameters. 

Cook’s distance was used to capture the change in the fixed effect parameter. Large values of 

cook’s distance indicate that the change in the parameter estimate is large relative to the 

variability of the estimate. For the analysis of before diagnosis for individuals in the lowest 

and highest age group, the overall influence diagnostic (RLD) are displayed in Figure 7. 

Other plots such as restricted likelihood distance (RLD) for after diagnosis, diagnostics for 

the fixed effects and covariance parameter influence diagnostics are shown in the appendix 

for each age group. For the lowest age group for the analysis of before diagnosis, results from 

restricted likelihood distance showed that clearly the influence of an individual with id 

number 1455 far exceeds that of other subjects. Moreover, individuals with id 768, 1442 and 

1490 had somewhat the highest RLD. The fixed effect estimates are altered by the removal of 

these four individual’s observations; this is due to the fact that all these subjects have the 

largest cook’s distance statistics. Covariance ratio was used to capture the effect on the 

precision of the estimate. All had covariance ratio of less than one which shows that in the 
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absence of these individual’s observations the fixed effects parameters can be estimated much 

more precisely.  

The model is refitted after exclusion of the influential data points from the analysis and 

updated estimates of all parameters are obtained. Though the p-values did not change, there is 

a change in parameter estimates. The estimates of the main and the interaction effects 

changed. As can be seen from the cook’s distance and covariance ratio statistic for the 

covariance parameters in the appendix B, these four subjects exert influence on the estimates 

of the covariance parameters and their precision as well. The results based on the reduced 

data estimates are presented bellow which will be contrasted with the model of the full data 

point in order to determine how the absence of the observations changes the analysis. Figure 

7 (right panel) shows for the highest age group, before diagnosis. Individuals with id 114, 

947, 968, 1001, 1061, 1070 and 1071 had the highest RLD.  

When we look at the Cook’s distance value of the covariance parameters there existed an 

impact on the covariance parameter estimates. The covariance parameter estimates can also 

be assessed deleting influential individuals. These estimates are a bit altered by the removal 

of the observations. It is important to note that influence analyses are performed under the 

assumption that the chosen model is correct. Changing the model structure can alter the 

conclusions. For instance changing the covariance structure will affect the conclusions about 

which subjects are influential on the analysis.   

  

Figure 7: Restricted likelihood distance (left panel for age group 1 and right panel for age 

group 4).  
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We found substantial differences between the models with and without outliers. The 

difference in estimates for the intercepts, match group, slope and interactions were large. A 

similar remark holds for the random intercept variance (𝑑11), covariance (𝑑12) and for the 

variance of random slope (𝑑22).   

For the data of the lowest age category, after diagnosis, 16 possible potential outlying 

individuals were discarded and the data was fitted again while before diagnosis 4 outlying 

individuals were not included in the analysis. The second age group consists of 8 outlying 

individuals before and 8 outliers after diagnosis. The parameter estimates together with their 

corresponding standard errors after excluding the outlying observations are presented in 

Table 7. Finally similar to our earlier results (with outliers), none of the analyses revealed an 

insignificant interaction as well as main effect.  

Based on the above Table 7, the time variables (fractional powers) generated by the SAS 

MACRO and the group variable are significant. Since the time variable is present in the 

interaction, the interpretation has to be focused on the interactions. For the lowest age group, 

before diagnosis, we have a significant interaction effect (p<.0001) which can be interpreted 

as there is a significant difference in cumulative cost between pneumococcal and matched 

groups over time. The pneumococcal group had the higher cost than the control group which 

is also observed in the predicted mean evolutions of the two groups as shown in Figure 8. The 

negative estimate indicates that the cumulative cost was decreased for individuals who belong 

to the control group compared to those with pneumococcal infection. Meaning that having 

infected with the pneumococcal disease, the medical expenses increase over time in a higher 

rate than the undiagnosed persons. Similar interpretations hold for the interaction between the 

time variable and group variable for the other age groups, before and after diagnosis. In all 

age groups, before and after diagnosis, we found a significant interaction effect and the 

cumulative cost is higher in pneumococcal group than the matched group. 

For instance for the lowest age group, before diagnosis, the estimated model after excluding 

outliers is given by: 

𝐸 𝑙𝑜𝑔𝑐𝑢𝑚𝑐𝑜𝑠𝑡 = 2.0547 + 2.8534 ∗ match + 1.5314 ∗ 𝑡𝑝1 − 0.7089match ∗ 𝑡𝑝1  
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Table 7: Parameter estimates (S.E.) without outliers 

 

As shown at the bottom panel of Table 7, the covariance between the random intercept and 

slope in all age groups for before and after diagnosis is negative. Therefore the negative 

correlation between random intercept and slope point out that those starting with low costs, 

their slopes are vertical i.e. their cumulative costs increase at faster rates, while those starting 

with higher costs,  their cumulative costs increase at lower rates. 

 

Effect  parameter Age1 after  Effect Age1 before Age2 after    Age2 before    Age2 after    Age2 before     

  Estimate(S.E.) p-value  Estimate  p-value 

Intercept       𝛽0  0.9551  (0.1206) <.0001 Intercept  2.0547 (0.1249) <.0001 

Match                                    𝛽1 5.0762  (0.1699) <.0001 Match  2.8534 (0.1763) <.0001 

𝑡𝑝1  𝛽2 2.0601 (0.0398) <.0001  𝑡𝑝1  1.5314 (0.0441) <.0001 

𝑡𝑝2  𝛽3 -0.3108 (0.0111) <.0001 𝑡𝑝1 ∗match -0.7089 (0.0622) <.0001 

𝑡𝑝1*match 𝛽4 -0.6019 (0.0559) <.0001    

𝑡𝑝2*match  𝛽5 0.2681 (0.0156) <.0001     

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  3.3001(0.2005)  Var(𝑏1𝑖) 4.1468(0.2598)  

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -0.1371(0.0100)  cov(𝑏1𝑖 , 𝑏2𝑖) -0.9589 (0.0789)  

Var(𝑏2𝑖) 𝑑22  0.0094(0.0006)   Var(𝑏2𝑖) 0.4571 (0.0334)  

  Age2 after   Age2 before    

Intercept        𝛽0  2.2809(0.1504)  <.0001 Intercept  1.9161(0.1669)  <.0001  

Match  𝛽1 5.2398 (0.2120) <.0001 Match  3.0138(0.2345) <.0001 

𝑡𝑝1  𝛽2 1.3154 (0.0402) <.0001  𝑡𝑝1  1.4145(0.0457) <.0001 

𝑡𝑝1 ∗match 𝛽3 -1.0624(0.0566)  <.0001  𝑡𝑝1 ∗match -0.6405(0.0642) <.0001 

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  5.1267(0.3591)   Var(𝑏1𝑖) 6.2841(0.4272)  

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -0.9646(0.0851)  cov(𝑏1𝑖 , 𝑏2𝑖) -1.3750(0.1064)  

Var(𝑏2𝑖) 𝑑22  0.3478(0.0259)  Var(𝑏2𝑖) 0.4592(0.0318)  

  Age3 after   Age3 before Age2 after    Age2 before    Age2 after    Age2 before     

Intercept       𝛽0  3.1280(0.2042)  <.0001 Intercept  2.4348(0.2148)  <.0001 

Match                                    𝛽1 4.8743 (0.2799) <.0001 Match  3.9018 (0.3008) <.0001 

𝑡𝑝1  𝛽2 1.2492 (0.0575) <.0001  𝑡𝑝1  1.4054 (0.0588) <.0001 

𝑡𝑝1 ∗match   𝛽3 -0.9213(0.0787) <.0001 𝑡𝑝1 ∗match -0.8004 (0.0824) <.0001 

Covariances     Covariances     

Var(𝑏1𝑖) 𝑑11  3.9425(0.4118)  Var(𝑏1𝑖) 4.5747(0.4614)  

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -0.8220(0.1008)  cov(𝑏1𝑖 , 𝑏2𝑖) -0.8377(0.1081)  

Var(𝑏2𝑖) 𝑑22  0.2967(0.0322)  Var(𝑏2𝑖) 0.3347(0.0345)  

  Age4 after   Age4 before  
Intercept        𝛽0  4.0737(0.1313) <.0001 Intercept  3.4342(0.1757)  <.0001  

Match  𝛽1 4.1595(0.1848) <.0001 Match  2.6777 (0.2468) <.0001 

𝑡𝑝1  𝛽2 1.1249 (0.0351) <.0001  𝑡𝑝1  1.2681(0.04306)  <.0001 

𝑡𝑝1 ∗match  𝛽3 -0.7951 (0.0493) <.0001  𝑡𝑝1 ∗match -0.5215 (0.06049) <.0001 

Covariances     Covariances    

Var(𝑏1𝑖) 𝑑11  3.0550 (0.2333)  Var(𝑏1𝑖) 5.5925(0.4374)  

cov(𝑏1𝑖 , 𝑏2𝑖) 𝑑12 = 𝑑21  -0.5122 (0.0527)  cov(𝑏1𝑖 , 𝑏2𝑖) -1.0384(0.0974)  

Var(𝑏2𝑖) 𝑑22  0.2027 (0.0168)  Var(𝑏2𝑖) 0.3286(0.0265)   
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Predictions based on degree two fractional polynomials 

The Plot of the observed versus predicted values by match group based on the estimated 

model after exclusion of the outliers are shown in Figure 8. Since there is no formal test to 

test if our final model fits well we opted for an alternative which was to compare the 

observed mean profile and the predicted mean profile.  

  

 
Figure 8: observed and predicted mean profile in each match group. 

According to these evolutions, the mean profile of the observed and predicted values of the 

models was relatively well on a few time intervals near the moment of diagnosis. However, at 

time points long before and after diagnosis, the model was not fit the data well that might be 

due to the presence of excess missing values. There, is a much difference between the 
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predicted and observed values of the cumulative costs at the extremes of the time points 

especially for the lowest age group, before diagnosis. Furthermore it appears that the 

cumulative costs of the pneumococcal group are higher than that of the control group in each 

of the age groups, we can say that individuals who are diagnosed with pneumococcal 

infection incurred a higher medical cost than the matched persons throughout the time 

intervals.   

 

 

Figure 9: prediction of individual profiles for pneumococcal and matched persons across age 

group.  

In order to assess how well the fitted model describes observed longitudinal profiles, the 

fitted individual profiles were plotted.  Figure 9 shows the estimates of random effects 

corresponding to the subject-specific curves of the fitted fractional polynomial curves. The 

thinning of the data toward the latter study times suggests a lot of dropouts.  This occurs 

especially for the first two age groups before diagnosis. For the sake of illustration here we 

presented the predicted profiles of the first age group, for the other age groups the profiles are 

shown in the Appendix B (Figure 16). Figure 9 shows predicted profiles of 40 randomly 

selected individuals from each group. When compared to the observed profiles, the predicted 
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profiles seem to reflect the observed pattern. The observed profiles of log cumulative costs 

are presented in Appendix B (Figure 14). 

Derivative plots 

Once cumulative costs are modeled, to compare the evolutions of the original costs over time 

of patients with pneumococcal infection with that of the control group, derivation of the 

cumulative cost is needed as discussed in section 3.4. A graphical representation of the 

average evolutions in each of the age groups is presented here.  

  

 

Figure 10: derivatives of the observed and predicted mean profile in each match group.  

Before as well as after diagnosis, patients with pneumococcal disease tend to have higher 

costs in each of the age groups. The fitted curves do not appear to describe the observed mean 

evolution well.  
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4.6. Semiparametric Mixed Models  

In this section we presented the result of the mixed model formulation of penalized splines. 

Smoothing methods that use basis functions with penalization can be formulated as fits in a 

mixed model framework. One of the major benefits is that software for mixed model analysis 

can be used for smoothing. It has become a widely used tool for data analysis and inference 

and its incorporation into complex models and use in applications has increased.  

All the models were fitted with the time scale in months, and in each of the data sets ten 

equally spaced knots were used to be able to fit the model with radial basis function. 

Comparisons between flexible parametric (based on fractional polynomial) and data driven 

flexible models (semiparametric mixed model) were made. The semiparametric mixed model 

was fitted on the original cost variable while mixed model with fractional polynomial mean 

structure was fitted using the cumulative costs. Therefore, the derivative plots shown in 

Figure 10 and the plots based on spline modeling displayed in Figure 11 were compared. For 

derivative estimation via penalized splines, it is recommended that higher degree polynomial 

basis functions be used to ensure that the resulting derivative estimates are smooth. Note that 

the degree of the spline used to estimate the cost function should exceed the order of 

derivative by at least one. Polynomial bases are not standard because of their numerical 

instability. We tried to implement the model by means of cubic radial basis function using 

IML procedure in SAS; however the model fails to converge. Therefore, it was fitted based 

on linear radial basis function. 

The splines model parameterization described in Section 3.5 is now used and the results are 

presented here. Figure 11 shows the observed and predicted values for both the 

pneumococcal and the control group. When comparing the derivative plots (Figure 10) and 

this modeling approach, the fit of the spline model is trying to capture the irregularities in the 

profiles. Thus, the spline model fits the data better than the fractional polynomial models.   

In red is the predicted mean profile for the pneumococcal group while in the blue we have 

plotted the predicted mean profile for the control group. The estimated mean cost for the 

pneumococcal group is higher than the control group in every time points across age 

categories. Moreover, the difference in estimated costs between pneumococcal and the 

control group is higher in spline modeling than the earlier approach. The estimated 

parameters of the semiparametric mixed model are given in the Appendix A (Table 9). 
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Figure 11: Observed and predicted mean cost in each match group based on spline model. 

If someone is interested to see the estimated costs in each of the age groups, Figure 17 

illustrates the predicted mean evolutions of cost over time under each of the age categories 

for pneumococcal and matched groups. The different age groups are represented by different 

colors. As it can be seen from the plot, after diagnosis, younger patients tend to have the 

lowest cost consistently in every measurement time followed by the second age group in both 

pneumococcal and the control group. The oldest age group tends to have the highest cost for 

those who belong to the matched group whereas in pneumococcal patients it fluctuates, it the 

first few measurement times the oldest age category incurred the highest cost.   
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Figure 12: Observed mean cost for both pneumococcal and control group together with the 

fitted fractional polynomial mixed model and the fitted semiparametric mixed model. 
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can be seen that the semiparametric mixed model is trying to capture the irregularities in the 

profile, while the fractional polynomial mixed model only focuses on the main trend.  

5. Discussion and conclusion 

In this study we compared health-care expenditures of 876 individuals who have had a 

positive isolate taken for Streptococcus pneumoniae at a known time with matched persons 

who have not. The objective of the study was to compare the health-care costs between the 

pneumococcal and the control groups. The data set used in this study composed of a two 

groups of individuals. One is pneumococcal and the other is control group. Measurements 

were taken on individuals on a monthly basis and because of the longitudinal nature of the 

data, observations within individuals are correlated. This correlation needs to be taken in to 

account in model building.  

We have considered an application of flexible modeling techniques in project to achieve the 

objective of the study, flexible mixed effect model and penalized splines smoothing of 

longitudinal data. As we have seen from the plots in the exploratory data analysis, the 

individual profiles of the two groups are non linear. To fit a model that takes into account the 

trend of the individual profiles, a fractional polynomial was implemented to determine the 

accurate power of the time variable. To fit this model, we came out with a macro as presented 

in the appendix, which allowed generating the appropriate power for a fractional polynomial 

of order 2. To generate first-order fractional polynomial powers it can easily be modified. 

The macro gives the possibility of using mixed effects model. We fit a mixed effect model 

for each age group, before and after diagnosis. Once the polynomial powers were obtained in 

this way, the time variables were then used in the model and also their interactions with 

matched group using PROC MIXED in SAS. Both parametric and semi-parametric modeling 

approaches were applied to the data and compared their fitting abilities. The semiparametric 

modeling have placed a strong demand on developing semi-parametric regression methods 

for longitudinal data, where flexible functional forms can be estimated from the data to 

capture possibly complicated relationships between longitudinal outcomes and covariates. 

The semiparametric mixed model fitted in this approach is convenient; it can be applied by 

means of widely used available commercial software for mixed model. The semiparametric 

mixed model we have considered is general and it can be extended in several ways, for 

example a model assuming the smoothing level to vary in the group variable and also several 

possible scenarios depicting the evolution. Differences or similarities can be assumed in the 
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linear part of the model, in the non-linear or in both of the model. Fractional polynomial was 

used to find a good fitting mean structure. A mixed effects model was fitted using fractional 

polynomial mean structure. An age specific analysis was performed since the risk of severe 

pneumococcal infection is different for different age groups.   

The best model was selected from the two parametric models namely mixed effects model 

based on degree-one and degree-two fractional polynomial mean structures using Akaike 

Information Criteria (AIC). Likelihood ratio test was used to compare any two nested models 

such as a model with only random intercept as a null model and a model that comprises both 

random intercept and slope, however any two non-nested models was compared AIC. Thus, a 

model based on degree-two fractional polynomial mean structure and with both random 

intercept and slope was selected as the best model.   

In line with the finding that the average evolution of cost depends on the time of interest, a 

spline approach was considered. In a semiparametric mixed model using penalized splines, a 

random intercept model was fitted. A random intercept model only assumes a shift in subject-

specific profiles, a rather restrictive assumption. More complex models including subject 

specific random intercepts and slopes can be considered, however for this data set we are 

confronted with convergence problem when both random effects are included in the model.  

The data was also fitted again after removing the potential outlying observations in order to 

study their effect on the model. There was a substantial difference between the parameter 

estimates of the mixed effects model based on the second-order fractional polynomial before 

and after excluding the outlying observations, however in both models the variable group and 

an interaction between groups with time effects were found to be significantly associated 

with the cumulative costs. Hence the two group effects are different in different time points. 

The plot of the predicted versus observed of the costs approved that the model did not fit the 

data well.  Therefore a more flexible modeling, the semiparametric mixed model was also 

fitted. Use of semiparametric modeling technique provided better fit than the fractional 

polynomial mixed model. 

Based on the analysis described in this report one can conclude that the average evolution of 

the costs depends on the time of measurement. According to the models we can also conclude 

that there exists a significant difference between pneumococcal and control groups over time. 

In both modeling approaches for all age groups, the health-care costs incurred by diagnosed 

pneumococcal patients are larger than those undiagnosed persons, before and after diagnosis. 

This is expected in the sense that individuals infected with the disease expend more health-

care costs.  If the pneumococcal episode were removed from an individual’s health by 
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vaccination, it would be helpful to consume more health-care resources.  In both models the 

fitted curves do not appear to describe the mean evolution well. Finally, the obtained results 

can be used to inform policy on the budget impact of pneumococcal vaccination programs 

and for cost estimation. The data had missing observations. The missing mechanism was 

treated as missing at random (MAR). Under the likelihood approach this missing mechanism 

is ignorable (Molenbeghs and verbeke, 2005).  
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Appendix 

Appendix A: Tables 

 

Table 8: Descriptive statistics of cost for the lowest age group at each time point  

 

 

 

 

 

 

 

  Pneumococcal                Match     

Time 

points 

N Mean   median P5 P95 n mean median    P5  P95 

-30 51 245.422 16.86 0 2304.33 51  99.073 15.47 0 585.33 

-25 61 262.088 15.12 0 341.83  61 64.338 23.95 0 150.8 

-20 85 182.608 17.85 0 660.96 85  39.447 0 0 159.38  

-15 119 113.076  20.45 0 670.73  119 72.353 15.74 0 243.49 

-10 170 142.198 22.525 0 946.94 170  74.799 0 0 595.29 

-5 248  207.914 22.74 0 735.93 248  57.897 17 0 136.06 

0 278 1874.93  1245.08 15.3  6277.77  278 61.233 15.51 0 218.52  

5 274 129.113 21.44 0 421.56  274  54.502 0 0 209.09  

10 266  134.681 17.68 0 333.95 266  27.765 0 0 109.65  

15 246 97.496 0 0 302.96  246  23.887 0 0 110.53 

20 235 93.557 11.6 0 374.91  235 43.707 0 0 151.41  

25 207 77.696 0 0 291.06  207 32.711 0 0 95.28 

30 196 49.618 0 0 242.49  196 29.969 0 0 85.03  
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Table 9: Parameter estimates of semiparametric mixed model 

Effect  Age1 after   Effect Age1 before Age2 after    Age2 before    Age2 after    Age2 before      

 Estimate Std.error p-value  Estimate  Std.error  p-value 
Intercept -4.9137  0.4598  <.0001 Intercept  -3.4552  0.5257   <.0001 

Match  -5.2662  0.6503  <.0001 Match  -5.3352  0.7434  <.0001 

Time -0.2321  0.0214  <.0001  Time 0.1208  0.0322  0.0002  

Time*match 0.1364  0.0302 <.0001 Time*match 0.1066  0.0331  <.0001  

Covariances         

Var of intercept 25.7302  2.0489    32.1066 2.9170   

Var[RSmooth(time)] 0.0008  0.0002    0.0008  0.0002   
Residual  144.09  1.7757    134.75  2.2522   

 Age2 after    Age2 before     

        

Intercept  -6.6912  0.6148  <.0001 Intercept  -7.9781  0.5877  <.0001  
Match  -3.7800  0.8695  <.0001 Match  -3.1013  0.8312  0.0002  

Time -0.1320  0.0275  <.0001  Time 0.1226  0.0245 <.0001  

Time*match 1.2093  0.1329  0.0014  Time*match -0.1018  0.0346  0.0033  

Covariances  Estimate        

Var of intercept 42.2063 3.4999    40.1271   3.2484   

Var[RSmooth(time)] 0.0016 0.0002    0.0015  0.0002  
Residual  0.1244  0.0389   135.37  1.7730   

        

 Age3 after    Age3 before     

Intercept  0.9786  0.2474  0.0001  -4.2017  0.9081  <.0001 
Match  2.3010  0.3499  <.0001  -5.6524  1.2843  <.0001 

Time 0.0050 0.0099  0.6143   0.1331  0.0338 <.0001 

Time*match -0.02990  0.0141  0.0336   -0.1350  0.0477 0.0047 

Covariances         
Var of intercept 3.8597  0.4374    51.5516 51.5516   

Var[RSmooth(time)] 0.0001  0.00002    0.0012 0.00023  

Residual  7.3464  0.1538    127.72  2.4622   
        

 Age4 after    Age4 before   

Intercept  -3.7724  0.5813  <.0001  -4.5929  0.6134  <.0001 

Match  5.2970  0.8221  <.0001  4.2048  0.8675  <.0001 
Time 0.0440 0.0223  0.0483  0.0203  0.0194  0.2948  

Time*match -0.1357  0.0315  <.0001   0.0932  0.0274  <.0001  

Covariances         
Var of intercept 40.6515  3.4612    49.8407  3.9725   

Var[RSmooth(time)]      0.0005 0.0001     0.0006  0.0001  

Residual  79.0444  1.3195    84.3704  1.2031   
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Appendix B: Figures 

 
 

 

 

 

 
 

Figure 13: distribution of cumulative cost for each of the pneumococcal and control group 

across the age categories 
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Figure 14: Individual profiles for pneumococcal and matched patients across age category 

based on the log cumulative costs 
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Figure 15: Observed and fitted evolutions by match with outliers  
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Figure 16: Prediction of individual profiles for pneumococcal and matched group across age 

category.  
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Figure 17: Predicted cost against time across age categories for pneumococcal and matched 

groups based on the spline model. 
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Figure 18: Studentized residual for the lowest age group for before diagnosis 
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Plots to detect influential observations for the lowest age group are presented here for 

before and after diagnosis. 

                                   Age1 after 
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Figure 19 A: Age1 before  
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Figure 19 B: Age2 after 
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Figure 19 C:Age2 before  
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Figure 19 D: Age3 before  
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Figure 19 E: Age3 after   
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Figure 19 F: Age4 after  

 

 



59 
 

 
 

 

 



60 
 

 
 

 
 

 

Figure 19 G: Age4 before   
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Appendix C: SAS Codes 

 
/*** semiparametric mixed mode ***/ 

ods rtf file= "before.rtf"; 

proc glimmix data=prj.before method=mmpl; 

class id1 match; 

model cost= match month match*month/  solution; 
random month /type=rsmooth 

knotmethod=equal(10) subject=id1; 

random int  /type=un subject=id1; 

run; 

ods rtf close; 

 

/***second degree***/ 

 
 

%macro fracpol; 

 

data Fitsummary; run; 

 

%let p1=%sysevalf(-2); 

 

%do %while (%sysevalf(&p1<=2)); 

 

data hlp; 

set pneumoc; 
agem=month; 

if &p1=0 then agep1=log(agem); else 

agep1=agem**(&p1); 

run; 

 

ods output FitStatistics=Fit; 

proc mixed data=hlp method=ml ic covtest update 

noinfo absolute noclprint maxiter=200; 

class id1 timeclass; 

model resp= agep1 /solution ; 

random int /type=un subject=id1  ; 

repeated timeclass/ type=simple subject=id1  ; 
run; 

 

data Fit; set Fit (keep=Descr value); run; 

proc transpose data=Fit 

out=Fit2(keep=col1 col2 col3 col4); 

run; 

 

data Fit3 (keep=power1 power2 LogLik AIC AICC 

BIC);  

set Fit2; 

LogLik=col1; 
AIC=col2; 

AICC=col3; 

BIC=col4; 

power1=&p1; 

run; 

 

data FitSummary; set FitSummary Fit3; run; 

 

%let p1=%sysevalf(&p1+0.5); 

%end; 

 
 

%let p1=%sysevalf(-2); 

%do %while (%sysevalf(&p1<=2)); 

%let p2=%sysevalf(&p1); 

%do %while (%sysevalf(&p2<=2)); 

 

 

data hlp; 

set pneumoc; 

agem=month; 

if &p1=0 then agep1=log(agem); else 
agep1=agem**((&p1)/1); 

if &p1=&p2 then do; 

if &p2=0 then agep2=log(agem)**2; else 

agep2=(agem**((&p2)/1))*log(agem); end; 

else do; 

if &p2=0 then agep2=log(agem); else 

agep2=agem**((&p2)/1); end; 

run; 

 

ods output FitStatistics=Fit; 

proc mixed data=hlp method=ml ic covtest update 

noinfo absolute noclprint maxiter=200; 
class id1  timeclass; 

model resp= agep1 agep2 /solution ; 

random  int /type=un subject=id1  ; 

repeated timeclass/ type=simple subject=id1  ; 

run; 

 

data Fit; set Fit (keep=Descr value); run; 

proc transpose data=Fit 

  out=Fit2(keep=col1 col2 col3 

col4); 

run; 
data Fit3 (keep=power1 power2 LogLik AIC AICC 

BIC);  

set Fit2; 

LogLik=col1; 

AIC=col2; 

AICC=col3; 

BIC=col4; 

power1=&p1; 

power2=&p2; 

run; 

 
data FitSummary; set FitSummary Fit3; run; 

 

%let p2=%sysevalf(&p2+0.5); 

%end; 

%let p1=%sysevalf(&p1+0.5); 

%end; 
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proc print data=FitSummary; run; 

 

proc sql; 

create table SelectModel1 as 

select power1 
from FitSummary 

having BIC=min(BIC); 

quit; 

 

proc print data=SelectModel1; 

run; 

 

proc sql; 

create table SelectModel2 as 

select power2 

from FitSummary 

having BIC=min(BIC); 
quit; 

 

proc print data=SelectModel2; 

run; 

 

proc sort data=FitSummary; 

by AIC; 

run; 

 

%mend; 

%fracpol
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