
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Optimizing monitoring queries over distributed data

Peer-reviewed author version

NEVEN, Frank & VAN DE CRAEN, Dieter (2006) Optimizing monitoring queries over

distributed data. In: Advances in Database Technology - Edbt 2006. p. 829-846.

DOI: 10.1007/11687238

Handle: http://hdl.handle.net/1942/1417

Optimizing Monitoring Queries over

Distributed Data

Frank Neven1 and Dieter Van de Craen⋆,1

1 Hasselt University
{frank.neven,dieter.vandecraen}@uhasselt.be

Agoralaan, 3590 Diepenbeek, Belgium

Abstract. Scientific data in the life sciences is distributed over various
independent multi-format databases and is constantly expanding. We
discuss a scenario where a life science research lab monitors over time
the results of queries to remote databases beyond their control. Queries
are registered at a local system and get executed on a daily basis in batch
mode. The goal of the paper is to study evaluation strategies minimizing
the total number of accesses to databases when evaluating all queries in
bulk. We use an abstraction based on the relational model with fan-out
constraints and conjunctive queries. We show that the above problem
remains np-hard in two restricted settings: queries of bounded depth
and the scenario with a fixed schema. We further show that both re-
strictions taken together results in a tractable problem. As the constant
for the latter algorithm is too high to be feasible in practice, we present
four heuristic methods that are experimentally compared on randomly
generated and biologically motivated schemas. Our algorithms are based
on a greedy method and approximations for the shortest common super
sequence problem.

1 Introduction

In the field of the life sciences, scientific data is distributed over various web sites
and data is mostly accessible via browsers or in some cases through primitive web
services [13]. A characteristic of biological data is that it is abundantly available
and rapidly growing. For instance, the daily updates to Genbank [5] alone range
in size from 40 till 200 Megabytes. Therefore, the answers to searches may vary
over time as more data becomes available. However, due to the limited access to
the distributed sources it is cumbersome to repeat searches over time especially
if they combine information from several web sites. In this paper, we consider
the setting of a light-weight monitoring system that runs at a research lab where
users can register queries which are executed periodically. Users are then notified
when new answers to their queries arrive.

We give an example of the kind of queries biologists would like to monitor
over time: a certain biological experiment on a rare organism results in a set

⋆ Contact author

of genes. A search of the available data reveals a set of related genes in other
organisms. However, only for a very small fraction of those genes their function is
known. The researcher therefore would like to be notified when more information
on the function of these genes becomes available. As shown in Example 2, such a
query combines information from three sites: Genbank [5] containing gene related
info and references to corresponding proteins, SwissProt [3] containing protein
related info and some links to GO-entries, and GO [2] containing functional
descriptions of proteins.

Although most popular biological websites and web services can be freely
accessed, there are restrictions on the number of accesses and the amount of
data that can be transferred per request. Furthermore, most data is transmitted
using the HTTP-protocol, which makes the connection setup cost much higher
than the data transfer cost. One single connection that transfers a lot of data
is preferable to several smaller connections each transferring small amounts of
data [18]. It is therefore of prime concern to combine queries and minimize the
number of different communications. The goal of the paper is to study the latter
problem.

We model a situation where a limited number of sites is available: rather
twenty than hundreds or thousands as for instance is the case for peer-to-peer
computing. Further, we consider a light-weight system and assume at most a few
thousands of registered queries. Queries also have to be re-executed from scratch
as there usually is no access to the updates the web sites receive. Although in
practice most data is stored as flat files, we assume a relational view on this data
and use conjunctive queries as a query language. This means that the actual
queries should then be translated to appropriate calls to the web services or into
HTTP-requests. We choose for this kind of abstraction rather than, for instance,
going through an XML query language, as the focus of the paper is on minimizing
communication not on the actual form of queries. Furthermore, the formalism
of the relational model and conjunctive queries is sufficiently general to capture
large parts of the available data and path-like search queries as described in
the above scenario. On the other hand, the approach is specific enough to be
translated into any reasonable query language or model.

We only allow an evaluation protocol for a set of queries to send a constant
number of messages, where every message is a query or the transfer of a bounded
number of tuples. We refer to these as bounded protocols. In Section 3, we require
that messages are of size logarithmic in the size of the data which amounts to the
same requirement. To allow queries to satisfy this requirement, schemas impose
fan-out constraints which are for instance determined by domain experts (cf.
Section 2).

We summarize the main results of the paper:

1. Not every conjunctive query can be evaluated by a bounded protocol. We
show in Section 3 that deciding whether a set of queries can be evaluated by
a bounded protocol is in polynomial time.

2. Minimizing the number of communications to simultaneously evaluate a set
of queries is np-complete. In Section 4, we show hardness for two restricted

2

cases: (1) queries of bounded depth (cf. Section 3); and, (2), queries over
a fixed database schema. We use reductions from the Feedback Vertex Set
(FVS) [8] and the Shortest Common supersequence problem (SCS) [15] which
are known to be np-hard. Furthermore, we show that both restrictions taken
together results in a tractable problem which, unfortunately, is not practi-
cally useful due to the large constant.

3. We present four heuristic methods in Section 5. The first method is greedy-
based. The other methods are based on approximations for SCS. Our ex-
periments show that over random database schemas the Pairwise SCS per-
forms best, while over a concrete biologically motivated database schema the
greedy-method outperforms the rest in finding the best evaluation strategy.
Finally, we remark that our experiments show that using our heuristics for
1000 random queries (consisting of 10 atoms each) on average only around
50 accesses to websites are necessary.

Due to space constraints, some proofs are omitted.

Related Work. The above described monitoring system is different from the
usual publish/subscribe systems where users can specify by means of patterns
what type of messages they are interested in. Such systems usually focus on new
data only and can account for millions of subscribers [1]. A well known pub-
lish/subscribe system for biological researchers is PubCrawler [9] which scans
daily updates to PubMed and Genbank, it keeps researchers informed on the cur-
rent contents of PubMed and Genbank. Our setting allows for more advanced
querying rather than keyword searching. A distributed database system con-
sists of a single distributed DBMS. This DBMS manages multiple databases. A
number of classes of distributed query optimization problems are known to be
np-complete [22]. They do not consider the setting of bounded communication.
Heuristic methods were therefore developed to deal with these problems. An
example of such an heuristic method is the query optimizer of SDD-1, which
uses a greedy approach to find the semijoin order [4]. A multi database system
supports operations on multiple heterogeneous local databases [17]. The most
distinctive features of multi database systems are site autonomy and heteroge-
ity [14]. Distributed query optimization and multi database query optimization
are distinctively different problems [14]. Our problem shows the strongest re-
semblance to the multi database query optimization. However, in our situation
we have to evaluate multiple queries while using a minimal number of commu-
nications and a bounded number of tuples. In multi-query optimization the aim
is to optimize in parallel a set of queries [16]. In contrast with our setting they
do not consider minimizing the number of communications, also the number of
considered queries is small (e.g., 5).

Acknowledgments. We thank Ivy Jansen for her suggestion to use and the cre-
ation of the box plots in Figures 1 and 2, Kerstin Koch for her help in construct-
ing the biological schema, and, Stijn Vansummeren and Dan Suciu for their
helpful comments on a previous draft of this paper.

3

2 Definitions

In this section, we present the necessary background and definitions. To keep our
exposition simple, we model every biological website or source by one relation (as
opposed to several relations which would be more realistic). It is straightforward
to adapt our results to that setting. The distributed sources are hence modeled
by a set of relation names in the understanding that every relation resides at a
different site.

We assume an infinite set of relation names R and attribute names A with
R∩A = ∅. Every relation name has an associated finite set of attributes, denoted
by Att(R). Let D = {d1,d2, . . .} be an infinite domain of data values. An R-
tuple t is a function from Att(R) to D. An R-relation RD is a finite set of R-
tuples. The cardinality of a relation R, denoted by |R|, is the number of tuples
in R. The size of a relation, denoted by ||R||, is k × |R| where k is the number
of attributes of R.

A distributed schema (S, ∆) is a set of relation names S with associated
attributes together with a set of fan-out constraints ∆ defined below. A database

D over S assigns an R-relation to every relation name R in S. In the sequel we
do not distinguish between the relation name R and the R-relation itself: we
denote both of them by R. Denote by DB(S) the class of all databases over S.
To emphasize that the various relations in S are distributed we refer to them as
sites or sources.

A fan-out constraint is a rule of the form R : X →k Y , where X, Y ⊆ Att(R).
A databaseD satisfies a set of fan-out constraints ∆, denotedD |= ∆, iff for every
rule R : X →k Y ∈ ∆ and every tuple t, |πY (σX=t(X)(R))| ≤ k. Here, π and
σ are the relational operators denoting projection and selection. By X = t(X),

we abuse notation and mean
∧ℓ

i=1 Ai = t(Ai) for X = {A1, . . . , Aℓ}. Intuitively,
the constraint says that in R for every fixed value for the attributes in X there
are at most k different values for the attributes in Y . In the sequel, we do not
care about the actual value of k and simply write R : X → Y rather than
R : X →k Y to denote that there is some bound.

Example 1. Consider the following relational schema constituting four sites:

Genbank(gene id, protein id, organism),
SwissProt(protein id, go id, organism),
Go(go id, name), and
Kegg(pathway id, protein id).

A tuple in Genbank contains a gene id representing the id of the gene at hand.
Every gene corresponds to one or more proteins which are listed in the SwissProt
database by protein id. The third component is the organism from which the
gene originates, e.g., human, mouse, rat, Go is a database/ontology that
contains function descriptions of proteins, e.g., serine protease. Only for a very
limited number of proteins a functional description is actually known. Kegg
contains information on pathways where special proteins are involved. We have

4

the following fan-out constraints:

Genbank : gene id→ protein id, organism
Genbank : protein id→ gene id
SwissProt : protein id→ go id, organism
Go : go id→ name
Kegg : pathway id→ protein id

Note that these are not necessarily keys. For instance, a gene id can correspond
to several protein ids. The above relations are crude abstractions of existing
sites [5, 3, 2, 11]. In [20] a more elaborate abstraction is given which we used for
our experiments. �

As a query language, we employ the well-known formalism of conjunctive

queries. An atom L is an expression R(A1 : x1, . . . , An : xn), where R is a
relation symbol, Ai ∈ Att(R) and xi is a variable or a data value for i = 1, . . . , n.
We require that Ai 6= Aj for all i 6= j. Note that {A1, . . . , An} need not be equal
to Att(R). A variable assignment ρ for L is a mapping that assigns to each
variable in L a data value in D. The atom L = R(A1 : x1, . . . , An : xn) holds in
D under ρ, denoted D |= L[ρ], iff there is a tuple t ∈ R such that for every i,
t(Ai) = ρ(xi).

A conjunctive query is then an expressions of the form

Q(X1 : x1, . . . , Xk : xk)← L1, . . . , Ln,

where each Li is an atom and each xi occurs in at least one atom. The se-
mantics is the usual one: Q defines the relation Q(D) = {(X1 : ρ(x1), . . . , Xn :
ρ(xn)) | ρ is an assignment s.t. ∀i,D |= Li(ρ)}. The relational schema associated
to Q(D) consists of the single relation symbol Q where Att(Q) := {X1, . . . , Xn}.

The size of an atom is equal to the number of variables appearing in the
atom. The size of a query is the sum of the sizes of its atoms.

Example 2. Consider the query

Q← Genbank(gene id : ’AC04654’, protein id : x),
SwissProt(protein id : x, go id : y),
Go(go id : y, name : z).

which is Boolean and asks whether the function of the gene AC04654 is known.
As there is no direct link from Genbank to Go, the query has to access SwissProt
in between.

The following query asks for all the gene ids from proteins wich are involved
in pathway 0052 and have as function “catalytic activity”:

Q′(y)← Kegg(pathway id : ’0052’, protein id : x),
SwissProt(protein id : x, go id : z),
Go(go id : z, name : ’catalytic activity’),
Genbank(gene id : y, protein id : x).

�

5

We conclude this section, by introducing the Shortest Common Superse-
quence (scs) problem which is used in Section 4 and 5. For a finite alphabet Σ,
a string s = a1 · · · an is a finite sequence of Σ-symbols. We denote the empty
string by ε and the set of all strings by Σ∗. A string s′ is a supersequence of
s iff s′ is of the form w1a1w2a2 · · ·wnanwn+1 where each wi ∈ Σ∗. A string
s = a1 · · ·an is non-repeating when for all i < n, ai 6= ai+1.

The Shortest Common Supersequence problem (scs) is defined as follows.
Given strings s1, . . . , sn and a natural number K. Is there a string of length at
most K that is a supersequence of every si? scs is known to be np-complete for
strings over a binary alphabet [15].

3 Distributed Evaluation

In the following, a communication is the sending of a set of queries to a specific
source together with the receiving of the query results. We adapt the approach
of Suciu [18] to our setting in defining what constitutes an efficient distributed
evaluation algorithm:

(*) In evaluating a query on a distributed database, only a constant number
of messages (independent of the data at the sources) should be send and
received, and the size of each message is at most logarithmic in the size of
the data.

The above means that for every set of queries a fixed number of communica-
tions should suffice and that every communication transfers a constant number
of tuples.1 This constant is independent of the distributed database, but de-
pends on the actual queries and the distributed schema. The constant will be
determined by the fan-out constraints. However, in the present paper we are not
interested in the actual size of this constant: only in the knowledge that a certain
constant exists.

Rather than discussing general evaluation algorithms, we employ a scheme
where conjunctive queries and answers to those are transmitted. In brief, the
source sends out queries and builds up a local database. Here the transmitted
values can depend on received values. In the following definitions, fix a dis-
tributed schema S = ({R1, . . . , Rℓ}, ∆).

Definition 1. An evaluation protocol is a pair P = (Q; ξ̄) whereQ := Q1, . . . , Qn

is a finite sequence of conjunctive queries such that each query Qi is over the
relational schema {Rk}∪

⋃
j<i Qj for some k; ξ̄ is a finite sequence of conjunctive

queries over the relational schema Q.

Intuitively, a protocol issues queries one at a time to a source (Rk) thereby
possibly reusing results of previous queries (

⋃
j≤i Qj). We refer to the latter as

the local repository. Finally, the answer to every query Qi is computed locally
by evaluating the query ξi on the local repository. The size of a protocol is the
sum of the sizes of the queries.

1 We assume a reasonable binary encoding here.

6

Remark 1. Apart from in the examples, we assume in the following that all
attributes at the various sites are disjoint. We further assume that all variables
occurring in different queries are disjoint.

We denote by Q(D) the relational database
⋃

i≤n Qi(D).

Definition 2. An evaluation protocol P = (Q; ξ̄) is bounded if there is a natural
number N , such that for every database D over (S, ∆), |Qi(D ∪

⋃
j≤i Qj)| ≤ N .

Definition 3. An evaluation protocol (Q; ξ̄) evaluates a sequence of conjunctive
queries γ1, . . . , γn iff for every database D, γi(D) = ξi(Q(D)) for all i ≤ n.

Example 3. We refer to the conjunctive queries Q and Q′ of Example 2. A pro-
tocol that evaluates Q is the following: P1 = (Q1, Q2, Q3; ξ) where

Q1(protein id : x1)← Genbank(gene id : ’AC04654’, protein id : x1)
Q2(go id : y1)← SwissProt(protein id : x1, go id : y1),

Q1(protein id : x1)
Q3 ← Go(go id : y1, name : z1), Q2(go id : y1)

ξ ← Q3

The intuition of the above protocol is as follows:

1. first we fetch all protein ids related to AC04654 in Genbank.
2. Next, for every such protein id, we fetch all related go ids.
3. Finally, we check whether the function of any of these go ids is known.

Note that every query Qi only uses atoms that refer to one site or to the local
repository. Further, the protocol is bounded as we have the constraints Genbank :
gene id→ protein id, organism and SwissProt : protein id→ go id, organism.

An evaluation protocol for Q′ is given next. Formally, we have P2 = (Q4, Q5,

Q6, Q7; ξ
′) with

Q4(protein id : x2)← Kegg(pathway id : ’0052’, protein id : x2),
Q5(protein id : x2, go id : z2)← SwissProt(protein id : x2, go id : z2),

Q4(protein id : x2)
Q6(go id : z2)← Go(go id : z2, name : ’catalytic activity’),

Q5(go id : z2)
Q7(gene id : y2, protein id : x2)← Genbank(gene id : y2, protein id : x2),

Q4(protein id : x2)
ξ′(gene id : y2)← Q5(protein id : x2, go id : z2),

Q6(go id : z2),
Q7(gene id : y2, protein id : x2)

An evaluation protocol for the sequence of queries (Q, Q′) is P3 = (Q1, Q4, Q2, Q5,

Q7, Q3, Q6; ξ, ξ
′). Note that the two last evaluation protocols are bounded and

that the protocol for (Q, Q′) evaluates (Q, Q′). �

7

Note that the notion of bounded evaluation protocol corresponds to the re-
quirements presented in (*) at the beginning of this section. Of course, queries
of the form

Q5(protein id : x2, go id : z2)←

SwissProt(protein id : x2, go id : z2), Q4(protein id : x2)

as in the above example use atoms referring both to a distributed site and
the local repository. However, as the size of the local repository will always be
bounded, the local relation can be shipped together with the query to the remote
site or can be hard coded in the query.

It remains to discuss how to decide that for a given query a bounded protocol
exists. The previous two examples are rather simple as for every separate query
only one communication is needed for every atom to determine the tuples that
make this atom true. In general, there can be atoms

R(A1 : c, A2 : x2, A3 : x3, A4 : x4), S(B2 : x2, B3 : x3, B3 : x4)

with a constant c and fan-out constraints R : A1 → A2, R : A3 → A4, and
S : B2 → B3. A protocol then first needs to access R to get all possible values
for x2. We refer to the latter set as the domain of x2. Then S can be accessed
to determine the domain of x3. Finally, R should be accessed again to compute
the domain of x4. At the same time, the set of tuples that hold in R can be
obtained. One final communication is then needed to determine the tuples that
hold in S. In the next proposition, we show that this strategy of limiting the
domain of variables suffices to check whether a query can be evaluated by a
bounded protocol.

First, we introduce the following notion.

Definition 4. Given a sequence of queries Q̄. Let TQ̄ be the set of pairs (A, x),
where A is an attribute and x is a variable such that A : x occurs in some atom
of a query in Q̄. Define the following sets: Bound0 contains all pairs (A, x) ∈ TQ̄

where x is a constant. Further, Boundi+1 contains all pairs (A, x) ∈ TQ̄ such
that

1. (A, x) ∈ Boundi,
2. there is a (B, x) ∈ Boundi for some B 6= A; or,
3. there is an atom R(. . . , A1 : x1, . . . , An : xn, A : x, . . .) such that each

(Aj , xj) ∈ Boundi and there is a constraint R : {A1, . . . , An} → Y where
A ∈ Y .

Since Boundi ⊆ TQ̄ for every i, there is an n such that Boundn = Boundn+1.
Let Bound equal Boundn for the smallest such n. We refer to n as the depth of
Q̄. We call all pairs in Bound bounded.

Note that the above definition induces a polynomial time algorithm to decide
whether a pair is bounded.

A variable x is local if it only occurs in atoms that correspond to the same
site and it does not occur in any of the heads.

8

Theorem 1. Given a sequence Q̄ of queries over (S, ∆). There is a bounded
protocol P that evaluates Q̄ iff every pair (A, x) in TQ̄ where x is not local is
bounded. Moreover, the size of P is at most linear in the size of Q̄ and (S, ∆).

Proof. Suppose that every pair (A, x) in Q̄ where x is not local is bounded.
The protocol that evaluates Q̄ proceeds by computing for every such variable
its domain. In the worst case, it needs one communication for every pair in TQ̄.
Then it needs to check which assignments of values to the variables makes each
of the queries true. To this end, it needs to contact each site at most once. In this
last step, the local variables can be evaluated. Hence, the size of the protocol
is at most linear in the size of Q̄ and (S, ∆). The protocol is described more
formally in the appendix.

For the other direction, suppose there is a non-local variable x such that no
pair (A, x) is bounded. Let (A, x) and (A′, x) be two pairs in TQ̄ occurring in two
atoms L and L′, respectively. Then it is easy to show by a fooling set technique
from communication complexity that no protocol sending a logarithmic number
of bits can check whether there is an assignment to the variables of L and L′

that satisfies them both [12]. �

Corollary 1. For a sequence of queries, it is decidable in polynomial time whether

there is a bounded protocol that evaluates it.

As we are interested in minimizing the number of different communications
to the various sites, we define the following notion. Let P = (Q1, . . . , Qn; ξ̄)
be an evaluation protocol. An ordered partition of P is an ordered sequence
1 = i0 < · · · < ik = n of integers such that all Qij

, . . . , Qij+1−1 are queries over
the same relational schema. The size of the partition is k.

Definition 5. The communication size of an evaluation protocol P , denoted by
cs(P), is the minimal size of all its ordered partitions.

Example 4. We refer to the protocols of Example 3. The communication sizes
of P1 and P2 are 3 and 4, respectively, while that of P3 is 5. For the latter, the
ordered partition is {1}, {4}, {2, 5}, {7}, {3, 6}. Here, the queries are to the sites
Genbank, Kegg, SwissProt,Genbank, and Go, respectively. �

Definition 6. A bounded protocol is minimal for a sequence of conjunctive

queries if there is no bounded protocol with a smaller communication size.

Proposition 1. Given a sequence of queries Q̄. If there is a bounded protocol
that evaluates Q̄, then its communication size is always less than or equal to the
sum of the sizes of the queries in Q̄.

Proof. It suffices to note that the bounded protocol sketched in the proof of
Theorem 1 has the required size. �

9

4 Decision problems

We define the decision problem central to the paper:

Definition 7. Given a natural number K, a distributed schema (S, ∆), and, a
sequence of conjunctive queries Q̄ over (S, ∆), min-com is the problem to decide
whether there is a bounded evaluation protocol for Q̄ of communication size at
most K.

By Proposition 1 it does not matter whether K is given in unary or binary
as the size of a minimal protocol is at most linear in the size of the input. It is
easy to see that min-com is in np.

Proposition 2. min-com is in np.

4.1 Lower bounds

It is hardly surprising that min-com is in fact np-complete. However, we prove
the latter for two restricted cases. In the following, a fan-out constraint R : X →
Y is unary, when |X | = |Y | = 1.

Consider the following decision problems:

1. min-com
depth k is the problem min-com where in addition all fan-out con-

straints are unary and every input sequence of queries has depth at most
k;

2. min-comS,∆ is the problem min-com where in addition all fan-out con-
straints are unary and the queries are over the fixed distributed schema
(S, ∆).

The first problem gravely restricts the way in which the domain of every
variable can be determined: in a constant number of steps. Intractability can then
be encoded by allowing an unbounded number of relations. The second problem
corresponds to the more realistic situation where the database schema is fixed
in advance. In this case, intractability can be encoded by allowing arbitrarily
entangled input queries. In Section 4.2, we show that when both restrictions are
enforced, we get a tractable problem. Our results, hence, provide a complete
picture of the worst-case complexity of the problem.

Theorem 2. 1. min-com
depth 2 is np-hard.

2. min-comS,∆ is np-hard.

Proof. (1) We use a reduction from Feedback Vertex Set (FVS) [8] which is
known to be np-complete. The problem is defined as follows. Given a directed
graph G = (V, E), with V a set of vertices and E ⊆ V × V a set of edges, and a
natural number K. Is there a feedback vertex set of size at most K, i.e., a subset
V ′ ⊆ V such that V ′ contains at least one vertex from every directed cycle in
G? Here, only cycles of length greater than one are considered.

Let G = (V = {v1, . . . , vn}, E) be a graph and K a natural number. Then
define S = {R1, . . . , Rn}, where each relation Ri corresponds to the node vi. The

10

relation Ri has the attributes Ai, Ai
i, and for every j such that (vj , vi) ∈ E, an

attribute Ai
j . We have the following fan-out constraints, for every i, Ri : {Ai} →

{Ai
i}. Let c be a constant. Then Q̄ consists of the single query containing the

following atoms: for all i,

Ri(A
i : c, Ai

i : vi, A
i
i1

: vi1 , . . . , A
i
in

: vin
)

where vi1 , . . . , vin
are all nodes for which (vij

, vi) ∈ E. Note that the depth of
Q̄ is two. Indeed, every Ai : c is of depth zero, every Ai

i : vi is of depth one and
all other pairs are of depth two.

It can be argued that G has a feedback vertex set of size at most K iff there
is a bounded evaluation protocol for Q̄ of communication size at most K + |V |.

(2) Define scs-nr as the problem scs where every input string is non-
repeating (cf. Section 2).

Lemma 1. For a fixed alphabet of arity at least four, scs-nr is np-complete.

Fix the alphabet Σ = {σ1, . . . , σk}. We now reduce scs-nr to min-com. Let
s1, . . . , sn be a sequence of non-repeating strings and K be a natural number.
Define the binary relations σi with attributes A and B. For every i, we have the
fan-out constraint σi : {A} → {B}.

Let si = si1 · · · sini
. For i ≤ n and 2 ≤ j ≤ ni, let Lij be the atom sij(A :

xij , B : xi(j+1)). Define Li1 as the atom si1(A : c, B : xi2) for a constant c. Then
define Q as the query consisting of all atoms Lij .

We show that s1, . . . , sn has a supersequence of length at most K iff there is
a bounded protocol of communication size at most K that evaluates Q.

Let s be a supersequence of length at most K. Clearly, the protocol that
accesses the relations in the order induced by s is bounded and determines the
domain of all variables. A query over the local repository then evaluates Q.

Conversely, let P be a protocol of communication size at most K that evalu-
ates Q. Let s = si11 · · · siℓℓ be the order in which the different sites are addressed.
As the si’s are non-repeating, P cannot evaluate two successive sij , si(j+1) with
a single communication. Hence, ℓ ≤ K. As P evaluates Q and hence determines
all the variables, every string si has to be a subsequence of s. �

4.2 A tractable case

Define min-com
depth k
S as the problem min-com where every input sequence of

queries has depth at most k and the queries are over the distributed schema S.
So, S is given but not ∆.

Theorem 3. min-com
depth k
S is in p.

Proof. Let S = {R1, . . . , Rm}. We first argue that the minimal protocol is at
most of communication size mk + m. Indeed, following the construction in the
proof of Proposition 1, the protocol first determines the domain of all variables.

11

As the depth of every input sequence of queries Q̄ is k, for every pair (A, x) ∈ TQ̄,
k communications suffice to bound the value of x in the atom it appears in. So,
when executing all communication sequences of length k one after another, the
domain of every variable is known. This needs mk communications in total.
Then, at every site it needs to be checked which assignments of variables make
the atoms true. This needs another m communications as there are m sites. So,
mk + m is an upper bound for the communication size of the minimal protocol
evaluating Q̄.

To find the minimal protocol, we only need to consider protocols of commu-
nication size at most mk + m. The minimal one can be found by exploring a
search tree of depth mk + m and width m. At every step there is the choice to
access one of the m sites. An access to relation Ri determines as many values of
variables as possible in atoms referring to Ri or when all variables are known for
an atom, fetches all tuples that make that atom true. In the end, the protocol
with the least communication size is taken. �

5 Heuristics

Although the algorithm described in the proof of Theorem 3 is in polynomial
time, the degree of the polynomial is too high to be useful in practice. Therefore,
we present in this section four heuristic algorithms to approximate min-com.
They are experimentally evaluated in the next section.

5.1 Greedy

The Greedy method proceeds by bounding the domains of variables. When for
a certain site, only one more access is necessary to bound the domain of every
variable in every atom that refers to that site, we call that site fully determined.
We can then bound the domain of these last variables together with evaluating
every such atom by one communication to the site. The latter is also the final
access to that site. Therefore, the algorithm gives priority in accessing fully
determined relations. If no site is fully determined, the protocol chooses to access
that site which maximizes the number of variables that become bounded. This
is the greedy step. We formally describe the algorithm and illustrate it by means
of an example.

We introduce some terminology. Assume given a sequence of queries Q̄ =
Q1, . . . , Qℓ. Let {R1, . . . , Rn} be the relational schema. We define the set of
bound variables w.r.t. to the sequence of accesses to the different sites. Therefore,
let s ∈ {1, . . . , n}∗, where s = 123 means that we first access site R1, then R2

and finally R3. Define Boundε as the set containing all pairs (A, x) ∈ TQ̄ for x a
constant. Further, Bounds·i contains Bounds and all pairs (A, x) such that

– x is non-local,

– no (B, x) ∈ Bounds·i with B 6= A; and

12

– there is an atom Ri(. . . , A1 : x1, . . . , An : xn, A : x, . . .) such that each
(Aj , xj) ∈ Bounds and there is a constraint Ri : {A1, . . . , An} → Y where
A ∈ Y .

A relation R is fully determined at step s when every pair (A, x) in every atom
in Q̄ referring to R is in Bounds.
We describe the Greedy method. To start let s = ε.

1. Let j be such that Rj is fully determined at step s · j and Rj is unmarked.
Otherwise choose j be such that |Bounds·j | ≥ |Bounds·i|, for all i 6= j and
Rj is unmarked. Otherwise if all relations are marked stop.

2. We first add for every pair (A, x) ∈ Bounds·j \ Bounds the query Qx that
defines the set of possible values of x to the protocol: Qx(Ax : x) ← R(A1 :
x1, . . . , An : xn, A : x), Qxi1

(Axi1
: xi1), . . . , Qxim

(Axim
: xim

). Here, {xi1 ,

. . . , xim
} are the variables in {x1, . . . , xn}. The remainder are constants.

3. If Rj is fully determined, mark Rj and add Qi,Rj
for every i ≤ ℓ, defined

as follows. For every query Qi and site R, let L1, . . . , Lk be the atoms in Qi

referring to R. Let x1, . . . , xn be the set of non-local variables that appear
in Qi.Define the query Qi,R(Ax1

: x1, . . . , Axn
: xn)← L1, . . . , Lk, Qx1

(Ax1
:

x1), . . . , Qxn
(Axn

: xn). The latter query evaluates the part of every query
in Q̄ that refers to R.

4. Set s to s · j. Go to (1).

For every i ≤ ℓ, define ξi as the conjunction of all Qi,R.

Example 5. We illustrate the approach by means of an example. Consider the
distributed schema R1(A1, A2, A3, A4), R2(A5, A6, A7, A8), and R3(A9, A10, A11),
with fan-out constraints R1 : A1 → A2, A3, R2 : A5 → A6, and R3 : A9 →
A10, A11. We evaluate the following two queries:

Q1 ← R1(A1 : ’a’, A2 : x1, A3 : x2, A4 : x3),
R2(A5 : ’a’, A6 : x4, A7 : x2, A8 : x3),
R3(A9 : x4, A10 : x1, A11 : x3).

Q2 ← R1(A1 : ’b’, A2 : x′
1, A3 : x′

2, A4 : x′
3),

R2(A5 : ’b’, A6 : x′
4, A7 : x′

2, A8 : x′
5),

Denote by Bound′
s·i the set Bounds·i \ Bounds. Now, Bound′

1 = {A2 : x1, A3 :
x2, A3 : x′

2}, Bound′
2 = {A6 : x4}, and Bound′

3 = ∅. Note that x′
1 and x′

4 are
excluded as they are local. Further, none of the relations are fully determined at
this point. Set s = 1 and add the queries

Qx1
(Ax1

: x1)← R1(A1 : ’a’, A2 : x1)
Qx2

(Ax2
: x2)← R1(A1 : ’a’, A3 : x2)

Qx′

2
(Ax′

2
: x′

2)← R1(A1 : ’b’, A3 : x′
2)

computing the domain of the variables x1, x2, x
′
2. Then, Bound′

12 = {A6 : x4}
and Bound′

11 = Bound′
13 = ∅. Furthermore, R2 is not fully determined as x3 is

an unbounded non-local variable. Set s = 12 and add

Qx4
(Ax4

: x4)← R2(A5 : ’a’, A6 : x4)

13

Note that Bound′
123 = {A11 : x3} and that R3 is fully determined. Therefore,

set s = 123, mark R3 and add2

Qx3
(Ax3

: x3)← R3(A9 : x4, A11 : x3), Qx4
(Ax4

: x4)
Q1,R3

(x1, x3, x4)← R3(A9 : x4, A10 : x1, A11 : x3), Qx1
(Ax1

: x1),
Qx3

(Ax3
: x3), Qx4

(Ax4
: x4)

At this point, all non-local variables are bounded and thus all sites are fully
determined. Now set s = 1231, mark R1, and add

Q1,R1
(x1, x2, x3)← R1(A1 : ’a’, A2 : x1, A3 : x2, A4 : x3),

Qx1
(Ax1

: x1), Qx2
(Ax2

: x2), Qx3
(Ax3

: x3)
Q2,R1

(x′
2)← R1(A1 : ’b’, A2 : x′

1, A3 : x′
2, A4 : x′

3), Qx′

2
(Ax′

2
: x′

2)

Next, set s = 12312, mark R2, and add

Q1,R2
(x4, x2, x3)← R2(A5 : ’a’, A6 : x4, A7 : x2, A8 : x3), Qx4

(Ax4
: x4),

, Qx2
(Ax2

: x2), Qx3
(Ax3

: x3)
Q2,R2

(x′
2)← R2(A5 : ’b’, A6 : x′

4, A7 : x′
2, A8 : x′

5), Qx′

2
(Ax′

2
: x′

2)

Finally, add to ξ

ξ1 ← Q1,R1
(x1, x2, x3), Q1,R2

(x2, x3), Q1,R3
(x1, x3, x4)

ξ2 ← Q2,R1
(x′

2), Q2,R2
(x′

2)

Note that the constructed protocol is not minimal. The minimal protocol can
be constructed from the sequence 2312. �

5.2 SCS Majority-Merge (MM)

We now compute for every separate query in Q̄ a minimal protocol by exhaustive
search. All the obtained minimal protocols for the separate queries are then
combined in an overall protocol by using the Majority-Merge algorithm [7, 10]
which is an approximation of scs. The latter is illustrated in Example 6.

First, we explain how a minimal protocol is computed for every query. We
consider all possible sequences of accesses to the sites. At every access we de-
termine the domains of as many variables as possible. Whenever the domain of
every variable in an atom is determined, that atom is evaluated. For simplicity,
in the sequel, we only talk about the order in which we access the sites and
do not give the concrete queries. It should be understood that they follow the
strategy outlined above. The latter brute-force approach is feasible as the size of
each separate query is expected to be small, say consisting of around 10 atoms.

Example 6. Assume we have three queries Q1, Q2 and Q3 whose respective min-
imal protocols access the sites in the following order: R1R2R3R2R1, R1R3R1R2

and R2R3R1. The next step is to find an overall protocol which is a superse-
quence of every single protocol. The Majority-Merge algorithm iteratively adds

2 To keep queries readable we omit the attributes in the heads of each Qi,Rj
.

14

the symbol that occurs the most among the leftmost symbols of the remaining
sequences and removes it from those sequences. The following overview shows
the respective iterations for the given sequences:

1 2 3 4 5 6
R1 R2 R3 R2 R1

R1 R3 R1 R2

R2 R3 R1

The obtained supersequence then is R1R2R3R1R2R1.

Improvement. As explained above, every generated protocol has two kind of
queries: those that get the domain of bounded variables and those that evaluate
atoms. At a certain point, a protocol only contains queries of the second kind.
We refer to this as phase two. Clearly, the order of the calls in the second phase
is irrelevant. This means that every permutation of the sites in the second phase
leads to another minimal protocol. We exploit this fact by aligning only the first
phases of the protocols and then checking which sites still have to be added to
the protocol. We denote this heuristic method with iMM.

Example 7. We take the same queries as in Example 6. Suppose the first phases
for the three queries are R1R2R3R2, R1R3 and R2R3. The Majority-Merge al-
gorithm returns the sequence R1R2R3R2. The next step is to check for every
query which of the relations in the second phase still have to be added to the
sequence. For the first query R1 has to be added and the sequence now becomes
R1R2R3R2R1. For the second and third query nothing has to be added, as the
sequence formed by their first phase and a permutation of their second phase is a
subsequence of the overall protocol.We, hence, obtain a shorter overall protocol.
�

5.3 Pairwise SCS (PSCS)

Even excluding permutations of calls in the second phase, some queries have
more than one minimal protocol. The choice of which minimal protocol to use to
construct the overall protocol can therefore strongly affect the overall protocol.
In the PSCS-approach we consider all minimal protocols for every separate query
(rather than just one), but construct the overall protocol by pairwise alignment
as it is known that the SCS problem for two sequences is solvable in polynomial
time [21].

We outline the PSCS algorithm:

1. Compute for every separate query the set of all minimal protocols by exhaus-
tive search. For a query Q, denote by SQ the set of sequences corresponding
to the first phases of the minimal protocols.

2. Take two arbitrary queries Q1 and Q2 in Q̄. Compute for every pair of
sequences in SQ1

× SQ2
its shortest common supersequence. Let s be the

shortest among all of these.

15

3. For every remaining query Q, compute the shortest common supersequence
of s and each sQ ∈ SQ. Set s to be the shortest among them.

4. Add second phases to s as long as necessary like in the iMM-approach.

6 Experiments

Next, we experimentally validate our four algorithms. We randomly generate
1000 queries of varying length. To be precise, the number of atoms for each
query is drawn from a Poisson-distribution with average size 10. Relations for
atoms are randomly selected. Variables and data values are randomly assigned to
the attributes of these relations. The experiments were performed on a Pentium
IV (3.0 GHz) architecture with 1 GB of internal memory running under Linux
2.6. All programs are written in Java.

We considered two kinds of schemas: (1) randomly generated schemas with
10 relations and random fan-out constraints allowing for queries of at least depth
five; (2) a fixed biologically motivated schema given in [20] created by examining
popular life science web sites.

Figures 1 and 2 present a box plot of the sizes of the protocols produced by the
four algorithms over random schemas and the biological schema, respectively. In
brief, the lower and upper ends of the box indicate the 25th and 75th percentiles,
respectively, while the line inside the box indicates the 50th percentile. The
top and bottom lines of the tails indicate the 10th and 90th percentile (cf.,
e.g., [19].). A circle indicates an outlier. The box plots visualize data from 20
and 10 experiments, respectively. It is immediate that iMM provides a serious
improvement over MM. In the case of random schemas, Figure 1 already indicates
that PSCS performs better than the other methods. Further, a T-test on the data
generated by the experiments establishes that the average length of protocols
generated by PSCS is significantly smaller than those generated by the other
methods. In the case of the biological schema, the visualization in Figure 2 alone
already shows that the Greedy method outperforms all the others. The reason is
that the complexity of the structure of the fan-out constraints for the biological
schema is far less complicated than those of the randomly generated schemas. It
appears that the Greedy method has a better performance in such a situation.
Furthermore, PSCS performs better than iMM.

Figure 3 shows that for small numbers of queries, our three heuristics Greedy,
iMM, and PSCS, generate a protocol whose length is close to the length of the
optimal protocol (computed by exhaustive search). For larger numbers of queries
it was not possible to obtain a solution by brute-force search.

Finally, we compare running times in Figure 4. While the SCS-based methods
iMM and PSCS are very fast, the Greedy method is several orders of magnitude
slower. The bottleneck of the algorithm is in the computation of the sets Bounds·j

for which every atom in every query has to be accessed in every iteration of the
algorithm.

7 Conclusion
We proved min-com to be an intractable problem (even under severe restrictions)
and provided four heuristics. When to use which heuristic depends on the setting.

16

Greedy MM PSCS iMM

.

45

50

55

60

65

70

S
iz

e.
of

.p
ro

to
co

l

Fig. 1. Box plot of protocol size for 20 ex-
periments with 1000 queries over a random
schema.

Greedy MM PSCS iMM

.

40

50

60

70

80

S
iz

e.
of

.p
ro

to
co

l

Fig. 2. Box plot of protocol size for 10 ex-
periments with 1000 queries over the bio-
logical schema.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 25 50 75 100 125

S
iz

e
of

 p
ro

to
co

l

Nr queries

Size

MM
iMM

PSCS
Greedy
Optimal

Fig. 3. Comparison of protocol size with
optimal solution for a small number of
queries.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 500 1000 1500 2000

T
im

e(
m

s)

Nr queries

Time

MM
iMM

PSCS
Greedy

Fig. 4. Average logarithmic time.

Our experiments show that in a setting with a schema with a low complexity
structure of fan-out constraints, as is the case in our biological scenario, the
Greedy method performs best. In a random scenario PSCS outperforms the
other methods. The latter method has the additional advantage that it is much
faster than the Greedy method: 2.7 hours (Greedy) versus 10 seconds (PSCS) for
2000 random queries. The main drawback of the present approach is that only
the number of accesses to sites is minimized, the overall amount of transmitted
data remains the same. In future work we plan to address that issue.

17

Appendix

Proof of Theorem 1(continued) We formally describe the protocol. For i =
1, . . . , n, add the following conjunctive queries to the protocol. For every pair
(A, x) ∈ Boundi \ Boundi−1, that has been added to Boundi

– by the second rule in Definition 4, add QA:x(A : x)← QB:x(B : x); and,
– by the third rule in Definition 4, add QA:x(A : x) ← R(A1 : x1, . . . , An :

xn, A : x), QAi1
:xi1

(Ai1 : xi1), . . . , QAim :xim
(Aim

: xim
). Here, {xi1 , . . . , xim

}
are the variables in {x1, . . . , xn}. The remainder are constants.

Up to now, the protocol computes a set of possible values for all bound vari-
ables. It remains to test which variable assignments hold at the databases. There-
fore, for every query Qi and site R, let L1, . . . , Lk be the atoms in Qi referring
to R. Let x1, . . . , xn be the set of non-local variables that appear in Qi with
the attributes A1, . . . , An, respectively. Define the query Qi,R(x1, . . . , xn) ←
L1, . . . , Lk, QA1:x1

(A1 : x1), . . . , QAn:xn
(An : xn). Add all these to the protocol.

It remains to define all ξ. For every query Qi, define ξi as the conjunction of all
Qi.R. �

Proof of Proposition 2. Given (K,Q,S, ∆), we simply guess a protocol P of
at most linear size, check whether it is bounded and whether it is of communi-
cation size at most K. This can be done in polynomial time. We then only need
to verify whether that P effectively evaluates Q. The latter reduces to testing
equivalence of conjunctive queries which is known to be in np [6] by guessing
of homomorphisms. These guesses can be combined with the guessing of the
protocol. The latter verification step can be combined with the first verification
step. �

Proof of Theorem 2(1) (continued). Note that from the construction of Q̄,
a minimal bounded protocol accesses every relation Ri at least once and at most
twice: once to apply the fan-out constraint to bound the possible values for vi,
and once to evaluate the atom Ri(A

i : c, Ai
i : vi, A

i
i1

: vi1 , . . . , A
i
in

: vin
) when

all variables vi, vi1 , . . . , vin
are determined. Call relations that are accessed twice

expensive, and the others cheap. Now, every minimal protocol can be rewritten
into one that accesses first all expensive atoms, then all cheap ones, and finally
all expensive atoms again. Therefore, minimizing the communication size of the
protocol reduces to minimizing the number of expensive atoms. By construction,
Ai

j : vj is added to the atom Ri when there is an edge from vj to vi in G. This
means that in order for Ri to be cheap, all values of variables corresponding
to incoming edges should be known when evaluating Ri. So, for every directed
cycle there has to be one node vi such that Ri is expensive. Therefore, the set
V ′ = {vj1 , . . . , vjℓ

}, where {Rj1 , . . . , Rjℓ
} is the set of expensive atoms, forms

a feedback vertex set. So, if there is bounded protocol of size at most K + |V |,
where K is the number of expensive atoms, there is a feedback vertex set of size
K.

Conversely, assume that V ′ = {vj1 , . . . , vjℓ
} is a feedback vertex set of size

at most K. We only describe the order in which sites are accessed:

18

– Access the relations Rj1 , . . . , Rjℓ
to determine the values of the variables

vj1 , . . . , vjℓ
. For every, such v, we have a query Qv.

– Remove from G all nodes in V ′. Select a node v with in-degree zero. Note
that this is possible as the resulting graph is acyclic. As v has in-degree zero
in the resulting graph, this means that all the values of all variables v′ for
which (v′, v) in the original graph G, are known. Hence, we can check with a
single communication which tuples make Rv true using the local repository.
Finally, remove v and repeat until no nodes are left.

– Access the relations Rj1 , . . . , Rjℓ
to determine which tuples make them true.

– Check whether there is an assignment to the variables that makes all atoms
true. The latter is a query over the local repository and does not need any
access to a remote site.

Note that the above protocol evaluates Q̄, is bounded and has communication
size K + |V |.

�

Proof of Lemma 1. We use a reduction from scs for strings over a binary
alphabet {α, β}. Let S be a set of strings {s1, . . . , sn}, and K a natural number.
Then define Σ′ as {α, β, α′, β′} and S′ as the set of strings obtained from S by
replacing in every s every occurrence of α and β by αα′ and ββ′, respectively.
Note that this construction ensures that the strings in S′ are non repeating.

We show that S has a supersequence s of length at most K iff S′ has a
supersequence s′ of length at most 2K.

Clearly, if s is supersequence for S of length at most K, then s′ obtained
from s by applying the above transformation, is a super sequence of size at most
2K.

Conversely, suppose s′ is a supersequence for S′ of length at most 2K. Let
s be obtained from s′ by eliminating all symbols α′ and β′. Clearly, s is a
supersequence for S. It remains to argue that the length of s is at most K. This
is definitely the case if α and β occur the same number of times or less in s′

as their corresponding symbols α′ and β′. Therefore, suppose α occurs more
often than α′. This means that their is an occurence of α followed by another
occurence of α before the next occurrence of α′ or not followed by an occurence
of α′ at all. But then this occurrence of α is superfluous because in the strings
in S′ every occurrence of α is directly followed by an occurrence of α′. We can
hence keep on deleting superfluous occurrences. As a result the length of s′ is at
most K. �

19

– PubMed(pubmed id,abstract,article)
• PubMed: pubmed id → abstract,article

– Kegg(EC number,pathway id,protein id)
• Kegg : EC number → pathway id, protein id
• Kegg : pathway id → protein id
• Kegg : protein id → EC number

– OMIM(omim id,gene id,map locus,pubmed id)
• OMIM: omim id → gene id,map locus,pubmed id
• OMIM: map locus → omim id,gene id,pubmed id
• OMIM: gene id → omim id,map locus,pubmed id

– GO(go id,name,definition,cellular component)
• GO : go id → name,definition,cellular component

– SwissProt(protein id,protein name,EC number,go id,omim id,gene id,pubmed id)
• SwissProt : protein id → protein name,EC number,go id,omim id,gene id,pubmed id
• SwissProt : protein name → protein id,EC number,go id,omim id,gene id,pubmed id
• SwissProt : omim id → pubmed id
• SwissProt : gene id → pubmed id,protein id
• SwissProt : EC number → protein id

– Genbank(gene id,gene name,pubmed id,feature id)
• Genbank : gene id → gene name,pubmed id,feature id
• Genbank : gene name → gene id,pubmed id,feature id
• Genbank : feature id → gene id

– GenbankFT(feature id,organism,go id,omim id,Entrez protein id)
• GenbankFT: feature id → organism,go id,omim id,Entrez protein id
• GenbankFT: Entrez protein id → feature id

– SageGenie(gene id,tag)
• SageGenie : gene id → tag
• Genbank : tag → gene id

– UniGene(cluster id,gene id,Entrez protein id)
• UniGene : cluster id → gene id,Entrez protein id
• UniGene : Entrez protein id → cluster id

– HomoloGene(homolgene id,Entrez protein id,blast2 genesequence)
• HomoloGene : homolgene id → Entrez protein id,blast2 genesequence

– Mesh(gene id,definition)
• Mesh : gene id → definition

– EntrezProtein(Entrez protein id,protein name,cluster id)
• EntrezProtein : Entrez protein id → protein name,,cluster id
• EntrezProtein : protein name → Entrez protein id,cluster id
• EntrezProtein : cluster id → Entrez protein id

– EntrezGene(gene id,map locus)
• EntrezGene : gene id → map locus
• EntrezGene : map locus → gene id

Fig. 5. The biological schema

20

References

1. M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective
dissemination of information. In Proc. of the 26th International Conference on
Very Large Data Bases (VLDB 2000), pages 53–64. Morgan Kaufmann, 2000.

2. M. Ashburner et al. Gene Ontology: tool for the unification of biology. Nature
Genetics, 25(1):25–29, 2000.

3. A. Bairoch and R. Apweiler. The SWISS-PROT protein sequence data bank and
its new supplement TREMBL. Nucleic Acids Research, 24(1):21–25, 1996.

4. P. A. Bernstein, N. Goodman, E. Wong, C. L. Reeve, and Jr. J. B. Rothnie. Query
processing in a system for distributed databases (SDD-1). ACM Transactions on
Database Systems, 6(4):602–625, 1981.

5. H.S. Bilofsky et al. The GenBank Genetic Sequence Databank. Nucleic Acids
Research, 14:1–4, 1986.

6. A. Chandra and P. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In Proceedings 9th ACM Symposium on Theory of Computing
(STOC 1977), pages 77–90. ACM Press, 1977.

7. D. E. Foulser, M. Li, and Q. Yang. Theory and algorithms for plan merging.
Artificial Intelligence, 57(2-3):143–181, 1992.

8. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

9. K. Hokamp and K. Wolfe. What’s new in the library? What’s new in GenBank?
Let PubCrawler tell you. Trends in Genetics, 15(11):471–472, 1999.

10. T. Jiang and M. Li. On the approximation of shortest common supersequences
and longest common subsequences. SIAM Journal on Computing, 24(5):1122–1139,
1995.

11. M. Kanehisa and S. Goto. KEGG: kyoto encyclopedia of genes and genomes.
Nucleic Acids Research, 28(1):27–30, 2000.

12. E. Kushilevitz and N. Nisan. Communication complexity. Cambridge University
Press, 1997.

13. Z. Lacroix and T. Critchlow. Bioinformatics: Managing Scientific Data. Morgan
Kaufmann, 2003.

14. H. Lu, B. Ooi, and C. Goh. On global multidatabase query optimization. SIGMOD
Record, 21(4):6–11, 1992.

15. K.J. Raeiha and E. Ukkonen. Shortest common supersequence problem over binary
alphabet is NP-complete. Theoretical Computer Science, 16(2):187–198, 1981.

16. P. Roy, S. Seshadri, S. Sudarshan, and S. Bhobe. Efficient and extensible algo-
rithms for multi query optimization. In Proceedings of the 2000 ACM SIGMOD
international conference on Management of data (SIGMOD 2000), pages 249–260.
ACM Press, 2000.

17. A. P. Sheth and J. A. Larson. Federated database systems for managing dis-
tributed, heterogeneous, and autonomous databases. ACM Computing Surveys,
22(3):183–236, 1990.

18. D. Suciu. Distributed query evaluation on semistructured data. ACM Transactions
on Database Systems, 27(1):1–62, 2002.

19. P.-N. Tan, M. Steinbach, and V. Kumar. Introduction to data mining. Addison-
Wesley, 2005.

20. D. Van de Craen. Biologically motivated schema. http://alpha.uhasselt.be/
∼lucp1631/files/biodbschema.pdf

21

21. R. A. Wagner and M. J. Fischer. The string-to-string correction problem. Journal
of the ACM, 21(1):168–173, 1974.

22. C. Wang and M. Chen. On the complexity of distributed query optimization. IEEE
Transactions on Knowledge and Data Engineering, 8(4):650–662, 1996.

22

