
Made available by Hasselt University Library in https://documentserver.uhasselt.be

An extensible light-weight XML-based monitoring system for sequence databases

Peer-reviewed author version

VAN DE CRAEN, Dieter; NEVEN, Frank & KOCH, Kerstin (2006) An extensible

light-weight XML-based monitoring system for sequence databases. In: Data

Integration in the Life Sciences, Proceedings. p. 280-296.

DOI: 10.1007/11799511_25

Handle: http://hdl.handle.net/1942/1419



An extensible light-weight XML-based
monitoring system for sequence databases

Dieter Van de Craen?, Frank Neven, and Kerstin Koch

Hasselt University and Transnational University of Limburg
School for Information Technology

{firstname.lastname}@uhasselt.be

Abstract. Life science researchers want biological information in their
interest to become available to them as soon as possible. A monitoring
system is a solution that relieves biologists from periodic exploration of
databases. In particular, it allows them to express their interest in cer-
tain data by means of queries/constraints; they are then notified when
new data arrives satisfying these queries/constraints. We describe a se-
quence monitoring system XSeqM where users can combine metadata
queries on sequence records with constraints on an alignment against a
given source sequence. The system is an XML-based solution where con-
straints are specified through search fields in a user-friendly web interface
and which are then translated to corresponding XPath-expressions. The
system is easily extensible as addition of new databases to the system
then only amounts to the specification of new mappings from search fields
to XPath-expressions. To protect private source sequences obtained in
labs, it is imperative that researchers do not have to upload their se-
quences to a general untrusted system, but that they can run XSeqM
locally. To keep the system light-weight, we therefore introduce an op-
timization technique based on query containment to reduce the number
of XPath-evaluations which constitutes the bottleneck of the system. We
experimentally validate this technique and show that it can drastically
improve the running time.

1 Introduction

Motivation. Due to the increase in the speed of sequencing of genes and pro-
teins, sequence databases, such as Genbank, double in size every two years [26].
This rapid expansion of data motivates researchers to repeat search queries over
time. Indeed, a BLAST-search [13] that does not produce any useful result to-
day might do so tomorrow. In this paper, we therefore propose a user-friendly
sequence monitoring system XSeqM (eXtensible Sequence Monitor) that relieves
researchers from repeating such searches over time.

We provide two motivating examples:

? Contact author



1. Researchers in a lab have obtained one or a few sequences of genes or pro-
teins for which a BLAST-search only gives similarities for small regions of
the sequence. No highly similar, annotated sequences are available in any
database which might give hints for the function of the gene or protein.
Therefore, the researchers regularly repeat BLAST-searches against several
databases to find genes or proteins with a higher similarity.

2. A researcher has obtained a gene g expressed in the central nervous system
(CNS) of the rainbow trout and is interested to learn about genes similar to
g which are expressed in the peripheral nervous system (PNS) in any fish
organism or mammal. She therefore repeats a BLAST-search with the gene
g on a weekly basis.

The two tasks described above are tedious and time consuming when executed
manually: not only the BLAST-searches themselves, but also the post-processing
of the BLAST-reports (if any) to sort out relevant matches from irrelevant ones.
Indeed, in situation (1), a match could be irrelevant as the matched part of the
sequence is too small or the likelihood of the match expressed by the E-value
is too large. In situation (2), all BLAST-hits from non-fish and non-mammal
species should be discarded together with those that are not mRNA and that
do not refer to the PNS.

A solution: the XSeqM-system. In the XSeqM-system users can register
BLAST-requests combined with constraints on the metadata of a sequence record.
All requests are checked locally by the system after retrieval of the daily updates
from the respective databases and users are informed, for instance through email,
when relevant results are found. Figure 2 shows part of the monitor request re-
lated to situation (2). In brief, every such request specifies the following infor-
mation:

– a database of interest (e.g., Genbank, SwissProt, . . . ),
– a sequence of interest (e.g., the gene g),
– constraints on the metadata (e.g., classification should contain the string

‘fish’ and molecular type should equal ‘mRNA’)
– an alignment program and its parameters (e.g., BLAST with word size 11

and matrix PAM30)
– relevance constraints (e.g., size of match should be greater than 20 and E-

value should be smaller than e−10).

The XSeqM-system has the following characteristics:

1. XSeqM is light-weight. It can be installed locally in a lab on a computer with
average system requirements. This is important, as, referring to situation (1)
above, research labs can be hesitant to upload their newly found sequences in
a public system as some of them might be candidates for a patent application.

2. XSeqM is user-friendly as it hides all use of XML: users interact with the
system through a Web-interface where search fields can be combined using
the logical operators, much like other query and monitoring systems such as
SRS and PubCrawler [22].

2



3. XSeqM is a flexible XML-based solution to which any sequence database can
be added that makes updates available and whose format can be transformed
into XML. Almost all sources nowadays allow to export information in XML-
format or there are third party tools available to convert existing formats to
XML. The administrator determines for every sequence database a number of
search fields. For every search field f , an XPath-expression Pf is created that
selects the corresponding value in every XML-file in the update. Table 1, for
instance, lists the interesting search fields for a GenBank record and the cor-
responding XPath-expressions. Every user request is then translated under
the hood to a Boolean combination of XPath-expressions. Similarly, rele-
vance constraints on BLAST-reports are translated into XPath-expressions
over the XML-representation. Therefore, in principle, any XPath-expressible
constraints can be used.

Efficient evaluation. The main technical part of the paper deals with efficient
execution of all monitoring requests. In brief, the system executes the following
steps. Let m1, . . . ,mk be all monitoring requests with corresponding constraints
p1, . . . , pk on the metadata, i.e. Boolean combinations of XPath-expressions. For
every sequence record s in the update, we need to check which expressions pi

match s. When pi is successfully matched, we BLAST the sequence in s against
the sequence in mi. When all relevance constraints of mi on the BLAST-report
are satisfied, the owner of request mi is alerted. As an alignment of sequences
through BLAST is expensive, it is imperative to first check the metadata con-
straints and only start BLAST for those sequences which are selected.

As every local lab is considered to have its own system, we consider systems
of moderate size (say, a few thousands of monitoring requests). Daily updates to
Genbank vary in size from 50 to 200 Megabytes (zipped): these contain between
30000 and 150000 sequences. The bottleneck of the system is in the evaluation
of the constraints p1, . . . , pk for every sequence record s in the update. A direct
approach using a standard XPath-evaluator like Xalan[1] takes more than 24
hours and is therefore not an option. Powerful fast streaming XPath-engines have
been proposed over the past years [21,12] which can handle millions of XPath-
expressions. Unfortunately, we cannot use these engines directly: to ensure high
throughput streaming engines do not consider full XPath. In particular, they
do not consider arbitrary Boolean combinations of XPath-expression or allow to
test whether a certain given string occurs as a substring of a text element. We
therefore make use of the state-of-the-art evaluator YFilter [18,19] as a first pre-
processing step to extract string-values from sequence records. More precisely, by
evaluating for every search field the corresponding expression Pf on the update,
we get for every sequence record a complex value representation on which the
metadata constraints can be checked. E.g., Table 2 contains such a representation
for the GenBank record of Figure 1 through the XPath expressions in Table 1.
In a second step, we then evaluate every pattern pi on this representation. An
additional advantage of this method is that more advanced pattern matching
on string values can be used than is available in XPath. For instance, one could
require that the string value matches a given regular expression.

3



f Pf

organism /p/e[@class=”source”]/Qualifier[@value-type=”organism”]/@value

accession /p/@ic-acckey

gi /p/Attribute[@name=”primary id”]/@content

author name /p/q[@title=”Sequence References”]/Reference/RefAuthors/text()

title /p/q[@title=”Sequence References”]/Reference/RefTitle/text()

keyword /p/Attribute[@name=”keyword”]/@content

comment /p/Attribute[@name=”comment”]/@content

classification /p/Attribute[@name=”classification”]/@content

Feature key /p/e/@class

Gene name /p/e[@class=”gene”]/Qualifier[@value-type=”gene”]/@value

Protein name /p/e[@class=”cds”]/Qualifier[@value-type=”product”]/@value

chromosome /p/e[@class=”source”]/Qualifier[@value-type=”chromosome”]/@value

molecular type /p/e[@class=”source”]/Qualifier[@value-type=”mol type”]/@value

tissue type /p/e[@class=”source”]/Qualifier[@value-type=”tissue type”]/@value

tissue library /p/e[@class=”source”]/Qualifier[@value-type=”tissue lib”]/@value

cell line /p/e[@class=”source”]/Qualifier[@value-type=”cell line”]/@value

development stage /p/e[@class=”source”]/Qualifier[@value-type=”dev stage”]/@value

EC Number /p/e[@class=”cds”]/Qualifier[@value-type=”EC number”]/@value

p /Bsml/Definitions/Sequences/Sequence

e Feature-tables/Feature-table[@title=”Features”]/Feature

q Feature-tables/Feature-table

Table 1. Search fields for a GenBank record and corresponding XPath-
expressions.

We consider an optimization based on containment of constraints. As the sys-
tem runs at a local lab, chances are high that many constraints on the metadata
are related. For instance, a constraint could require that the organism should
contain the string ‘Oncorhynchus’ while another query could require that the or-
ganism should equal ‘Oncorhynchus mykiss’ and the tissue type equals ‘brain’.
Clearly, the second constraint implies the first. So, we know that the first con-
straint is true when the second is, and the second is false when the first is. Our
optimization technique exploits these ideas to reduce the number of evaluations.
More precisely, we define a graph structure that captures the relationships be-
tween the constraints and consider two forms of propagation: false propagation
and true propagation. We experimentally show that false propagation outper-
forms true propagation and the pure streaming approach.

Finally, we discuss how to incrementally maintain the containment graph.
It never has to be computed from scratch. The insertion operation is time con-
suming as in the worst case it involves a linear number of containment checks
(a coNP-hard problem [20]). Luckily only a limited number of insertions are
expected on a daily basis, say at most hundred, which for a system already
containing 5000 requests can be done in less than 100 minutes. In case a larger
number of insertions is required, we discuss a technique that accelerates the
containment check at the expense of introducing more requests: constraints are
transformed into disjunctive normal form, testing containment of conjuncts can
then be done in linear time. For instance, adding 100 request to a containment
graph with 5000 nodes then only takes 12 seconds.

4



f values

organism {“Oncorhynchus mykiss”}
accession { “AM181351” }

gi { “84993308” }
author name { “Zarkadis,I.K. and Marioli,D.”, “Zarkadis,I.K.” }

title { “Cloning of the vitronectin gene in rainbow trout”, “Direct
Submission” }

keyword { “vitronectin protein 1”, “vtn1 gene” }
comment { }

classification { “mykiss Oncorhynchus Salmonidae Salmoniformes Protacan-
thopterygii Euteleostei Teleostei Neopterygii Actinopterygii Eu-
teleostomi Vertebrata Craniata Chordata Metazoa Eukaryota” }

Feature key { “source”, “gene”, “cds” }
Gene name { “vtn1” }

Protein name { “vitronectin protein 1” }
chromosome { }

molecular type {“mRNA”}
tissue type { “liver” }

tissue library { }
cell line { }

development stage { }
EC Number { }

Table 2. Complex value representation of the GenBank record in Figure 1

Outline. This paper is organized as follows. In Section 2, we survey other mon-
itoring approaches. Section 3 introduces XML and XPath. Section 4 gives an
overview of XSeqM. In Section 5, we outline several evaluation strategies. Sec-
tion 6 reports on our experiments. In Section 7, we discuss the incremental
maintenance of the containment graph. We conclude in Section 8.

2 Related Work

Existing alerting systems like BioMail, JADE or Science Direct are used for
literature alerts [3,4,9]. They search the PubMed database in given intervals and
alert users via email if new publications matching special keywords are available
[25]. The only system integrating query possibilities for Genbank in addition
to literature alerts is PubCrawler [22,23]. PubCrawler provides a user with the
possiblity to define two types of queries. The first type is a keyword search and
the second is a neighborhood query. With a neighborhood query a user can
express his interest in articles or sequences that are similar to given articles
or sequences already present in the database. A limitation of this approach is
that the user can not enter an unpublished sequence which has no identifier
assigned yet. Also, advanced options in the comparison with other sequences are
not provided, e.g., the minimal length of a match or the E-value. XSeqM does
provide these possibities and allows for the combination of a keyword search and
an alignment with any given sequence.

XML filtering systems evaluate a set of queries against a stream of documents.
The XMLTK system [21] combines all path expressions into a single deterministic
finite automaton. YFilter [18,19], the successor of XFilter [12], combines all

5



expressions in one nondeterministic finite automaton. These systems thus employ
a finite state automaton for all the XPath-expressions. The XML stream is parsed
by a SAX parser and the SAX events are streamed through the finite state
automaton. A query matches a document if during parsing an accepting state
for that query is reached. The main limitation of these systems compared to
XSeqM is that they do not support full XPath. As the translation of user queries
in XSeqM can result in complex XPath-expressions, these systems can not be
applied directly in our situation.

In [14,15] and [24] optimization of navigational queries on life science sources
is investigated. In this setting alternate paths are possible to evaluate a query.
The focus in [14,15] is on finding a set of paths that maximizes the number of
results while satisfying a constraint on the evaluation cost. Minimizing the total
number of accesses to sources when evaluating multiple queries in batch mode
is discussed in [24]. The goal of XSeqM differs from these as we want to monitor
multiple sources seperately rather then answering queries over multiple sources.

3 XML and XPath
The eXtensible Markup Language (XML) is a standard for data exchange on
the Web [10]. Most bioinformatics data formats can be converted into an XML
representation. Numerous XML formats for a wide range of biological data are
available. Some examples are BSML, SPTr-XML, GO-XML,. . . [16].

XPath is an XML pattern language for locating information in XML docu-
ments [17]. In particular, XPath can retrieve the value of elements or attributes
and can test whether that value satisfies a certain condition. We give an example
of both. The expression //Attribute[@name="classification"]/@content,
for instance retrieves the classification of an entry as the actual classification
is the value of the content attribute of an Attribute element that has a name
attribute with value ‘classification’. The expression

boolean(//Attribute[@name="classification" and contains(@content,"Mammalia"])

checks whether the classification contains the string ‘Mammalia’. XPath can also
be used to query the XML-representation of a BLAST-report. For instance, the
expression //Hit[Hit num/text()="1"]/Hit hsps/Hsp/Hsp evalue/text() se-
lects the E-value of the first hit.

4 Monitoring System
We detail the three different components of XSeqM which are graphically illus-
trated in Figure 3.

1. The Input Module consists of the WWW Interface and the Query Translation
Module. As illustrated in Figure 2(top), a query is created in the WWW In-
terface by uploading a sequence and specifying search terms in search fields.
These search fields are then linked together by selecting the appropriate
logical connectors: AND, OR and NOT, and parentheses. This method of
operation is similar to the one used in other query and monitoring systems

6



LOCUS AM181351 674 bp mRNA linear VRT 16-JAN-2006
DEFINITION Oncorhynchus mykiss partial mRNA for vitronectin protein 1 (vtn1

gene), isolated from liver.
ACCESSION AM181351
VERSION AM181351.1 GI:84993308
KEYWORDS vitronectin protein 1; vtn1 gene.
SOURCE Oncorhynchus mykiss (rainbow trout)

ORGANISM Oncorhynchus mykiss
Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
Actinopterygii; Neopterygii; Teleostei; Euteleostei;
Protacanthopterygii; Salmoniformes; Salmonidae; Oncorhynchus.

REFERENCE 1
AUTHORS Zarkadis,I.K. and Marioli,D.
TITLE Cloning of the vitronectin gene in rainbow trout
JOURNAL Unpublished

REFERENCE 2 (bases 1 to 674)
AUTHORS Zarkadis,I.K.
TITLE Direct Submission
JOURNAL Submitted (11-JAN-2006) Zarkadis I.K., Dept. of Biology, School of

Medicine, University of Patras, Rion, Panepistimioupolis, ...
FEATURES Location/Qualifiers

source 1..674
/organism="Oncorhynchus mykiss"
/mol_type="mRNA"
/db_xref="taxon:8022"
/tissue_type="liver"

gene <1..>674
/gene="vtn1"

CDS <1..>674
/gene="vtn1"
/codon_start=1
/product="vitronectin protein 1"
/protein_id="CAJ57657.1"
/db_xref="GI:84993309"
/translation="SCCMDF..."

ORIGIN
1 agctgctgca tggacttcga cagtgcctgc cctaggaaga tttcccgcgg tgacacattt

...
661 tgtgtgcgct tgac

Fig. 1. Example GenBank entry

such as SRS and PubCrawler. Queries entered by users are then translated
by the Query Translation Module to a Boolean formula and a mapping from
which the corresponding XPath expression can be constructed. An example
of part of this translation is given in Figure 2(bottom). The user therefore
does not have to be aware of the underlying technology used. The monitor
request is stored in the local repository.

2. The Evaluation Module is responsible for the actual evaluation of the mon-
itor requests. It consist of the Request Evaluator, the Alignment Module
and the Report Generator. When the Evaluation Module receives an update
of a database, say GenBank, the monitor requests concerning GenBank are
fetched from the local repository. The evaluation then proceeds as follows.
First, the Request Evaluator evaluates the metadata constraints of the moni-
toring requests on all sequence records in the update. The Alignment Module
then aligns every selected sequence with the corresponding source sequences.
Finally, the Report Generator constructs a report from every BLAST-report
that satisfies the relevance constraints and notifies the owner of the monitor
request.

7



3. The Update Module consist of the BioDBInterface and the XML Converter
Module. The BioDBInterface Module checks at regular timepoints whether
updates to some of the monitored databases are available. If such an update is
available, then the BioDBInterface Module fetches this update and passes it
on to the Evaluation Module. Despite the fact that more and more biological
data is available as XML, not all data is. In such a case, the XML Converter
Module will convert the update into an XML-format.

5 Evaluation strategies

We provide an abstract view of the different parts of the evaluation algorithm.
Let m1, . . . ,mk be an enumeration of all monitoring requests. Every request
mi = (pi, si, ri) consists of a metadata constraint pi, a sequence si, and a rele-
vance constraint ri. Let u1, . . . , u` be an enumeration of sequence records con-
stituting an update. The system provides the following steps:

1. Compute the set of pairs N = {(j, i) | uj matches pi}.
2. For every (j, i) ∈ N , align the sequences uj and si through BLAST resulting

in a BLAST-report Rj,i.
3. When Rj,i matches ri, warn the owner of request mi.

The bottleneck of the system is located in step (1) above: testing the meta-
data constraints. When M and N are the number of monitoring requests and the
number of sequence records in an update, respectively, then M × U constraints
need to be checked. We consider systems where M can be 5000 and U can be
105. Step (2) can be evaluated quite fast (on average 104 pairs of sequences can
be aligned with BLAST on a local system in less then half a minute). For step
(3), the same techniques as for step (1) can be used, although in general this step
can be done quite fast as the number of BLAST-reports will be much smaller
than M × U . In the rest of this section, we outline several evaluation strategies
for step (1) which are experimentally evaluated in the next section.

5.1 Naive brute force evaluation
The first evaluation strategy is a simple brute force method which tests every
constraint pi for every entry in the update. To evaluate the XPath-expressions,
we use Xalan [1].

5.2 XML streaming approach
An XML stream query processing system takes as input a stream of XML doc-
uments on which it evaluates queries simultaneously. Filtering systems such as
XFilter, YFilter, XMLTK, . . . are freely available and provide efficient evalua-
tion of large numbers of XPath-expressions. The problem with these systems is
that the XPath fragment they consider is not powerful enough to express our
user constraints. However, if we look at the number of search fields that can be
queried in our setting, we observe that this number is small (typically 10 to 20)
and fixed in advance. So, instead of evaluating the XPath-expressions generated
from the user constraints directly on the updates, we proceed in two steps:

8



Blast
ID sequence Evalue wordsize MatchSize

...

51 gcagtgcc... 10 11 20

...

Mapping
ID variable querytype keyword value

...

51 v 51 1 contains classification fish

51 v 51 2 contains tissue type brain

51 v 51 3 equals molecular type mRNA

...

Query
ID userID database formula

...

51 8 genbank v 51 1 & v 51 2 & v 51 3

...

Fig. 2. Example of a monitoring request and its translation.

9



Request Evaluator Alignment Module

Report Generator

Evaluation Module

WWW interface QueryTranslation

Input Module

DB

local repository

BioDBInterface XML Converter

GenBank PDBSwissProt

Update Module

. . .

Fig. 3. Overview of the modules

1. Using YFilter, we retrieve all the values for the search fields for a sequence
record of an update and create for each record a complex value representa-
tion. E.g., Table 2 contains a complex value representation of the GenBank
record of Figure 1 obtained through the XPath expressions in Table 1.

2. In a second step, we evaluate the metadata constraints on this complex value
representation. For instance, the constraint

classification.contains(‘Teleostei’) AND tissue type.contains(‘brain’)
AND molecular type.contains(‘mRNA’)

is not satisfied on the record in Table 2 as the tissue type does not contain
brain. The semantics of the contains(‘s’) operator is that at least one of the
strings in the set should contain the string ‘s’ as a substring.

5.3 Query containment
The evaluation of expressions in step two above is still naive: all expressions
are matched against all entries in the update. As the XSeqM-system runs at a
local lab where researchers are working on related topics, chances are high that
some constraints on the metadata are related. A useful notion in this context is
the following: a constraint p is contained in a constraint p′, denoted p ⊆ p′, if
whenever a sequence record satisfies p it also satisfies p′. For instance, let p be
the constraint

organism.equals(‘Oncorhynchus mykiss’) AND tissue type.contains(‘brain’)
AND molecular type.contains(‘mRNA’)

and let p′ be the constraint organism.contains(‘Oncorhynchus’). Then it should
be clear that every record which satisfies p also satisfies p′.

So, containment checking of constraints basically reduces to containment
checking of propositional logical formulas. However, some care is needed when

10



dealing with the ‘contains’ and ‘equals’ predicate referring to the same search
field. We use the following algorithm that we illustrate on the above example:

– Rewrite the constraints p and p′ to logical formulas q and q′ over different
propositional symbols.
That is, q equals a ∧ b ∧ c and q′ equals d. Here, a, b, c and d stand for or-
ganism.equals(‘Oncorhynchus mykiss’), tissue type.contains(‘brain’), molec-
ular type.contains(‘mRNA’), and organism.contains(‘Oncorhynchus’), respec-
tively.

– Let γ be a propositional formula initially set to true. For every pair of propo-
sitional variables x and y referring to the same search field, test whether the
constraint corresponding to x is contained in the constraint corresponding
to y. If so, add ¬x∨y to γ. The intuition is that γ restricts the set of possible
truth assignments to those that correspond to the semantics of the ‘contains’
and ‘equals’ predicates. In particular, the formula ¬x∨ y only accepts truth
assignments that assign true to y when x is also true, which encodes that x
implies y.
The only variables referring to the same search field are a and d. Clearly, a
is contained in d as every record satisfying organism.equals(‘Oncorhynchus
mykiss’) also satisfies organism.contains(‘Oncorhynchus’). So, γ is the for-
mula ¬a ∨ d.

– Now, p ⊆ p′ iff q ∧ ¬q′ ∧ γ is unsatisfiable.
So for our example, we need to test that a ∧ b ∧ c ∧ ¬d ∧ (¬a ∨ d) is not
satisfiable, which is the case. Indeed, the only way to satisfy the first four
conjuncts is to set a, b, and c true and d false, but this is prohibited by the
last conjunct.

In general testing unsatisfiability is coNP-complete [20]. Fortunately, the ex-
pressions we consider are very small. We make use of the state-of-the-art SAT-
solver Limmat [6]. As our formulas are in general not in CNF, we use Lim-
boole [5], a front end to Limmat that allows to check unsatisfiability of arbitrary
formulas and not just formulas in CNF.

The containment DAG of a set of constraints is a directed acyclic graph
(DAG) without any transitive edges where every node represents a set of equiv-
alent constraints and there is an edge from node n to node n′ if every expression
in n is contained in every expression in n′. Note that it is sufficient to test if one
expression from n is contained in one expression from n′. A source is a node
without incoming edges; a sink is a node without outgoing edges. Note that a
DAG can have multiple sources and sinks.

We make the following observations:

– to check whether a sequence record matches the expressions in a node n, it
suffices to test this for one expression in n;

– when an expression in n is true for a sequence record, then all expressions
in descendant nodes of n are true for that record; and

– when an expression in n is false for a sequence record, then all expressions
in ancestor nodes of n are false for that record.

11



In the following, the evaluation of a node against a sequence record corre-
sponds to selecting one of the equivalent expressions the node represents and
matching this expression against the record. The above observations lead to two
related optimization techniques allowing to discard nodes in the containment
DAG:

1. false propagation: start evaluation in the sinks, when a node evaluates to
false all ancestors can be discarded as they evaluate to false, when the node
evaluates to true all parents have to be addressed;

2. true propagation: start evaluation in the sources, when a node evaluates
to true all descendants can be discarded as they evaluate to true as well,
when the node evaluates to false all its children have to be addressed.

Note that a node can be reached by multiple paths. So, to avoid multiple
evaluations of nodes every node carries a bit indicating whether the node is
already evaluated or not. It is clear that if expressions seldom match entries in
the update then false propagation will result in a strong decrease in the number
of actual evaluations. In the case that expressions frequently match entries, the
use of true propagation can be advantageous.

6 Experiments
In this section, we experimentally validate our optimization techniques. We cre-
ated monitoring requests resulting in three types of containment DAGs T1, T2,
and R (cf. Figure 4). We repeated our experiments for different numbers of
monitoring request (from 1000 till 5000). We only report on the case with 5000
requests as all experiments produced similar results. The experiments were per-
formed on a Pentium IV (3.0 GHz) architecture with 1 GB of internal memory
running under Linux 2.6. All programs are written in Java.

The metadata constraints were created by extracting possible values out of
available updates. The first type of containment DAG (T1) is specially tailored
for false propagation. Part of a DAG of type T1 is given in Figure 4(top). It is
a reversed tree consisting of a small number of sinks. It is constructed by only
making use of AND-operators. The idea is that every sink represents the most
general constraint which is subsequently refined by additional constraints when
progressing upwards. For instance, a sink may state that the organism in the
update matches ‘Oncorhynchus mykiss’, its parent may refine this by adding
another constraint, namely that the molecular type must be ‘mRNA’. Trees can
be disjoint, for instance, when each of them corresponds to an organism.

The shape of the second type of containment DAG (T2) is the reverse of the
first one and is ideal for true propagation. Part of a DAG of this type is given in
Figure 4(middle). The idea is that each source is the most restrictive constraint
which gets relaxed by every descendant.

The last type of containment DAG (R) was created by generating random
constraints (using AND, OR, and NOT-operators) and creating the containment
DAG. Figure 4(bottom) shows the typical shape of such a containment DAG. To
keep the comparison of the different evaluation strategies fair, we have eliminated
all equivalent constraints but one from every node.

12



Fig. 4. Fragment of example containment graphs T1 (top), T2 (middle), and R
(bottom). Edges point downwards.

Figure 5(left) shows the average time in seconds to evaluate the constraints
of 5000 monitoring requests for an update containing 105 sequence records. Note
that the scale is logarithmic. The figure clearly indicates that the naive brute
force method is unsatisfactory and that the pure streaming method presents a
definite improvement. Further, false propagation outperforms every other method
where the obtained acceleration ranges from twice the speed (on R) to several
orders of magnitude (on T1 and T2). True propagation does not result in any
improvement as only very few constraints evaluate to true, thereby severely lim-
iting the effect of true propagation. That only a very small part of the input
data is selected, is inherent to the situation of a monitoring system where on the
one hand users are interested in very specific sequences and on the other hand
research labs usually upload new sequences in bulk giving rise to many related
sequences, for instance, of the same organism. So, when no request related to
those organisms are specified a lot of updates are already discarded.

Figure 5(right) shows the average percentage of nodes in the DAG that every
method evaluates. For the pure streaming and the brute force approach this is
of course 100%. On graphs of type T2, false propagation only needs to evaluate
on average 50% of the nodes. So, one would expect that false propagation is
twice as fast as the pure streaming approach. However, the experiments show
that the latter is in fact 100 times faster. The reason is that false propagation
starts at the sinks which contain the simplest and fast to evaluate constraints.
So, the 50% of the nodes the method allows to discard contain the largest and
most time consuming to evaluate expressions. Actually, the reason that the pure
streaming method takes much more time on graphs of type T2 than on the
other graphs is that due to the construction of the graph (starting from the
most specific constraint which gets relaxed by every descendant) constraints are
on average more involved. Further, for random graphs, false propagation needs
only to evaluate 40% of the nodes on average, but only a speed up of a factor two

13



 100

 1000

 10000

 100000

 1e+06

 1e+07

RT2T1

Ev
al

ua
tio

n 
Ti

m
e 

(s
ec

)

Type of Graph

Evaluation Time

False Propagation
True Propagation

Streaming
Brute Force

T1 T2 R

False prop 0.5% 52% 38%

True prop 99% 99% 93%

Streaming 100% 100% 100%

Brute force 100% 100% 100%

Fig. 5. (left) Average evaluation time in seconds for 5000 monitoring requests
on an update consisting of 105 sequence records; (right) Average percentage of
nodes in the DAG that are evaluated.

is obtained w.r.t. pure streaming. The reason is that due to the random DAG
structure of the graph, a lot of time is spent keeping track of which nodes still
need to be evaluated.

So, in all cases false propagation is the best method. The amount of improve-
ment depends on the shape of the containment graph.

7 Incremental maintenance of the containment DAG
The timings in the experiments of the previous section only concern the evalu-
ation of the constraints and not the time needed to compute the containment
DAG. Indeed, the containment DAG is independent of the updates and can there-
fore be computed beforehand. Actually, the DAG never needs to be computed
from scratch but can be maintained incrementally when new monitor requests
arrive or are removed.

Removing a request with constraint p is easy: locate the corresponding node
in the DAG and remove p from it; when no more constraints are present in the
node remove it and add edges from all its parents to all its children. Adding a
request with constraint p is more time consuming as in the worst case a linear
number of containment checks need to be done. In particular, we need to compute
the set of nodes U and L of upper and lower border nodes, respectively, such
that the following holds:

– for every constraint p1 in a node in U , p1 ⊆ p; there is no descendant node
of a node in U that contains a constraint p1 with p1 ⊆ p;

– for every constraint p2 in L, p ⊆ p2; there is no ancestor node of a node in
L that contains a constraint p2 with p ⊆ p2.

When there is a node n ∈ U ∩L, then p is equivalent to all constraints in n: add
p to n. Otherwise, add a new node n with constraint p, add edges to n from all
nodes in U , add edges from n to all nodes in L.

14



Instead of using a naive brute-force approach which checks for every node in
the DAG whether it is in U or L, we compute an initial upper and lower border,
and gradually refine them:

1. Initially, let U be the set of all sources, and let L be the set of all sinks;
2. repeat until no more changes

(a) if there is a child (with constraint p1) of a node n in U such that p1 ⊆ p
then replace n in U by all such children of n; and,

(b) if there is a parent (with constraint p2) of a node n in L such that p ⊆ p2

then replace n in L by all such parents of n.

Although our incremental algorithm reduces the number of containment
tests, the time spend performing containment tests is not negligible. For in-
stance, inserting a constraint in a containment DAG already containing 1250,
2500 and 5000 nodes takes on average 15, 30, and 60 seconds, respectively. In
general, this is not a problem as only a limited number of monitor requests will
be added/removed (say at most hundred).

At present, the construction of the containment graph is not completely sat-
isfactory. The bottleneck is the high complexity of the containment test. One
possibility to speed up the containment test is to transform constraints into
disjunctive normal form giving rise to a containment test of quadratic time com-
plexity (as opposed to exponential). Preliminary experiments on graphs of type
R show that this increases the total size of constraints by 25%. Constructing a
containment graph with 5000 nodes from scratch then only takes 60 seconds. It
remains to investigate in further detail the trade-of between fast containment
graph construction and the increase in size of the containment graph. Another
option, of course, is to require that users enter metadata constraints in disjunc-
tive normal form.

8 Conclusion
We have shown that the combination of state-of-the-art tools together with an
optimization technique suffices to implement a monitoring system for sequence
databases. A prototype will be made available soon for download at [11]. Cur-
rently, only Genbank is supported and as relevance constraints the system only
allows to specify constraints on E-value and the size of the match. At present,
some of the biologists of our university are testing the system and we are in-
corporating their feedback. For instance, one feature that needs to be added is
shredding of input sequences. Rather than blasting a complete sequence they
want to blast every subsequence of a certain size. The latter will pose new com-
putational challenges. In particular, we want to improve the evaluation of the
false propagation method on highly linked DAGs (of type R). Further, all tests
in this paper are performed on generated data. We hope that the cooperation
with the biologists will give us enough real world data to test and improve our
algorithms on.

15



References
1. The Apache Xalan Project. http://xalan.apache.org.
2. Bioinformatic Sequence Markup Language (BSML). http://www.bsml.org.
3. Biomail. http://biomail.sourceforge.net/biomail.
4. Jade. http://www.biodigital.org/jade.
5. Limboole. http://fmv.jku.at/limboole/.
6. Limmat. http://fmv.jku.at/limmat/.
7. Pubcrawler. http://www.pubcrawler.ie.
8. PubMed Cubby. http://www.pubmed.gov.
9. Sciencedirect. http://www.sciencedirect.com.

10. World Wide Web Consortium. Extensible Markup Language (XML).
http://www.w3.org/XML.

11. The XSeqM website. http://alpha.uhasselt.be/dieter.vandecraen/XSeqM/.
12. M. Altinel and M. J. Franklin. Efficient filtering of XML documents for selective

dissemination of information. In Proceedings of the 26th International Confer-
ence on Very Large Data Bases (VLDB 2000), pages 53–64. Morgan Kaufmann
Publishers Inc., 2000.

13. S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and Lipman D.J. Basic local
alignment search tool. Journal of Molecular Biology, 215(3):403–410, 1990.

14. J. Bleiholder, S. Khuller, F. Naumann, L. Raschid, and Y. Wu. Query planning in
the presence of overlapping sources. In Proceedings of the 10th International Con-
ference on Extending Database Technology (EDBT 2006), pages 811–828. Springer,
2006.

15. J. Bleiholder, Z. Naumann, F.and Lacroix, L Raschid, H. Murthy, and M.-E. Vi-
dal. Biofast: challenges in exploring linked life sciences sources. SIGMOD Record,
33(2):72–77, 2004.

16. E. Cerami. XML for Bioinformatics. Springer-Verlag, 2004.
17. J. Clark. XML Path Language (XPath). http://www.w3.org/TR/xpath.
18. Y. Diao, P. Fischer, M. Franklin, and R. To. YFilter: Efficient and Scalable Filter-

ing of XML Documents. In Proceedings of the 18th International Conference on
Data Engineering (ICDE’02), page 341. IEEE Computer Society, 2002.

19. Y. Diao and M.J. Franklin. High-Performance XML Filtering: An Overview of
YFilter. IEEE Data Engineering Bulletin, 26(1):41–48, 2003.

20. M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. Freeman, 1979.

21. T.J. Green, G. Miklau, M. Onizuka, and D. Suciu. Processing XML streams with
deterministic automata. In Proc. 9th International Conference on Database Theory
(ICDT 2003), pages 173–189, 2003.

22. K. Hokamp and K. Wolfe. What’s new in the library? What’s new in GenBank?
Let PubCrawler tell you. Trends in Genetics, 15(11):471–472, 1999.

23. K. Hokamp and K.H. Wolfe. PubCrawler: keeping up comfortably with PubMed
and GenBank. Nucleic Acids Research, 32(Web Server Issue):W16–W19, 2004.

24. F. Neven and D. Van de Craen. Optimizing monitoring queries over distributed
data. In Proceedings of the 10th International Conference on Extending Database
Technology (EDBT 2006), pages 829–846. Springer, 2006.

25. M. Shultz and S.L. De Groote. MEDLINE SDI services: how do they compare?
Journal of the Medical Library Association, 91(4):460–467, 2003.

26. J. F. Wilson. The rise of biological databases. The Scientist, 16(6):34, 2002.

16

http://xalan.apache.org
http://www.bsml.org
http://biomail.sourceforge.net/biomail
http://www.biodigital.org/jade
http://fmv.jku.at/limboole/
http://fmv.jku.at/limmat/
http://www.pubcrawler.ie
http://www.pubmed.gov
http://www.sciencedirect.com
http://www.w3.org/XML
http://alpha.uhasselt.be/dieter.vandecraen/XSeqM/
http://www.w3.org/TR/xpath

