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Abstract

Annotations play a central role in the curation of scien-
tific databases. Despite their importance, data formats and
schemas are not designed to manage the increasing vari-
ety of annotations. Moreover, DBMS’s often lack support
for storing and querying annotations. Furthermore, anno-
tations and data are only loosely coupled. This paper intro-
duces an annotation-oriented data model for the manipula-
tion and querying of both data and annotations. In particu-
lar, the model allows for the specification of annotations on
sets of values and for effectively querying the information
on their association. We use the concept of block to rep-
resent an annotated set of values. Different colors applied
to the blocks represent different annotations. We introduce
a color query language for our model and prove it to be
both complete (it can express all possible queries over the
class of annotated databases), and minimal (all the algebra
operators are primitive). We present MONDRIAN, a proto-
type implementation of our annotation mechanism, and we
conduct experiments that investigate the set of parameters
which influence the evaluation cost for color queries.

1. Introduction

From biology to astronomy, scientific databases play a
central role in the advancement of science by providing ac-
cess to large collections of data. At the same time, these
databases are of particular interest to computer scientists
due to the data management challenges that they pose [9].
Apart from the often staggering amounts of data, two ad-
ditional characteristics make the management of scientific
databases challenging. First, scientific data come in a vari-
ety of formats which range from flat-formatted files to im-
ages and electronic publications. Thus, the challenge here is
to integrate [15], annotate [7] and cross-reference [20] such
diverse collections of data. Second, scientists often analyze
data that are collected from a variety of sources and, in turn,
this analysis results in new data which are used by other sci-

entists, resulting a continuous feedback of data. In such a
setting, it is important to maintain data provenance [10, 22],
i.e., where the data that a scientist is using come from.

In this paper, we offer a new model to annotate databases
and a new language to query annotated databases. Our work
is motivated by the pressing needs of biological databases
and our examples are drawn from this domain. Figures 1(a),
(b) and (c) show three sample relations taken from GDB [2]
(a human gene database), Swissprot [3] (a protein database),
and PIR [1] (a protein sequence database). Each relation
stores, correspondingly, pairs of identifiers and names of
genes, proteins and protein sequences.

Two key points distinguish our work from other mecha-
nisms proposed for annotation management:
• First, we argue that for an annotation mechanism to be
useful in practice, it should support the annotation of sets of
values. In the literature, existing mechanisms assume that
each annotation is attached to a particular value of a specific
attribute (e.g., see [6]). So, one can annotate, for example,
the gene name NF1, in Figure 1(a), with the name of the
researcher that discovered this gene. A possible implemen-
tation of such a mechanism requires adding a column, say
annot gname, in the GDB relation and use it to store the
annotations of the gname column values.

However, in a number of domains, including scientific
databases, it becomes increasingly important to annotate
sets of values. As an example, consider the relation shown
in Figure 1(d). The relation associates GDB gene identi-
fiers to SwissProt protein and PIR sequence identifiers. The
semantics of this association is that the specified gene is re-
lated to the indicated protein (and protein sequence). Such
relations are widely used in the biological domain and of-
fer a quick way to cross-reference and establish associa-
tions between independent biological sources [20, 22]. In
this setting, it is useful to record, for each stored associa-
tion, what evidence exists for its validity [13]. In the figure,
we show possible annotations of the relation in the form of
blocks and block labels. In more detail, a block is used to in-
dicate the set of values for which an annotation exists, while
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gid gname
120231 NF1
120232 NF2
120233 NGFB
120234 NGFR
120235 NHS

sid sname
P01138 Beta-NGF
P08138 TNR16
P14543 Nidogen
P21359 Neurofibromin
P35240 Merlin

pid pname
A01399 Nerve growth factor
A25218 Tumor necrosis factor
A45770 Merlin
I78852 Neurofibromatosis
Q6T45 Nancy-Horan syndrome

120232 P35240A45770

JohnJohn, Mary

120231 P21359I78852

John Mary

pid gid sid

120234 P08138A25218Peter

120233 P01138A01399
Mary

(a) GDB relation (b) Swissprot relation (c) PIR relation (d) An integrated relation

Figure 1. Three biological sources and their integrated relation

block labels are used to indicate the annotations for this
block. In our example, the annotations indicate the names of
the curators who verified that a particular association holds.
So, in the first tuple, a block indicates Mary’s belief that the
gene with gid 120231 produces protein with sid P21359.
Although conceptually easy to illustrate, complex annota-
tions like those shown here pose interesting challenges in
terms of how they can be implemented. In this paper, we
propose an implementation that has two desirable proper-
ties: first, it does not require any restructuring of the ex-
isting schema of the database to be annotated (only extra
tables need to be added); and second, it is such that the an-
notation of the database imposes minimum overhead both in
terms of space, and in terms of query execution time when
compared to its unannotated version.

• Second, we believe that annotations should be treated as
first-class citizens of the database, that is, we should be
able to query values and annotations alike (in isolation or
in unison). Currently, query languages cannot see the an-
notations and they can only transmit them [11]. However,
for curators, annotations are of equal or even greater im-
portance than values. A curator using the relation in Figure
1(d) might want to find which tuples are annotated by either
John or Mary. This is a value-based query, but it refers to
an annotation value (rather than a data value) which, as the
figure shows, spans attribute boundaries, and it can appear
over distinct attribute sets, in different tuples. As another
example, the curator might be interested in finding which
gene-protein sequence (gid, sid) pairs are annotated, and by
whom. This is not a value-based annotation query. Rather,
it refers to the attributes on which annotations are applied
on each tuple. Finally, we note that sometimes the lack
of annotations might also be of interest to a curator. In a
heavily curated database a curator might want to find which
gene-protein (gid, pid) pairs are not annotated. All these
operations assume that we have a query language capable
of expressing queries over annotated databases.

Desirable properties of such a query language are that it
is at a level of abstraction that is independent of the cho-
sen representation of annotations and that it is user friendly.
Any relational representation of annotated databases that
we can think of offers the relational algebra or, on a prac-

tical level, SQL as candidate query languages. However,
each query posed in these languages is not annotation-
representation independent. A change in the representation
of annotations requires us to reformulate all our queries.
Furthermore, while writing such queries, we should make
sure that the result of each query must be interpretable as an
annotated database again. It is clear that one needs to pose
severe syntactic and semantic conditions on such queries in
order to achieve this goal. It is not clear what these condi-
tions should be.

We opt for a different approach and introduce a new
query language hereafter referred to as the color algebra
(since we use colors to represent annotations). By defini-
tion, our algebra is annotation-representation independent.
Furthermore, any query in this language produces a color
(annotated) relation on every input color relation. More-
over, the semantics of colors and blocks is transparent in
each algebra operator. Our algebra facilitates the querying
of color databases and can easily express queries such as the
ones described in the previous paragraphs.

The contributions of this paper are as follows:
• We introduce the first annotation mechanism for relational
databases that is capable of annotating both single values
and the associations between multiple values.
• We introduce an algebra to query values and annotations
alike. Our algebra includes well-known operators, like se-
lection and projection, properly re-defined to account for
colors and blocks, along with new operators that are partic-
ular to the querying of annotations. We formalize the notion
of annotation in relational databases and we prove that our
algebra is both complete (it expresses all possible queries
over annotated databases) and minimal (every operator is
primitive, and thus necessary).
• We present MONDRIAN1 which is an implementation
of our annotation mechanism over a relational DBMS. We
investigate the space overhead of our representation, and
we study the cost of evaluating queries over annotated
databases and the parameters that influence this cost.

The remainder of this paper is organized as follows.
First, we review related work. Section 2 introduces the ba-

1Piet Mondrian: Dutch painter whose paintings mainly consist of color
blocks.
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sic notations and presents the color algebra while Section 3
describes the relational representation and presents the com-
pleteness result. Section 4 introduces MONDRIAN and of-
fers a description of our implementation and experiments.
Section 5 concludes with a summary of the results and a
discussion on future work.

1.1. Related work

Most existing annotation systems focus on text and
HTML documents (e.g., Annotea [18]) and are often spe-
cialized to support annotations for a particular kind of data,
e.g., genomic sequences [19, 7]. Research on these systems
has been focused on scalability, distributive support of an-
notations, and other features.

Bhagwat et al. [6] propose an annotation mechanism
for relational databases where annotations are stored in ex-
tra annotation attributes. The authors extend the Select-
Project-Join-Union fragment of SQL with a PROPAGATE
clause which allows the user to specify how annotations
should propagate. The focus is thus on the propagation of
the annotations through queries, and the issue of how to
query the annotations themselves is not addressed. Also,
only single values are annotated. The DBNotes system [12]
extends this framework and offers limited support of query-
ing annotations over single values.

An extensive literature exists regarding the computation
of provenance. Annotations provide a solid way of keep-
ing track of provenance. Indeed, computing provenance by
forwarding annotations along data transformations has been
proposed in various forms [5, 18, 21, 6]. The data prove-
nance problem without the use of annotation is studied by
Cui et al. [14], Buneman et al. [10, 11], and Widom [23].
In this work, a “reverse” query is generated to compute data
provenance. In this paper, we will not address the issue
of provenance. Instead, we provide a foundation on which
both provenance information and other forms of annotations
can be managed.

An unrelated work (although the title suggests other-
wise) regards “Colorful XML” [17]. A new XML data
model, called multi-colored trees, is proposed and colors are
used to add semantic structure over the XML data nodes.

2. Colors and Blocks

2.1. Basic notation

As already mentioned, our aim is to provide a mecha-
nism for annotating sets of attribute values. We refer to such
a set of attribute values as a block. As an example, in Figure
1(d), there are six different blocks, and each block has an as-
sociated annotation. In the remainder of the paper, for ease
of presentation and notational convenience, we assume that
each annotation is represented by a color. Therefore, in-
stead of talking about annotations and annotated blocks we

talk about colors and color blocks, respectively. Similarly,
we talk about color databases (databases that are annotated)
and color queries (queries on annotated databases) that are
written using a color algebra (an algebra that accounts for
annotations).

Let D be a standard relational database consisting of the
relations R1, . . . , Rk. For each relation Ri, we denote its set
of attributes by sort(Ri), while we use ri to denote an in-
stance of the relation. We use upper-case letters early in the
alphabet (A, B, . . .) to denote attribute names while upper-
case letters late in the alphabet (X, Y, . . .) are used to de-
note sets of attributes. Accordingly, lower-case letters early
in the alphabet (a, b, . . .) are used to denote attribute values,
while those late in the alphabet (x, y, . . .) are used to denote
sets of attributes values. Finally, C denotes a set of colors.

Let r be an instance of relation R and let t be a tuple
in r. The annotation, or coloring, of a tuple t is performed
through a coloring function χ. Function χ accepts as input
a tuple t and a non-empty set of attributes Y ⊆ sort(R) and
assigns a set of colors to the values in t[Y ]. For a tuple t, the
triplet (t, Y, χ(t, Y )) defines a color block which consists of
the attribute values in t[Y ] along with their assigned colors.
If χ(t, Y ) = ∅, then the values in t[Y ] are not within a color
block. Hereafter, we use 〈r, χ〉 to denote a relation r whose
tuples are colored through function χ.

Example 1. Consider the relation in Figure 1(d). Then, the
coloring of each tuple in the relation is expressed through
the following coloring function χ (where, ti is the ith tuple
in the relation):

χ(t1, {pid, gid}) = {John} χ(t1, {gid, sid})= {Mary}
χ(t2, {pid, gid}) = {John, Mary} χ(t2, {gid, sid})= {John}

χ(t3, {gid, sid})= {Mary}
χ(t4, {pid, gid, sid}) = {Peter}

Moreover, for every tuple ti and all other sets of at-
tributes Y , χ(ti, Y ) is (implicitly) defined to be the empty
set.

2.2. Color algebra (CA)

In what follows, we introduce the main set of operators
of the color algebra (CA) and we present a number of exam-
ples to illustrate their use. The full set of operators (avail-
able in [16]) is omitted here due to lack of space.
Projection: We define the projection πA1···Ak

as the opera-
tor which takes as input any instance 〈r, χ〉 of sort contain-
ing {A1, . . . , Ak} and returns the instance 〈r′, χ′〉 of sort
{A1, . . . , Ak} such that

r′ = {t[A1, . . . , Ak] | t ∈ r} (normal projection)

and for any t ∈ r, and any Y ⊆ {A1, . . . , Ak},

χ′(t[A1, . . . , Ak], Y ) =
[
Z

χ(t, Y ∪ Z),

where Z ranges over all subsets of sort(R)\{A1, . . . , Ak}.

3
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120232A45770

120231I78852

pid gid

120234A25218

120233A01399 120232A45770

120231I78852

pid gid

120234A25218

120232A45770

120231I78852

pid gid

120234A25218

120233A01399

(a) A simple projection (b) An L-type block projection (c) A U-type block projection

Figure 2. The projection operators

Example 2. Consider the relation 〈r, χ〉 shown in Fig-
ure 1(d). Then, expression πpid,gid(r) returns the relation
r′ shown in Figure 2(a). Note that the tuples t1, t2 and t3
get those (projected) blocks of r involving only the {gid} at-
tribute, while tuple t4 gets a (projected) block of r involving
the {pid,gid} attributes.

The projection operator removes parts of a relational
instance based on schema-level information. Here, we
introduce a corresponding operator that uses schema-level
information to remove blocks.

Block Projection: We offer two types of block projection
that allow for the projection of blocks based on whether
blocks contain or are contained in a specified set of at-
tributes. Specifically, the L-type (Lower) block projection
operator ΠL

A1,...,Ak
takes as input an instance 〈r, χ〉 of sort

containing {A1, . . . , Ak}, and returns the instance 〈r ′, χ′〉
of the same sort defined by

r′ = {t | t ∈ r and there exists a block(t, Y, χ(t, Y ))

with A1, . . . , Ak ⊆ Y }
and for any t ∈ r′, and any set of attributes Y ⊆ sort(R′),

χ′(t, Y ) =

(
χ(t, Y ) if {A1, . . . , Ak} ⊆ Y , χ(t, Y ) �= ∅;

∅ otherwise.

The U-type (Upper) projection operator ΠU
A1,...,A�

is de-
fined similarly, except that r′ = r and in the definition of
χ′(t, Y ), Y ⊆ {A1, . . . , Ak} must hold. We also define
ΠL

∅ = Id, while ΠU
∅ only returns the unannotated tuples.

Example 3. Consider the relation 〈r, χ〉 in Figure 2(a). As-
sume that we want to find all the tuples with at least one an-
notation that involves the protein identifier (pid) attribute.
Expression ΠL

pid(r) returns the desired result, shown in Fig-
ure 2(b). Operator ΠL sets a lower bound on the set of
attributes that must participate in a selected block. Thus,
in our example, both tuples that do not have an annotation
involving the pid attribute, and blocks that do not annotate
the attribute, are removed.

On the other hand, we may want all the tuples of relation
r that might have an annotation only on the gid attribute.
Then, the expression ΠU

gid(r) finds all such tuples. The re-
sulting relation is shown in Figure 2(c). Operator ΠU sets
an upper bound on the set of attributes that may participate
in a selected block. Blocks only involving a subset of this
upper bound are also selected. In our example, any block
that involves an attribute other that gid is removed.

120232 P35240A45770

120231 P21359I78852

pid gid sid

120233 P01138A01399

pid gid sid

120234 P08138A25218

(a) A block selection (b) A simple selection

120232 P35240

120231 P21359

gid sid

120233 P01138

(c) A projected union
of two queries

120234 P08138

Figure 3. The selection and union operators

We note that an unannotated tuple always satisfies the
condition of the ΠU operator while it always violates the
condition of the ΠL operator. Thus, it is always preserved
by the former and dropped by the latter.

By combining ΠL and ΠU , we can find all tuples that
have a block on a specific attribute set (and only this set).
Expression ΠL

gid(Π
U
gid(r)) returns all tuples with a block on

gid alone. These are the first three tuples in Figure 2(c).

Selection: On input 〈r, χ〉, operator σA=a returns the in-
stance 〈r′, χ′〉 of the same sort defined by r ′ = {t | t ∈
r, t[A] = a} and χ′ is the restriction of χ to r′.

On input 〈r, χ〉 of sort containing {A, B}, operator
σA=B returns the instance 〈r′, χ′〉 of the same sort defined
by r′ = {t | t ∈ r, t[A] = t[B]}. Concerning χ′, for any
t ∈ r′, and any Y ⊆ sort(R′) we have that

χ′(t, Y ) =

(
χ(t, Y ) A, B �∈ Y ;

χ(t, Y ) ∩ β(t, A) ∩ β(t, B) otherwise.

where β(t, A) (resp. β(t, B)) is the set of colors of
all blocks in t containing attribute A (resp. B). So, for
tuples that satisfy the selection condition at the value level,
only those blocks containing A (resp. B) for which there
exists a block, of the same color, containing B (resp.
A), are selected. If no such blocks exist, the selection
attributes become unannotated. Thus, selection requires an
agreement on both the data and block level, as one of our
following examples illustrates (Example 5).

Similar to the selection operator, that identifies tuples
with a particular data value, we offer a block selection
operator that identifies blocks which have a specific color.

Block Selection: The operator Σc, where c ∈ C, takes as
input any instance 〈r, χ〉 and returns the instance 〈r ′, χ′〉 of
the same sort defined by

r′ = {t | t ∈ r and there exists a block in t of color c},

and for any t ∈ r′ and any set of attributes Y ⊆ sort(R),
χ′(t, Y ) = χ(t, Y ) ∩ {c}.

Example 4. Consider again relation 〈r, χ〉 in Figure 1(d).
Assume that we want to find all the tuples that have a block
annotated by Mary, or concern the protein with sid P08138.
Also, assume that we are only interested in keeping the
{gid, sid} attributes from these tuples. Then, the expression

πgid,sid((ΣMary(r)) ∪ (σsid=“P08138”(r)))

4
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120232 P35240

120231 P21359

gid sid

120233 P01138

120234 P08138

120232A45770

120231I78852

pid gid

120234A25218

(a) A relation (b) Another relation

120232A45770
120231I78852

pid gid

120234A25218

120231

gid' sid'

P21359
120232 P35240

120234 P08138

(c) Cartesian-product followed by selection

Figure 4. Selection and product operators

returns the desired result. Due to space limitations, we
haven’t introduced formally the union operator whose defi-
nition is rather straightforward (see [16] for all the defini-
tions). Figure 3 shows both the intermediate results for each
part of the union, and the final result of the query. Notice
that the block selection operator maintains only the tuples
that have at least one annotation from Mary. At the same
time, from these tuples, the operator keeps only the blocks
belonging to Mary. On the other hand, a selection predi-
cate of the form A = a focuses on values without altering
the block structure. Our next example shows that this is not
the case for selections of the form A = B.

The next two operators are of particular importance both
for the completeness of our algebra and because, along
with the selection operator, they define the color join.

Product: Given two instances 〈r, χr〉 and 〈s, χs〉 of disjoint
sorts, the product operator × returns the instance 〈r ′, χ′〉
with sort(R′) = sort(R) ∪ sort(S) defined by r′ = r × s
(normal product). For any tuple t ∈ r ′ and Y ⊆ sort(R′),

χ′(t, Y ) =

8><
>:

χr(πsort(R)(t), Y ) if Y ⊆ sort(R);

χs(πsort(S)(t), Y ) if Y ⊆ sort(S);

∅ otherwise.

Merge: A natural operation on blocks is merging. The
merge operator μY,Z , with Y, Z being sets of attributes such
that Y ∩ Z = ∅, takes as input instances 〈r, χ〉 of sort
sort(R) containing Y ∪ Z and returns the instance 〈r ′, χ′〉
of the same sort defined by r ′ = r. For any t ∈ r′ and any
X ⊆ sort(R),

χ′(t, X) = χ(t, X1) ∩ χ(t, X2),

where X = X1 ∪ X2, X1 ⊆ Y , X2 ⊆ Z and χ(t, X) = ∅.
Intuitively, the merge operator considers each tuple t and it
identifies pairs of blocks that are contained in Y and Z , re-
spectively, and have the same color. Then, it replaces two
equi-colored blocks with a new block that is the result of
their merging. Blocks that are contained in Y and Z but
cannot be merged, are dropped, as are the blocks not con-
tained in Y and Z .

Example 5. Consider relation 〈r, χ〉 from Figure 2(b) and
relation 〈r′, χ′〉 from Figure 3(c) (which are copied in Fig-
ures 4(a) and (b) for convenience). Figure 4(c) shows the

120232A45770
120231I78852

pid gid

120234A25218

sid'

P21359
P35240

P08138

(a) Projecting out gid'

A45770
I78852

pid

A25218

120231

gid' sid'

P21359
120232 P35240

120234 P08138

(c) Projection after the merge
operator is applied

(b) Projecting out gid

A45770
I78852

pid

A25218

120231

gid' sid'

P21359
120232 P35240

120234 P08138

Figure 5. The merge operator

relation that results from taking the product of r and r ′ and
applying an equality condition on the gid attribute, that is,

σgid=gid’(r × δ(r′))

where δ is a renaming function such that δ(gid) = gid′ and
δ(sid) = sid′. Again, due to space limitations, we omit the
formal definition of the renaming operator (see [16] for all
the definitions). Notice that the selection only selects those
blocks containing gid which have a equi-colored block con-
taining gid’, and vice versa. If no such blocks exists, as is
the case for gid 120231, the resulting tuple is unannotated.

Now, what if we want to remove the duplicate gid column
from Figure 4(c)? It turns out that, depending on which
of the two gid columns we project out, we end up with a
different block structure, as shown in Figures 5(a) and (b).
We can avoid this by using the μ{pig, gid},{gid’, sid’} operator.
After the merge operator is applied, irrespectively of which
of the two attributes is projected out, the resulting relation
is the same. This is shown in Figure 5(c).

The presented operators, along with the operators of
union, renaming, and recoloring (which changes the color
of a block), which are not presented here, constitute the
whole set of operators of our algebra. Since the result of
each operator on a color relation is again a color relation,
we can compose all operators.

Definition 1. The color algebra (CA) consists of all expres-
sions obtained by composing a finite number of the opera-
tors mentioned above.

Our first theoretical result shows that we cannot hope to
reduce the set of operators in our algebra and that all the op-
erators are necessary. In the next section, Theorem 3 shows
that our operators are also sufficient for our needs.

Theorem 1 (Minimality). The set of operators in the color
algebra is minimal.

Proof Sketch The proof considers each operator in turn
and shows that it cannot be expressed in terms of the other
operators. (see [16] for the full details) .

We conclude this section with a few observations. The
first observation concerns the color queries that are writ-
ten using the color operators that have a relational alge-
bra counter-part (e.g. selection (σ), projection (π), product
(×)). Each such color query results in the same set of tuples

5

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE 



as the one we would get by applying the corresponding re-
lational algebra query on an unannotated database. The dif-
ference between the two queries is the presence of blocks.
Thus, by using the CA algebra, we don’t lose any data.

Our second observation is that we can define a color join
in CA as well. This join identifies attributes based on both
their values and block structure and merges the “common”
blocks. More specifically, we define 〈r, χr〉 �� 〈s, χs〉 by
the expression (assuming we join on attributes Ai and Aj)

πsort(r)∪sort(s)\{Aj}
`
μsort(r),sort(s)(

ΠL
Ai

(σAi=Aj
(r × s)) ∪ (ΠL

Aj
σAi=Aj

(r × s)))
´

As noted in Example 5, we obtain an equivalent expression
when projection includes Aj instead of Ai.

3. Connection with relational model

3.1. Relational representation

In this section, we provide a relational representation
of color databases. In what follows, we define a map-
ping rep from color databases to a special type of relational
databases. The inverse mapping rep−1 can also be defined
but we omit the details due to lack of space.

Given a relation schema R with sort(R) =
{A1, . . . , Ak} we define the relation SR of sort
{A1, . . . , Ak, B1, . . . , Bk, γ}, where the attributes Bi

are of type Boolean, the γ attribute is of type color, and
there exist a bijection assoc(Ai, Bi) mapping attribute
Ai to attribute Bi and viceversa. We denote the class of
relational databases satisfying the above schema constraints
by CRep.

Let CD denote the class of color databases. The mapping
is a function rep : CD 	→ CRep such that rep(R) = SR.
Let 〈r, χ〉 be a color relation instance over R. For each
tuple t ∈ r, the representation rep(〈r, χ〉) contains the tuple
(t, 0, . . . , 0, c), where c is a designated “blank” color not
appearing in r. Furthermore, for each annotated tuple t ∈ r
and each Y ⊆ sort(R) such that χ(t, Y ) �= ∅, the relation
rep(〈r, χ〉) contains the set of tuples

{(t, B1, . . . , Bk, c) | c ∈ χ(t, Y )},

where Bi = 1 if Ai ∈ Y and assoc(Ai, Bi) holds, and
bi = 0 otherwise.

Note that the Boolean attributes in the representation
are used to determine which of the corresponding data at-
tributes belong to a block.

This concludes the definition of mapping rep. The ex-
tension to color databases, i.e., a set of color relations, is
defined analogously.

Example 6. Consider again the color relation 〈r, χ〉 given
in Figure 1(d). The following relation contains the three
tuples in rep(〈r, χ〉) which correspond to the representation

of the first tuple in 〈r, χ〉. We assume that assoc(pid, bpid),
assoc(gid, bgid), and assoc(sid, bsid).

pid gid sid bpid bgid bsid γ

I78852 120231 P21359 0 0 0 c
I78852 120231 P21359 1 1 0 John
I78852 120231 P21359 0 1 1 Mary

where c is a new color. The other tuples in rep(〈r, χ〉) are
obtained similarly.

A few words about the choice of representation. Note
that we can normalize our representation so that the val-
ues of a tuple are not repeated for every block. Separating
the data from the annotation representation not only saves
space but also facilitates the incorporation of our mecha-
nism to existing databases since no re-structuring of the
existing schemas is necessary. We also note that our rep-
resentation has several advantages over alternative repre-
sentations. Indeed, we explored alternative representations
whose schemas are exponentially large, with respect to the
size of the schema of the relation to be annotated (since each
possible block, i.e., set of attributes is represented by a sepa-
rate column). Such alternative representations have several
disadvantages including waste of space, since we need to
allocate the space of a column for each possible block, even
if this block does not exist in the currently annotated tuple.
Furthermore, query processing is much more expensive and
complicated in such representations.

3.2. Expressiveness

The relational representation of color databases suggests
another candidate query language, namely the normal re-
lational algebra on this representation and specifically the
fragment consisting of the union of conjunctive queries. In
this section, we establish a link between our algebra and this
fragment of the normal relational algebra.

3.2.1 Color relational algebra (CRA)
It is clear that not every relational algebra query on a rep-
resentation of a color relation results in a representation of
a color relation again. For example, any projection consist-
ing only of data attributes, does not correspond to a color
database. It would therefore be desirable to identify the
class of algebra expressions which, when applied to any
representation of a color relation, results in a representation
of a color relation.

Recall the CRep is the set of relational databases which
represent a color database through the rep mapping.

Definition 2. A positive relational algebra query Q is col-
ored if for every relational database D ∈ CRep, the query
result Q(D) ∈ CRep as well.

We identify the following three necessary and sufficient
syntactic conditions for a positive relational algebra query
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to be colored. Without loss of generality we may assume
that such query is given in normal form [4]. More specif-
ically it is the union of conjunctive queries of the form
πXσF (R1 × · · · × Rk). Clearly, a positive query is col-
ored if it is the union of colored conjunctive queries. It is
easily verified that a conjunctive query is colored iff it sat-
isfies the following three properties:
(i) The projection must contain a single color attribute;
(ii) Since each data attribute corresponds to a unique
Boolean attribute (and vice versa), queries should “respect”
this relationship. In other words, if a data attribute is part of
a query result schema, then the associated Boolean attribute
should also be (and vice versa);
(iii) If some new data attributes are introduced which are in
the schema of the query result, also associated new Boolean
attributes should be introduced (and vice versa).

The above characterization is simple and provides an
easy test (which runs in linear time in the size of the ex-
pression) to check whether a query, written as a union of
conjunctive queries, is colored.

Definition 3. The color relational algebra (CRA) consists
of the class of colored positive relational algebra queries.

3.2.2 Color algebra vs Color relational algebra
The color algebra (CA) and the class of color relational al-
gebra (CRA) queries are closely connected. First of all,
there exists a translation of any CA query into a CRA query.
More specifically,

Theorem 2 (Soundness). For every color database 〈D, χ〉
and every CA expression Q, there exists a color relational
algebra (CRA) expression P such that

rep(Q(〈D, χ〉)) = P (rep(〈D, χ〉)).
Moreover, given the CA expression Q, the CRA expression
P is of polynomial size, to that of Q.

Proof Sketch The proof consists of translating each oper-
ator in CA into a CRA query. (see [16] for the translation
rules)

The previous theorem gives us a way of implement-
ing the CA on top of existing relational DBMS. Our color
DBMS, represents color databases as described in Section 3
and when a CA query is issued, it translates it first into the
corresponding CRA query and then to the equivalent SQL
query. Then, the SQL query is executed in a standard rela-
tional DBMS.

Our theoretical result is that the CA has the same func-
tionality (expressive power) as the CRA. More specifically:

Theorem 3 (Completeness). For every relational database
D in CRep, and every color relational algebra expression P ,
there exists a color algebra expression Q such that

rep−1(P (D)) = Q(rep−1(D)).

Proof Sketch The proof consists of a translation of any CRA
query into a CA query and relies heavily on the fact that
CRA queries only have a single color attribute in their pro-
jection. See [16] for details.

Since the CA and CRA have the same expressive power
why opt for one versus the other? For one thing, CRA
queries are complex to write. The simple CA expression
σAi=Aj (r) is equivalent to the following CRA expression
(which consists of a union of four CRA queries):

σAi=Aj∧Bi=0∧Bj=0(rep(r)) ∪ σAi=Aj∧Bi=1∧Bj=1(rep(r))∪
πsort(rep(r))(σAi=Aj∧Bi=1∧Bj=0(rep(r)) ��

δ(σAi=Aj∧Bi=0∧Bj=1(rep(r))∪
πδ(sort(()r))(σAi=Aj∧Bi=1∧Bj=0(rep(r)) ��

δ(σAi=Aj∧Bi=0∧Bj=1(rep(r))

Clearly, a user cannot be expected to write such CRA
expressions. The CA is not only simple syntactically but
also independent of the underlying representation of anno-
tations. Any change on the representation of annotations
leaves CA queries unaffected. On the other hand, such
a change would probably necessitate a re-writting of the
equivalent CRA query.

4. The MONDRIAN System

The current status of the MONDRIAN system includes
the following components. MONDRIAN is implemented
on top of the MySQL relational DBMS. The MySQL server
runs on a linux-based Pentium 4 PC (CPU 1.8GHz, 2GB
RAM). On top of MySQL, we have implemented a module
that accepts text-based CA queries. The module translates
each such query first to its equivalent CRA query and then
to an equivalent SQL query. The resulting SQL query is
then sent to the MySQL server and is executed against the
representation of an annotated database.

In our experiments, we used real biological data from
the Swissprot [3] database. The relational representation of
the Swissprot data was based on the schema of the UCSC
Genome Browser database [19]. From this relational rep-
resentation, we extracted two relations for our experiments,
namely, relation Protein containing 200,000 protein tuples
(560MB in size), and relation Public that contained four
million tuples that concern publications related to proteins
(750MB in size). Relation Protein has eight attributes in its
schema, while relation Public has five. We used the above
two relations as pools from which we generated three dif-
ferent experimental data sets. Each set contained five unan-
notated relations for each of the two pools. The sizes of
these five relations varied from 10,000 to 50,000 tuples (in
10,000 tuple increments). Thus, the total number of created
relations was 30. Each experimental data set allowed for
executing experiments with different relation sizes. By us-
ing different data sets, we avoided any possible bias in the
measurements due to characteristics of the underlying data.

7

Proceedings of the 22nd International Conference on Data Engineering (ICDE’06) 
8-7695-2570-9/06 $20.00 © 2006 IEEE 



A second module of the implementation was responsible
for annotating unannotated relations. The annotation pro-
cess is influenced by three user-specified parameters. The
first parameter, called MaxNo, limits the number of blocks
that can appear in each annotated tuple. The second pa-
rameter, called AvgNo, specifies the average size of each
generated block. The last parameter is the cardinality of C
(the number of available colors). In general, C can vary be-
tween one (all blocks have the same color) and the number
of blocks in the relation (each block has its own color).

In this setting, we conducted two sets of experiments that
(a) prove feasibility, i.e., that our annotation mechanism can
be implemented efficiently in practice, and (b) study perfor-
mance, i.e., the space/time overhead of our mechanism.
(1): In the first set, we compared the cost of executing CA
queries over annotated databases to the cost of executing
equivalent CRA queries over the corresponding unanno-
tated databases.
(2): In the second set, we investigated how the annotation
parameters influence the evaluation cost of CA queries.
All reported times are averaged over five runs of each ex-
periment, over each of the different sets of (un)annotated
relation instances (to rule out CPU interference and any bias
from using a single instance). For annotated relations, the
reported size is the number of annotated tuples and not the
number of representation tuples. The cumulative size of the
(un)annotated data sets used in these experiments is 26GB.

4.1. Costs of using colors and blocks

In this experiment, we investigate the additional cost, in
terms of time and space, in querying an annotated database
instead of an unannotated one. The experiment has two
parts. Initially, we considered three types of queries, all
written in relational algebra, where each type uses one of
the operators of selection, projection and join. For exam-
ple, one query projects on the id and description of a pro-
tein, while another selected only proteins of tomatoes. For
the third type, we joined the Protein relation with the Public
relation resulting proteins along with their associated pub-
lications. For each query type, we measured the evaluation
time over our experimental data sets.

In the second part, we annotated the relations used in
the first part. While generating the annotated relations, we
used what we consider to be representative parameter val-
ues. We assumed that both MaxNo and AvgNo are equal to
three, since tuples are expected to involve a small number
of blocks with a few attributes in each one. Furthermore,
we assumed that each color represents a curator and thus
we set C to 100. Note that indeed the number of curators
in Swissprot, one of the most heavily curated databases, is
close to 40.

Given the annotated relations, we considered queries
that, syntactically, are identical to the queries in the first
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Figure 6. Color vs. normal algebra

part of the experiment. However, instead of the normal rela-
tional algebra operators, the queries used their color coun-
terparts, i.e., they contained a CA projection instead of a
projection, a CA selection instead of a selection and a color
join instead of a normal join (note that a color join can be
expressed through the select, merge and project CA op-
erators). So, for example, the query that projects on the
id and description of proteins was translated to a query
that projects on the data and blocks of these two attributes.
Given the queries, we measured their evaluation time over
the annotated databases, and we compared these times with
the times collected from the first part.

Figure 6 shows the results of this comparison for vari-
ous relation sizes. Next to the cost of each relational op-
erator, we show the cost of its color counter-part. In gen-
eral, each color operator costs from three to five times as
much as its relational counterpart. There are two main rea-
sons for this. First, remember that color operators are actu-
ally applied on the representation of the annotated relation.
This representation is bigger in size than the correspond-
ing unannotated relation since it includes one tuple for each
color of each block. With MaxNo equal to three, annotat-
ing a relation with 10,000 tuples results in a relation that
is close to 30,000 tuples (assuming single colored blocks).
Thus, while a normal projection is applied on 10,000 tuples,
a color projection is actually applied on 30,000. Second, re-
member that color operators perform extra processing since
they also consider Boolean attributes and operate on them.

Note that the overhead of supporting annotations is not
prohibitive and it is more than balanced by the added value
of being able to represent and query complex annotations.
We expect that further optimizations of our implementation
(e.g. use of specialized indexes) would further reduce the
above costs making our solutions even more attractive.

4.2. Query evaluation cost parameters

In what follows, we investigate the relationship between
evaluation cost of color queries and the three annotation pa-
rameters. Fo these experiments, we considered three dif-
ferent types of color queries. The first type included color
queries that involved only the selection operator where the
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Figure 7. Varying the MaxNo parameter

selection was on a data value. Note that the size of the re-
sult set of such queries is expected to be independent of
blocks. The second type of color queries involved oper-
ators that are mostly block-dependent, namely, the opera-
tors of block projection and block selection. Finally, the
third type of queries involved both block-independent and
block-dependent operators. We used three different param-
eter configurations to annotate relations. For each result-
ing annotated relation, in each configuration, we executed
queries of all three types and measured the corresponding
evaluation times. In what follows, we present each parame-
ter configuration and we review our key findings.

Configuration 1: In this configuration, we annotated the re-
lations in our experimental data sets once for each value of
MaxNo between one and five. The AvgNo parameter was set
to three and the C was 100. In Figure 7, we show the run-
ning times for the first and second type of queries, for differ-
ent relation sizes (the third type exhibits the same running
time trends as the second type). The main conclusion from
these experiments is that the evaluation cost of most CA op-
erators, with the exception of selections on data values, is
heavily influenced by the maximum number of blocks per
tuple. This is because this number increases the number of
tuples in the underlying representation. The trend shown in
Figure 7(b) is explained as follows. In the representation,
there is one tuple for each color of each block. Assuming
single-colored blocks, for an annotated relation with X tu-
ples, there are (MaxNo + 1) × X representation tuples. As
the figure shows, evaluation time increases sharply, when
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both MaxNo and X increase. In spite of the increase repre-
sentation size, operations on the data side, like selections on
data values, are not influenced by the variance of MaxNo, as
Figure 7(a) illustrates.
Configuration 2: For our second configuration, we anno-
tated relations of various sizes by varying, this time, the
AvgNo parameter between the values of one and five. Pa-
rameter MaxNo was set to three and C to 100. Again, we
executed color queries from all the types and recorded their
evaluation times. Our experiments showed that varying
the AvgNo parameter had negligible effects on the running
times of various queries, for a fixed number of annotated
tuples. To a large extent, this is to be expected since any
variance of AvgNo does not influence the number of tuples
in the underlying representation. As AvgNo increases, the
only change, representation-wise, is that more Boolean at-
tributes are set to 1, instead of 0. It is interesting to note the
interaction between the value of AvgNo and the size of the
result of block projections. As an example, in Figure 8 we
show that, for a relation of fixed size, as we increase AvgNo
we decrease the number of tuples in the result size of a U-
type block projection on three attributes. This is because as
we increase AvgNo, increasingly less blocks are contained
within the projected attribute set.
Configuration 3: Our last configuration considered anno-
tated relations where both MaxNo and AvgNo were set to
three. Here, five different values where considered for C,
namely, 1, 10, 100, 1000 and as many colors as there are
blocks. Our experiments showed that the parameter has
negligible effects on the evaluation times of algebra oper-
ators (since again availability of colors does not affect the
representation size) with the exception of the block selec-
tion operator. As Figure 9(a) shows, when C is 10, there is
a sharp increase on the evaluation time of the operator. The
reason for this is shown in Figure 9(b). With less available
colors, there is a large number of blocks sharing a color.

5. Conclusions and future work
In this paper, we proposed a new model for data annota-

tions which, unlike previous works, it allows annotating not
only values but also sets of values. Furthermore, our work
is novel in that it also considers the importance of query-
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ing annotations. To this end, we introduced a color algebra,
and we proved that it is both complete and minimal. We
presented the MONDRIAN annotation management system
and we performed experiments on the feasibility and perfor-
mance of our solutions.

We believe that colored databases provide the right
framework to answer data provenance questions. Future
work will be directed towards showing this. In terms of im-
plementation, we are considering migrating our implemen-
tation from the MySQL server to MonetDB [8]. MonetDB
offers a vertical fragmentation storage model and initial in-
vestigation shows that this model is particularly suitable for
the processing performed by CA algebra operators. Finally,
an interesting topic is the extension of our algebra to ac-
count for negation and the to allow blocks across multiple
tuples.
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