
Made available by Hasselt University Library in https://documentserver.uhasselt.be

SMOQE: A System For Providing Secure Access To XML Data

Peer-reviewed author version

Fan, Wenfei; GEERTS, Floris; Jia, Xibei & Kementsiedis, Anastasios (2006)

SMOQE: A System For Providing Secure Access To XML Data. In: Umeshwar,

Dayal & Whang, Kyu-Young & Lomet, David B. & Alonso, Gustavo & Lohman, Guy

M. & Kersten, Martin L. & Cha, Sang & Kim, KyunYoung-Kuk (Ed.) Proceedings of

the 32nd International Conference on Very Large Databases (VLDB' 06). p. 1227-1230..

Handle: http://hdl.handle.net/1942/1423

SMOQE: A System for Providing Secure Access to XML

Wenfei Fan∗ Floris Geerts† Xibei Jia Anastasios Kementsietsidis
University of Edinburgh

{wenfei@inf, fgeerts@inf, x.jia@sms, akements@inf}.ed.ac.uk

1. INTRODUCTION
Views have been widely used in traditional databases to enforce

access control, support data integration, and speed up query an-
swering, among other things. For all the reasons that views are
essential to traditional databases,XML views are also important for
XML data. In many applications, e.g., inXML security enforce-
ment, views are necessarilyvirtual: a large number of user groups
may want to query the sameXML document, each with a different
access-control policy. To enforce these policies, we may provide
each user group with anXML view [3] consisting of only the in-
formation that the users are allowed to access, such that users may
query the underlying data only through their views. Here theviews
should be kept virtual since it is prohibitively expensive to mate-
rialize and maintain a large number of views, one for each user
group.

An immediate question in connection withXML views is how to
answer queries posed by users on avirtual view? However desir-
able, forXML views to be useful in practice this question has to be
answered. A common approach (aka. view unfolding) is to rewrite
a user query on views to an equivalent one on theunderlyingdoc-
ument, and evaluate the rewritten query without materializing the
view. Nevertheless, the query rewriting is nontrivial. Forexample,
XPath, the core ofXQuery andXSLT, is not closed under rewriting,
i.e.,for anXPath query on a recursively defined view there may not
exist equivalentXPath query on the underlying document [4]. This
motivates the use of a richer query language in the rewritingcontext
andRegularXPath is the most promising candidate for three main
reasons. First,RegularXPath is only a mild extension ofXPath
which supports general Kleene closure(.)∗ instead of the limited
recursion ‘//’ (descendant-or-self axis). Therefore, user queries al-
ready written inXPath can be usedas-isand need not be re-defined,
a necessity if a richer language likeXQuery orXSLT was used. Sec-
ond, and more importantly,RegularXPath is closed under rewriting

∗Supported in part by EPSRC GR/S63205/01, GR/T27433/01 and BBSRC
BB/D006473/1. Wenfei Fan is also affiliated to Bell Laboratories, Murray Hill, USA.
†Floris Geerts is a postdoctoral researcher of the FWO Vlaanderen and is supported in
part by EPSRC GR/S63205/01. He is also affiliated to Hasselt University and Transna-
tional University of Limburg, Belgium.

Permission to copy without fee all or part of this material isgranted provided
that the copies are not made or distributed for direct commercial advantage,
the VLDB copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Very Large Data
Base Endowment. To copy otherwise, or to republish, to post on servers
or to redistribute to lists, requires a fee and/or special permission from the
publisher, ACM.
VLDB ‘06,September 12-15, 2006, Seoul, Korea.
Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

for XML views, recursively defined or not [4]. SinceRegularXPath
subsumesXPath, anyXPath query posed on anyXML view can be
rewritten to an equivalentRegularXPath query on the underlying
data. Third, there is an increasing interest in usingRegularXPath
as a stand-alone query language, outside the rewriting context.

Given the above, we have developed the Secure MOdular Query
Engine (SMOQE), for facilitating the specification ofXML views
and answering ofXML queries on virtual views. The main features
of SMOQEare the following.

• SMOQEsupportsXML views defined by annotating anXML schema
with RegularXPath [9] queries, along the same lines asDAD (IBM

DB2 XML Extender [6]) andAXSD (Microsoft SQL Server [10] and
Oracle [11]). SMOQE supports recursively defined schema (and
thus views). It also provides a visual tool, referred to asiSMOQE,
to help user annotate a schema and define anXML view.

• SMOQE is able to rewrite anyRegularXPath queryQ posed by
users on a virtual viewV to an equivalentRegularXPath queryQ′

on the underlying documentT . That is,Q′(T) = Q(V (T)) for
any XML documentT , whereV (T) would be theXML view if it
were materialized. HereQ′ is also inRegularXPath, and is to be
executed on the underlying documentT rather than on the view.

• SMOQE encompasses a query engine forRegularXPath queries,
implementing an efficient evaluation algorithm and a novel index-
ing structure.

Existing XML query systems support neither answering (Regu-
lar) XPath queries on virtualXML views, nor efficient evaluation of
RegularXPath queries. While one can translateRegularXPath to
XQuery, this approach is penalized by the overhead of evaluating
and optimizing full-fledgedXQuery when dealing with much sim-
pler RegularXPath. To our knowledge,SMOQE is the first system
that provides efficient support for answeringRegularXPath queries
over virtual and possibly recursively definedXML views, as well as
sophisticated evaluation techniques particularly forRegularXPath.
As an immediate application,SMOQE provides a generic, flexi-
ble access-control mechanism forXML data, preventing improper
disclosure of confidential or sensitive information to unauthorized
users.

We have fully implementedSMOQE. Leveraging its visual tool
iSMOQE, the demonstration is to show, step by step, (a) howXML

views can be specified by annotating aDTD, (b) how user queries
on XML views are rewritten and answered, and (c) howSMOQE

optimizes and evaluatesRegularXPath queries. It will also demon-
strate the efficiency of the evaluation algorithms and the impact of
various optimization techniques implemented inSMOQE.

2. SYSTEM ARCHITECTURE
As shown in Fig. 1,SMOQE consists of four major modules:

Figure 1: The SMOQEArchitecture

(a) iSMOQE, a visual tool through which a user can defineXML

views, inspect the query rewriting and evaluation, and browse query
results (a small user icon is used to indicate all the system compo-
nents accessible throughiSMOQE); (b) a queryrewriter (indicated
by a box at the left of the figure) for translating userRegularXPath
queries posed onXML views to equivalentRegularXPath queries
on the underlying document; (c) a queryevaluator(indicated by
a box in the middle of the figure) for processingRegular XPath
queries; and (d) anindexer(indicated by a box at the right of the
figure), which is used by the evaluator to build index structures and
optimize queries.

XML view definition. SMOQEsupports two view definition modes.
One mode allows users to define anXML view by leveragingiSMOQE

to annotate a view schema. The other mode is by means of auto-
mated view derivation as proposed in [3]: for each user group, an
authorized security administrator annotates thedocument schema
to specify the part of information that the users are grantedor de-
nied access to, using simple boolean predicates; thenSMOQEauto-
matically translates the specification to the definition of a(possibly
recursively defined)XML view, along with a view schema that is
exposed to the users.

Query support. SMOQEsupportsRegularXPath in two query eval-
uation modes: a user may pose a query either (a) directly on the
underlyingXML document provided that the user is granted access
to it, or (b) on anXML view specified for the group which the user
is in. In the former case, the evaluator processes the query on the
underlying document, capitalizing on the indexer. In the latter case,
the user query is first translated to an equivalent query on the un-
derlying document, and then the rewritten query is answeredby the
evaluator,withoutmaterializing the view.

XML documents.SMOQEsupports two modes: aDOM mode and
a StAX [7] (StreamingAPI for XML , a new standardAPI for XML

pull parsing, to be included in Java6) mode. In theDOM mode,
the whole document tree will be loaded into memory in order to
evaluate a query. One the other hand, inStAX mode the document
does not need to be loaded into memory and only one sequential
scan of the document from disk is needed for the evaluation. The
StAX mode allows to process larger documents efficiently and of-
fers significant advantages over main-memoryXPath engines such
as Xalan [13] and Saxon [12], which need to randomly access the
document during evaluation.

Visual aid. iSMOQEis the front-end that not only provides a friendly

Figure 2: The visual tool in iSMOQE for specifying views

user interface toSMOQE engine, but also opens a window of the
system to let user visually monitor the internal processingof the en-
gine. It consists of a graphical querying interface, a semi-automatic
view definition tool, and query, automaton, index and resultvisual-
ization tools.

3. DEMONSTRATION OVERVIEW
The demonstration aims to show the following: (a) how users

may defineXML views by means of schema annotation, with the
aid of iSMOQE; (b) how SMOQE answersRegularXPath queries
posed on a virtualXML view by using the rewriter, without materi-
alization; (c) how the evaluator ofSMOQEprocessesRegularXPath
queries; (d) how the indexing structure ofSMOQEhelps query opti-
mization and processing; and (e) howiSMOQEhelps users browse
the query result as well as help implementers monitor query pro-
cessing. These provide a complete picture for how one can lever-
ageSMOQEto enforceXML access control (via view definition and
view query answering) and evaluateRegularXPath queries, among
other things. Below we present a brief introduction to the tech-
niques ofSMOQE for supporting these functionalities, as well as a
more detailed description of the demonstrationw.r.t. each of these.

Specifying XML views. Along the same lines asDAD [6] and
AXSD [10, 11], SMOQE supportsXML views by means of an ac-
cess control policy which annotates a schema withRegularXPath
expressions. For example, Fig. 3(a) shows a schema for a hospi-
tal DTD, while Fig. 3(b) shows an access control policy that only
exposes the records of patients that took medication for “autism”.
Notice that for security reasons, the policy hides the namesand test
information of these patients. Given such a policy,SMOQE auto-
matically generates the view specification and viewDTD shown in
Fig. 3(c) and Fig. 3(d), respectively. Conceptually, anXML view
defined in this way uses theRegularXPath queries in the specifi-
cation to extract data from the underlying document, and populate
the view using the extracted data, strictly following the schema. Al-
though no actual view materialization occurs, the procedure assures
that the view makes sense,i.e., it conforms tothe view schema. A
unique feature of theSMOQE view language is that it allows the
schema to be recursive, and thus supportsrecursivelydefinedXML

views.
We shall demonstrate how users can leverageiSMOQE to define

a view. As shown in Fig. 2,iSMOQEsupports a visual view specifi-
cation tool that provides the user with anXML schema graph, such
that the user can click on any node (element type) in the graph,
and input aRegularXPath query annotating the corresponding ele-
ments.

Rewriter. While it is always possible to rewrite aRegularXPath

(a) documentDTD D

production: hospital→ patient∗

ann(hospital,patient)= [visit/treatment/
medication = ‘autism’]

production: patient→ pname, visit∗, parent∗

ann(patient, pname)= N
ann(patient, visit)= N

production: parent→ patient
production: visit → treament, date
ann(visit, treatment)= [medication]

production: treatment→ test + medication
ann(treatment, test)= N

(b) access control policyS0

production: hospital→ patient∗

σ0(hospital, patient)= patient[visit/
treatment/medication = ‘autism’]

production: patient→ treatment∗, parent∗

σ0(patient, treatment)= visit/treatment
[medication]

σ0(patient, parent)= parent
production: parent→ patient
σ0(parent, patient)= patient

production: treatment→ medication
σ0(treatment, medication)= medication
(c) view specificationσ0 derived fromS0 (d) view DTD DV

Figure 3: Enforcement of access control by security views

(a) TheMFA M0 for Q0 (b) The tool iniSMOQEfor visualizing query and automaton

Figure 4: The MFA M0 characterizing query Q0

query Q on a view to an equivalent queryQ′ on the underlying
document, the size ofQ′, if directly represented asRegularXPath
expressions, may be exponential in the size ofQ [4]. The SMOQE

rewriter overcomes the challenge by employing an automatonchar-
acterization ofQ′, denoted byMFA (mixed finite state automaton)
[4], which is linear in the size ofQ. An MFA of Q′ is a finite state
automaton (NFA, characterizing the data-selection path ofQ′) an-
notated with alternating automata (AFA, capturing the predicates of
Q′). For example, Fig. 4(a) depicts theMFA M0 characterizing the
RegularXPath query:

Q0 = hospital/patient[(parent/patient)∗ /visit/treatment/test/
and visit/treatment[medication/text()=“headache”]]/pname

In the MFA M0, theNFA consists of states (0, 1, 3, 24) and repre-
sents the selection pathhospital/patient/pname; it is annotated with
an AFA (linked to state3 via a dotted arrow) capturing the pred-
icate ofQ0 (the part enclosed in[]). The notion ofMFA is pro-
posed bySMOQE to characterizeRegularXPath queries. It is quite
different from automata developed forXPath andXML stream pro-
cessing (e.g., tree automata of [8],XFilter [1], YFilter [2], XPush
machine [5]).

The demonstration will show the following, which are visualized
by means ofiSMOQE.

• The MFA characterization ofRegular XPath queries. Given a
Regular XPath queryQ, SMOQE automatically generates aMFA

characterizingQ. As an example, Fig. 4(b) displays theMFA M0

of the queryQ0 given earlier, which is automatically generated by
SMOQE.

• The process of query rewriting. Given anXML view definitionV

and aRegularXPath queryQ posed onV , iSMOQE demonstrates
how theSMOQE rewriter works by displaying theMFA represen-
tation of the rewritten queryQ′, which is automatically generated
by the rewriter, and is equivalent toQ when being executed on the

underlying document.

Evaluator. The SMOQE evaluator implements a novel algorithm
for processingRegularXPath queries represented byMFA ’s. The
algorithm, referred to asHyPE (Hybrid Pass Evaluation) [4], takes
anMFA as input and evaluates it on anXML tree. A unique feature
of HyPE is that it needs a single top-down depth-first traversal of
the XML tree, during whichHyPE both evaluates predicates of the
input query (equivalently,AFA of theMFA) and identifies potential
answer nodes (by evaluating theNFA of the MFA). The potential
answer nodes are collected and stored in an auxiliary structure, re-
ferred to asCans (candidate answers), which is often much smaller
than theXML document tree. After the traversal of the document
tree,HyPE only needs a single pass ofCans to select the nodes that
are in the answer of the input query. This is the reason whySMOQE

is capable of efficiently processingRegularXPath queries no matter
whether it is in theDOM mode or in theStAX mode.

To our knowledge, previous systems require at least two passes
of XML tree traversal to evaluate evenXPath queries. For exam-
ple, to evaluate anXPath queryq on anXML documentT , Arb [8]
requires a bottom-up pass ofT to evaluate all the predicates ofq,
followed by a top-down pass to evaluate the selecting path ofq. It
uses tree automata, which are more complex thanMFA and require
a pre-processing step (another scan ofT) to parse the document
and convert it to a special data format (a binary representation of
T). In contrast,SMOQE is able to evaluateRegularXPath queries,
more complex thanXPath queries. TheSMOQE evaluator requires
neither pre-processing of the data nor the construction of tree au-
tomata. It only needs a single pass of the document during which it
often prunes a large number of nodes that do not contribute tothe
answer of the query.

In the demonstration we show the following.

• The efficiency of theSMOQEevaluator. We show thatSMOQE is

Figure 5: Evaluation of M0 using HyPE Figure 6: TAX index

capable of efficiently evaluatingRegularXPath queries, in both the
DOM mode or theStAX mode. Furthermore, it outperforms popular
XPath engines such as Xalan [13].

• The insight of AlgorithmHyPE. Using iSMOQE we reveal the
details of the evaluation ofRegularXPath queries (MFA). For ex-
ample, Fig. 5 shows the evaluation of theMFA M0 given earlier
on anXML document. It demonstrates howM0 traverses the doc-
ument and which nodes are selected and stored inCans.

Indexer. SMOQE proposes and implements a new indexing struc-
ture, referred to asTAX (Type-Aware XML index) [4], to optimize
query processing. The novelty ofTAX is that it classifies the infor-
mation of descendants of each node based on their element types.
While several labeling and indexing techniques were developed for
optimizing the evaluation ofXPath queries, they focus mainly on
optimizing the evaluation of ‘//’ (descendant-or-self axis) by test-
ing efficiently whether, given two nodes, one is a descendantof the
other. As such, they are limited in scope. In contrast,TAX is ef-
fective in pruning large document subtrees during the evaluation of
XPath queries with or without ‘//’, by keeping track of descendants
of certain types that have been and have not been checked at each
node. TheSMOQE indexer constructs theTAX index, compresses it
before it is stored in disk, and uploads it from disk when needed.

The demonstration shows the following.

• The effectiveness ofTAX . It demonstrates the impact ofTAX on
the performance of the evaluator by turning on the indexer versus
the setting when the indexer is off.

• The insight ofTAX . iSMOQE is able to show how theSMOQE

indexer buildsTAX on anXML document. For example, Fig. 6 is an
iSMOQEdisplay ofTAX on anXML tree.

The output visualizer. iSMOQE is able to display the output of the
query evaluation in two modes: (a) the text mode, which presents
the answer of the query as a document inXML syntax; (b) the tree
mode, which displays the answer of the query as a tree; it pro-
vides an interactive interface such that users may click on anode to
browse its subtree.

The demonstration will also show another feature ofiSMOQE:
iSMOQE is able to mark nodes in anXML document (in the tree
mode) with different colors, indicating whether or not a node is
visited during the query evaluation, whether or not it is putin the
auxiliary structureCans, and which optimization techniques con-
tribute to its pruning if it is not in the answer of the query. This
opens a window to the blackbox of query processing, allowingone
to assess the effectiveness of various optimization techniques.

Summing up, we shall demonstrate the support ofSMOQE for
different XML view specification methods, its ability to evaluate
RegularXPath queries, its capability of answeringRegularXPath
queries posed on virtualXML views without materialization, the ef-
ficiency of theSMOQEevaluator and the effectiveness of theSMOQE

indexer. Furthermore,iSMOQE visualizes the connection between
RegularXPath queries and automata representation, the index struc-
ture built onXML data, the huge nodes pruning when the automata
are running, and the contributions of different optimization tech-
niques to the pruning.

4. REFERENCES
[1] M. Altinel and M. J. Franklin. Efficient filtering of XML

documents for selective dissemination of information. In
VLDB, 2000.

[2] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fischer.
Path sharing and predicate evaluation for high-performance
XML filtering. TODS, 28(4):467–516, 2003.

[3] W. Fan, C. Y. Chan, and M. Garofalakis. Secure XML
querying with security views. InSIGMOD, 2004.

[4] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Rewriting
regular XPath queries on XML views.
http://www.lfcs.inf.ed.ac.uk/research/database/rewriting.pdf.

[5] A. K. Gupta and D. Suciu. Stream processing of XPath
queries with predicates. InSIGMOD, 2003.

[6] IBM. DB2 XML Extender.
http://www-3.ibm.com/software/data/db2/extended/xmlext/.

[7] JSR 173. Streaming API for XML.
http://www.jcp.org/en/jsr/detail?id=173.

[8] C. Koch. Efficient processing of expressive node-selecting
queries on XML data in secondary storage: A tree
automata-based approach. InVLDB, 2003.

[9] M. Marx. XPath with conditional axis relations. InEDBT,
2004.

[10] Microsoft. XML support in microsoftSQL server 2005,
December 2005.http://msdn.microsoft.com/library/en-
us/dnsql90/html/sql2k5xml.asp/.

[11] Oracle. Oracle Database 10g Release 2 XML DB Technical
Whitepaper.
http://www.oracle.com/technology/tech/xml/xmldb/index.html.

[12] SAXON. The XSLT and XQuery processor.
http://saxon.sourceforge.net.

[13] Xalan.http://xalan.apache.org.

