Made available by Hasselt University Library in https://documentserver.uhasselt.be

SMOQE: A System For Providing Secure Access To XML Data

Peer-reviewed author version

Fan, Wenfei; GEERTS, Floris; Jia, Xibei & Kementsiedis, Anastasios (2006)

SMOQE: A System For Providing Secure Access To XML Data. In: Umeshwar,

Dayal & Whang, Kyu-Young & Lomet, David B. & Alonso, Gustavo & Lohman, Guy

M. & Kersten, Martin L. & Cha, Sang & Kim, KyunYoung-Kuk (Ed.) Proceedings of

the 32nd International Conference on Very Large Databases (VLDB' 06). p. 1227-1230..

Handle: http://hdl.handle.net/1942/1423

SMOQE: A System for Providing Secure Access to XML

Wenfei Fan* Floris Geertst Xibei Jia Anastasios Kementsietsidis
University of Edinburgh

{wenfei @nf, fgeerts@nf, x.jia@ns, akenents@nf}.ed. ac. uk

1. INTRODUCTION

Views have been widely used in traditional databases tareafo
access control, support data integration, and speed upy quer
swering, among other things. For all the reasons that viees a
essential to traditional databas&siL views are also important for
XML data. In many applications, e.g., XML security enforce-
ment, views are necessariyrtual: a large number of user groups
may want to query the samevL document, each with a different
access-control policy. To enforce these policies, we mayige
each user group with arMmL view [3] consisting of only the in-
formation that the users are allowed to access, such thet oy
query the underlying data only through their views. Herevikars
should be kept virtual since it is prohibitively expensigenbate-
rialize and maintain a large number of views, one for each use
group.

An immediate question in connection wixvL views is how to
answer queries posed by users ovirtual view? However desir-
able, forxmL views to be useful in practice this question has to be
answered. A common approaciké. view unfoldingis to rewrite
a user query on views to an equivalent one onuheéerlyingdoc-
ument, and evaluate the rewritten query without mateiializhe
view. Nevertheless, the query rewriting is nontrivial. Eeample,
XPath, the core okQuery andxsLT, is hot closed under rewriting
i.e.,for anXPath query on a recursively defined view there may not
exist equivalenkPath query on the underlying document [4]. This
motivates the use of a richer query language in the rewritimgext
andRegularxpPath is the most promising candidate for three main
reasons. FirstRegularXPath is only a mild extension okPath
which supports general Kleene closyrg" instead of the limited
recursion ‘//' (descendant-or-self axis). Therefore rupeeries al-
ready written inXPath can be useals-isand need not be re-defined,
a necessity if a richer language lik@uery orxsLT was used. Sec-
ond, and more importantlRegularxpPath is closed under rewriting

*Supported in part by EPSRC GR/S63205/01, GR/T27433/01 aBSRE
BB/D006473/1. Wenfei Fan is also affiliated to Bell Laboras, Murray Hill, USA.
tFloris Geertsis a postdoctoral researcher of the FWO Vie@mdand is supported in
part by EPSRC GR/S63205/01. He is also affiliated to Hasseltausity and Transna-
tional University of Limburg, Belgium.

Permission to copy without fee all or part of this materigranted provided
that the copies are not made or distributed for direct corimleadvantage,
the VLDB copyright notice and the title of the publicatiortéts date appear,
and notice is given that copying is by permission of the Veayde Data
Base Endowment. To copy otherwise, or to republish, to postesvers
or to redistribute to lists, requires a fee and/or speciangsion from the
publisher, ACM.

VLDB ‘06, September 12-15, 2006, Seoul, Korea.

Copyright 2006 VLDB Endowment, ACM 1-59593-385-9/06/09.

for XML views, recursively defined or not [4]. Sineegularxpath
subsume«Path, anyxPath query posed on amyML view can be
rewritten to an equivalerkegularxPath query on the underlying
data. Third, there is an increasing interest in uskegularXpPath
as a stand-alone query language, outside the rewritinggxbnt

Given the above, we have developed the Secure MOdular Query
Engine 6MOQE), for facilitating the specification okmML views
and answering okML queries on virtual views. The main features
of smoQEare the following.

e SMOQEsupportxmL views defined by annotating amL schema
with RegularxpPath [9] queries, along the same linestae (IBM
DB2 XML Extender [6]) andaxsD (Microsoft sQL Server [10] and
Oracle [11]). sSMOQE supports recursively defined schema (and
thus views). It also provides a visual tool, referred taS@OQE,

to help user annotate a schema and definenan view.

e SMOQEIs able to rewrite anyRregularxpPath query@ posed by
users on a virtual view’ to an equivalenRegularxpPath queryQ’
on the underlying documer. That is,Q'(T) = Q(V(T)) for
any XML documentZ’, whereV (T") would be thexmL view if it
were materialized. Her@’ is also inRegularXPath, and is to be
executed on the underlying documéntather than on the view.

e SMOQE encompasses a query engine RagularxPath queries,
implementing an efficient evaluation algorithm and a nomelkix-
ing structure.

Existing XML query systems support neither answering (Regu-
lar) XPath queries on virtuatmL views, nor efficient evaluation of
RegularXpPath queries. While one can transla&egularXxPath to
XQuery, this approach is penalized by the overhead of evalyati
and optimizing full-fledgekQuery when dealing with much sim-
pler RegularXPath. To our knowledgesMOQEis the first system
that provides efficient support for answeriRggularxpath queries
over virtual and possibly recursively defingshL views, as well as
sophisticated evaluation techniques particularlyRegularxpath.
As an immediate applicatiorsMOQE provides a generic, flexi-
ble access-control mechanism fonL data, preventing improper
disclosure of confidential or sensitive information to utauized
users.

We have fully implementedMOQE Leveraging its visual tool
iSMOQE, the demonstration is to show, step by step, (a) keaw
views can be specified by annotatingap, (b) how user queries
on XML views are rewritten and answered, and (c) heMOQE
optimizes and evaluat&egularxPath queries. It will also demon-
strate the efficiency of the evaluation algorithms and thgaich of
various optimization techniques implementedsmMOQE

2. SYSTEM ARCHITECTURE

As shown in Fig. 1,SMOQE consists of four major modules:

Query
Result

] View [
I': Definition

T egula

’
1 Regular XPath Document

Auto
Constructing Eval. Using HyPE
and
Opt. Using TAX Indexing
and

Compressing

=or DOM
= n
_““\I\“

XML
Document

Indexer

Rewriter
s: represents a visualizer in iISMOQE component . .

1 1, 2, 3, 4, 5, 6: queries on XML doc processing flow
A.1, A.2, A.3 : view processing flow; B.1, B.2, B.3: queries on views processing flow

Figure 1: The sMoQEArchitecture

(a) iSMOQE, a visual tool through which a user can defixiaL
views, inspect the query rewriting and evaluation, and seoguery
results (a small user icon is used to indicate all the systmpo-
nents accessible throughMoQE); (b) a queryrewriter (indicated
by a box at the left of the figure) for translating usegularxpPath
queries posed orRML views to equivalenRegularXPath queries
on the underlying document; (c) a quesyaluator (indicated by
a box in the middle of the figure) for processirggular XPath
queries; and (d) amdexer(indicated by a box at the right of the
figure), which is used by the evaluator to build index streestand
optimize queries.

XML view definition. SMOQEsupports two view definition modes.
One mode allows users to definexanL view by leveragingsMoQE

RegularXPath
Files Help

Query rREsuI(Index | Schema ’/Message \

" Load ‘,’amd[n's[phneni:{,’dlskjplnl)l)z,'50343603jwnrkspa(eIreg:{palhjdala]hnsview,Ks

(hasangy[=envence]
I—-‘ patient H

[
‘

lingaga] " evoice |uemuniel
\—b diagnosis

<wsdelement maxOcours ="unbounded” mindcours="0"
ref="hos patient'>
<HsEueny>
hospital/depantment/patient[wisit/treatment,/medication/diagnosis ftext
{="hear disease']
< HSAGUENY>

XML

[x5l schema =
o= [wsd element

[wset elemert
o [sk complexType |~
o [xsd: complexType
o [st complexType

[xscl complexTune

Tul T»

4

[l

Ready...

Figure 2: The visual tool in isSMOQEfor specifying views

user interface tG&MOQE engine, but also opens a window of the
system to let user visually monitor the internal processitthe en-
gine. It consists of a graphical querying interface, a seatématic
view definition tool, and query, automaton, index and regslial-
ization tools.

3. DEMONSTRATION OVERVIEW

The demonstration aims to show the following: (a) how users
may definexmL views by means of schema annotation, with the
aid of isMOQE (b) how sMOQE answersRegular XPath queries
posed on a virtuakML view by using the rewriter, without materi-
alization; (c) how the evaluator siMOQEprocessefegularxpPath
queries; (d) how the indexing structuresoQEhelps query opti-
mization and processing; and (e) he8MOQE helps users browse
the query result as well as help implementers monitor queny p
cessing. These provide a complete picture for how one canm-lev
agesMOQEto enforcexML access control (via view definition and

mated view derivation as proposed in [3]: for each user granp
authorized security administrator annotates dbeument schema
to specify the part of information that the users are graotede-
nied access to, using simple boolean predicates; $hQE auto-
matically translates the specification to the definition gi@ssibly
recursively definedxmL view, along with a view schema that is
exposed to the users.

Query support. SMOQEsupportRegularxpPath in two query eval-
uation modes: a user may pose a query either (a) directly @n th
underlyingxML document provided that the user is granted access
to it, or (b) on anxmL view specified for the group which the user
is in. In the former case, the evaluator processes the quetlieo
underlying document, capitalizing on the indexer. In thtelecase,

the user query is first translated to an equivalent query enuth
derlying document, and then the rewritten query is answieyete
evaluatorwithoutmaterializing the view.

XML documents. SMOQE supports two modes: @oM mode and

a StAX [7] (Streamingapi for XML, a new standardpi for XML

pull parsing, to be included in Java6) mode. In them mode,
the whole document tree will be loaded into memory in order to
evaluate a query. One the other handSiax mode the document

does not need to be loaded into memory and only one sequential

scan of the document from disk is needed for the evaluatidre T
StAX mode allows to process larger documents efficiently and of-
fers significant advantages over main-memxpPath engines such
as Xalan [13] and Saxon [12], which need to randomly access th
document during evaluation.

Visual aid. :sSMOQEis the front-end that not only provides a friendly

other things. Below we present a brief introduction to thehte
niques ofsMOQE for supporting these functionalities, as well as a
more detailed description of the demonstrationt. each of these.

Specifying XML views. Along the same lines asAD [6] and
AXSD [10, 11], SMOQE supportsxML views by means of an ac-
cess control policy which annotates a schema RiQularXpath
expressions. For example, Fig. 3(a) shows a schema for & hosp
tal DTD, while Fig. 3(b) shows an access control policy that only
exposes the records of patients that took medication faisial.
Notice that for security reasons, the policy hides the naamedest
information of these patients. Given such a polisyjOQE auto-
matically generates the view specification and viemp shown in
Fig. 3(c) and Fig. 3(d), respectively. Conceptually,>anL view
defined in this way uses ttRegularXpPath queries in the specifi-
cation to extract data from the underlying document, andifzde
the view using the extracted data, strictly following theesma. Al-
though no actual view materialization occurs, the procedissures
that the view makes sensee., it conforms tahe view schema. A
unique feature of theMOQE view language is that it allows the
schema to be recursive, and thus suppertsirsivelydefinedxmL
views.

We shall demonstrate how users can leverageoQEto define
aview. As shown in Fig. 2,sMOQEsupports a visual view specifi-
cation tool that provides the user with &miL schema graph, such
that the user can click on any node (element type) in the graph
and input aRegularxpath query annotating the corresponding ele-
ments.

Rewriter. While it is always possible to rewrite RegularxpPath

production: hospital— patient

production: hospital— patient

hospital ann(hospital,patient) |visit/treatment/ oo (hospital, patient¥ patient|[visit/
¢>x< medication = ‘autism’] treatment/medication = ‘autism’] hoshit:
h ospital
patient 3 production: patient— pname, visit, parent production: patient— treatmerit, parent e
M ann(patient, pname) N oo (patient, treatment} visit/treatment

ann(patient, visite N
production: parent— patient
production: visit — treament, date
ann(visit, treatment} [medication]

pname parent

visit
treatment gate
4 A
test medication

(a) documenpTD D

ann(treatment, test) N
(b) access control policgo

production: parent— patient

[medication]
oo(patient, parenty parent

patiint

treatment parent

oo(parent, patient)= patient

production: treatment— test + medication production: treatment— medication

medication

(d) view pTD Dy

oo (treatment, medicatiory medication
(c) view specificationro derived fromSy

Figure 3: Enforcement of access control by security views

TEXT_EQUAL
'headache'

(a) ThemFa Mg for Qo

RegularXPath
Files Help

Query rResuI(rlndeu rSchema rMessage |

Query: ‘,'hnspilal]patiem[,j(parem,rpa(ienl)"_rtrea(mem,'lesl and treatment|

Q Jchild::hospital fchild:: patient[{self::node//child: treatment fchild::test and child

[EERERE] © eatment[{child:: medication/child::textd = "headache"))]/child:: pname

i | parseTree | TreePauernLike é
| test ali
¢ [3 LocatianPath
¢ CICHILD
[treartment
¢ [Predicate
v = ;
¢ [CJ LocationPath M
¢ CICHILD :
D medication
[Textnodestap =

‘|| Automaton | ReverseAutomaton | A

Ready...

(b) The tool inismoQEfor visualizing query and automaton

Figure 4: The MFA M characterizing query Qo

query Q on a view to an equivalent quexy’ on the underlying
document, the size a@@’, if directly represented aRegularXpPath
expressions, may be exponential in the siz€d#]. The SMOQE
rewriter overcomes the challenge by employing an autometian
acterization ofQ’, denoted byvFA (mixed finite state automatpn
[4], which islinear in the size ofQ. An MFA of Q' is a finite state
automaton FA, characterizing the data-selection path(@) an-
notated with alternating automatara, capturing the predicates of
Q’). For example, Fig. 4(a) depicts tlea M, characterizing the
RegularxPath query:

Qo = hospital/patient[(parent/patiefityisit/treatment/test/
and visit/treatment[medication/text()="headache”]}/pnam

In the MFA M, theNFA consists of state$)(1, 3, 24) and repre-
sents the selection patiospital/patient/pnamé is annotated with
an AFA (linked to state3 via a dotted arrow) capturing the pred-
icate of Qo (the part enclosed if]). The notion ofMmFA is pro-
posed bysMOQEto characteriz&egularxpath queries. It is quite
different from automata developed fePath andxmL stream pro-
cessing €.g.,tree automata of [8]xFilter [1], YFilter [2], xPush
machine [5]).

The demonstration will show the following, which are visaat
by means ofSMOQE

e The MFA characterization oRegular XPath queries. Given a
Regular XPath query@, SMOQE automatically generates xaFa
characterizing). As an example, Fig. 4(b) displays tlea M,

of the queryQo given earlier, which is automatically generated by
SMOQE.

e The process of query rewriting. Given amL view definitionV’
and aRegularXpPath query@ posed onV/, iSMOQE demonstrates
how the sSMOQE rewriter works by displaying theiFA represen-
tation of the rewritten querg)’, which is automatically generated
by the rewriter, and is equivalent & when being executed on the

underlying document.

Evaluator. The SMOQE evaluator implements a novel algorithm
for processingRegularXPath queries represented myfrA's. The
algorithm, referred to asypPEe (Hybrid Pass Evaluation) [4], takes
anMFA as input and evaluates it on amL tree. A unique feature

of HyPE is that it needs a single top-down depth-first traversal of
the XML tree, during whictHyPE both evaluates predicates of the
input query (equivalentlyaFa of the MFA) and identifies potential
answer nodes (by evaluating thea of the MFA). The potential
answer nodes are collected and stored in an auxiliary shejate-
ferred to ascans (candidate answers), which is often much smaller
than thexmL document tree. After the traversal of the document
tree,HyPE only needs a single pass ofins to select the nodes that
are in the answer of the input query. This is the reason s¥hgQE

is capable of efficiently processimggularxPath queries no matter
whether it is in thebom mode or in thestAX mode.

To our knowledge, previous systems require at least twoegass
of XML tree traversal to evaluate ev&irath queries. For exam-
ple, to evaluate akPath queryg on anxML documentl’, Arb [8]
requires a bottom-up pass dfto evaluate all the predicates @f
followed by a top-down pass to evaluate the selecting path tf
uses tree automata, which are more complex thes and require
a pre-processing step (another scarfdfto parse the document
and convert it to a special data format (a binary representatf
T). In contrastSMOQEis able to evaluat®egularxpPath queries,
more complex thatxPath queries. TheMOQE evaluator requires
neither pre-processing of the data nor the constructiomeef &u-
tomata. It only needs a single pass of the document duringhwhi
often prunes a large number of nodes that do not contributeeto
answer of the query.

In the demonstration we show the following.

e The efficiency of thesmoQEevaluator. We show th&MOQEis

o
hos&ilal

pwem%mm

1) patient

o =
parmit B . i 2 .
s Pgpe [visit 1
p:atienl Ireau:]em 1}0 PHAITS treatmeﬁm
9,773 medicatio}lreall"‘;em 211(‘:) patient
| 0, £
treatment “cold” test e %
[s - medication T
1‘1 19 12 - visit
- W parent
test (® astate in NFA annotated by a false AFA |
12 . “headache” N treatment
) a state in NFA [§ patient
Cans: @ q
24 candidate answer visit T
real answer (©) ® ©]b
9.7.8 states in AFA ‘ lreat]r‘nlem \
pruned subtree 24 24 test
12

Figure 5: Evaluation of M, using HyPE

capable of efficiently evaluatingegularxPath queries, in both the
DoM mode or thestAX mode. Furthermore, it outperforms popular
XPath engines such as Xalan [13].

e The insight of AlgorithmHyPE. UsingiSMOQE we reveal the
details of the evaluation akegularxpath queriesNIFA). For ex-
ample, Fig. 5 shows the evaluation of thea M, given earlier
on anXxML document. It demonstrates how, traverses the doc-
ument and which nodes are selected and storedis.

Indexer. SMOQE proposes and implements a new indexing struc-
ture, referred to asax (Type-Aware XML indgx4], to optimize
query processing. The novelty oix is that it classifies the infor-
mation of descendants of each node based on their eleme. typ
While several labeling and indexing techniques were d@esldor
optimizing the evaluation okPath queries, they focus mainly on
optimizing the evaluation of ‘//' (descendant-or-self gxby test-
ing efficiently whether, given two nodes, one is a descenadfttite
other. As such, they are limited in scope. In contrasi is ef-
fective in pruning large document subtrees during the exdn of
XPath queries with or without ‘//’, by keeping track of descants
of certain types that have been and have not been checkedrat ea
node. ThesmoQEindexer constructs theax index, compresses it
before it is stored in disk, and uploads it from disk when reked
The demonstration shows the following.

e The effectiveness ofax. It demonstrates the impact oAx on
the performance of the evaluator by turning on the indexesuse
the setting when the indexer is off.

e The insight ofTax. iSMOQE s able to show how theMoOQE
indexer buildstax on anxmL document. For example, Fig. 6 is an
1SMOQEdisplay of TAX on anxmL tree.

The output visualizer. iSMOQEis able to display the output of the
query evaluation in two modes: (a) the text mode, which prisse
the answer of the query as a documenxin. syntax; (b) the tree
mode, which displays the answer of the query as a tree; it pro-
vides an interactive interface such that users may click mode to
browse its subtree.

The demonstration will also show another feature SfoQE
iSMOQE is able to mark nodes in axmL document (in the tree
mode) with different colors, indicating whether or not a edad
visited during the query evaluation, whether or not it is jputhe
auxiliary structurecans, and which optimization techniques con-
tribute to its pruning if it is not in the answer of the queryhig
opens a window to the blackbox of query processing, alloveing
to assess the effectiveness of various optimization tejciesi

RegularxPath
Files Help

Query | Result | Index [Schema | Message |

|_- Load |data/hospital ”: Build | Write

] hospital comtaxNode-1267 | (81,82) (81,82) (79,80)
[name (42,43) (79,80) (79,80) (42,43) (81,52) (81,82)
o [department (81,82) (79,50) (79,80) (81,82) (0,0) (79,80) (0,0)
o I department (79,80) (81,82)]
comtaxhode-1268 [(81,81)]
¢ CJdepartment comtaxhode-1269 [(81,81) (81,81) (81,81) ||
o= 7 patient (81,81)]
&[] patient comtaxMode-1270 [(81,81)]
7 patient cormaxiode-1271 [(81,81 |
0 cormaxMode-1272 [(81,81) |
pname comtaxNode-1273 [(82,82) (82,82) (79,79) ||
(42,42) (79,79) (79,79) (42,42) (31,82) (32,82)
o [jparent (82,82) (79,79) (79,79) (82,82) (0,0) (79,75) (0,0)
o [J sibling (79,79) (82,82)]
o O visit cortaxMode-1274 | (82,82) (82,82)
)
)
)

StoreDoc | ReadDo

I

o [adress

(79,79) (42,42) (79,79) (79,79) 142,42) (82,52)
o L patient (82,52) (82,82) (78,79) (79,79) (82,82) (0,0)
o [patient (79,79) (0,0) (79,79) (82,82) |
o 3 patient Comtaxilode-1375 [(32,52)]
&7 patient Comtaxhode-1276 [(32,82) (82,82)
(82,82) (82,82)]
:d patient CormaxMode-1277 [(32,82) |
g patient comtaxade-1275 | (32,821 |
o [patient
o [department

4]

comtaxNode-1279 [(82,82) |
XML | Index

The time for creating COMTAX index is: 349 ms

Figure 6: TAX index

Summing up, we shall demonstrate the supporsabQEe for
different xML view specification methods, its ability to evaluate
RegularXPath queries, its capability of answerimggular XPath
queries posed on virtuaivL views without materialization, the ef-
ficiency of thesmoQEevaluator and the effectiveness of §1@0QE
indexer. FurthermoresmoQE visualizes the connection between
RegularxPath queries and automata representation, the index struc-
ture built onxML data, the huge nodes pruning when the automata
are running, and the contributions of different optimiaatitech-
nigues to the pruning.

4. REFERENCES

[1] M. Altinel and M. J. Franklin. Efficient filtering of XML
documents for selective dissemination of information. In
VLDB, 2000.

[2] Y. Diao, M. Altinel, M. J. Franklin, H. Zhang, and P. Fisah
Path sharing and predicate evaluation for high-performanc
XML filtering. TODS 28(4):467-516, 2003.

[3] W. Fan, C. Y. Chan, and M. Garofalakis. Secure XML
querying with security views. ISIGMOD, 2004.

[4] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis. Reagit
regular XPath queries on XML views.
http://www.lIfcs.inf.ed.ac.uk/research/database/itavg. pdf.

[5] A. K. Gupta and D. Suciu. Stream processing of XPath

queries with predicates. BIGMOD, 2003.

[6] IBM. DB2 XML Extender.
http://www-3.ibm.com/software/data/db2/extendedéxil

[7] JSR 173. Streaming API for XML.

http://www.jcp.org/en/jsr/detail?id=173

C. Koch. Efficient processing of expressive node-satgct

queries on XML data in secondary storage: A tree

automata-based approachMhDB, 2003.

M. Marx. XPath with conditional axis relations. EDBT,

2004.

Microsoft. XML support in microsofsQL server 2005,

December 2005http://msdn.microsoft.com/library/en-

us/dnsql90/html/sql2k5xml.asp/

Oracle. Oracle Database 10g Release 2 XML DB Technical

Whitepaper.

http://www.oracle.com/technology/tech/xmi/xmidb/échtml

SAXON. The XSLT and XQuery processor.

http://saxon.sourceforge.net

[13] Xalan.http://xalan.apache.org

(8]

(9]

[10]

[11]

[12]

