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Abstract

The specificity of protein-protein interactions is encoded in those parts of the sequence that compose the binding interface.
Therefore, understanding how changes in protein sequence influence interaction specificity, and possibly the phenotype,
requires knowing the location of binding sites in those sequences. However, large-scale detection of protein interfaces
remains a challenge. Here, we present a sequence- and interactome-based approach to mine interaction motifs from the
recently published Arabidopsis thaliana interactome. The resultant proteome-wide predictions are available via www.ab.
wur.nl/sliderbio and set the stage for further investigations of protein-protein binding sites. To assess our method, we first
show that, by using a priori information calculated from protein sequences, such as evolutionary conservation and residue
surface accessibility, we improve the performance of interface prediction compared to using only interactome data. Next,
we present evidence for the functional importance of the predicted sites, which are under stronger selective pressure than
the rest of protein sequence. We also observe a tendency for compensatory mutations in the binding sites of interacting
proteins. Subsequently, we interrogated the interactome data to formulate testable hypotheses for the molecular
mechanisms underlying effects of protein sequence mutations. Examples include proteins relevant for various
developmental processes. Finally, we observed, by analysing pairs of paralogs, a correlation between functional divergence
and sequence divergence in interaction sites. This analysis suggests that large-scale prediction of binding sites can cast light
on evolutionary processes that shape protein-protein interaction networks.
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Introduction

Genotype-to-phenotype relationships are mediated via molec-

ular networks, including protein-protein interaction networks.

Hence, understanding how phenotypes are influenced by sequence

changes requires understanding how the specificity of protein

interactions is encoded in protein sequences. Identifying which

sites are involved in the interactions is a necessary step towards

studying the underlying molecular mechanisms and the evolu-

tionary processes influencing protein interaction networks. How-

ever, accurate automatic detection of protein binding sites remains

a challenge when aiming at large-scale identification.

Those interaction sites composing the protein interface are

directly identifiable given a 3D structure of a complex [1]; when

only the unbound protein structure is known, predictions based on

structural and physicochemical properties [2,3,4] are typically

used. Although very relevant, protein structure determination is

not able to cover the large number of interactions identified by

interactome projects [5]. In particular for plants, including the

model plant species Arabidopsis thaliana, there is a gap between the

amount of protein-protein interactions experimentally unravelled

and the amount of structural information available in the Protein

Data Bank [6]. This gap highlights the need for sequence-based

approaches for large-scale predictions of interfaces.

Recently, the Arabidopsis Interactome map has been released,

describing about 6,200 highly reliable interactions between about

2,700 proteins [7]. Due to the high rate of gene duplication in the

Arabidopsis genome [8,9], it is particularly interesting to

investigate the relationship between protein interaction specificity

and sequence diversity in Arabidopsis proteins: after duplication,

interaction specificity can diverge causing non-, sub- or neo-

functionalization [10]. However, the relationship between inter-

action specificity and sequence similarity is far from trivial. For

example, when analysing pairs of yeast duplicated genes [11]

changes in interaction specificity were not correlated with

sequence divergence, when this divergence was calculated over

the whole length of the protein sequence. Locating the protein-

protein binding sites of several duplicated genes may create new

routes for this type of investigation, since it would enable to

evaluate selective pressure specifically in functional parts of the

sequence.

In contrast to protein structures, in which an interaction site is

seen as a continuous stretch of amino acids in space, protein

sequences show an interface as scattered short sub-sequences. It

has been suggested that proteins with common interaction
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partners also share common functional features [12], such as the

short sequences composing the interface. Still, these shared motifs

are difficult to discover, perhaps due to their short length. It has

also been shown that evolutionary conservation may be useful in

predicting functional motifs in the protein surface [13,14], but for

discriminating protein-protein interfaces from other functional

Figure 1. SLIDERBio strategy to predict protein-protein binding sites. (A–B) SLIDERBio follows the assumption that interfaces can be
represented by short sequence motifs: (A) Interaction sites (spacefill) are continuous patches of amino acid residues in the 3D structure of a protein,
while in a protein sequence (B) the interface is composed of scattered short motifs (regions highlighted in red and green). In (A–B), protein structure
and sequence of the Mms2/Ubc13 heterodimer (PDB id 1jat) are used as illustration. (C–D) SLIDERBio predicts interaction sites by finding motif pairs
that are overrepresented in pairs of interacting proteins in an interaction network. (C) illustrates a protein-protein interaction network in which the
proteins are represented by nodes and the interactions represented by connecting edges; (D) illustrates the protein sequences and their short motifs
(regions highlighted in colored bars; same colors represents similar motifs). In this example, the motif pair [grey-orange] is overrepresented compared
to the motif pair [red-green]. To calculate the degree of overrepresentation of a motif, the method verifies in how many sequences of interacting
proteins a certain motif is found. Originally, SLIDER considered a motif present in a sequence if a perfect match was found between motif sequence
and a region in the protein sequence. In contrast, SLIDERBio makes use of a substitution matrix to calculate the similarity between the motif and the
sequence. If the degree of similarity between a motif and a sequence is greater than a threshold, SLIDERBio considers that the sequence contains the
motif. In addition, SLIDERBio verifies whether the conservation score and the surface accessibility score of the motifs are greater than pre-defined
thresholds. These three thresholds are based on the average value per residue over the length of the motif (E).
doi:10.1371/journal.pone.0047022.g001
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sites, e.g. small ligand binding sites and catalytic sites, its use as a

stand-alone predictor is questionable [15]. In this work, we

evaluate the performance of an interactome-based interaction site

predictor when information encoded in the protein sequences is

included in its calculation.

We previously developed a method that uses protein-protein

interaction networks to find sequence motifs shared by proteins

with common interaction partners [16]. This method outper-

formed existing correlated motif mining algorithms and was able

to find biologically meaningful motifs from large protein-protein

interaction networks. Here, we present a version of the method

modified to account also for the evolutionary conservation of

homologous sequences. In addition, the method proposed here

restricts the motif search to sequence regions that are likely to be

exposed in the protein surface. This new sequence- and

interactome-based method predicts motifs that are not only shared

by proteins with common interaction partners, but also conserved

across sequences of orthologs in closely related species and likely to

be exposed in the protein surface.

We start by assessing the performance of our new method. By

comparing our predictions against available structural informa-

tion, we show that the modifications in the method improve its

performance. In addition, the assessment provides a basis for

determining a set of default parameters for the algorithm. Next, we

obtain large-scale predictions of protein interaction sites from the

complete Arabidopsis interactome data. We use single nucleotide

polymorphism data to obtain evidence that the predicted binding

sites are functionally relevant. Subsequently, we analyse available

data describing the effect of amino acid mutagenesis to show that

our predictions can be interrogated to obtain insight into

previously unknown molecular mechanisms underlying the effect

of specific mutations. Finally, we analyse the sequences of

paralogous pairs to set the stage for further investigations of the

molecular mechanisms behind the link between sequence diversity

and functional divergence in Arabidopsis proteins.

Results and Discussion

SLIDERBio algorithm
We recently developed SLIDER, a method that uses a protein

interaction network to locate binding sites in the sequence of

interacting proteins [16]. To predict binding sites for the proteins

in the recently generated Arabidopsis interactome [7], we

modified this algorithm to enable it to take various types of

biological knowledge into account. Here, we give a brief overview

of the method, focusing on the modifications that lead to a novel

algorithm. Our method follows the assumption that interfaces can

be represented by short sequence motifs (Figure 1). To predict

such motifs, the algorithm mines a set of sequences of interacting

proteins aiming to find motif pairs overrepresented in pairs of

interacting proteins. This mining results in a set of motif pairs that

are predicted to be located in protein-protein interfaces. For this

work, we extended the original SLIDER algorithm by imple-

menting a different approach to define the presence of a motif in a

sequence, and by adding additional filtering steps based on the

evolutionary conservation and surface accessibility predicted from

the protein sequences. This new, improved version is hereafter

named SLIDERBio and is available for download at www.ab.wur.

nl/sliderbio.

For computational details of the SLIDER method, the reader is

referred to [16]. In summary, the algorithm makes use of an

objective function that quantifies the overrepresentation of a motif

pair based on its presence in pairs of interacting proteins. To start,

it randomly selects a short motif from protein sequences. To

optimize the objective function, the algorithm heuristically ‘‘slides’’

the position of the selected motif. This method has been shown to

outperform existing methods for mining binding motifs from

interaction networks [16].

One critical step in the algorithm consists of verifying whether a

short motif is present in a protein sequence. Originally, SLIDER

considered that a protein contained a motif if a perfect match was

found between motif sequence and a region in the protein

sequence. In contrast, the SLIDERBio algorithm makes use of the

BLOSUM62 [17] substitution matrix to derive a value that reflects

the degree of similarity between the motif and the sequence (see

Materials and Methods). In other words, the original SLIDER

scanned the protein sequences searching for a perfect match for a

motif sequence, while the SLIDERBio algorithm searches for a

‘‘close’’ match. This degree of similarity calculated using the

substitution matrix reflects ‘‘how close’’ the match is. Only if the

degree of similarity between a motif and a sequence is greater than

a threshold, then SLIDERBio considers that the sequence contains

the motif.

Additionally, to select only those overrepresented motifs that are

likely to be located in the interaction interface, filtering steps based

on pre-calculated biological information were implemented.

SLIDER considered that a protein contained all the motifs that

satisfy the sequence match criteria. For SLIDERBio, the region

from the protein sequence that matches the motif has to satisfy two

extra conditions: (i) it has to show evolutionary conservation

greater than a conservation threshold, and (ii) it has to have

predicted surface accessibility greater than an accessibility

threshold (Figure 1D). These requirements are based on the fact

that interface residues should be located at the surface of a protein

(i.e. have high enough accessibility) and that compared to surface

residues that are not involved in functions such as protein binding,

they are expected to have higher conservation. To implement

these filtering steps, the method compares the averages of

predicted residue conservation and residue accessibility score

calculated over the length of the overrepresented motifs to their

thresholds. The strategies to calculate the conservation score and

residue surface accessibility are discussed in the Materials and

Methods section. Briefly, conservation is assessed using an entropy

based score, and residue surface accessibility is predicted using a

neural network approach. Values obtained from both approaches

are rescaled in the range 0 to 9, and SLIDERBio applies a

threshold on those rescaled values. The analysis presented in the

section Assessment of SLIDERBio predictions allows determining

the best set of threshold values.

Before the modifications, SLIDER required as input only

protein sequences and protein-protein interaction data. The

SLIDERBio algorithm now additionally requires the conservation

score and the predicted surface accessibility for all proteins. In

addition, SLIDERBio requires the user to set values for

parameters that determine the thresholds of degree of similarity,

conservation and residue solvent accessibility. The performance of

various parameter settings was analysed by comparing our

sequence-based SLIDERBio predictions with available protein

structure data. This analysis allowed to assess the significance of

the inclusion of the biological information in SLIDERBio and,

furthermore, to obtain a default set of parameters. Next, we

predicted protein interaction motifs for the Arabidopsis inter-

actome and investigated the predicted interaction sites, in

particular aiming at applying these towards understanding the

effect of sequence variation.

Arabidopsis Protein Interaction Site Prediction
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Assessment of SLIDERBio predictions
We analysed SLIDERBio predictions aiming (i) to assess the

performance of the algorithm towards large scale predictions of

protein binding motifs; (ii) to evaluate the significance of the

implemented modifications and; (iii) to obtain a set of default

values for the parameters. For these investigations, we used a

subset of protein-protein interactions such that for the proteins

involved, their sequences could be mapped to available structures

of protein complexes; hence the interface residues could directly be

identified for assessment of our predictions. Hereafter, these

subsets are referred to as ‘‘structurally mapped datasets’’. Although

we focus our application on Arabidopsis thaliana, for this assessment,

given the small number of Arabidopsis proteins with structural

mapping, we also used human and yeast protein-protein

interaction data (see Figure S1; Tables S1 and S2). We tested

SLIDERBio on the structurally mapped datasets of the three

species using 180 different parameter settings. To analyse the

results, we defined two measures that quantify the quality of the

predictions: ‘‘Accuracy of predicted motifs’’ and ‘‘Coverage of

protein-protein interfaces’’ (see Materials and Methods). Both

measures were combined into an F-score (harmonic mean of

Accuracy and Coverage) as overall performance measure.

Firstly, we observed that for most of the parameter settings,

SLIDERBio obtains better results than the previous SLIDER, in

terms of both Accuracy and Coverage (Figure 2, A–C). Note that

our previous analysis of SLIDER already showed that it obtained

improved performance compared to existing correlated motif

mining algorithms. Depending on the parameter values, SLI-

DERBio could predict motifs with Coverage of protein-protein

interfaces up to 42%, 22% and 42%, respectively for the human,

yeast and Arabidopsis subsets. Likewise, the values of Accuracy of

predicted motifs were up to 58%, 96% and 100%. We focus the

subsequent analyses based on the F-scores, which give a

compromise between ‘Accuracy of predicted motifs’ and ‘Cover-

age of protein-protein interfaces’.

Secondly, scatter diagrams and Pearson’s correlation coeffi-

cients (PCC) were used to determine whether F-scores obtained for

the same parameter settings are correlated among the three

structurally mapped datasets. A strong correlation implies here

that the same set of parameters would give results with similar

quality in different datasets. A good correlation is particularly

important, because we based our assessment on structurally

mapped datasets of three species in order to determine the best

parameter setting for further predictions on the complete

Arabidopsis interactome data. When comparing the F-scores

obtained for the same parameters but networks from different

species (comparison shown in Figures S1 and S2), we found

significant positive correlation: PCC = 0.50, PCC = 0.34 and

PCC = 0.27, for correlation of results from human/yeast,

human/Arabidopsis and yeast/Arabidopsis, respectively

(Figure 2, D–F). From the data in Figures S1 and S2, it is

apparent that there is more similarity between the degree

distribution of the human and yeast structurally mapped datasets

and the complete Arabidopsis interactome than between the

Arabidopsis structurally mapped dataset and the complete

Arabidopsis interactome. Hence, a reason for the observed

smallest correlation between the results in Arabidopsis with those

in yeast and human might be that the topology of the structurally

mapped Arabidopsis dataset differs most from the other two. In

addition, it might also be because of the fact that the number of

structurally mapped proteins in the Arabidopsis dataset is much

smaller than those of the other species, leading to a larger variation

in apparent performance. Overall, the good correlation between

the F-scores indicates that parameters that give good results for all

three structurally mapped datasets, would also give good results for

the complete Arabidopsis interactome.

Thirdly, boxplots were used to group the F-score results

according to the used threshold values, thus allowing assessment

of the significance of each modification isolated from the effect of

the other modifications. The most striking result from this

assessment is that, in all the three species, the inclusion of the

residue surface accessibility information significantly improved the

quality of the results (p-value ,0.01, paired t-test; Figure S3).

Moreover, the highest value of the surface accessibility threshold

(value 7) resulted in the highest F-scores, independently of the

values that were used for the other two thresholds.

Lastly, we conducted randomization tests to quantify the

significance of our results regarding the F-scores, and in addition,

to determine the best set of parameters. To obtain p-values, we

compared the SLIDERBio results against 1,000 sets of randomly

generated motif pairs (see Materials and Methods). We selected

parameter settings for further consideration using a significance

level threshold of p-value ,0.05 (Figure S4). Note that a priori we

do not necessarily expect a lot of parameter settings to show

significant results, because several parameter combinations will

combine biological information in a non-optimal way: e.g. when

the threshold for conservation is high and the threshold for

accessibility is low, we expect to predict a lot of buried conserved

residues instead of interface residues. Although eight parameter

settings showed p-values less than 0.05 simultaneously for the

human and yeast predictions, only one occurred simultaneously

for all the three species. Hence, we selected this combination of

parameters [Degree of similarity = 0.6; Conservation = 6; Surface

accessibility = 7] as the setting to run SLIDERBio for predictions

on the full Arabidopsis interactome. These values for the

parameters mean that for a motif to occur in a sequence it has

to have an average similarity of at least 60%, and that the residue

conservation score and residue surface accessibility score have on

average values greater than 6 and 7, respectively.

Protein-protein binding motifs in the Arabidopsis
interactome

Turning now to the complete Arabidopsis interactome data, our

method predicted protein-protein binding motifs that could be

mapped (See Materials and Methods) to 1498 (24%) of the

interactions among 985 (36%) proteins distributed over the entire

network (Figure 3A). Comparison of the degree distribution from

the complete dataset against the degree distribution from the

subset of proteins with a predicted binding site suggests that the

method is not biased to identify motifs only in those proteins with

high number of interactions (Figure 3B). Moreover, the motifs

mapped onto the protein sequences cover on average 11% of the

total protein length, which is a reasonable number given that the

equivalent percentage based on protein complexes structures

comprising the Arabidopsis structurally mapped dataset is 12%

(Figure 3C). For each protein, the resulting predicted sites are

given in Table S3; these are also available via www.ab.wur.nl/

sliderbio. In addition, for each interaction listed in the inter-

actome, the motif pair(s) predicted to be responsible for the

interaction is given. This set of predictions, which is comprised by

motifs that are overrepresented in pairs of interacting proteins,

conserved across species and predicted to be located in the surface

of the protein structure, was used for further analysis.

Arabidopsis Protein Interaction Site Prediction
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Protein-protein binding sites variability and
intermolecular coevolution

Conserved residues exposed in the surface of the protein are

likely be involved in its biological activity. To obtain an indication

of the functional relevance of the predicted binding sites, we used

single nucleotide polymorphism (SNP) data (i.e. conservation

within Arabidopsis thaliana). If our predicted interaction sites are

indeed functionally important, one would expect less variability in

their positions compared to the rest of the protein sequence. To

test this hypothesis, we calculated the percentage of predicted

interface residues in which a non-synonymous SNP (nsSNP) is

found (1.6%); this is significantly lower than the percentage of all

protein residues in which a nsSNP is found (2.2%; p-value,0.001;

see Materials and Methods). As a control, we tested that a similar

signal was not obtained when using synonymous SNPs (data not

shown).

Those nsSNP that are found in regions of predicted binding

sites are potentially interesting because, by changing protein

interaction specificity, they might be responsible for conferring

variability to different individuals of a species. However, consid-

ering evidence that most interactions are conserved within species

[18], one would expect that when an interaction site is mutated,

there might be a tendency to have compensating mutations in the

interaction partners. Such scenario is consistent with the

intermolecular co-evolution model [19]. In our case, it leads to

the hypothesis that proteins in which an nsSNP is found

overlapping a predicted binding site would be expected to have

an increased tendency to interact with other proteins in which an

nsSNP is also found in a binding site. To test this hypothesis we

counted the number of interactions between proteins in which a

nsSNP overlaps a binding site, from which we found a number

significantly greater than what would be randomly expected (p-

value ,0.001; see Materials and Methods). This result suggests a

tendency for interface residues to co-evolve. Interacting pairs from

which both proteins have an nsSNP overlapping a predicted

binding site are given in Table S4.

Figure 2. Overall performance of the SLIDERBio algorithm in different datasets. (A–C) Coverage of protein-protein interfaces and Accuracy
of predicted motifs. Each dot represents the result of SLIDERBio using one of the 180 tested sets of parameters, for (A) human, (B) yeast and (C)
Arabidopsis structurally mapped subsets. The grey arrows indicate the dot corresponding to the result of the previous SLIDER algorithm. (D–F),
Correlation of the performance for each of the SLIDERBio parameter settings is compared among datasets of different species: (D) human vs. yeast; (E)
human vs. Arabidopsis; and (F) yeast vs. Arabidopsis. Pearson Correlation Coefficient (PCC) is indicated.
doi:10.1371/journal.pone.0047022.g002
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Putative molecular mechanisms underlying effects of
amino acid mutagenesis

A major application of our predictions is to provide sites that

can be targeted by mutagenesis to change the interaction

specificity of a protein, and to provide putative explanations for

observed phenotypic changes upon mutations in terms of changes

in interaction specificity. To assess the usefulness of our data

towards these goals, we compared our predictions with available

results from experimental mutagenesis experiments and their

effects on molecular functions and biological processes (see

Materials and Methods). The experimentally annotated mutagen-

esis sites considered here, in general involve residues that are

located in functional sites, which in certain number of cases

corresponds to protein-protein interaction sites. Hence, one would

expect a tendency for the predicted binding sites to coincide with

such annotated sites. This was indeed the case: out of 38 proteins

for which mutagenesis data is available and for which we predicted

the interaction site, for 16 there is at least one mutation site that

coincides with a predicted binding site (Table 1).

By analysing details of available annotation for those cases

where a predicted binding site coincides with an experimentally

annotated mutagenesis site, we found that some of them are

indeed involved in protein interactions, whereas for others this is

not known but our results provide evidence for such role. For

example, in the protein ZEITLUPE (ZTL, AT5G57360), alanine

mutagenesis of the residues 200 or 213 located in the F-box

domain eliminates the interaction with ASK1 (AT1G75950), in

the yeast-two-hybrid system and in vitro [20]. Accordingly, for

ZEITLUPE, the stretch of residues from 208 to 220 is predicted as

interaction site for binding with ASK2 (AT5G42190) and ASK4

(AT1G20140). This leads to the hypothesis that mutation on the F-

box domain of ZEITLUPE, specifically in residue Leu213, would

not only disrupt its interaction with ASK1, but also with other

SKP1-like proteins [21], such as ASK2 and ASK4 (Figure 4, A–B).

A similar case is obtained by analysing available annotation of

the protein CXIP1 (GRXS14, AT3G54900), which is thought to

activate CAX1 (AT2G38170) through a direct interaction. In

CXIP1, alanine mutagenesis of two highly conserved motifs

(SNWPT, residues from 133 to 137; and CGFS, residue from 97

to 100) has been shown to lead to loss of ability to activate CAX1,

presumably by abolishing the interaction between these two

proteins [22]. For CXIP1, we predicted as binding site the stretch

of residues from 125 to 136, which overlaps one of the mutation

positions. Although CAX1 is not represented in the Arabidopsis

interactome data, four other interaction partners for CXIP1 have

been identified; i.e. AT5G09830, AT3G50780, AT1G70410 and

TCP13 (AT3G02150). We predict that the interaction of CXIP1

with these proteins may also be mediated by the same SNWPT

motif (Figure 4, C–D).

Additionally, analysis of available mutagenesis data indicates a

number of cases in which mutations are known to affect certain

phenotypes, but the molecular mechanism behind this is unknown.

Our predictions, together with the Arabidopsis interactome, allow

Figure 3. Overall description of the predicted binding sites in the Arabidopsis interactome. (A) Network representation of the
Arabidopsis interactome and predicted interaction sites. The vertices and edges in black represent, respectively, the 985 proteins and the 1498
interactions to which predicted motifs are mapped. (B) Degree distributions from the complete protein-protein interaction dataset (grey) and from
the subset with only proteins and interactions that have a predicted motif (black). A and B suggest that our method is not biased to predict motifs
that can be mapped only to proteins with high degree (i.e. number of interactions); moreover, the proteins with predicted motifs are distributed in
different positions in the network. (C) Percentage of residues in the interfaces, either in the predicted interfaces or those observed in the structurally
mapped dataset. Standard deviation is indicated.
doi:10.1371/journal.pone.0047022.g003

Arabidopsis Protein Interaction Site Prediction

PLOS ONE | www.plosone.org 6 October 2012 | Volume 7 | Issue 10 | e47022



us to generate hypotheses for these unknown mechanisms, which

could in principle be experimentally tested. For example, for two

naturally occurring mutations in SHY2 (IAA3, AT1G04240) the

phenotypic effects have been identified: shy2-2, in which a proline

in position 69 is mutated to a serine; and shy2-3, in which a glycine

in position 67 is mutated to a glutamic acid. Although both

mutations are known to interfere with auxin-related developmen-

tal processes, i.e. root growth, gravitropism and lateral root

formation [23], the molecular mechanisms underlying these

changes are unknown. In the SHY2 sequence, we predicted as

binding site three motifs. One of these, the stretch of residues from

59 to 69, overlaps the position of the two known mutations and is

predicted to be responsible for binding of TOPLESS (TPL,

AT5G27030). A second motif (residues from 180 to 187) is

predicted to be responsible for interaction of SHY2 with six other

IAA [24] proteins: IAA1 (AT4G14560), IAA2 (AT3G23030),

IAA7 (AT3G23050), IAA11 (AT4G28640), IAA16 (AT3G04730)

and IAA18 (AT1G51950). This leads to the hypothesis that

mutations in positions 67 and 69 of SHY2 may affect its ability to

interact with TOPLESS, but the same mutations do not impede

the interaction with other IAA proteins (Figure 4, E–F). Note that

the predicted binding site in SHY2 occurs in a region (IAA

domain II) which is known to be important for the interaction

between IAA proteins and F-box containing proteins [25].

Gene duplication and protein-protein interaction
network evolution

Gene duplication is a major driving force of evolutionary

novelty [10]. Because of redundancy immediately after the

duplication event, the selective pressure on one of the two copies

might be relaxed, both on its cis-regulatory elements and its coding

sequence. In the latter case, mutations in protein-protein binding

sites may either abolish existing interactions or create new

interaction sites. These mutations lead to interaction rewiring as

one of the mechanisms for functionalization [26]. Here, to assess

to which extent mutations in protein-protein binding sites reflect

functional divergence, we used our predictions to examine the

sequences of 32 paralogous Arabidopsis protein pairs that have

Table 1. Functionally annotated protein sites that coincide with predicted interaction sites.

Protein/Gene name TAIR/UNIPROT Amino acids/Mutation
Mutagenesis Effect or
Region Annotation Reference Predicted site

Acyl-CoA binding
protein 5 (ACBP5)

AT5G27630/Q8RWD9 46, 53, 75 and 94/L-.Q, Q-.A,
K-.A, F-.A

Reduction of
oleoyl-CoA-binding

[49] 41 to 48; 51 to
58; 71 to 83; 89
to 94

AFPH2(NINJA) AT4G28910/Q9SV55 7 to 17 Necessary for the interaction
with TOPLESS

[50] 16 to 23

322 to 425 Necessary for the interaction
with the JAZ proteins

[50] 344 to 351; 353
to 360

AtBRE1(HUB1) AT2G44950/Q8RXD6 712 to 878/Missing in mutant
hub1-1/ang4-1

Loss of function [51] 859 to 869

AtCAND1(CAND1) AT2G02560/Q8L5Y6 1069/G-.D Reduced response to auxin [52] 1062 to 1069

CXIP1(GRXS14) AT3G54900/Q84Y95 133 to 137/SNWPT-.AAAAA Loss of CAX1 activation [22] 125 to 136

CONSTANS(CO) AT5G15840/Q39057 96 to 98/Missing in mutant co-1 Late-flowering under
long day condition

[53] 93 to 100

IAA3(SHY2) AT1G04240/Q38822 67 and 69/G-.E and P-.S Affects auxin-related
developmental processes

[23] 59 to 69

IAA7(AXR2) AT3G23050/Q38825 87/P-.S Affects auxin-related
developmental processes

[54] 77 to 95

IAA19(MSG2) AT3G15540/O24409 3, 75 and 76/G -.R, P -.L and
P -.L

Affects auxin-related
developmental processes

[55] 67 to 74

PHABULOSA(ATHB-14) AT2G34710/O04291 202/G-.D Transformation of abaxial
leaf fates into adaxial
leaf fates

[56] 198 to 204

TGA1(BZIP47) AT5G65210/Q39237 260/C-.N Gain of interaction with
NPR1

[57] 257 to 264

TIFY 10A(JAZ1) AT1G19180/Q9LMA8 202 to 228/region missing in
mutant jaz1delta3A

Dominant mutation that
confers jasmonate
insensitivity

[58] 213 to 220

TIFY 6B(JAZ3) AT3G17860/Q9LVI4 299 to 312/VALPLARKASLARF -
.GKKQSQRPDTTFAI

Dominant mutation that
confers jasmonate
insensitivity

[59] 309 to 318

TOPLESS(TLP) AT1G15750/Q94AI7 176/K-.M Temperature sensitive
gain of function

[60] 171 to 178

YABBY 4(YAB4) AT1G23420/Q9LDT3 147/K-.KLYWSR Reduced development
of the ovule outer
integument

[61] 126 to 166

ZEITLUPE(ZTL) AT5G57360/Q94BT6 200 and 213/L-.A, L-.A No ZTL-ASK1 complex
formation

[20] 208 to 220

doi:10.1371/journal.pone.0047022.t001
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previously been classified as having either ‘‘no’’, ‘‘low’’, or ‘‘high’’

functional divergence [27] based on examination of knock-out

phenotypes.

For the examined paralogous pairs, the sequence identity of the

predicted binding sites was better able than the identity of the

whole protein sequence to distinguish the three functional

divergence groups (Figure 5; Materials and Methods; Table S5).

The weak discriminatory power observed by comparing the three

density functions for ‘‘whole protein sequence identities’’

(Figure 5A) means that comparing full-length sequence identity

gives only a weak indication whether two paralogs are likely to be

functionally redundant or functionally divergent. In contrast, the

differences among the density functions for the ‘‘binding site

sequence identities’’ (Figure 5B) suggests that we may predict the

degree of functional divergence based on small sequence changes

in the binding sites of paralogous pairs.

The potential for exploiting the sequence of binding sites

towards predictions of functional divergence may be illustrated by

examining the two paralogs FT (AT1G65480) and TFL1

(AT5G03840). Both genes mediate signals for floral transition in

an antagonistic manner: whilst the knockout mutant of FT

strongly induces late flowering, the knockout mutant of TFL1

induces early flowering [28]. Based on the overall sequence

identity (55%) the pair FT/TFL1 would be classified as non-

diverged; however, when using the binding site sequence identity

(70%) its most likely classification is ‘‘high functional divergence’’:

the curve for ‘no functional divergence’ has the highest density at

55% for overall sequence identity, but the lowest density at 70%

for motif sequence identity (Figure 5). Thus, despite the high

overall sequence identity of FT/TFL1, we could correctly infer

that the pair shows high functional divergence.

Concluding remarks
Efficient bioinformatics strategies are crucial to retrieve

information encoded in biological networks, in particular to

support the formulation of hypotheses on evolutionary processes

and molecular mechanisms linking genotype to phenotype. Here,

we addressed the challenge of locating, at a large scale, protein

binding sites in the Arabidopsis proteins. For this task, we defined

Figure 4. Putative molecular mechanisms underlying effects of amino acid mutagenesis. A, C and E show the interacting partners of the
proteins ZTL, CXIP1 and SHY2, respectively (interactions shown as dashed lines are not covered in the Arabidopsis Interactome data). B, D and F show
a schematic representation of the sequences of the three proteins, including predicted binding sites (coloured box, using same colour as the proteins
predicted to bind to it), mutagenesis sites (triangles for experimental mutagenesis sites, circles for naturally occurring sequence variants) and their
positions, and residue surface accessibility (RSA) and conservation (bar plots) as predicted based on the sequence. A–B, in the protein ZTL, alanine
mutagenesis of the residues 200 and 213 independently eliminate the interaction with ASK1; for ZTL, the stretch of residues from 208 to 220 is
predicted as interaction site for binding with ASK2 and ASK4. This leads to the hypothesis that mutation on ZTP, specifically on the residue Leu213,
would not only disrupt its interaction with ASK1, but also with other SKP1-like proteins, such as ASK2 and ASK4. C–D, In CXIP1, alanine mutagenesis of
two highly conserved motifs (residues from 133 to 137; and residues from 97 to 100) leads to loss of ability to activate CAX1. For CXIP1, the stretch of
residues from 125 to 136 was predicted as binding site, which overlaps the mutated motif SNWPT. The interaction of CXIP1 and the other interacting
partners identified in the Arabidopsis interactome, i.e. AT5G09830, AT3G50780, AT1G70410 and TCP13 (AT3G02150), may also be mediated by the
same motif. E–F, in the sequence of SHY2, three motifs were predicted as binding sites. The first (residues from 59 to 69; represented in grey) overlaps
the position of two naturally occurring mutations (residues 67 and 69) and is predicted to be responsible for binding of TOPLESS (TPL, AT5G27030). A
second motif (residues from 180 to 187; represented in brown) is predicted to be responsible for the interactions of SHY2 with six other IAA proteins.
This leads to the hypothesis that two known mutations disrupt the interaction of SHY2 with TPL, but the same mutations do not impede its
interaction with other IAA proteins.
doi:10.1371/journal.pone.0047022.g004
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a strategy that exploits information encoded in the Arabidopsis

interactome and the sequences coding for the interacting proteins.

Our sequence- and interactome-based approach enabled the

prediction of binding motifs in 985 (36%) of the proteins

represented in the interactome. Although this number represents

only a small percentage of all Arabidopsis proteins, it is much

higher than would be expected from methods that rely on protein

structure information. One possible way to achieve higher

coverage would be by using a different set of parameters

controlling the thresholds of evolutionary conservation and

surfaces accessibility of the motifs. Alternatively, predictions based

on additional protein-protein interaction datasets [29,30,31,32]

could complement the current set of predictions, as will future

extensions of the Arabidopsis interactome data. In addition, we

recently also developed an extension of the SLIDER algorithm

which obtains a much higher coverage of a given network of

proteins (Boyen et al., submitted to Trans Comp Biol Bioinf) although

this does not yet use the biological information sources applied in

the current study.

We used our predictions to investigate evolutionary aspects of

binding site variability. By assessing the frequency of synonymous

and non-synonymous SNPs either in the whole protein sequence

or only in the predicted motifs, we found that, overall, our

predicted sites are under stronger evolutionary constraints than the

rest of the protein. Additionally, we identified non-synonymous

SNPs that may be correlated with changes in the protein

interaction specificity between different Arabidopsis ecotypes.

Previously, we employed sequence-based approaches [33] to

mine binding motifs from the interaction network of transcription

factors [29] belonging to the MADS domain protein family [34].

Although the approach used in that work is not applicable to a

large interactome due to computational complexity of the

algorithm, these results were used to experimentally change the

interaction specificity of several MADS domain proteins. This

provided insight into mechanisms underlying sub- or neo-

functionalization among members of the MADS box family.

Here, to corroborate our proteome-scale predictions we used

available mutagenesis data (Table 1) to form testable hypotheses

for the molecular mechanisms underlying effects of known

mutations on several proteins (Figure 4). Our predicted interaction

sites are available at www.ab.wur.nl/sliderbio and can be used to

pinpoint residues which should be mutated in order to interfere

with specific interactions, or to interpret the results of obtained

phenotypic changes upon mutations in a molecular and mecha-

nistic way. They also enable to perform large scale studies on the

effects of various types of naturally occurring sequence variation

on protein interactions, similar to what we recently demonstrated

for the MADS domain protein family [35].

It has been debated whether constraints placed on binding sites

play a major role in functional divergence [36], when compared to

constraints placed on cis-elements. Here, Arabidopsis paralogous

pairs that have previously been classified, based on morphological

changes observed upon mutation, into functional divergence

groups [27] were analysed. From our analysis, it seems that the

sequence identity calculated over the whole sequence does not

contain a lot of signal that explain the observed divergence

(Figure 5A). This is in agreement with the findings of [11], in

which the correlation between selective pressure on the whole

sequence and the functional divergence was assessed. However,

when we analysed only the sequence region covered by binding

sites (Figure 5B), we found a stronger correlation between

functional divergence and selective pressure. Obviously, this does

not mean that non-coding sequence divergence (in particular via

its effect on gene expression) would not be important for functional

divergence, but it demonstrates the importance of coding sequence

variation as an additional factor. These examples set the stage for

future investigation of the correlation between sequence diver-

gence and phenotypic divergence.

Materials and Methods

Protein-protein interactions and sequence data
The Homo sapiens (human) and Saccharomyces cerevisiae (yeast)

protein-protein interaction data used in this work are described in

[37]. The Arabidopsis thaliana interaction data were obtained from

the recently published Arabidopsis interactome map [7]. The

sequences of human, yeast and Arabidopsis proteins were

retrieved, respectively, from the UniProt [38], Saccharomyces

Genome [39] and TAIR [40] databases (see Table S1).

Figure 5. Binding sites contain signal about functional
divergence. Distributions of sequence identity values are shown for
paralogous pairs classified as having ‘‘no’’ (red), ‘‘low’’ (black) or ‘‘high’’
(blue) functional divergence. The x-axis represents the sequence
identity of paralogous pairs. For each paralogous pair, the sequence
identity was calculated using either (A) the whole protein sequences, or
(B) just the sequence of predicted binding sites. The better separation
between the curves for no functional divergence vs. high functional
divergence when using predicted interaction sites indicates that these
contain signal related to functional divergence.
doi:10.1371/journal.pone.0047022.g005
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Mapping protein interacting pairs to known complex
structures

One of our assessment procedures aims to verify whether the

predicted motifs are located in the protein-protein interface, which

is a straightforward task when the structure of the complex is

available. However, few complex structures deposited in the PDB

correspond to the proteins listed in PPI data used in this work. To

overcome such a lack of structural information, we used a strategy

to assign sequences to known protein structures based on

homology. To link a query sequence to a target sequence with a

known 3D structure, we used PSI-BLAST [41] to search against

the PDB database under the following conditions: (1) the bit score

is higher than 70; (2) the aligned region from the query sequence

has a length that corresponds to at least 30% of the query total

length; (3) the aligned region from the target sequence has a length

that corresponds to at least 30% of the target total length; and (4)

the identity of the aligned regions is higher than 40%.

Subsequently, we used the sequences and their assigned structures

to filter the interacting lists to retain only the interactions for which

both proteins link to interacting units of a complex with known

structure (e.g. proteins A and B interact, and protein sequence A is

assigned to protein structure X chain K, protein sequence B is

assigned to protein structure X chain L). The resulting subsets of

protein-protein interactions contain for the human, yeast and

Arabidopsis, respectively, 539, 263 and 53 interactions among

575, 213 and 67 proteins. We refer to these subsets of the protein-

protein interaction networks as structurally mapped datasets (see

Table S2).

Identification of interface residues in protein complex
structures

After mapping protein sequences to known structures, the

interface residues were identified in the complex structures that

were assigned to pairs of interacting proteins. To determine these

interface residues, we used NACCESS [42] to calculate the residue

solvent accessible surface area for all the complexes and for all the

unbound proteins. A residue was classified as interface when the

solvent accessible surface area calculated in the complex was

smaller than the value calculated in the unbound protein.

Following the interface residue identification, the protein sequence

was aligned with the sequence of its assigned PDB using Clustal

[43] and the alignment was used to map residues from the

structure to residues in the sequence. In this way, lists of interface

residues and non-interface residues of the interacting proteins

comprising the structurally mapped datasets were obtained. This

data was used to analyse the performance of the various

SLIDERBio parameter settings. Note that as input for SLIDER-

Bio itself, only sequence-based information (conservation and

predicted surface accessibility) is used.

Implementation of conservation, accessibility and
similarity matrix in SLIDERBio

We extended the original SLIDER algorithm by adding filtering

steps based on evolutionary conservation and surface accessibility

as predicted from protein sequences, and by implementing an

approach to define the presence of a motif in a sequence based on

a substitution matrix. Below, we describe these adjustments to the

algorithm.

Calculating residue conservation scores. Calculating res-

idue conservation requires three sequential tasks: to select a group

of homologous proteins, to align the protein sequence with these

homologs, and to quantify the conservation of each residue in the

alignment. To select groups of homologs we used OrthoMCL

(Version 2.0; [44]) to assign each protein to an OrthoMCL-DB

(release 5) group. Next, we used Clustal [43] to align the protein

sequence with the sequences of all members of the associated

OrthoMCL-DB group. Finally, we used the AL2CO software [45]

to obtain a conservation score for each position in the multiple

sequence alignments. The AL2CO algorithm performs its

calculation in two steps: first amino acid frequencies at each

position in the alignment are estimated, and then a score is

calculated from these frequencies. We used the methods unweight-

frequencies and entropy-based in the first and second step,

respectively. To assign a conservation score to each residue in the

protein sequence, we used the integer conservation indices

resulting from the AL2CO calculation. The AL2CO integer

conservation score ranges from 0 to 9, representing low to high

conservation, respectively; it is obtained from the entropy-score by

a linear scaling (subtracting the minimum value and dividing by

the difference between maximum and minimum value) To assess

the conservation of a given motif, we use the average of the residue

conservation scores over the motif length; only if this average is

higher or equal than the conservation threshold, SLIDERBio may

consider this motif as a binding site.

Calculating residue solvent accessibility scores. The

relative solvent accessibility (RSA) of an amino acid residue in a

protein indicates its level of solvent exposure. To predict the RSA

based on protein sequences, we used the SABLE [46] software that

predicts whole residue relative RSA scores from sequences alone

using a neural network algorithm trained on PDB structures.

SABLE outputs an integer value for each residue, ranging from 0

to 9, representing ‘fully buried’ to ‘fully exposed’, respectively.

This output is defined as the ratio of solvent-exposed surface area

of a residue to the maximum obtainable value of the solvent-

exposed surface area for this amino acid, linearly rescaled in a

similar way as described above for the conservation score.

Strategy to define motif presence based on substitution

matrix. To quantify the overrepresentation of a given motif in

the network, our method verifies in how many sequences that

motif is present. Instead of searching for perfect matches,

SLIDERBio uses a modified version of the BLOSUM62 similarity

table to calculate the ‘‘degree of similarity’’ of a given motif for a

protein sequence. In this modified similarity table, a perfect amino

acid match has value 1, and a non-perfect match has value ranging

from 0 to 1 directly proportional to the BLOSUM62 score (this

linear scaling is performed for each of the rows of the matrix

separately). Our method calculates the residue similarity score and

it averages the value over the motif length. Only if this average is

greater than or equal to the ‘‘degree of similarity’’ threshold,

SLIDERBio considers the motif present in the protein sequence.

Quality measures for evaluating predictions of protein-
protein binding motifs

To assess the quality of the SLIDERBio results, we defined two

measures that use the structures of the proteins in the above-

mentioned structurally mapped datasets. Here, the ‘Accuracy of

predicted motifs’ is defined as the number of motifs correctly

predicted to be in the interface as a fraction of all motifs predicted

to be in protein–protein interface. A motif is said to be in the

interface, if at least one of its residues is identified to be in the

interface of its assigned complex structure. The ‘Coverage of

protein-protein interfaces’ stands for the number of protein pairs

that contain at least one motif mapped to their interface, as

fraction of the total number of interacting pairs in the interaction

data. Thus, the ‘Accuracy of predicted motifs’ reflects the

predictive power of the algorithm toward finding motifs that are

indeed located in the interface, and the ‘Coverage of protein-
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protein interfaces’ reflects its predictive power towards finding

motifs explaining the largest number of interactions. The overall

performance of the predictions was measured via the F-score,

which equals 2*‘Accuracy of predicted motifs’*‘Coverage of

protein-protein interfaces’/(‘Accuracy of predicted motifs ’+‘Cov-

erage of protein-protein interfaces’).

Setting SLIDERBio parameters
For the threshold of the allowed degree of similarity between

motif sequence and protein sequence, we tested five different

values ([none;0.4;0.5;0.6;0.7], where ‘none’ stands for not having

used the modification). For the thresholds of conservation and

residue surface accessibility, we tested six different values

([none;3;4;5;6;7]) each. In total, 180 combinations (56666) of

these values were tested. SLIDERBio predicts a set of N motif

pairs. For each combination of parameters, we executed

SLIDERBio on the structurally mapped datasets for the three

species using the following configuration: length of predicted motif

l = 8; number of allowed wildcard-character d = 5; maximum

execution time t = 60 minutes; number of predicted motif pairs

N = 1,000. We then mapped the resultant motif pairs in the

sequence of pairs of interacting proteins, in such a way that each of

the interacting proteins contains one of the motifs in the pair.

Subsequently, the ‘Accuracy of predicted motifs’, ‘Coverage of

protein-protein interfaces’ and F-score were calculated for all the

results. For the analysis of the complete Arabidopsis Interactome,

maximum execution time was set to t = 24 hours.

Mapping predicted motif pairs to protein sequences
We used our method to predict motif pairs that are

overrepresented in pairs of interacting proteins, conserved across

species, and predicted to be exposed in the protein surface. Each

motif can usually be ‘‘mapped’’ to more than one protein

sequence. This mapping is performed by searching each of the

motifs against all the interacting protein sequences; and consid-

ering only those matches that fit both requirements for conserva-

tion and surface accessibility (i.e. conservation greater than the

conservation threshold and surface accessibility greater than the

RSA threshold).

Randomly generated sets of motif pairs
In order to assess the significance of the SLIDERBio results, we

created sets of random motif pairs by applying the following

strategy: First, we randomly selected a sequence in the input

sequence set; next, we randomly sampled from the selected

sequence a substring of length l, and randomly arranged d

wildcard-characters in the substring. The same procedure was

repeated to create the second motif in the pair, which resulted in a

motif pair. Then, we repeated this step till N motif pairs were

created. In this way, we created 1,000 sets of N motif pairs for each

of the structurally mapped datasets (human, yeast and Arabidop-

sis), using the same set up of parameters controlling the length of

the motifs (l = 8 and d = 5), and the same number of motif pairs

(N = 1,000).

Analysis of single nucleotide polymorphism
SNPs were obtained from the currently available 80 accessions

from the Arabidopsis 1001 Genome Project [47]. After mapping

to protein coding sequences, non-synonymous SNPs were

extracted and their positions were compared with positions of

predicted interface residues. To compare the significance of the

small overlap between non-synonymous SNPs and binding sites,

sets of randomly chosen ‘‘SNPs’’ were generated (with the same

number of SNPs per protein as in the experimental data) and their

overlap with the binding sites was counted (using 1,000 random

trials). To compare the significance of the amount of interactions

between proteins with SNPs overlapping predicted interaction

sites, we randomly selected the same number of proteins from the

interactome and counted their number of interactions (using 1,000

random trials).

Analysis of mutagenesis regions
We retrieved and analysed the field ‘‘Experimental info’’ from

the section ‘‘Sequence annotation’’ as deposited in the UniProt

database [38]. This describes the effects of mutations of amino

acids on the biological properties of proteins. Out of all the 985

protein with interface residues predicted by SLIDERBio, exper-

imental information was available for 38 proteins.

Gene duplication and Functional divergence analysis
To classify the paralogous pairs as having ‘‘no’’, ‘‘low’’ or

‘‘high’’ functional divergence, we used data from [27], where the

divergence was measured on the basis of morphological conse-

quences observed in null mutants of single genes or pairs of genes.

From the obtained list of 492 paralogous pairs, we kept only those

pairs from which for at least one of the paralogs interface residues

were predicted by SLIDERBio (n = 32). Next, we used Needle [48]

to compute the global pairwise alignment and to calculate the

‘‘whole protein sequence identity’’ for each pair (see Table S5).

Then, we mapped our predicted motifs to the resultant alignments

and calculated the ‘‘binding site sequence identity’’ by comparing

only the sequence regions to which motifs were mapped. To avoid

bias of motifs mapped in regions with long gaps, we removed from

the analysis any motifs that were mapped to gapped regions.

For each functional divergence group (‘‘no’’,‘‘low’’ and ‘‘high’’),

we created two density functions by fitting a normal distribution to

the calculated values of either ‘‘whole protein sequence identity’’

or ‘‘binding site sequence identity’’. Prior to the analyses, we tested

the normality of each group of values using Lilliefors test for

normality with no significant results (p-values: (0.5, 0.2, 0.2) and

(0.1, 0.4, 0.6); for (‘‘no’’,‘‘low’’ and ‘‘high’’ functional divergence)

of ‘‘whole protein sequence identity’’ and ‘‘motif sequence

identity’’, respectively), suggesting that the data is normally

distributed.

Supporting Information

Figure S1 Topological properties of the protein-protein
interaction (PPI) networks and their respective struc-
turally mapped subsets. To create the basis for comparison

and assessment of our predictions, we used the structures of

protein complexes in order to identify residues that are located in

the protein interface. Because the number of complex structures

mapped to Arabidopsis proteins is low, we used two other datasets

from which more structures are available; the human and yeast

protein-protein interaction networks. (A–C) Graphical represen-

tation of the human (A), yeast (B) and Arabidopsis (C) interactome.

Nodes represent proteins, edges represent interactions. (D) number

of proteins and (E) number of interactions in the PPI datasets.

Black, proteins and interactions from which structures could be

mapped; grey, complete PPI data.

(TIF)

Figure S2 Comparison of the topology of the protein-
protein interaction networks and their respective struc-
turally mapped subsets. x-axis represents the number of

protein partners (degree) and y-axis represents the frequency. The

Figure allows quantitative comparison of the network composed
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by the subset of interacting proteins from which structural

information is available against the complete set of interactions.

By using the degree distributions, we observe that the similarity

between the structure mapped subsets for the human and yeast

interactomes is high, while the Arabidopsis subset has a quite

different degree distribution. In addition, the similarity between

the yeast and human structurally mapped datasets and the

complete Arabidopsis interactome is higher than the similarity

between the Arabidopsis subset and the complete Arabidopsis

interactome.

(TIF)

Figure S3 Assessment of the SLIDERBio performance
for different values for the thresholds of Degree of
similarity, Conservation and surface accessibility. The

box plots group the F-score results (y-axis) based on each used

threshold value for the SLIDERBio parameters: (A,B,C) show the

results grouped based on threshold values for the Degree of

Similarity between motif and protein sequence; (D,E,F) for the

Conservation threshold values; and (G,H,I) for the Residue surface

accessibility threshold values. The results for the Human, Yeast

and Arabidopsis structurally mapped datasets are shown, respec-

tively, in (A,D,G), (B,E,H) and (C,F,I). The boxes labelled as

‘none’ contain the F-score results when SLIDERBio did not use

the modification in its calculation. The grey horizontal dashed

lines touch the boxes in the group that has given greatest 75th

percentile. We then tested whether there is statistical difference in

the F-score results when SLIDERBio uses or does not use the

modification. The figures show the p-value (P) when the results

from the group ‘none’ are compared against the results from the

group with greatest F-score 75th percentile. All p-values (P) shown

in the figures are calculated using a two-tailed paired t-test. At

significance level 0.01, we reject the null hypothesis that the means

are equal.

(TIF)

Figure S4 Determination of a default set of SLIDERBio
parameter values. The figure shows the p-values calculated by

comparing F-scores obtained from the SLIDERBio results against

those from random results. y-axis represents the p-value; x-axis

indicates which combination of parameters has been used. For

legibility, only results for which the p-value is less than 0.05 are

shown. The vertical dashed grey line indicates the single

parameter setting that showed p-values less than 0.05 simulta-

neously for all the three structurally mapped dataset. This

combination of parameters [Degree of similarity = 0.6; Conserva-

tion = 6; Surface accessibility = 7] is used to predict binding motifs

on the full Arabidopsis interactome.

(TIF)

Table S1 Human, yeast and Arabidopsis protein-pro-
tein interaction networks used in this work.

(XLSX)

Table S2 Structures of protein complexes mapped to
sequences of interacting proteins.

(XLSX)

Table S3 Predicted interaction motifs for Arabidopsis
proteins.

(XLSX)

Table S4 List of interacting proteins in which a nsSNP
overlaps the binding site of both proteins.

(XLSX)

Table S5 Functional divergence classification and se-
quence similarity analysis of paralogous pairs with
predicted motifs.

(XLSX)
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