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Abstract—This paper presents a real time image warping
module implemented in hardware. A look-up table (LUT) based
reverse mapping is used to relate the source image to the warped
image. Frame buffers or line buffers are often used to temporally
store the source image. However these methods do not take the
underlying pattern of the reverse mapping coordinates into
account. The presented architecture uses an adaptable memory
allocation which can change the depth and the position of the line
buffer between lines. A real-time stereo rectification use case has
been implemented to validate the operation of this module.
Depending on the scenario, the memory consumption can be
reduced by a factor of two and more. A real-time image warping
module for video cameras has been implemented in a single
FPGA, without the use of off-chip memories.
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I. INTRODUCTION

Image warping is an important research topic in computer
vision and graphics. It is a spatial transformation of an image
based on a geometric relationship [1]. The image warping
module takes a stream of pixels from a camera, temporally
stores them and outputs them in a different order (Fig. 1). The
specific order depends on the geometric relation which can
either be calculated on-line or pre-calculated and stored in a
look-up table (LUT). In a video pipeline, the data stream is a
synchronized source of pixels coming from an image where the
first element of the stream is the top left pixel in the image and
the following elements are corresponding pixels on the same
line. For each pixel in the output image a color is selected from
the input image using its inverse-warped location.
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Fig. 1. Image warping
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Real-time image warping is necessary in several
applications. In medical endoscopy it is used to remove the
large radial distortion caused by the small size of the lens [2].
For the generation of panoramic videos, the images of the
cameras need to be warped with respect to each other in order
to stitch them together [3]. In a stereo camera setup, two
different kinds of distortions are present; the first one is the
lens distortion, the second one is a misalignment of the two
cameras. Since the search space for stereo matching is located
on the epipolar line, both distortions should be resolved before
the matching can be performed [4]. Other applications include
image rotation, scaling, translation or a combination of them
[1].

For all these applications, not only real-time is important,
but also low latency and cost. We believe that this can only be
achieved by implementing warping into hardware and by
removing the usage of external memories.

Luo implemented a look-up table (LUT) based image
warping module in hardware [5]. By using a compressed LUT
it doesn’t need off-chip memory to store it. However, it still
needs off-chip memory to temporally store the input stream of
the camera. Oh implemented a FPGA based fast image
warping module which focuses on latency reduction [6]. A
single LUT multiple access method is proposed which stores
the LUT in on-chip memories. Off-chip memories are used to
store the output image. Rodrigues implemented a real-time
rectification module for stereo images [7]. It used a Microblaze
processor to calculate the reverse mapping coordinates and
made use of off-chip memories to store the input stream.

The goal of the presented architecture is to reduce memory
usage in order to implement the complete warping module on-
chip without the use of off-chip memories. The focus is
oriented towards the reduction of the pixel input buffer. Several
data structures will be presented which reduce the memory
usage by taking the underlying pattern of the reverse mapping
coordinates into account. The reverse mapping coordinates are
stored in a LUT and bilinear interpolation [8] is used to get
sub-pixel accurate results.

The remainder of the paper is organized as follows: section
two describes image warping in greater detail. Section three
introduces the different memory architectures for the pixel
input stream buffer. Section four presents the hardware



architecture. Section five discusses the implementation results.
Section six concludes the presented architecture.

Il. WARPING OVERVIEW

Image warping consists of three main parts. First, the
reverse mapping coordinates need to be provided. They can be
pre-calculated and stored in a LUT or calculated on-line. The
LUT based method has the advantage that no expensive
calculations are needed but with the cost of additional memory
usage. For this architecture, a memory efficient LUT based
implementation is chosen. Second, the input pixel stream needs
to be stored in order to select the output pixels from. Third, the
output pixels are resampled in order to get sub-pixel accuracy.

A. Reverse Mapping Coordinates

For each pixel of the warped image a pixel of the source
image is selected. The index difference between the warped
and the source image pixel are called the reverse mapping
coordinates.

Storing the mapping coordinates for each pixel uses a large
amount of memory. When the mapping coordinates do not
change drastically from pixel to pixel, it suffices to only store
the mapping coordinates of certain pixels. These pixels are
chosen to be located on a regular grid. The desired grid size
depends on the amount of distortion in the image.

Bilinear interpolation is used to reconstruct the mapping
coordinates for the complete image (Fig. 2). Formula (1) shows
how the mapping coordinates for pixel ‘p’ (map,) are
calculated from the mapping coordinates of pixel ‘a’ (map,),
b’ (mapy), ’c’ (map,) and ‘d’ (mapy), which are located on the
rectangular grid.

Fig. 2. Grid based mapping (left: complete grid, right: bilinear interpolation
between grid points).

map, = (lae| - map, + |eb| - map,)/|ab|
mapy = (|cf| - mapy + |fd| - map.)/|cd| Q)
map, = (lep| - map; + |pf| - map,)/|ef|

B. Storage of the Source Image

The warped image is constructed by selecting the pixels
from the source image whose coordinates are provided by the
reverse mapping LUT. In order to allow the selection of pixels
from previous lines, it is necessary to store a previous number
of pixel lines in a memory (Fig.3). Most commonly a frame
buffer or line buffers are used to store the pixels. However this
is not efficient when the underlying structure of the reverse
mapping coordinates is known. In the next section, this will be
discussed in more detail.
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Fig. 3. Warping of input to output pixel stream using line buffer storage.

C. Sub-Pixel Resampling

When the mapping coordinates are integer, only one source
pixel is needed for the warped image. However a better result
can be obtained when making use of mapping coordinates
which contain fractional values (Fig.4) When using mapping
coordinates with sub-pixel accuracy, a window of four pixels is
used from the source image. Bilinear interpolation is hence
used to calculate the resulting warped pixel [8].
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Fig. 4. Sub-pixel resampling (top: without resampling, bottom: with
resampling).
D. Examples

Fig. 5 shows some examples of common warping
examples. The repercussions on the memory consumption will
be discussed in the next section.

Fig. 5. Warping examples, from top to bottom: wave, expand and compress
and barrel distortion (left: source image, middle: vertical warping LUT, Right:
warped image).



I1l. MEMORY ARCHITECTURE

In order to perform reverse mapping, the source pixels need
to be stored in a temporal buffer. The size of this buffer is
primarily determined by the vertical warping coordinates. The
larger its range across the image, the more line buffers needs to
be buffered. The horizontal warping coordinates will only
determine some additional pixel buffers. In the remainder of
this paper, only vertical warping coordinates are taken into
account.

A. Circular Buffer

When the vertical offset is uniformly distributed on an
image line or when the pattern of the reverse mapping
coordinates are not known, a line buffer implementation is the
most suitable. Fig. 6 shows an example where no pattern can
be found in the reverse mapping LUT.
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Fig. 6. LUT without known pattern (left: vertical reverse mapping LUT,
right: memory access, gray indicates the memory access envelope).
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The size of the buffer equals the width of the image
multiplied with the number of lines. This in turn equals the
highest vertical offset in the reverse mapping coordinates. A
circular buffer is used as data structure (see Fig. 7).
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Fig. 7. Circular buffer

B. Split Circular Buffer

When the vertical offset is not uniformly distributed on an
image line, parts of the stored pixels are never actually read
out. On Fig. 8, the mapping coordinates have a sinusoidal
pattern. The resulting memory access is depicted on Fig. 8. The
left side of the image needs a large buffer, while the right side
of the image only uses a much smaller buffer.
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Fig. 8. LUT with wave pattern (left: vertical reverse mapping LUT, right:
memory access, gray indicates the memory access envelope).

Instead of using a line buffer with a fixed vertical offset
across the image line, it is more memory efficient to split up
the line buffer into two (or more) slices; One large line buffer

for the left slice of the image and one smaller line buffer for the
right slice. Note that these line buffers can be located in the
same physical memory. For each memory slice, a write pointer
is stored (Fig.9). For every pixel write, it is determined in
which memory slice the pixel needs to be written.

Write Pointer 1 Write Pointer 2

Fig. 9. Split circular buffer

The read pointer is calculated from the current write
pointer; the additional calculation step includes the
determination of which circular buffer to read from.

C. Adaptive Split Circular Buffer

When the vertical offset is not uniformly distributed on an
image line and the horizontal offset changes during consecutive
image lines an adaptive split circular buffer is needed. This
situation occurs when in the first slice, the image is expanded
vertically while in the second slice, the image is compressed
vertically (Fig. 10). The memory access will change gradually
with consecutive lines. The split line buffer needs to be adapted
in between image lines to accommodate this change.
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Fig. 10. LUT with changing wave pattern (left: vertical reverse mapping
LUT, right: memory access, gray indicates the memory access envelope).

In this scenario, the data structure consists of several
circular buffers which are linked together. These linkages will
change during consecutive image lines. In the top of the image,
the gray memory block (Fig. 11) will be assigned to the left
slice of the image, while on the bottom of the image it will be

assigned to the right slice of the image.
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Fig. 11. Adaptive split circular buffer

The information about memory allocation for different
slices of the image can be stored in small additional memories.



D. Circular Buffer with Line Read Postponing

In this scenario, the vertical offset decreases during
consecutive image lines. First the complete buffer needs to be
filled with pixel data before reading can be started. This is a
result from the fact that all lines are normally processed one
after another. Second, on each line, only parts of the buffer are
used. It is more memory efficient to take a smaller memory and
to postpone line reads when needed.
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Fig. 12. LUT with decreasing random pattern (left: vertical reverse mapping
LUT, right: memory access, gray indicates the memory access envelope).

Every time, when reading is postponed for a complete line,
the next line that is being read will have an additional offset of
plus one. The assumption is that the input pixel stream has
blanking lines and that the next image processing steps are
prepared for handling them. The first assumption holds when
making use of a simple CMOQOS camera; after the last line, it
will send a couple of pixel lines that are black, the number of
these blanking lines can be programmed. The second
assumption depends on the architecture of the next processing
steps. Fig. 13 shows an image where reading has been stopped
for a couple of lines on two separate places. This leads to a
reordering of the blanking lines.
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Fig. 13. Reordering of blanking lines.

The reverse mapping LUT has to be changed every time a
read line is skipped. Since the line skip is predetermined, the
LUT can be changed off-line in order to reduce the size of it.
For each line skip, all mapping coordinates from that line on
will be decremented by one.

Fig. 14 Shows the result of the modification of the reverse
mapping coordinates of Fig. 12 when line skipping is used. In
this case a reduction in memory usage of more than 50% is
obtained.
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Fig. 14. LUT with decreasing random pattern, modified for line read
postponing.

E. Adaptive Split Circular Buffer with Line Read Postponing

This is the most complex case investigated in this paper and
resembles the scenario when a camera is corrected from its
barrel distortion. As seen on Fig. 15, the vertical offset
decreases continually during consecutive lines. The vertical
offset is not uniform within a line and it changes during
consecutive lines.

When only using a split circular buffer approach, not much
reduction in memory usage is obtained. The reason is the
flatness of the reverse mapping curve on the first line (Fig. 15).
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Fig. 15. LUT for barrel distortion (left: vertical reverse mapping LUT, right:
memory access, gray indicates the memory access envelope).

When only using the circular buffer with line read
postponing, a reduction of 50% is obtained since the value
range of each line in the reverse mapping LUT is halve of the
maximum value of this LUT.

When adding the adaptive split circular buffer approach
with line read postponing, a larger reduction of memory usage
is obtained. On the lower part of the image, read line skipping
is used to reduce the need for extra line buffers. Fig. 16 shows
the result of the modification of the reverse mapping
coordinates of Fig. 15 when line skipping is used.
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Fig. 16. LUT for barrel distortion, modified for line read postponing.

The combination of the adaptive split circular buffer with
line read postponing leads to a reduction of more than 50%.



1V. HARDWARE ARCHITECTURE

The goal of the presented architecture is to reduce memory
usage in order to implement the warping module on-chip with
room to spare for additional applications like stereo vision. The
image warping module receives pixels coming from a camera
and places them in an input buffer (see Fig. 17). The reverse
mapping coordinates are calculated from the LUT using
bilinear interpolation. The integer part of these coordinates is
used to select the four part window from the input buffer. The
fractional part is used to calculate from this window the warped
pixel using bilinear interpolation.
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Fig. 17. Image warping architecture.

The main focus of this paper is the reduction of memory
usage in the input buffer. Instead of using a single line buffer, a
method is chosen which allows for adaptable line buffers for
different slices of the images (see section I1l) and allows the
postponing of a line read. The on-chip memory is a dual port
RAM which has separate read and write address inputs and a
four pixel window output (see Fig. 18).
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Fig. 18. Input buffer architecture.

The memory allocation LUT provides the write and read
address calculation blocks with information about the structure
of the memory. It is a list containing the memory blocks and
their linkage for each slice of the image (see Fig. 19). It also
contains information about when to switch from one memory
allocation to another and when to postpone reading of a pixel
line.

For each memory slice (e.g. left and right slice in Fig. 10) a
write address pointer is stored. In Fig. 20 this is denoted by the
array WR_addr, where the index nr indicates the current image
slice. Register a keeps track of the current horizontal position
with respect to the start of the image slice; when a equals the
width of the image slice, it jumps to the next slice.

( block nr  start size  nextpart )
1 1 30 1 ] First Image Part
2 31 30 3
3 61 30 4 Second Image Part
4 91 60 2
C nr total size  width ~ WR_addr  current_block )
S S
1 30 10
2 120 30

Changes during execution

Fig. 19. Memory allocation LUT.

Each memory slice can consist of one or more memory
blocks which are linked together. When WR_addr equals the
end of the current block, the WR_addr jumps to the next
memory block (or the start of its own block).

if (a > width(nr)), then a = 1; nr++; else a++;

if WR_addr(nr) >

size(current_block(nr))+ start(current_block(nr))

then current_block(nr) = next_block(current_block(nr));
WR_addr(nr) = start(current_block(nr));

else WR_addr(nr) ++;

mem(WR_addr(nr)) = lo(X,y);

Fig. 20. Main steps for the write address calculation

The read address is calculated from the memory allocation
LUT and the calculated reverse mapping coordinates. The first
step consists of determining in which image slice the warping
pixel is located (Fig. 21). This depends on the value of the
horizontal mapping and the current horizontal position with
regards to the start of the image slice (a). The RD_addr is
initially calculated from the assumption that each image slice
only contains one memory block, the relative_write_address is
the write address in this fictional memory block. Next the
vertical offset is subtracted. If the result is lower than zero, it is
subtracted from the total size of this fictional memory block.
The last part calculates the position of the RD_addr pointer in
the separate memory blocks using a mapping module.

if (horizontal_offset > a)
then nr_read = nr-1;
RD_addr = relative_write_address(nr_read) -
horizontal_offset + a;
else nr_read =nr;
RD_addr = relative_write_address(nr_read) -
horizontal_offset;

RD_addr = RD_addr - width(nr__ read)* vertical_offset
if RD_addr < 0, then RD_addr = RD_addr + slice_size(nr_ read);

RD_addr = mapping(RD_addr);
lw(x,y) = mem(RD_addr);

Fig. 21. Main steps for the read address calculation



Incorporation of the line read postponing function is
straightforward. On the start of each image line, it is checked if
its needs to be postponed or not. If yes, the read address
calculation module doesn’t do anything for this line. Notice
that the number of read lines will not be changed; every line
read that is postponed will add an extra line read at the end of
the frame. The reverse mapping coordinates do not need to be
modified online since they already have been modified off-line.

V. IMPLEMENTATION

Matlab has been used to generate and optimize the several
look-up tables. From the full warping coordinates, the best
memory architecture is chosen taken into consideration the
additional calculation steps of more complex architectures.

The architecture and methods presented in this paper have
been implemented on an FPGA system, based on an Altera
Cyclone 1V with 114,480 logic elements and 432 memory
blocks. The sources of the input stream are two cameras with a
resolution of 640x480 and a pixel clock of 16 MHz resulting in
a frame refresh rate of 52 Hz. The application chosen is the
rectification of two stereo streams. In this case, the proposed
memory buffer is an adaptive split circular buffer with line read
postponing.

The architecture has been constructed to reduce memory
usage. Hence there is no need for external memories. The
reduction of external memory usage has the additional
advantage that the latency between input frame and output
frame becomes minimal.

Table 1 shows the resource consumption of the main blocks
presented in this paper. The synthesis results are obtained using
Quartus 11 11.0 for an Altera Cyclone IV. Note that the
proposed buffer method reduces the memory usage
significantly (16% of available memory blocks) while just
using a small number of extra logic elements (1% of available
logic elements). Fig. 22 shows the results before and after the
warping module. It is clear that matching along the epipolar
line (white line) will be improved after rectification of both
cameras.

TABLEI
RESOURCE USAGE FOR THE RECTIFICATION OF A STEREO CAMERA
Logic Memory

Elements Blocks
Module Name # | Single Total | Single Total
e Circular Buffer 2 60| 120 75| 150

E5|0R

Proposed Buffer 2 840 | 1,680 40 80
g 2 LUT 2 0 0 20 40
g % Horizontal Interpolation |2| 428 | 856 21 42
* 2 Vertical Interpolation 2 428 | 856 21 42
Resampling 2 960 | 1,920 21 42
Total with Circular Buffer 3,732 316
Total with Proposed Buffer 5,312 246

V1. CONCLUSIONS

A real-time image warping module has been presented. The
main focus was the storage of the input stream before the pixels
are warped. The presented architecture uses an adaptable
memory allocation which can change the depth and the
position of the line buffer between lines. It is shown that
making use of this method reduces the memory usage in
several use-cases. The reverse mapping coordinates are stored
in a LUT and bilinear interpolation is used to get sub-pixel
accuracy.

In the case of stereo vision, the image warping module is
used to perform real-time rectification. A memory reduction of
approximately 50% is obtained compared to a common line
buffer implementation.

The architecture has been implemented in a field
programmable gate array (FPGA) without making use of
external memories.

Fig. 22. Image rectification results before (top) and after (bottom) warping
for a stereo camera.
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