
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Evaluation of Distribution of Panoramic Video Sequences in the

eXplorative Television Project

Peer-reviewed author version

QUAX, Peter; ISSARIS, Takis; VANMONTFORT, Wouter & LAMOTTE, Wim (2012)

Evaluation of Distribution of Panoramic Video Sequences in the eXplorative

Television Project. In: Proceedings of The 22nd ACM Workshop on Network and

Operating Systems Support for Digital Audio and Video NOSSDAV 2012.

DOI: 10.1145/2229087.2229100

Handle: http://hdl.handle.net/1942/14265

Evaluation of Distribution of Panoramic
Video Sequences in the eXplorative Television Project

Peter Quax Panagiotis Issaris Wouter Vanmontfort Wim Lamotte
Hasselt University / tUL / IBBT

Expertise Center for Digital Media
Wetenschapspark 2, 3590 Diepenbeek, Belgium

{peter.quax, takis.issaris, wouter.vanmontfort, wim.lamotte}@uhasselt.be

ABSTRACT
In this paper, a scalable solution is presented for distributing
panoramic video sequences to multiple viewers at high reso-
lution and quality levels. In contrast to traditional broadcast
scenarios, panoramic video enables the content consumer to
manipulate the camera view direction and viewport size.
By segmenting the panoramic input video into a set of sep-
arate sequences, transporting them over standard delivery
channels and recombining them at end user side, bandwidth
utilization is optimized and the quality of the video that is
visualized is increased. The proposed solution, called the
segmentation approach, is thoroughly explained and evalu-
ated versus a single-stream solution with regards to several
metrics, including bandwidth utilization, encoding speed,
objective quality levels and seeking performance.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous

Keywords
Distributed Video Coding, Evaluation

1 Introduction and related work
One of the goals of the eXplorative Television project [4]
is to design and evaluate an architecture that is capable
of distributing and visualizing panoramic video content on
relatively low-end hardware, such as-top boxes and tablet
devices. At the same time, the solution should be designed
in such a way that the existing distribution infrastructure
(consisting mainly of clusters of web servers and a complete
end-to-end IP delivery chain) can be utilized and that the
load on this back-end (in terms of bandwidth and encoding
capabilities) is in line with standard HD transmissions. For
capturing panoramic or omni-directional video, either off-
the-shelf or custom-built hardware can be used. The output
of this stage is a sequence of six or more streams that are to
be recorded and (possibly in post-production) stitched to-
gether to form a single 360-degree view on the action. Users
are able to interact with the video sequences through control
over a virtual camera, of which the view direction and zoom

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
NOSSDAV’12, June 7–8, 2012, Toronto, Ontario, Canada.
Copyright 2012 ACM 978-1-4503-1430-5/12/06 ...$10.00.

Figure 1: Example of a panoramic frame generated
by the capturing process

factor can be adjusted on the fly. This is fundamentally
different from traditional video broadcasts, where a director
pre-determines the camera direction and field-of-view. What
is specific to the xTV project is that the captured content
is to be delivered to the end user in the highest resolution
and quality possible, utilizing all camera capabilities avail-
able at recording side. To make the solution as generically
applicable and future-proof as possible, the architecture was
designed to be independent of the codec, container and de-
livery protocol used.

The European Commission is funding research in its 7th
Framework Programme on ICT on panoramic video, e.g.
through the FascinatE and FinE projects (no relationship
to the results presented here). Traditionally, the technology
has been used for the generation of user controllable still im-
age panoramas. Prime examples of this are QuickTime VR
[2], MotionVR[6] and Google StreetView. However, the fact
that only still images are supported in low resolutions and
- for the former two- their non-optimized way of transmit-
ting data (they essentially transport the entire 360 degree
panorama to each user, regardless of viewing angle) limits
their usage possibilities. Other existing (commercial) solu-
tions utilize a single camera to capture the scene and com-
press the resulting sequence into a low resolution output
stream [5]

The Panocast [9] system and derived PanoMobi solution
utilize a spherical video recording as a background to in-
crease the feeling of presence when virtual humans (avatars)
are presented to a user. In their solution, the authors cap-
ture and process the spherical image to a single image, out
of which several viewports are ‘cut’ at run-time, enhanced
with 3D graphics (e.g. the avatar and other objects) and

encoded using standard toolchains. As these stages are to
be done separately for each user, the system is only capa-
ble of handling about 10-15 users on a single server and
the output resolution is low. The authors of [3] propose
to use an MPEG-7 description to more efficiently compress
and distribute panoramic videos. However, the solution pro-
posed does not take into account real-time video streams,
but rather image sequences that are updated from time to
time. Besides this, the entire panoramic sequence (includ-
ing all still images) is transmitted as a JPEG(2000) still,
making it non-suitable for distribution to large groups of
viewers. Automated stitching of images is also included in
the solution, but is out of scope for this discussion.

The authors of [1] present pre-processing optimizations
to make H.264 codecs better at handling omni-directional
video sequences. By performing image warping and resam-
pling, the images are aligned in such a way that intra/inter
prediction becomes more viable. There is however no atten-
tion paid to the actual transmission of these streams to end
users, therefore putting the paper outside of the focus of the
discussion. In [8], a system is presented that is able to select
viewports from a panoramic video stream, called the Region
of Interest (RoI) by the authors. The system focuses on the
efficient detection of the whereabouts of the main actors in
a video sequence (e.g. a speaker during a lecture) in both
the compressed (using P-frame analysis) and uncompressed
domain (through feature tracking). However, the tracking is
not under direct control of the end user, but is controlled au-
tomatically through the system, thereby enabling the trans-
mission of the same video stream to all viewers. This is an
essential difference to the system proposed in this paper.

2 Approach
2.1 High level description
In this section, a novel technique is discussed that lowers the
requirements for both the back-end and the end user applica-
tion and is referred to as the ‘segmentation approach’ in the
remainder of this paper. To make the overall architecture
as generically applicable as possible, great care was taken
to ensure that the solution can make use of existing codecs,
containers and delivery mechanisms. This will, for example,
enable delivery to devices that have specific requirements in
terms of hardware capabilities (e.g. only a specific codec
profile that can be decoded using hardware support) or de-
livery using existing hardware/software in the back-end (e.g.
a commodity set of HTTP servers). As an example, the
main configuration used for testing the implementation was
a Motorola Xoom tablet with a Tegra2 chipset, using full
software decoding with FFmpeg (Baseline Profile), a stan-
dard Ubuntu installation with Apache2 on a low-end laptop
for the back-end and a 802.11G wireless network. The stages
of the pipeline are discussed separately for reasons of clar-
ity, in practice most of these are integrated into a single
processing flow to optimize the performance.

2.1.1 Stream preparation
First of all, it should be mentioned that the capturing and
processing of the frames is out of the scope of this paper.
What is to be delivered as input to the processing mechanism
is a set of still images, composed of a stitched projection of
multiple cameras. In the demonstration case, such images
are generated by a Point Grey Ladybug3 camera [7], but can
equally be obtained using a custom-developed setup. Typ-

ical resolutions for these input images are around 3840 by
2160 pixels (or 4 times Full-HD). An example is shown in fig-
ure 1. Higher resolutions are possible using custom camera
setups and have also been tested using the described ap-
proach but not included in this paper. Once the images are
fed into the pipeline, a mosaic is overlaid; segments are cut
out from the original sequence based on the boundaries in-
dicated by the mosaic. While the size of these segments can
be varied as desired (n.b. the complete frame height/width
divided by the segment size needs to be an integer num-
ber) , experiments have shown that a size of about 250 by
200 pixels provides good results for a normal viewport on a
panoramic sequence. The final viewports will, not surpris-
ingly, consist of a number of stitched segments. Available in
the back-end is a number of encoder instances that are con-
tinuously waiting for input from the segmentation process.
It is important to note that these encoders can work in paral-
lel, and that the process can easily be distributed across mul-
tiple machines, as each segment is independent of the others.

2.1.2 Stream encoding
Once delivered to the encoders, each segment is encoded
using off-the-shelf technology. As in most cases this con-
tent will be viewed on mobile devices such as tablets or on
low-end hardware such as set-top-boxes, the codec param-
eters need to be tweaked for optimal decoding afterwards.
Therefore, not all advanced (and often bandwidth-saving)
techniques may be utilized. In most cases, multiple versions
of the same sequence will be generated using varying codec
settings. The resulting encoded frames are encapsulated in
a container format for storage. The solution is also capable
of splitting the video stream into a sequence of fragments of
pre-determined duration (more details in the next section),
resulting in output that is fully compliant with the HTTP
live streaming specification.

2.1.3 Stream delivery
Although the proposed technique can make use of any deliv-
ery mechanism currently available, the focus in this paper is
on transmission using HTTP. There are several reasons for
this choice: first and foremost the ease through which this
can be integrated into existing systems in the back-end (us-
ing standard web server technology) and the lack of issues
with NAT and firewalls. Existing knowledge on web server
clustering can be leveraged to ensure the scalability of such
a solution. Another clear benefit is that existing CDN tech-
nology can be used to deliver content and HTTP proxies can
be used to cache contents, speed up delivery and lower the
overall requirements on the web server back-end. Two main
mechanisms for delivery over HTTP have been integrated
and will be discussed further in the evaluation section of this
paper: partial downloads of MKV/MP4 container formats
(as implemented in the libavformat toolset) and HTTP live
streaming (popular on Apple platforms, but also used in the
Android OS). Other container formats, such as NUT and
MPEG-TS (standard, not HTTP live encapsulated) have
also been investigated, but results are not included in the
discussion.

2.1.4 Stream decoding and visualization
At client-side, the software determines the size and location
of the (virtual) viewport on the entire omni-directional video
sequence. These parameters may be based on the processing
capabilities of the devices, but also on network parameters

24 25 26 27 28 29 30 31 32 33
quantization parameter (QP)

10

20

30

40

50

60

70

80

to
ta

lfi
le

si
ze

(m
eg

ab
yt

e)
SE 128x108
SE 256x216
SE 480x360
baseline

(a) File size comparison (200 frames)

24 25 26 27 28 29 30 31 32 33
quantization parameter (QP)

2

4

6

8

10

12

14

sp
ee

d
(F

P
S

)

SE 128x108
SE 256x216
SE 480x360
baseline 1
baseline 2

(b) Speed comparison (segment size)

24 25 26 27 28 29 30 31 32 33
quantization parameter (QP)

0

10

20

30

40

50

60

sp
ee

d
(F

P
S

)

SE 1 host
SE 2 hosts
SE 5 hosts
baseline

(c) Speed comparison (hosts)

Figure 2: Quantification of segmentation overhead

or just the available screen space. It is up to the software
to instruct the back-end to deliver the right segments, to
decode each of them, make sure that they are exactly syn-
chronized and subsequently visualize them in such a way
that boundaries between the segments become invisible. To
increase the interactivity of the application, segments at the
edges of the viewport may be pre-cached, even if not directly
needed for visualization.

3 Implementation and test results
3.1 Baseline for comparison
To obtain a baseline against which to compare the proposed
solution, the x264 implementation of the ITU-T H.264 /
MPEG-4 AVC codec standard was used to generate an en-
coding of the entire frame in its original resolution (3840 by
2160 pixels). This is similar to the way in which panoramic
sequences are delivered to end users in a previously devel-
oped solution; however in that case (for practical reasons)
the streams needed to be downsized to 1920x1080 resolution
before being encoded (resulting in viewports with very low
resolution and quality).

For the baseline condition, the H.264 codec parameters
were chosen in such a way that they are representative of
what the target hardware is typically capable of in terms
of decoding (either through hardware assistance or in soft-
ware). Although under most conditions, a full frame would
not be decodable or deliverable in real time due to its size,
the frames should intuitively be more easily and efficiently
compressed (vs the proposed segmentation approach) and
therefore provides a good baseline to compare against. As
test sequence for all conditions, a recording was used that
was made at the Arras Main Square Festival 2011, with a
Ladybug3 camera located on the front stage.

Performance tests on the back-end (encoding and distri-
bution) were run on a cluster of Dell Poweredge 2970 servers
that incorporated a Dual 2.3 GHz Quad-core AMD opteron
CPU and 8 GB of memory. To avoid any influence of disk
I/O delay (which, as a sidenote, is not to be underestimated
but not detailed here due to space constraints), the image
sequences were copied to a RAM disk before providing them
to the encoding software (where relevant).

3.2 Notes on quality and codec settings
To explain the choices made in the comparisons described
below, one should understand that it is not possible to tar-
get the codec towards a specific bit rate in the segmenta-

Parameter Value

H.264 Profile Main
Preset medium
Tune fastdecode
GOP size 16
Segment size 256x216
Number of frames 200

Table 1: Test conditions used in section 3.3

tion approach. To do so would result in segments that may
vary widely in visual quality. In case they are subsequently
stitched back together to form a single high-resolution im-
age, the outcome might look like a patchwork of individual
segments rather than a normal composed frame. Therefore,
the bitrate is allowed to vary freely, but the quality setting
(determined by the Quantification Parameter or QP) is kept
at a specific value. As stated in the introduction, one of the
main delivery targets are tablet devices, therefore the codec
parameters are adjusted to fit those conditions (e.g. not
all H.264 features are enabled and a lower profile is chosen,
simplifying the decoding process).

3.3 Overhead associated with segmentation
For the results presented in this section, the settings detailed
in table 1 were used unless otherwise noted.

When compared to the baseline condition (single encod-
ing of the entire sequence), there will clearly be an overhead
factor when cutting the sequence into segments and encod-
ing them individually. Intuitively, this is due to the fact that
motion vector ranges are limited to the segment sizes and
headers need to be duplicated for each segment. In figure
2(a), the total encoded (stored) file size for 200 frames is
shown for various QP settings and for various (representa-
tive) segment sizes using the settings as specified in table
1. When calculating the overhead percentage due to seg-
mentation versus the baseline, values of 3 to 8 percent are
obtained for large segments and 11 to 28 percent for very
small segment sizes. The most realistic conditions are ob-
tained using medium size segments (6 to 14 percent). Un-
surprisingly, the overhead is largest when considering very
small segments. Note also that for delivery, only a subset of
segments is required and not the entire file (as is the case
in the baseline condition), so this overhead mainly impacts
the storage infrastructure.

An additional overhead might be expected when compar-
ing the speed of the encoding. These results are presented in

24 25 26 27 28 29 30 31 32 33
quantization parameter (QP)

10

15

20

25

30

35

40

P
S

N
R

(d
B

)

max
avg
min
SE

(a) PSNR

24 25 26 27 28 29 30 31 32 33
quantization parameter (QP)

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
S

IM

max
avg
min
SE

(b) SSIM

Figure 3: Quality comparison

figure 2(b). In this chart, both baseline data series utilize the
same encoder : FFmpeg using libx264. The difference be-
tween them is that“baseline 1”represents (full) frames being
encoded in parallel using separate threads, while“baseline 2”
uses threads to encode slices in parallel (to reduce latency).
For both baseline conditions, the FFmpeg codec was allowed
to utilize all 8 available cores on the server. It can be seen
that even under the simplest condition, the proposed so-
lution provides better results. The segment size (and thus,
the total number of segments) is inversely related to the per-
formance. This is mainly due to the fact that the separate
codec instances can more easily be distributed over the CPU
cores versus the threaded approach in FFmpeg. However, as
the number of parallel encodings rises, the overhead due to
context switches increases as well. A thread pool as large as
the number of available cores is used in the implementation.

As stated before, the segmentation solution also paral-
lelizes easily over multiple hosts, as one can delegate encod-
ing of multiple segments to distinct machines. In case of
this test, this was done by subdividing the input sequence
into horizontal bands with a height that is a multiple of the
individual segment height. As all segments can be indepen-
dently encoded, these bands are transmitted to other hosts
in the cluster in order to be encoded. Results are presented
in figure 2(c). Note that a similar approach in case of a
single FFmpeg instance would be much harder to achieve,
as the encoding depends on information that may or may
not be available if the input sequence is split. Using 5 hosts,
real-time performance is easily achieved using high quality
settings (QP=24) and a segment size of 256 by 216 pixels.

3.4 Quality comparison
As the goal of the proposed solution is to provide the end
users with the highest possible quality under specific condi-
tions (bandwidth, CPU resources, screen space), it is vital to

Parameter Value

Segment size 256 x 216
Horizontal segments in viewport 4
Vertical segments in viewport 3
Number of frames 3454
Quantization parameter (QP) 25
Total sequence resolution 3840 x 2160
Total sequence file size HTTP Live 1012 MB
Total sequence file size MKV 759 MB
Total sequence file size MP4 758 MB

Table 2: Test conditions

compare the quality level that can be obtained with segmen-
tation versus the baseline. For these tests, bandwidth was
chosen as the main criterium, as the primary target for de-
ployment of the application is tablet devices. These devices
are practically incapable of decoding the sequence generated
by the baseline condition (3840 by 2160 pixels) in real-time,
thereby nullifying the usefulness of any comparison based on
processing power.

To achieve the results in the plot, several conditions were
compared. In the charts presented in figure 3, the SE line
denotes the PSNR or SSIM value calculated on the segmen-
tation approach. The reader is reminded that for the seg-
mentation approach, the QP is varied instead of using a
CBR approach. In practice, this means that the bandwidth
will vary over time and will depend on the actual contents
of the viewport of the user at any given time. An example
will be described using frames like figure 1 : under certain
conditions (e.g. the user is looking at a piece of the sky), the
segments can be compressed to a high degree and the bit rate
requirements will be (very) low. In other cases (e.g. looking
at the constantly moving crowd of a concert), there is a lot
of movement and compression will be relatively poor. As
the viewport typically contains multiple segments and the
viewport is subject to movement, conditions will average out
over time. In table 2, the viewport size is indicated for the
test scene in this section.

To compare the quality obtained by the segmentation ap-
proach versus the baseline, three bandwidth conditions were
chosen: one where compression of segments in the viewport
was the highest (cf. the above description, using the least
amount of bandwidth, therefore ‘min’), one where compres-
sion was lowest (highest bandwidth requirements, therefore
‘max’) and an average condition. The codec used in the
baseline condition was instructed to encode the full 3840 by
2160 pixel frames using target bandwidths equal to these val-
ues. Note that the x264 codec used in the baseline can do a
CBR encoding, as there is no risk of creating patches of dif-
ferent quality levels. It is very important to state again that,
when using the segmented approach, only the actual pixels
within the viewport need to be transferred (which is just a
fraction of the amount of pixels versus the entire frame in the
baseline), allowing the codec instances associated with the
segments to use more bits per pixel versus the single codec
baseline approach. This results in a higher image quality
for the segmented approach than can be obtained using the
baseline setup under the same bandwidth utilization condi-
tions. The effect is clear both using the PSNR and SSIM
metrics (see figures 3(a) and 3(b)).

0 50 100 150 200 250
time (s)

0

2

4

6

8

10

12

14

16

bi
tra

te
(M

bp
s)

(a) HTTP Live Streaming

0 50 100 150 200 250
time (s)

0

5

10

15

20

25

30

35

40

bi
tra

te
(M

bp
s)

(b) MKV over HTTP

0 50 100 150 200 250
time (s)

0

5

10

15

20

25

bi
tra

te
(M

bp
s)

(c) MP4 over HTTP

Figure 4: Bandwidth comparison

3.5 Bandwidth utilization
To clarify some of the results shown below, it is essential
to point out that the bandwidth evaluation was performed
on a non-restricted local area network. An abstraction from
the access network technology is required (wireless/wired
networks and WAN technologies), which is accomplished by
provisioning a high capacity back-end link for testing. The
only practical limitation is the buffer sizes allocated within
the software and the TCP/IP stack limitations (sender and/or
receiver buffer sizes). This approach will expose the differ-
ences in streaming strategies to the maximal extent possible.

Figure 4 shows results from a test run using the param-
eters detailed in table 2. Mean bandwidth figures are: 4.5
Mbps for HTTP live streaming (HLS), 3.6 Mbps for MP4
over HTTP and 3.5 Mbps for MKV over HTTP. However,
the way in which this bandwidth is consumed is fundamen-
tally different. This is due to the internal workings of the
different delivery mechanisms and will be explained in the
following paragraphs. Note that the results presented here
are different from a generic testing scenario of the streaming
technologies, as multiple streams are actually requested at
the same time (which is not normally the case).

In figure 4(a), the HTTP live delivery mechanism is used
(HLS). This technology requires video sequences to be cut
into pieces of equal duration. Most often, this duration is
kept short, to eliminate the need for long downloads. This
also facilitates seeking, as only the file containing the re-
quired frame (which can easily be tracked by matching the
timestamp vs the duration) needs to be downloaded. In
practice, the sequences in this case are 10 seconds long. The
list of files needed for a complete sequence is stored in an in-
dex file, which is also placed on the HTTP server. The spikes
in the bandwidth chart clearly show this behavior, as every
10 seconds a new file has to be downloaded. Note here that
the behavior is amplified by the fact that each 10 seconds, an
additional file is required for all 12 segments that make up
the viewport. Downloading finishes rather quickly, as buffers
are read by the program quite soon after the data arrives
(making room for more data to be delivered over TCP).

Figure 4(b) shows results from the same test run, using
the standard HTTP delivery method and the MKV con-
tainer. The standard delivery method does not require the
sequences to be cut into units of short duration; each seg-
ment is contained within a single .mkv file. If needed, the
delivery mechanism supports partial HTTP downloads, in
order to quickly obtain data e.g. in the middle of the se-

quence. An example would be if a seek operation to a future
time stamp was initiated in the software. For this test case,
the content was played back continuously and the feature
was therefore not needed. As can be seen, the behavior is
quite different from the HLS case. Here, the application re-
quests the entire MKV file for a specific segment and fills its
buffer to the maximum. Once enough data is obtained, the
buffer is flushed in its entirety to the application, which will
start decoding the frames within. Once additional frames
are required that are not yet within the buffer, the applica-
tion performs additional read operations and the buffer will
fill up again.

In contrast, the MP4 container, when used with the same
delivery mechanism, shows a completely different behavior
(see figure 4(c)). After filling the initial buffer, the appli-
cation will read only as much information as is needed for
a single frame to be decoded. The window size is then ad-
justed accordingly and the TCP throttling mechanism will
enable a relatively small amount of data to be delivered. It
should come as no surprise that the bandwidth chart here
shows a much smoother download characteristic (which may
or may not be desired).

3.6 Synchronization and seeking
To ensure perfect synchronization between the segments that
make up the final viewport to be rendered on the screen of
the end user, exact seeking within each stream is clearly
required. FFmpeg, the open source library containing the
most extensive set of codec and container format support
(used throughout the implementation of the proposed sys-
tem) provides generic methods for seeking. Unfortunately,
some of them are either completely broken, present unex-
pected or inconsistent results or consistently seek to the
wrong moment in time. Additionally, seeking methods are
implemented in such a way that they provide a pointer to
the closest I-frame - a solution that is fine for general use,
but not for frame-precise synchronization as required here.

To cope with these issues, the available seeking methods
have been extended to enable single-frame precision. First,
a rough seek operation is performed using the standard func-
tionality, after which the exact frame is retrieved by either
slowing down (in case a pointer is received to a ‘future’ I-
frame) or speeding up (‘past’ I-frame) the decoding process.
Although it is impossible to directly show the exact frame, at
least visualizing something in the same GOP will ensure that
the user is not presented with missing picture elements in the

0 200 400 600 800 1000 1200 1400 1600
seek time (µs)

0

50

100

150

200

250

300

co
un

t

(a) HTTP Live Streaming (HLS)

0 200 400 600 800 1000 1200 1400 1600
seek time (µs)

0

100

200

300

400

500

co
un

t

(b) MKV over HTTP

0 200 400 600 800 1000 1200 1400 1600
seek time (µs)

0

100

200

300

400

500

600

co
un

t

(c) MP4 over HTTP

Figure 5: Seeking speed comparison

visualization. By using the described technique, the exact
frame can be found and decoded quickly (typically within
a few milliseconds after discovery of the reference I-frame).
The work presented here also includes an implementation of
a seeking method to be used in HLS, something that was
not previously possible using standard FFmpeg functional-
ity. This functionality is now part of the official distribution.

Seeking is further sped up by indices in the container for-
mats, facilitating tracking the whereabouts of a specific I-
frame within the sequence (vs a complete binary search).

Figure 5 presents histograms showing the seeking speed
comparison between the various container formats. A set
of 1000 randomly selected time stamps was used within a
panoramic video sequence of 3.5 minutes, uniformly dis-
tributed over the duration of the file. The application was
instructed to do a seek operation to the nearest I-frame. In-
cluded in the duration was the time to retrieve the data from
the server and demultiplex the video frame where required;
decoding of the exact frame is left out of the equation.

Note that for HLS, the separate index file is used that de-
tails the different files that make up the entire sequence for
a segment (split into 10 second durations). Once the cor-
rect fragment is found and downloaded, the generic seeking
method is used within the 10 second fragment (direct seeking
cannot be performed due to the unavailability of an index
in the MPEG-TS container in FFmpeg). For the MKV and
MP4 containers, the integrated index is utilized.

The difference in seek times between the various methods
may be explained by the internal buffer sizes used by the
libavformat library. As figure 4 illustrates, FFmpeg’s behav-
ior varies greatly when utilizing different demultiplexers over
HTTP. For HLS, if the frame requested is within the current
fragment, seeking is near instantaneous. In the other meth-
ods, buffer sizes are markedly smaller and a partial HTTP
download is needed to first retrieve the requested data.

4 Conclusion and future work
In this paper, the segmentation approach was proposed as a
means to deliver panoramic video sequences to end users at
a resolution and quality level that is as close to the recorded
video material as possible. At the same time, attention
was paid to the integration of existing technologies, band-
width utilization, the performance in the back-end infras-
tructure (encoding and serving of the sequences) and inter-
activity levels (i.e. seeking speed). A thorough evaluation
has shown that the encoding performance is better than the

baseline approach, especially as the process can be easily
parallelized. The quality level that can be obtained under a
fixed bandwidth condition is increased markedly. Three dif-
ferent delivery mechanisms have been compared in terms of
their bandwidth utilization characteristics and seeking per-
formance. While MP4 over HTTP delivers the overall ‘best’
results, the availability of software in the back-end also has
to be taken into account (e.g. re-use of an HLS delivery
infrastructure for on-demand video).

Future work consists of a formal subjective quality com-
parison of various codec settings, as PSNR/SSIM metrics
may not yield realistic results for the specific type of video
sequences in the panoramic use case. Also, the implementa-
tion is to be tested on a larger scale in a living labs testbed.

5 Acknowledgments
Part of this work is funded by the IBBT ICON xTV Project.
The authors would like to thank Telenet and Androme NV
for creating the end user application.

6 References
[1] I. Bauermann, M. Mielke, and E. Steinbach. H.264 based

coding of omni-directional video. In Computer Vision
and Graphics, volume 32, pages 209–215. Springer, 2006.

[2] S. E. Chen. Quicktime vr: an image-based
approach to virtual environment navigation.
In Proceedings of SIGGRAPH’95, pages 29–38.

[3] A. Glowacz, M. Grega, P. Romaniak, M. Leszczuk,
Z. Papir, and I. Pardyka. Compression and
distribution of panoramic videos utilising mpeg-7-based
image registration. Springer MTAP, 40:321–339, 2008.

[4] IBBT xTV Project. http://www.ibbt.
be/en/projects/overview-projects/p/detail/xtv-2.

[5] Kogeto Dot. http://kogeto.com/dot.php.

[6] MotionVR Technology
Corporation. http://www.motionvrworldwide.com/.

[7] PointGrey Ladybug 3. http://www.ptgrey.com.

[8] X. Sun, J. Foote, D. Kimber, and B. S.
Manjunath. Panoramic video capturing and compressed
domain virtual camera control. In Proceedings
of ACM Multimedia 2001, pages 329–347. ACM.

[9] B. Takacs, A. Beregszaszi, and G. Komaromi-Meszaros.
Panocast: A panoramic multicasting system
for mobile entertainment. Information Visualisation,
International Conference on, 0:883–887, 2007.

