
Made available by Hasselt University Library in https://documentserver.uhasselt.be

Mining For Tree-Query Associations In A Graph

Peer-reviewed author version

HOEKX, Eveline & VAN DEN BUSSCHE, Jan (2006) Mining For Tree-Query

Associations In A Graph. In: Clifton, CW & Zhong, N & Liu, JM & Wah, BW & Wu,

XD (Ed.) Proceedings of the 6th IEEE International Conference on Data Mining

(ICDM 2006). p. 254-264..

DOI: 10.1109/ICDM.2006.107

Handle: http://hdl.handle.net/1942/1427

Mining for Tree-Query Associations in a Graph

Eveline Hoekx and Jan Van den Bussche
Hasselt University and transnational University of Limburg

Agoralaan D, 3590 Diepenbeek, Belgium
{eveline.hoekx, jan.vandenbussche}@uhasselt.be

Abstract

New applications of data mining, such as in biology,
bioinformatics, or sociology, are faced with large datasets
structured as graphs. We present an efficient algorithm for
mining associations between tree queries in a large graph.
Tree queries are powerful tree-shaped patterns featuring ex-
istential variables and data constants. Our algorithm ap-
plies the theory of conjunctive database queries to make the
generation of association rules efficient. We propose a prac-
tical, database-oriented implementation in SQL, and show
that the approach works in practice through experiments
on data about food webs, protein interactions, and citation
analysis.

1 Introduction

The problem of mining graph-structured data has re-
ceived considerable attention in recent years, as it has ap-
plications in such diverse areas as biology, the life sciences,
the World Wide Web, or social sciences. At KDD 2005,
we presented an efficient algorithm for mining tree queries
in a large graph [12], but we considered only a trivial form
of associations between such queries. In the present paper,
we present an efficient algorithm to mine fully fledged tree-
query associations in a large graph.

Tree queries are powerful tree-shaped patterns, inspired
by conjunctive database queries [28]. In comparison to
most other graph mining approaches, tree queries have two
powerful extra features in that they allow variables in the
pattern to be existential or parameterized. Existential vari-
ables must be matched in the graph just like any other
variable, but their different matchings are not counted as
contributing towards the overall frequency of the pattern.
So, only the matchings of the non-existential variables are
counted. Parameterized variables, on the other hand, can be
matched only by one specific data constant (node in the data
graph).

By mining for tree-query associations we can discover

quite subtle properties of the graph. Figure 1(a) shows a
very simple example of an association that our algorithm
might find in a social network: a graph of persons where
there is an edge x → y if x considers y to be a close friend.
The tree query on the left matches all pairs (x1, x2) of “co-
friends”: persons that are friends of a common person (rep-
resented by an existential variable). The query on the right
matches all co-friends x1 of person #5 (represented by a
parameterized variable), and pairs all those co-friends to 5.
Now were the association from the left to the right to be
discovered with a confidence of c, with 0 ≤ c ≤ 1, then
this would mean that the pairs retrieved by the right query
actually constitute a fraction of c of all pairs retrieved by the
left query, which indicates (for nonnegligible c) that 5 plays
a special role in the network.1

Figure 1(b) shows quite a different, but again simple, ex-
ample of a tree-query association that our algorithm might
discover in a food web: a graph of organisms, where there
is an edge x → y if y feeds on x. With confidence c, this
association means that of all organisms that are not on top
of the food chain (i.e., they are fed upon by some other or-
ganism), a fraction of c is actually at least two down in the
food chain.

The two examples we just saw are didactical examples,
but in Section 11 we will see examples of associations
mined in real-life datasets.

The three main features of our algorithm are the follow-
ing.

1. As in classical association rules over itemsets [3], our
association rule generation phase comes after the gen-
eration of frequent patterns and does not require ac-

1Note that this does not just mean that 5 has many co-friends; if we
only wanted to express that, just a frequent pattern in the form of the right
query would suffice. For instance, imagine a graph consisting of n disjoint
2-cliques (pairs of persons who have each other as a friend), where addi-
tionally all these persons also consider 5 to be an extra friend (but not vice
versa). In such a graph, 5 is a co-friend of everybody (except herself), and
the association has a rather high confidence of more than 2/7. If, however,
we would now add to the graph a separate n-clique, then still 2/3rds of all
persons are a co-friend of 5, which is still a lot, but the confidence drops to
below 2/n.

1

(x1, x2)
∃

x1 x2

⇒
(x1, 5)

∃
x1 5

(a)

(x)
x

∃
⇒

(x)
x

∃
∃

(b)

Figure 1. Simple examples of association
rules over tree queries.

cess to the original dataset. In our case, however, all
frequent tree queries are stored in structured form in a
relational database. The associations can be obtained
from this database in an automatic way using carefully
constructed, yet simple, SQL queries, as we will show.
For every potential association rule containing param-
eterized variables, one single SQL query retrieves, in
parallel, all possible instantiations of the parameters
by data constants that yield a confident association.
Thanks to this feature, it is easy to develop a very fast
association browsing tool.

2. We apply the theory of conjunctive database queries
[28] to formally define and to correctly generate as-
sociation rules over tree queries. The conjunctive-
query approach to pattern matching allows for an ef-
ficiently checkable notion of frequency, whereas in the
subgraph-based approach, determining whether a pat-
tern is frequent is NP-complete (in that approach the
frequency of a pattern is the maximal number of dis-
joint subgraphs isomorphic to the pattern [20]).

3. A fundamental notion in our approach is that of con-
tainment among conjunctive queries, which in general
is NP-complete, but which again is efficiently check-
able here, thanks to the restriction to tree shapes. This
not only allows us to generate associations efficiently,
but also to efficiently avoid the generation of dupli-
cates, i.e., associations equivalent to a previously gen-
erated association. We can actually solve only part
of the duplicate detection problem efficiently, but we
prove that the general problem is as hard as general
graph isomorphism, even under our restriction to tree
shapes.

The primary purpose of this paper is to present our al-
gorithm. Concrete applications to discover new knowledge

about scientific datasets are the topic of planned future re-
search. Yet, the algorithm is already fully implemented,
and we can already show that our approach works in prac-
tice, by showing some concrete results mined from a food
web, a protein interactions graph, and a citation graph. We
will also give performance results on random graphs (as a
worst-case scenario) which show that the generation of as-
sociations is very fast.

2 Related Work

Approaches to graph mining, especially mining for fre-
quent patterns or association rules, can be divided in two
major categories which are not to be confused. In trans-
actional graph mining, e.g., [8, 14, 15, 16, 19, 30, 31],
the dataset consists of many small graphs which we call
transactions, and the task is to discover patterns that oc-
cur at least once in a sufficient number of transactions.
(Approaches from machine learning or inductive logic pro-
gramming usually call the small graphs “examples” instead
of transactions.) In contrast, in single-graph mining, e.g.,
[7, 11, 17, 20, 29], the dataset is a single large graph, and
the task is to discover patterns that occur sufficiently often
in the dataset. Our approach falls squarely within the single-
graph category. Note that single-graph mining is more dif-
ficult than transactional mining, in the sense that transac-
tional graph mining can be simulated by single-graph min-
ing, but the converse is not obvious.

Within single-graph mining, not much previous work ex-
ists on association rules. Jeh and Widom [17] consider pat-
terns that are, like our tree queries, inspired by conjunctive
database queries, and they also emphasize the tree-shaped
case. A severe restriction, however, is that their patterns
can be matched by single nodes only, rather than by tuples
of nodes. Moreover, they mention association rules only in
passing. Their work is still interesting in that it presents a
rather nonstandard approach to graph mining, quite differ-
ent from our own incremental, levelwise approach, and in
that it incorporates ranking.

The related work that was most influential for us is
Warmr [8, 9]. Based on inductive logic programming, pat-
terns in Warmr also feature existential variables and param-
eters. While not restricted to tree shapes, the queries in
Warmr are restricted in another sense so that only trans-
actional mining can be supported. Association rules in
Warmr are defined in a naive manner through pattern exten-
sion, rather than being founded upon the theory of conjunc-
tive query containment. The Warmr system is also Prolog-
oriented, rather than database-oriented, which we believe is
fundamental to mining of single large graphs, and which
allows a more uniform and parallel treatment of parameter
instantiations, as we will show in this paper. Finally, Warmr
does not seriously attempt to avoid the generation of du-

2

plicates. Yet, Warmr remains a pathbreaking work, which
did not receive sufficient follow-up in the data mining com-
munity at large. We hope our present work represents an
improvement in this respect. Many of the improvements we
make to Warmr were already envisaged (but without con-
crete algorithms) in 2002 by Goethals and the second author
[13].

Finally, we note that parameterized conjunctive database
queries have been used in data mining quite early, e.g.,
[27, 26], but then in the setting of “data mining query lan-
guages”, where a single such query serves to specify a fam-
ily of patterns to be mined or queried for, rather than the
mining for such queries themselves, let alone associations
among them.

3 Mining for Association Rules over Tree
Queries

In this section we define the problem formally. We basi-
cally assume a set U of data constants from which the nodes
of the graph to be mined will be taken. Graphs are always
directed, so basically, for the purposes of the present paper,
a graph is simply a finite set of ordered pairs of elements
from U . We assume familiarity with the notion of a tree as
a special kind of graph, and with standard graph-theoretic
concepts as supplied by any algorithms textbook.

Tree Patterns A tree pattern P is a tree whose nodes are
called variables, and where additionally:

• Some variables may be marked as being existential;

• Some other variables may be marked as parameters;

• The variables of P that are neither existential nor pa-
rameters are called distinguished.

We will denote the set of existential variables by Π, and the
set of parameters by Σ. To make clear that these sets belong
to some tree pattern P we will use a subscript as in ΠP or
ΣP .

A parameter assignment α, for a tree pattern P , is a map-
ping Σ → U which assigns data constants to the parame-
ters.

An instantiated tree pattern is a pair (P, α), with P a tree
pattern and α a parameter assignment for P . We will also
denote this by P α.

When depicting tree patterns, existential nodes are indi-
cated by labeling them with the symbol ‘∃’ and parameters
are indicated by labeling them with the symbol ‘σ’. When
depicting instantiated tree patterns, parameters are indicated
by directly writing down their parameter assignment.

Figure 2 shows an illustration.

σ1

x

∃
σ2 σ2

(a)

0

x

∃
8 6

(b)

Figure 2. (a) is a tree pattern, and (b) is an
instantiation of (a).

Matching Recall that a homomorphism from a graph G1

to a graph G2 is a mapping f from the nodes of G1 to the
nodes of G2 that preserves edges, i.e., if (i, j) ∈ G1 then
(f(i), f(j)) ∈ G2. We now define a matching of an instan-
tiated tree pattern P α in a graph G as a homomorphism f
from the underlying tree of P to G, with the constraint that
for any parameter σ, if α(σ) = a, then f(σ) must be the
node a.

Frequency of a tree pattern The frequency of an instan-
tiated tree pattern P α in a graph G, is defined as the number
of matchings of P α in G, where we identify any two match-
ings that agree on the distinguished variables. For a given
threshold k (a natural number) we say that P α is k-frequent
if its frequency is at least k. Often the threshold is under-
stood implicitly, and then we talk simply about “frequent”
patterns and denote the threshold by minsup.

Tree Queries A tree query Q is a pair (H, P) where:

1. P is a tree pattern, called the body of Q;

2. H is a tuple of distinguished variables and parameters
coming from P . All distinguished variables of P must
appear at least once in H . We call H the head of Q.

A parameter assignment for Q is simply a parameter as-
signment for its body, and an instantiated tree query is then
again a pair (Q, α) with Q a tree query and α a parameter
assignment for Q. We will again also denote this by Qα.

When depicting tree queries, the head is given above a
horizontal line, and the body below it. Two illustrations are
given in Figure 3.

Containment of tree queries The final step towards our
formal definition of tree-query association is the notion of
containment among queries.

First, we define the answer set of an instantiated tree
query Qα, with Q = (H, P), in a graph G as follows:

Qα(G) := {f(H) | f is a matching of P α in G}

3

(x1, x2, x3)
0

x1

∃1

8

x2

∃2

x3

(a)

(x, x, 6)
0

x

∃
8 6

(b)

Figure 3. Simple examples of instantiated tree
queries. Query (b) is contained in query (a)

We then say that an instantiated tree query Qα2
2 is contained

in an instantiated tree query Qα1
1 , if Qα2

2 (G) ⊆ Qα1
1 (G)

for all graphs G. In shorthand notation we write this as
Qα2

2 ⊆ Qα1
1 .

Containment as just defined is a semantical property,
referring to all possible graphs, and it is not immediately
clear how one could decide this property syntactically. The
required syntactical notion for this is that of containment
mapping, which we next define in several steps. Con-
sider again two instantiated tree queries Qα1

1 and Qα2
2 , with

Qi = (Hi, Pi) for i = 1, 2.

1. A containment mapping from P1 to P2 is a homomor-
phism f from the underlying tree of P1 to the underly-
ing tree of P2, with the property that f maps the distin-
guished nodes of P1 to distinguished nodes or param-
eters of P2, and the parameters of P1 to parameters of
P2.

2. A containment mapping from P α1
1 to P α2

2 is a con-
tainment mapping f from P1 to P2 that respects the
parameter assignments, i.e., for any parameter σ of P1,
we have α2(f(σ)) = α1(σ).

3. Finally, a containment mapping from Qα1
1 to Qα2

2 is
a containment mapping f from P α1

1 to P α2
2 such that

f(H1) = H2.

A classical result [5, 28, 2] now states that Qα2
2 is con-

tained in Qα1
1 precisely when there exists a containment

mapping from Qα1
1 to Qα2

2 . Checking for a containment
mapping is evidently computable, and although the problem
for general database conjunctive queries is NP-complete,
our restriction to tree shapes allows for efficient checking,
as we will see later.

Example. Consider the instantiated tree queries shown in
Figure 3. In the example graph shown in Figure 4(a), the
frequency of query (a) is 10 and that of query (b) is 2. A
moment’s reflection should convince the reader that (b) is
contained in (a), and indeed a containment mapping from

0

2 3

5

6

1

8

4 79

(a)

0

2 3

5

6

1

8

4 79

(b)

Figure 4. Two graphs.

(a) to (b) can be found as follows: 0 �→ 0; x1 �→ x; x2 �→ x;
∃1 �→ ∃; ∃2 �→ ∃; 8 �→ 8; x3 �→ 6. For a good understand-
ing, note that were we to change the head of (b) to (x, x, 8),
then this new query (b) would still be contained in (a), be-
cause we can alternatively map x3 �→ 8 and still have a
containment mapping from the body of (a) to the body of
(b).

Association Rules A potential association rule (AR) is of
the form Qα1

1 ⇒ Qα2
2 , with Qα1

1 and Qα2
2 instantiated tree

queries. The AR is legal if Qα2
2 ⊆ Qα1

1 . We call Qα1
1 the

left-hand side (lhs), and Qα2
2 the right-hand side (rhs).

The confidence of the AR in a graph G is defined as the
frequency of the rhs in G, divided by the frequency of the
lhs in G. If the AR is legal, we know that the answer set
of the rhs is a subset of the answer set of the lhs, and hence
the confidence equals precisely the proportion that the rhs
answer set takes up in the lhs answer set. Thus, our notion
of legal AR and confidence is very intuitive and natural.

For a given threshold c (a rational number, 0 ≤ c ≤ 1)
we say that the AR is c-confident in G if its confidence in
G is at least c. Often the threshold is understood implicitly,
and then we talk simply about “confident” ARs and denote
the threshold by minconf.

Furthermore, the AR is called frequent in G if the body
of the rhs is frequent in G. Note that if the AR is legal and
frequent, then also the body of the lhs is frequent, since the
rhs is contained in the lhs.

Example. Continuing the previous example, we can see that
we can form a legal AR from the queries of Figure 3, with
(a) the lhs and (b) the rhs. The confidence of this AR in the

4

graph of Figure 4(a) is 2/10. Many more examples of ARs
are given in the next Section.

Association Rule Mining We are finally ready to formu-
late the problem we want to solve:

Input: A graph G; a threshold minsup; an instantiated tree
query (Qleft, αleft) that is frequent in G; a threshold
minconf.

Output: All instantiated tree queries Qα such that
Qαleft

left ⇒ Qα is a legal and confident association rule
in G.

In theory, however, there are infinitely many legal and
confident association rules for a fixed lhs, and even if we
set an upper bound on the size of the rhs, there may be ex-
ponentially many. Hence, in practice, we want an algorithm
that runs incrementally, and that can be stopped any time it
has run long enough or has produced enough results.

4 Problem Reduction

In this section, we show that it is not necessary to attack
the problem in its full generality. We will show that, without
loss of generality, we can focus on the case where the given
lhs query Qleft is “pure” in a sense that we will make precise.
We will also show that this restriction cannot be imposed
on the rhs queries to be output. We also make a remark
regarding “free constants” in the head of a query.

Pure tree queries To define this formally, assume that
all possible variables (nodes of tree patterns) have been ar-
ranged in some arbitrary but fixed order. We then call a
tree query Q = (H, P) pure when H consists of the enu-
meration, in order and without repetitions, of all the dis-
tinguished variables of P . In particular, H cannot contain
parameters. As an illustration, the lhs of rule (a) of Figure 3
is impure, while the lhs of rule (b) is pure.

An AR with an impure lhs can always be rewritten to an
equivalent AR with a pure lhs, with the same confidence and
frequency. Indeed, take a legal AR Qα1

1 ⇒ Qα2
2 , with Q1

not pure. We know that Q1’s head is mapped to Q2’s head
by some containment mapping. Hence, we can purify Q 1

by removing all constants and repetitions of distinguished
variables from Q1’s head, sort the head by the order on the
variables, and perform the corresponding actions on Q 2’s
head as prescribed by the containment mapping. An illus-
tration is given in Figure 5.

We can conclude that it is sufficient to only consider ARs
with pure lhs’s. The rhs, however, need not be pure; impure
rhs’s are in fact interesting, as we will demonstrate next.

(x1, x1, x2, 2)
2

x1

6 x2

⇒

(x, x, 8, 2)
2

x

6 8
(a)

(x1, x2)
2

x1

6 x2

⇒

(x, 8)
2

x

6 8
(b)

Figure 5. Rule (a) has a non-pure lhs. Rule (b)
is the purification of rule (a), and expresses
precisely the same information.

(x1, x2, x3)
x1

x2 x3

⇒
(x1, x2, x2)

x1

x2
(a)

(x1, x2)
x1

x2

⇒
(x1, 8)

x1

8
(b)

(x1)
x1

∃
⇒

(x1)
x1

8
(c)

Figure 6. (a) and (b) are ARs with impure rhs.
(c) is an ill-advised attempt to purify (b) on the
rhs.

(x1, x2)
x1

x2

⇒

(x1, x2)
x1

x2

∃
Figure 7. An AR with a pure rhs.

5

Impure rhs’s Consider the AR in Figure 6(a). The rhs
is impure since x2 appears twice in the head. The AR ex-
presses that a sufficient proportion of the matchings of the
lhs pattern, are also matchings of the rhs pattern, which is
the same as the lhs pattern except that x2 is equal to x3.
The confidence of this AR is m/

∑
x deg2 x, where m is

the number of edges, x ranges over the nodes in the graph,
and deg x is the outdegree of (number of edges leaving) x.
Since m =

∑
x deg x, an easy calculation shows that this

confidence is much larger than 1/m. Hence, the sparser the
graph (with the number of nodes remaining the same), the
higher the confidence, and thus the AR is interesting in that
it tells us something about the sparsity of the graph. As an
illustration, on the graph of Figure 4(a) the confidence is
0.4, but on the the graph of Figure 4(b), it is 0.6.

Also consider the AR in Figure 6(b). Again the rhs is
impure since its head contains a parameter. With confidence
c, the AR expresses that a fraction of c of all edges point to
node 8, which again would be an interesting property of the
graph.

The knowledge expressed by the above two example
ARs cannot be expressed using ARs with pure rhs’s. To
illustrate, the AR of Figure 6(c) may at first seem equiva-
lent (and has a pure rhs) to that of Figure 6(b). On second
thought, however, it says nothing about the proportion of
edges pointing to 8, but only about the proportion of nodes
with an edge to 8.

Of course, we are not implying that ARs with pure rhs’s
are uninteresting. But all they can express are statements
about the proportion of matchings of the lhs that can be
specialized or extended to a matching of the rhs (another
example is in Figure 7, which says something about the
proportion of edges that can be extended); they cannot say
anything about the proportion of matchings of the lhs that
satisfy certain equalities in the distinguished variables.

Free Constants Most treatments of conjunctive database
queries [2, 28] allow arbitrary constants in the head. In our
treatment, a constant can only appear in the head as the
value of a parameter. This restriction is justified, since we
can show that for the sake of legal association rules among
conjunctive queries, constants appearing in the head but not
in the body do not buy us anything. We defer the easy argu-
ment (based on the existence of a containment mapping) to
the full paper.

5 Overall Approach

Given the inputs: G, Qαleft
left = ((Hleft, Pleft), αleft), and

minconf and minsup, an outline of our algorithm for the
association rule mining problem is that of four nested loops:

1. Generate, incrementally, all possible trees of increas-

ing sizes. Avoid trees that are isomorphic to previously
generated ones. The height of the generated trees must
be at least the height of the tree underlying P left. (When
enough trees have been generated, this loop can be ter-
minated.)

2. For each new generated tree T , generate all frequent
instantiated tree patterns P α based on that tree, in a
way that is “levelwise” in the sense of Mannila and
Toivonen [22].

3. For each tree pattern P , generate all containment map-
pings f from Pleft to P , ignoring parameter assign-
ments.

4. For each f , generate all instantiated tree queries Qα =
((f(Hleft), P), α) such that f : Qαleft

left → Qα respects
the parameter assignments; Qα is frequent; and the
confidence of Qαleft

left ⇒ Qα exceeds minconf. The gen-
eration of all these α’s happens in a parallel fashion.

This approach is complete, i.e., it will output everything
that must be output. In proof, consider a legal, frequent and
confident AR Qαleft

left ⇒ Qβ , with Q = (HQ, PQ). The tree
T is the underlying tree of PQ; the tree pattern P in loop 2 is
PQ; the containment mapping f in loop 3 is a containment
mapping from Qαleft

left to Qα; and α in loop 4 is β.
As to loop 1, it is already well known how to efficiently

generate all trees uniquely up to isomorphism, in increasing
number of nodes [6, 21, 25, 31]. We present loops 2, 3 and
4 in detail in Sections 6, 7 and 8.

The reader may wonder whether loop 3 cannot be or-
ganized in a levelwise fashion as well as loop 2. This is
not obvious, however, since any two queries of the form
((f1(Hleft), P), α) and ((f2(Hleft), P), α) have exactly the
same frequency, namely that of P α. Loop 4, however, is
levelwise because it is based on loop 2 which is levelwise.

In Section 9, we will show how our overall approach
must be refined so that the generation of equivalent asso-
ciation rules is avoided.

6 The levelwise generation of tree patterns

Loop 2 of our algorithm, the generation of all frequent
instantiated tree patterns P α based on a fixed tree, in a lev-
elwise fashion, has already been solved in our earlier work
[12]. We recall here the details that are needed further on. 2

The levelwise search is based on a natural specialization
relation that is suggested by an alternative notation for the
instantiated tree patterns under consideration. Concretely,

2We warn the reader that what we earlier called a “tree query” [12] is
here called an “instantiated tree pattern”; what we here call a “tree query”
was not yet studied in our earlier work.

6

since the underlying tree is fixed, any tree pattern is char-
acterized by two parameters: the set Π of existential nodes,
and the set Σ of parameters. Thus, an instantiated tree pat-
tern P α, with P = (Π, Σ) is completely characterized by
the triple (Π, Σ, α).

We now say that P α1
1 = (Π1, Σ1, α1) specializes P α2

2 =
(Π2, Σ2, α2) if Π1 ⊇ Π2; Σ1 ⊇ Σ2; and α1 agrees with α2

on Σ2. We also say that P α2
2 generalizes P α1

1 .
Clearly, if P α1

1 specializes P α2
2 , then the frequency

of P α1
1 is at most that of P α2

2 . Furthermore if Qα1
1 =

((H1, P1), α1) and Qα2
2 = ((H2, P2), α2) are instanti-

ated tree queries such that AR1: Qαleft
left ⇒ Qα1

1 and AR2:
Qαleft

left ⇒ Qα2
2 are legal ARs, then the confidence of AR1

will be at most that of AR2. So we can use this relation
to guide a levelwise search for the frequent and confident
association rules.

Our algorithm outputs the frequent patterns in the form
of frequency tables, which are defined as follows:

FreqTabΠ,Σ = {(α, k) | (Π, Σ, α) is frequent

with frequency k}

So, a frequency table FreqTabΠ,Σ contains all parameter as-
signments α for which P α, with P = (Π, Σ), is a frequent
instantiated tree pattern.

Technically, the table has columns for the different pa-
rameters, plus a column freq. Note that when Σ = ∅, i.e.,
P has no parameters, this is a single-column, single-row
table containing just the frequency of P . Of course in prac-
tice, all frequency tables for parameterless patterns can be
combined into a single table. All frequency tables are kept
in a relational database.

7 Generation of containment mappings

In this section, we discuss loop 3, the generation of all
containment mappings from P left to P . So, we need to solve
the following problem: Given two tree patterns P1 and P2,
find all containment mappings from P1 to P2.

Since the patterns are typically small, a naive algorithm
suffices. For a node x1 of P1 and a node x2 of P2, we
say that x1 “matches” x2 if there is a containment mapping
f from the subtree pattern of P1 rooted at x1 to the sub-
tree pattern of P2 rooted at x2 such that f(x1) = x2. In
a first phase, we determine for every node y of P2 sepa-
rately whether the root r of P1 matches y. While doing so,
we also determine for every other node x1 of P1, and ev-
ery node x2 below y at the same distance as x1 is from r,
whether x1 matches x2. We store all these boolean values
in a two-dimensional matrix.

This first phase compares every possible pair (x1, x2),
with x1 a node in P1 and x2 a node in P2, at most once.

Indeed, if x1 is at distance d from r, then x1 will be com-
pared to x2 only during the matching of r with the node y
that is d steps above x2 in P2 (if existing). We thus have
an O(n1 × n2) algorithm, where n1 (n2) is the number of
nodes in P1 (P2).

In a second phase, we output all containment mappings.
Initially, by a synchronous preorder traversal of P 1 and P2,
we map each node of P1 to the first matching node of P2.
In each subsequent step, we look for the last node x1 (in
preorder) of P1, currently matched to some node x2, with
the property that x1 can also be matched to a right sibling x3

of x2, and now map x1 to the first such x3. The mappings
of all nodes of P1 coming after x1 are reinitialized. Every
such step takes time that is linear in n1 and independent of
n2. Of course, the total number of different containment
mappings may well be exponential in n1.

We can thus easily generate all containment mappings
f from Pleft to P as required for loop 3 of our overall al-
gorithm. Note, however, that in loop 4 these mappings are
used to produce the head f(H left) of query Q. For Q to be
a legal query, this head must contain all distinguished vari-
ables of P . Hence, we only pass to loop 4 those f whose
image contains all distinguished variables of P .

8 Generation of parameter assignments

In loop 4, our task is the following. Given a contain-
ment mapping f : Pleft → P , generate all instantiated tree
queries Qα = ((f(Hleft), P), α) such that f : Qαleft

left → Qα

respects the parameter assignments; Qα is frequent; and the
confidence of Qαleft

left ⇒ Qα exceeds minconf.
Since Q = (f(Hleft), P) is determined, the only problem

is to generate the parameter assignments, α. This happens
in a parallel database-oriented fashion.

Indeed, recall from Section 6 that the frequency tables
for Pleft and P are available in a relational database. Our
crucial observation is that we can compute precisely the re-
quired set of parameter assignments α, together with the
frequency and confidence of the corresponding association
rules, by a single relational algebra expression.3 This ex-
pression has the following form:

πplist σ FreqTabP .freq
FreqTabPleft

.freq ≥minconf

(σθleft(FreqTabPleft
) �θ FreqTabP)

Here, π denotes projection, σ denotes selection, and � de-
notes join. The join condition θ, the selection condition θ left,
and the projection list plist are defined as follows. Let Σ left

be the set of parameters of Pleft. Then θ is the conjunction:
∧

σ∈Σleft

FreqTabPleft
.σ = FreqTabP .f(σ)

3The relational algebra is the basic query language for relational
databases; see any database textbook.

7

The selection condition θleft is defined as the conjunction:

∧

σ∈Σleft

FreqTabPleft
.σ = αleft(σ)

Furthermore, plist consists of all attributes P.σ, with
σ ∈ Σ, together with the attributes FreqTabP .freq and
FreqTabP .freq/FreqTabPleft

.freq.
Referring back to our overall algorithm (Section 5), we

thus generate, for each pattern P generated in loop 2 and
each containment mapping f in loop 3, all association rules
with the given Qαleft

left as lhs in parallel, by one relational
database query (which can be implemented by a simple
SQL select-statement).

Moreover, we now see that we not actually have to limit
ourselves to one given instantiation α left of Qleft! Indeed,
simply by omitting the selection σθleft on FreqTabPleft

, and
by adding the parameters of P left to the projection list, we
obtain in parallel all legal and confident association rules
for all possible instantiations of Qleft as lhs.

Example. Consider Qleft and P as shown in Figures 8(a) and
Figure 8(b). We have Σleft = {x1, x4} and Πleft = {x3, x6},
and ΣP = {x1, x4, x5} and ΠP = {x3}. Take the fol-
lowing containment mapping f from P left to P : x1 �→ x1;
x2 �→ x2; x3 �→ x3; x4 �→ x4; x5 �→ x2; x6 �→ x3;
x7 �→ x4. Then the rhs query Q equals ((x2, x2, σ4), P),
and the relational algebra expression for computing all pa-
rameter assignments α for all instantiations α left of Qleft

looks as follows:

πplist σ FreqTabP .freq
FreqTabPleft

.freq ≥minconf
(FreqTabPleft

�θ FreqTabP)

with plist equal to

FreqTabP .x1, FreqTabP .x4,FreqTabP .x5,
FreqTabP .freq, FreqTabP .freq/FreqTabPleft

.freq

and θ equal to

FreqTabP .x1 = FreqTabPleft
.x1

∧ FreqTabP .x4 = FreqTabPleft
.x4

In SQL, we get:

SELECT freqP.x1, freqP.x4,
freqP.x5, freqP.freq,
freqP.freq/freqQleft.freq

FROM freqP, freqQleft
WHERE freqQleft.x1= freqP.x1

AND freqQleft.x4=freqP.x4
AND freqP.freq/freqQleft.freq >= minconf

(x2, x5, x7)
σ1

x2

∃
σ4

x5

∃
x7

(a)

σ1

x2

∃
σ4 σ5

(b)

Figure 8. Example Qleft and P .

9 Equivalent association rules

In this section, we make a number of modifications to the
algorithm described so far, so as to avoid duplicate work on
equivalent queries.

From our previous work [12] we already know how
to make sure that the tree patterns that are generated in
loop 2 of the overall approach (Section 5) are never equiv-
alent to a previously generated one. Thus, we can focus
on ARs AR1: Qleft ⇒ Q1 and AR2: Qleft ⇒ Q2, with
Q1 = (f1(Hleft), P) and Q2 = (f2(Hleft), P) and f1 and
f2 containment mappings from P left to P , and we want to
know when these two ARs are equivalent.

A tricky example of two ARs that convey precisely the
same information and should thus be considered equivalent,
is shown in Figure 9. We formalize equivalence as fol-
lows: the structures (Pleft, P, f1) and (Pleft, P, f2) are iso-
morphic. Specifically, there must exist isomorphisms (ac-
tually automorphisms) g : Pleft → Pleft and h : P → P
such that f2 ◦ g = h ◦ f1. In the figure, where f1 (for
(a)) and f2 (for (b)) can be read out from the heads of the
rhs’s, h swaps x2 and x3, and g is the cyclic permutation
x2 �→ x3 �→ x4 �→ x2.

So, using graph isomorphism (to be precise, edge-
colored graph isomorphism, where we use different colors
for the edges in Pleft, the edges in P , and the pairs in f1

or f2), we can test for equivalence. Since our patterns are
not very large, fast heuristics for graph isomorphism can be
used [23]. This works well in practice, but theoretically this
situation is not entirely satisfying, as graph isomorphism is
not known to be efficiently (polynomial-time) solvable in
general. By a reduction from the isomorphism problem for
bipartite graphs, we can actually show that isomorphism of
our structures is really as hard as the general graph isomor-
phism problem (proof deferred to the full paper). But as we
show next, we can still capture an important special case
in polynomial time, so that the general graph isomorphism
heuristics only have to be applied on instances not captured
by the special case.

The special efficient case is to check whether
(Pleft, P, f1) and (Pleft, P, f2) are already isomorphic with g

8

(x1, x2, x3, x4)
x1

x2 x3 x4

⇒
(x1, x2, x2, x3)

x1

x2 x3

(a)

(x1, x2, x3, x4)
x1

x2 x3 x4

⇒
(x1, x2, x3, x3)

x1

x2 x3

(b)

Figure 9. Equivalent association rules.

the identity, i.e., whether the structures (P, f1) and (P, f2)
are already isomorphic. So, we look for an automorphism
h of P such that f2 = h ◦ f1. This can be solved efficiently
by a reduction to node-labeled tree isomorphism. As ex-
plained in Section 6, if we know the tree T underlying P ,
then P is characterized by the pair (Π, Σ), and thus (P, f)
is characterized by (Π, Σ, f). We can view this triple as a
labeling of T , as follows. We label every node y of P with a
triple (bΠ, bΣ, f−1(y)), where bΠ is a bit that is 1 iff y ∈ Π;
bΣ is a bit that is defined likewise; and f−1(y) is the set
of nodes of Pleft that are mapped by f to y. Then (P, f1)
and (P, f2) are isomorphic if and only if the correspond-
ing node-labeled trees are isomorphic, and the latter can be
checked in linear time using canonical ordering [4, 6].

We are now in a position to describe how our general
algorithm must be modified to avoid equivalent association
rules. There is only extra checking to be done in loop 3. For
each new containment mapping f from P left to P , we canon-
ize the corresponding node-labeled tree and we check if the
canonical form is identical to an earlier generated canonical
form; if so, f is dismissed. We can keep track of the canon-
ical forms seen so far efficiently using a trie data structure.
If the canonical form was not yet seen, we can either let f
through to loop 4, if the presence of duplicates in the output
is tolerable for the application at hand, or we can default
to an edge-colored graph isomorphism check with the con-
tainment mappings previously seen, to be absolutely sure
we will not generate a duplicate.

10 Browsing association rules, and
performance

As already explained in Section 6, in loop 2 we build up
a structured database containing all frequency tables for all
trees generated in loop 1. These two first loops should be re-
garding as a preprocessing step; once built up, the database
is an ideal platform for an interactive tool by which the user
can repeatedly specify lhs’s, after which the tool only needs

to run loops 3 and 4 to produce rhs’s that form an associa-
tion with the given lhs.

In a typical usage scenario, the user draws a tree shape,
marks some nodes as existential, marks some others as pa-
rameters, instantiates some parameters by constants, but
possibly also leaves some parameters open. The browser
then returns, by consulting the appropriate frequency ta-
ble in the database, all instantiations of the parameters that
make the pattern frequent, together with the frequency. The
user can then select one of these instantiations, set a min-
conf value, and ask the browser to return all rhs’s that form
a confident association with the selected pure tree query as
lhs. Also, instead of letting the browser return all associ-
ation rules, the user can already suggest a rhs by drawing
a tree shape, possibly with some nodes already marked as
parameter or existential, and let the browser return all rhs’s
of the prescribed form.

The preprocessing step, i.e., the building up of the
database with frequent patterns, is of course a hugely inten-
sive task, first because the large data graph must be accessed
intensively, and second because the number of frequent
patterns is huge. Nevertheless, in our previous work [12]
we already presented detailed experimental results showing
that this can be implemented with satisfactory performance.
Also, in scientific discovery applications it is no problem,
indeed typical, if a preprocessing step takes a few hours, as
long as after that the interactive exploration of association
rules can happen very fast.

And indeed, we found the actual generation of associa-
tion rules (i.e., loops 3 and 4) to be very fast. For instance,
Figure 10 shows the performance of generating association
rules for two different (absolute) values of minconf, against
a frequency table database built up for a random graph with
33 nodes and 113 edges, an absolute minsup of 25, and
all trees up to size 7. We see that associations are gener-
ated with constant overhead, i.e., in linear-output time. The
coefficient is larger for the larger minconf, because in this
experiment we have counted instantiated rhs’s, and per rhs
query less instantiations satisfy the confidence threshold for
larger such thresholds. Had we simply counted rhs’s regard-
less of the number of confident instantiations, the two lines
would have had the same slope.

The experiments were performed on a Pentium IV
(3.6GHz) architecture with 2GB of internal memory, run-
ning under Linux 2.6. The program was written in C++
with embedded SQL, with DB2 UDB 8.2 as the relational
database system.

11 Experimental results

While the application of our algorithm to serious scien-
tific data mining is planned future work, in this section, we
still report on some preliminary experiments performed us-

9

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 50000 100000 150000 200000 250000 300000 350000 400000

tim
e(

se
c)

#rules

minconf = 10
minconf = 30

Figure 10. Performance in terms of number of
discovered rules.

ing our prototype implementation applied to a food web, a
protein interactions graph, and a citation graph. These re-
sults show that our approach is workable.

For each dataset we built up a frequency table database
using the following parameters:

#nodes #edges minsup max tree size
food web 154 370 100 6
proteins 2114 4480 100 5
citations 2500 350000 100 4

The food web [24] comprises 154 organisms that live on
the Scotch Broom (a common kind of shrub). Here are two
associations we discovered:

(x1, x2, x3, x4, x5)
x1

x2

x3

x4

x5

45%
⇒

(0, x2, x3, x4, x5)
0

x2

x3

x4

x5

(x1, x2, x3, x4, x5)
x1

x2

x3

x4

x5

55%
⇒

(x1, x2, x3, x4, x5)
0

x1

x2

x3

x4

x5

Since 45% + 55% = 100%, these rules together say that
each path of length 5 either starts in 0, or one beneath 0.
This tells us that the depth of the food web equals 6. Con-
stant 0 turns out to denote the Scotch Broom itself, which is
the root of the food web.

Another rule we mined, just to give a rather arbitrary
example of the kind of rules we find with our algorithm,
is the following:

(x1, x2, x3, x4, x5)
x1

x2

x3

x4

x5

11%
⇒

(x1, x2, x4, x2, x5)
x1

x2

101 x4 x5

The protein interactions graph [18] comprises molecu-
lar interactions (symmetric) among 1870 proteins occurring
in the yeast Saccharomyces cervisae. We found the follow-
ing rule:

(x1, x2)
x1

x2

746

90%
⇒

(x1, x2)
x1

x2

746 376

This rule expresses that almost all interactions that link to
protein 746 also link to protein 376, which unveils a close
relationship between these two proteins.

The citation graph comes from the KDD cup 2003,
and contains around 2500 papers about high-energy physics
taken from arXiv.org, with around 350 000 citations among
these papers. One of the discovered rules is the following:

(x1, x2)
x1

∃
∃

x2

15%
⇒

(x1, x2)
x1

x2

9503124

10

This rule shows that paper 9503124 is an important paper.
In 15% of all “non-trivial” citations (meaning that the citing
paper cites at least one paper that also cites a paper), the
cited paper cites 9503124.

Acknowledgment

We thank Bart Goethals, Jan Hidders, and Dries Van
Dyck for fruitful discussions.

References

[1] Proceedings of the 2002 IEEE International Conference on
Data Mining (ICDM 2002), 9-12 December 2002, Maebashi
City, Japan. IEEE Computer Society Press, 2002.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of
Databases. Addison-Wesley, 1995.

[3] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and
A. Verkamo. Fast discovery of association rules. In Fayyad
et al. [10], pages 307–328.

[4] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analy-
sis of Computer Algorithms. Addison-Wesley, 1974.

[5] A. Chandra and P. Merlin. Optimal implementation of con-
junctive queries in relational data bases. In Proceedings 9th
ACM Symposium on the Theory of Computing, pages 77–90.
ACM Press, 1977.

[6] Y. Chi, Y. Yang, and R. R. Muntz. Canonical forms for la-
belled trees and their applications in frequent subtree min-
ing. Knowl. Inf. Syst., 8(2):203–234, 2005.

[7] D. Cook and L. Holder. Substructure discovery using min-
imum description length and background knowledge. Jour-
nal of Artificial Intelligence Research, 1:231–255, 1994.

[8] L. Dehaspe and H. Toivonen. Discovery of frequent Datalog
patterns. Data Mining and Knowledge Discovery, 3(1):7–
36, 1999.

[9] L. Dehaspe and H. Toivonen. Discovery of relational associ-
ation rules. In S. Dzeroski and N. Lavrac, editors, Relational
Data Mining, pages 189–212. Springer-Verlag, 2001.

[10] U. Fayyad, G. Piatetsky-Shapiro, P. Smyth, and R. Uthu-
rusamy, editors. Advances in Knowledge Discovery and
Data Mining. MIT Press, 1996.

[11] S. Ghazizadeh and S. Chawathe. SEuS: Structure extraction
using summaries. In S. Lange, K. Satoh, and C. Smith, ed-
itors, Discovery Science, volume 2534 of Lecture Notes in
Computer Science, pages 71–85. Springer, 2002.

[12] B. Goethals, E. Hoekx, and J. Van den Bussche. Min-
ing tree queries in a graph. In R. L. Grossman, R. Ba-
yardo, K. Bennett, and J. Vaidya, editors, Proceedings
of the Eleventh ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining., pages 61–69.
ACM, 2005.

[13] B. Goethals and J. Van den Bussche. Relational association
rules: getting warmer. In D. Hand, R. Bolton, and N. Adams,
editors, Proceedings of the ESF Exploratory Workshop on
Pattern Detection and Discovery in Data Mining, volume
2447 of LNCS, pages 125–139. Springer-Verlag, 2002.

[14] T. Horvath, J. Ramon, and S. Wrobel. Frequent subgraph
mining in outerplanar graphs. KDD 2006, to appear.

[15] J. Huan, W. Wang, and J. Prins. Efficient mining of fre-
quent subgraphs in the presence of isomorphism. In Pro-
ceedings of the 3rd IEEE International Conference on Data
Mining (ICDM 2003), pages 549–552. IEEE Computer So-
ciety Press, 2003.

[16] A. Inokuchi, T. Washio, and H. Motoda. An Apriori-based
algorithm for mining frequent substructures from graph
data. In D. Zighed, H. Komorowski, and J. Zytkow, editors,
PKDD, volume 1910 of Lecture Notes in Computer Science,
pages 13–23. Springer, 2000.

[17] G. Jeh and J. Widom. Mining the space of graph proper-
ties. In W. Kim, R. Kohavi, J. Gehrke, and W. DuMouchel,
editors, Proceedings of the Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Min-
ing, pages 187–196. ACM Press, 2004.

[18] H. Jeong, S. Mason, et al. Lethality and centrality in protein
networks. Nature, 411(3 May 2001).

[19] M. Kuramochi and G. Karypis. Frequent subgraph discov-
ery. In N. Cercone, T. Lin, and X. Wu, editors, Proceedings
of the 2001 IEEE International Conference on Data Min-
ing (ICDM 2001), pages 313–320. IEEE Computer Society
Press, 2001.

[20] M. Kuramochi and G. Karypis. Finding frequent patterns
in a large sparse graph. In M. Berry, U.Dayal, C.Kamath,
and D. Skillicorn, editors, Proceedings of the Fourth SIAM
International Conference on Data Mining. SIAM, 2004.

[21] G. Li and F. Ruskey. The advantages of forward thinking in
generating rooted and free trees. In Proceedings 10th Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 939–
940, 1999.

[22] H. Mannila and H. Toivonen. Levelwise search and bor-
ders of theories in knowledge discovery. Data Mining and
Knowledge Discovery, 1(3):241–258, 1997.

[23] B. D. McKay. Practical graph isomorphism. Congressus
Numerantium, 30:45–87, 1981.

[24] J. Memmott, N. Martinez, and J. Cohen. Predators, par-
asites and pathogens: species richness, trophic generality,
and body sizes in a natural food web. Journal of Animal
Ecology, 69:1–15, 2000.

[25] H. Scions. Placing trees in lexicographic order. In
D. Michie, editor, Machine Intelligence 3, pages 43–62. Ed-
inburgh University Press, 1968.

[26] W.-M. Shen, K. Ong, B. Mitbander, and C. Zaniolo. Meta-
queries for data mining. In Fayyad et al. [10], pages 375–
398.

[27] S. Tsur, J. Ullman, et al. Query flocks: A generaliza-
tion of association-rule mining. In Proceedings of the 1998
ACM SIGMOD International Conference on Management of
Data, volume 27:2 of SIGMOD Record, pages 1–12. ACM
Press, 1998.

[28] J. Ullman. Principles of Database and Knowledge-Base Sys-
tems, volume II. Computer Science Press, 1989.

[29] N. Vanetik, E. Gudes, and S. Shimony. Computing frequent
graph patterns from semistructured data. In Proceedings of
the 2002 IEEE International Conference on Data Mining
(ICDM 2002) [1], pages 458–465.

11

[30] X. Yan and J. Han. gSpan: Graph-based substructure pat-
tern mining. In Proceedings of the 2002 IEEE International
Conference on Data Mining (ICDM 2002) [1], pages 721–
724.

[31] M. Zaki. Efficiently mining frequent trees in a forest. In Pro-
ceedings of the Eighth ACM SIGKDD International Confer-
ence on Knowledge Discovery and Data Mining, pages 71–
80. ACM Press, 2002.

12

