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ABSTRACT 

We give a heuristic proof of the relation between the impact factor (IF) and the uncitedness 

factor (U), the fraction of the papers that are uncited: 
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
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This generalizes the proof of Hsu and Huang [Physica A 391, 2129-2134, 2012] who obtain 

the same result but based on the assumption of the validity of the Matthew-effect. This new 

informetric function opens the discussion on universal informetric laws, distribution 

dependent laws and parameter dependent laws of which examples from the informetrics 

literature are given. 
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Introduction 

Let us have a set of papers (e.g. papers in a journal). Then we can determine a fixed 

publication period and a fixed citation period where citations to the publications in the 

publication period are studied. Given these time periods we can determine the average 

number μ of citations per article (which is in fact a generalized impact factor - generalized 

because the publication and citation period are not specified). We can also study the fraction 

of uncited papers U.  

 

Here μ can vary between 0 and ∞ and U can vary between 0 and 1 (being a fraction). An 

intuitive idea tells us that μ is large if and only if U is small (close to 0) and that μ is small if 

and only if U is large (close to 1). In the next section we will prove the second assertion but 

we will present citation size-frequency distributions that contradicts the first assertion.  

 

Yet in van Leeuwen and Moed (2005) one shows by examples that both assertions on U and μ 

are true. There one studies the U(μ) functionality in a semi-logarithmic scale (logarithmic in 

μ), see also Egghe (2008, 2010). 

 

Further, in Hsu and Huang (2012), the following simple relation between μ and U is proved 

(heuristically) 

 

1

1
U





                                                                (1) 

 

The heuristic proof is based on the assumption of the Matthew effect (also called cumulative 

advantage or success-breeds-success – see e.g. Egghe (2005)): the more citations an article 

has, the larger the probability that this paper will receive a new citation. An outline of the 

simple heuristic proof is based on Hsu and Huang (2012) and on written communication 

between these authors and the present author and goes as follows. 

 

Denote by  f n  the fraction of papers with n citations  0n  . The Matthew effect is 

expressed by 
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where 0c   is a constant. Hence 
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implying 
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Expressing that 
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(see Gradshteyn and Ryzhik (1980), p.7, formulae 1 and 2 and since 1ce  ) yields 

 

 
1

1 1

n

f n


 

  
   

   
                                               (6) 

 

for 0,1,2,...n  . But  0U f . So (6) yields (1) by putting n=0. 
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Note that the above proof is heuristic since, in (2), the discrete 0,1,2,...n   is approximated 

by the continuous 0n  . Function (1) has the properties that  

 

lim 0U


                                                             (7) 

 

and that  

0
lim 1U


                                                            (8) 

 

In Hsu and Huang (2012), it is shown by examples that the convexly decreasing function (1) 

fits practical data very well. In the next section we present a heuristic proof of (1) which is not 

based on the Matthew principle, showing that (1) is a really universal informetric function. 

 

Based on this fact, we present in the third section a classification of several informetric 

functions (known in the literature) into universal functions, distribution dependent functions 

and parameter dependent functions. 

 

The paper closes with some concluding remarks. 

 

 

Study of the functional relation between   and U 

 

Let us have a general citation size-frequency function  f n , 0,1,2,...n  . Here  f n  

denotes the fraction of the papers which received 0,1,2,...n   citations (we do not specify the 

publication and citation periods since this is not important here). In general we have  

 

 
0

1
n

f n




                                                          (9) 
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0 1n n
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 

 

                                              (10) 
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   
1

0 1
n

U f f n




                                                (11) 

 

We have the following proposition.  

 

Proposition 1:  0   if and only if 1U   

 

By continuous heuristic extension:   is small if and only if U is large. 

 

Proof: 0   implies, by (10)  

 
1

0
n

nf n




  

 

So 

   
1 1
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 

 

     

 

So 

 
1

0
n

f n




  

 

and hence, by (11), 1U  . 

 

1U   implies, by (11)  

 
1

0
n

f n




  

 

Hence   0f n   for all 1,2,...n   

Hence 

 
1

0
n

nf n




   

□ 
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The next “assertion” is not true in general 

 

Assertion 1:    if and only if 0U  . 

 

By continuous heuristic extension:   is large if and only if U is small. 

 

Counterexample to Assertion 1. 

 

Take (Lotka’s law) 

 
C

f n
n

                                                                (12) 

 

with 2  for 1,2,...n   and  0 0f U   and where 0C  is chosen so that  

 

 
1

1
n

f n




  

 

Since 2  , we know that 

 

  1
1 1n n

C
nf n

n


 


 

      

 

This example shows that 0U  can occur together with   . 

 

An example where  can occur and where 0U   is given now. Let  0 0f U   and  

 

 
C

f n
n

  

 

for 1,2,...n   with 1 2   and where C is taken such that  

 

 
1

1
n

f n U




   



 8 

 

This can indeed be accomplished since 

 

1

1

n n





   

 

since 1 2  . But now we have  

  1
1 1n n

C
nf n

n


 


 

      

 

since 1 1   . 

 

Another example where    can occur where 0U   is given now (in continuous 

variables). 

 

Let  

 
 1

C
f n

n





                                                   (13) 

 

, 0C  , 1   for 0,1,2,...n   be the shifted Lotka distribution (cf. Egghe and Rousseau 

(2012a)). We have to take 

1C                                                          (14) 

 

in order to have 

 
0

1f n dn


                                                   (15) 

 

Then 

 
0

1

2
nf n dn





 
                                           (16) 

 

for 2  as is readily seen (see also Egghe and Rousseau (2012a)). 

 

The uncitedness factor U is approximated by 
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 
1

0
U f n dn   

 

11 2U                                                             (17) 

 

by (14). Using (16) we see that  

1
1 1


    

 

from which we derive from (17) that 

1
1

1
1

2

U



                                                           (18) 

 

We now see that U can never be 0. Its minimal value is for    (for  → 2): 
1

0
2

U   .  

 

Now we turn our attention to a heuristic proof of equation (1) 

 

Heuristic proof of (1):  

 

Let us have a set of T articles and their citations and let   be the average number of citations 

per article. Of course in such a general situation we cannot prove (1). Therefore, during this 

proof, we will make a logical assumption (see further). Let U be the fraction of articles with 0 

citations (hence the uncitedness factor as above). 

 

Now we add to each article one citation. Hence now U is the fraction of articles with 1 

citation and in this system the average number of citations per article is 1  . Since there are 

T articles, the total number of citations is  1T    and they are spread out over T articles. 

Hence 

 
1

1 1

T

T  


 
                                                  (19) 

 

stands for the fraction of T representing 1 citation. By the above,  
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1

1
U





                                                       (20) 

 

completing this argument, assuming that the fraction of T representing 1 citation is also the 

fraction of articles with 1 citation (hence is the original fraction U of articles with 0 citations). 

 

Note that formula (20) satisfies Proposition 1 (as it should) but also Assertion 1 (which is not 

always satisfied). 

 

Formula (20) is a universal function, independent of any informetric distribution. This and 

related phenomena will be discussed in the next section. 

 

 

Universal and “semi-universal” laws in informetrics 

 

In this section we will generalise articles to “sources” and their citations to “items” so that we 

work with general information production processes (IPPs). 

 

As said above, formula (20) is a universal function, not dependent on any parameter. In Hsu 

and Huang (2012) it was proved (see the proof in the previous section) assuming the validity 

of the Matthew effect (or “Success-Breeds-Success” – see e.g. Egghe (2005)). In this paper 

we gave a heuristic (algebraic) proof without supposing any distribution. 

 

In the sequel we will consider the following “classification” of informetric laws. 

 

(I)       Universal laws, not dependent on any distribution or parameter, 

(II)       Universal laws, dependent on a distribution but not on the distribution’s 

parameters. We can call these “distribution dependent laws”. 

(III) Universal laws, dependent on the parameters of a distribution (and hence also of 

the distribution itself). We can call these “parameter dependent laws”. 

 

Several examples will be given. 
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Function (20), based on the proof of Hsu and Huang (2012) can be considered to belong to 

category (II) (since it depends on the exponential distribution (6)) but because of the heuristic 

proof given in this paper, it can be considered to belong to category (I). 

 

Let us denote by T the total number of sources and by A the total number of items in the IPP. 

In Chen and Leimkuhler (1989) we find the following function: 

 

ln
1

ln

T T

A A
                                                         (21) 

 

which is shown to be approximately true, independent of any distribution (see also Egghe 

(2005), p. 298-300 and Egghe (2007)). This approximate law hence belongs to category (I). 

 

In order to be able to continue, remark that Lotka’s law (12) (with 1  ) is equivalent with 

Zipf’s law 

 
B

g r
r

                                                         (22) 

 

with , 0B  . Here (22) is the continuous version of the number of items in the source on 

rank 1,...,r T . In this connection one has shown (see Egghe (2005)) that 

 

1

1






                                                        (23) 

 

a universal law, belonging to category (II) since it depends on an informetric distribution 

(Lotka and its equivalent Zipf). The formula (for 2  ) 

 

1

2

A

T







 


                                                (24) 

 

(Egghe (2005)) also belongs to category (II). The same goes for the formulae for percentiles 

in this Lotkaian framework (see Egghe (2009)). If we combine function (20) with (24) we 

obtain 
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2

2 3
U









                                                          (25) 

 

, also a universal law belonging to category (II) since it depends on the same laws of Lotka 

and Zipf. 

 

The “generalized 80/20-rule” 

1

y x                                                             (26) 

 

belongs to category (III) (here 100 x % of the most productive sources have 100 y % of the 

items) (see Egghe (2005)). 

 

Also the formula for the Hirsch-index h (Egghe and Rousseau (2006)) clearly belongs to 

category (III) since it depends on Lotka’s law and its parameters: 

 

1

h T                                                            (27) 

 

with 

1

C
T





                                                         (28) 

 

(Egghe (2005)). 

 

In Egghe, Liang and Rousseau (2009) and Egghe and Rousseau (2012b) we give relations 

between the h-index h and the impact factor IF. Supposing Lotka’s law (12) we show 

 

1

2 11
1

IF

IF

h C
IF



  
   

  
                                           (29) 

 

Since the parameter C is involved, this relation belongs to category (III). 

 

Supposing an exponential aging function 
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  tc t ca                                                            (30) 

 

for the number of received citations at time  0 1t a  and Lotka’s law for the number of 

papers with n citations, we proved in Egghe (2000) that cumulative first-citation distribution 

 1t  is  

   1
1

1 1
t

t a





                                                 (31) 

 

(here   is the fraction of ever cited papers), clearly belonging to category (III). Also the 

formulae on the Price-index dPI  (the fraction of references that are less than or equal to d 

years old) in Egghe (1997) belong to category (III). 

 

The remarkable formula of Naranan (1970) 

 

1

2

ln
1

ln

a

a
                                                          (32) 

 

where   is Lotka’s law and 1 1a   is the growth rate of the exponential growth of the sources 

and 2 1a   is the growth rate of the exponential growth of the items is a universal relation of 

category (II). 

 

Finally we consider Benford’s law 

 

  10

1
log 1P d

d

 
  

 
                                               (33) 

 

(see e.g. Benford (1938) and Egghe (2011)) being the probability to have the digit 

1,2,...,9d   as first digit in a number is derived from Zipf’s law (22) with 1   and hence 

belongs to category (II). The generalized law of Benford (Pietronero, Tosatti, Tosatti and 

Vespignani (2001), Nirgini and Miller (2007), Luque and Lacasa (2009) and Egghe and Guns 

(2012)) 
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    1 1

1

1
1

10 1
P d d d

 



 


  


                                 (34) 

 

is derived from the general law of Zipf (22) and contains its parameter  . Hence it belongs to 

category (III). 

 

 

Concluding remarks 

 

In this paper we studied the relation between the average number of citations per paper    

and the uncitedness factor  U , i.e. the fraction of uncited papers. We show that in general 

0   if and only if 1U   is true but that    if and only if 0U   is not true in general. 

 

Then we give a heuristic proof of the relation of Hsu and Huang (2012): 

 

1

1
U





                                                            (35) 

 

without supposing the Matthew effect (as they do). Hence the function (35), being 

independent of a distribution function and of parameters, is a universal law in informetrics. 

 

This finding gave us the idea of classifying informetric laws into three categories: 

 

(I)       Universal laws, not dependent on any distribution or parameter, 

(II)       Universal laws, dependent on a distribution but not on the distribution’s 

parameters, 

(III) Universal laws, dependent on the parameters of a distribution. 

 

We have classified several well-known informetric laws into these three categories and noted 

that there are very few laws belonging to category (I); most laws are belonging to category 

(III). 
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No doubt that there are other laws in informetrics that can be classified this way. This is left to 

the reader who is hereby invited to present his/her ideas on this matter with the present author. 
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