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ABSTRACT 

 

The central area indices and the central interval indices, as introduced in Dorta-González and 

Dorta-González, Scientometrics 88(3), 729-745, 2011, are studied from a theoretical point of 

view. They are defined in order to yield higher impact values of “selective” authors (i.e. 

authors with concentrated number of citations over their publications). 

 

We show that this property is not valid for every citation distribution. However, if Zipf’s law 

is adopted for the citation distribution, we can show that the central area indices and the 

central interval indices have indeed higher values for more selective authors. 
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Introduction 

 

The Hirsch index (or h-index) was introduced in Hirsch (2005) to measure the impact of a 

reasearcher’s papers by means of their received citations. If we rank the papers of this 

researcher in decreasing order of their received citations then this researcher has h-index h if 

r h  is the highest rank such that all the papers on ranks 1,2,...,h  have at least h citations. 

This index was then later applied to other units such as journals, institutes, topics,…. For this 

see the review paper Egghe (2010) and the many references therein. 

 

Also in Egghe (2010) (and references) the advantages and disadvantages of the h-index are 

described. One disadvantage is that, once a paper is in the h-core (i.e. once a paper belongs to 

the first h papers defining the h-index), it does not matter anymore how many citations this 

paper has received (as long as it is h or more). This has led researchers to define alternatives 

for the h-index that take more into account the actual number of citations to the most cited 

papers (e.g. the g-index (Egghe 2006)) and the R-index (Jin, Liang, Rousseau and Egghe 

(2007)). 

 

Another approach is to define areas under the citation curve (e.g. of a researcher) so that, for 

papers within this area, all citations to these papers are counted. This is the approach followed 

in Dorta-González and Dorta-González (2011). Their exact definitions are as follows. Order 

the papers (e.g. of a researcher) in decreasing order of the number of received citations. 

Denote by g(r) the number of citations to the paper on rank r and let h be the h-index of this 

researcher. Then the “Central Interval Index” (CII) of radius 1,..., 1j h   is defined as  

 

 
h j

j

r h j

I g r


 

                                                                      (1) 

 

The “Central Area Index” (CAI) of radius j is defined as  

 

     
1

h j

j

r h j

A h j g h j g r


  

                                                           (2) 
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also for 1,..., 1j h  . They are depicted in Figs. 1 and 2 for a convexly decreasing citation 

function g(r), in a continuous format. 

 

Fig. 1. The area under the curve g(r) for abscissae between h j  and h j  is the “Central 

Interval index” jI  of radius j. 

 

 

Fig. 2. The “Central Area Index” jA  of radius j  is jI  plus the area of the rectangle with 

abscissae in the interval  0,h j  and ordinates in the interval  0, g h j   . 
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If we let 1,... 1j h   in the discrete setting) increase, we include more papers and more 

citations to these papers than in the calculation of the h-index. It is claimed in Dorta-González 

and Dorta-González (2011) that, when comparing two researchers with the same h-index, the 

more selective researcher will receive the larger jI  and jA  values. What does this mean? 

 

First of all, since they have the same h-index, their citation curves,  1g r  and  2g r  intersect 

in the point (h,h) (by definition of the h-index) – see Fig. 3. 

 

Fig. 3. Intersecting citation curves (in (h,h)) and consequences for the jI  and jA  indices. 

 

As a consequence of this we have that one citation curve (say  1g r ) is above the other one 

(say  2g r ) for abscissae smaller than h while  1g r  is below  2g r  for abscissae larger 

than h. What consequences does this have on the calculation of the jI  and jA  indices for 

these two researchers? Denote by 
(1)

jI  and 
(2)

jI  the “Central Interval Indices” (CII) of 

researcher 1 and researcher 2 respectively and similarly we denote by 
(1)

jA  and 
(2)

jA  the 

“Central Area Indices” (CAI) of researcher 1 and researcher 2 respectively. Define (see Fig. 
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3) A to be the area between the two citation curves  1g r  and  2g r  for abscissae r between 

h and h+j ( 1,..., 1j h   fixed). Similarly define B to be the area between the two citation 

curves  1g r  and  2g r  for abscissae r between h-j and h. Finally define C to be the area of 

the rectangle where the coordinates are  ,x y  where x h j   and    2 1g h j y g h j    . 

 

Since  1g r  is above  2g r  for abscissae smaller than h and since  1g r  is below  2g r  for 

abscissae larger than h we have the following relations between (1)

jI  and (2)

jI  and between 

(1)

jA  and (2)

jA . 

 

   1 2

j jI I B A                                                          (3) 

   1 2

j jA A B A C                                                       (4) 

 

Due to the fact that one subtracts the value A it is not always so that 
   1 2

j jI I  and 

   1 2

j jA A , although this is implicitly assumed in Dorta-González and Dorta-González 

(2011) (see their Fig. 3, p. 734) and experimentally verified (in a heuristic way). This was 

exactly the reason for the introduction of the indices jI  and jA , complementing the h-index 

so that higher impact is given to more ‘selective” cases, i.e. where the citations are more 

concentrated in the highly cited papers. A counterexample, however, for 
   1 2

j jI I  and 

   1 2

j jA A  is given by, given a situation as in Fig. 3, leaving  1g r  and  2g r  for r h  and 

by moving  1g r  close to  2g r  for r h . In this way the areas B and C can be made as 

small as needed while letting the area A constant so that (3) and (4) yield 
   1 2

j jI I  and 

   1 2

j jA A . Note, however, that, in the definition of Dorta-González  and Dorta-González 

(2011), researcher 1 is more “selective” than researcher 2 since the citations to papers of 

researcher 1 are more concentrated in highly cited papers than is the case with researcher 2 

(since the citation curve  1g r  is above  2g r  for r h  and  1g r  is below  2g r  for 

r h ). 
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By the above counterexample, the CIIs jI  and the CAIs jA  do not give higher impact values 

to the more “selective” researchers. In terms of concentration theory (see e.g. Egghe (2005), 

Chapter III), the situation in Fig. 3 yields a more concentrated situation for researcher 1 in 

comparison with researcher 2: citations are more unequally distributed for researcher 1 in 

comparison with researcher 2. This would mean that, if we were constructing the Lorenz 

curves of these two researchers, the one of researcher 1 would be strictly above the Lorenz 

curve of researcher 2 (see Egghe (2005), Chapter III). 

 

Does this mean that the indices jI  and jA  are bad impact measures? Not necessarily: if we 

can prove that the jI s  and jA s  increase for more selective cases (e.g.  1g r  is more selective 

than  2g r  in Fig. 3) using citation curves that occur in practice  in informetrics, then we 

have proved that the indices jI  and jA  are good impact measures. The most classical 

informetrics theory is Lotkaian informetrics (see Egghe (2005), Chapters I, II). In this case we 

assume that the size-frequency curve  f j  is the law of Lotka (Lotka (1926)): a decreasing 

power law: denote by  f k  the number of papers (of a researcher) with k citations, then 

 

 
C

f k
k

                                                                (5) 

 

where 0C   and 1   are parameters and 1k   is the variable. This size-frequency function 

 f k  is equivalent with the rank-frequency function  g r  (as used above: the citation curve, 

i.e the number of citations to the paper on rank r ) by the following well-known proposition. 

 

Proposition 1 (Egghe):  

The following assertions are equivalent: 

 

(i) The size-frequency function  f k  is the law of Lotka 

 

 
C

f k
k

                                                              (5) 
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 0,C   1,   1,k   

(ii) The rank-frequency function  g r  is Zipf’s law 

 

 
B

g r
r

                                                              (6) 

0B  , 0  , 0 r T  , where T denotes the total number of papers. In addition, the 

parameters relate to each other as in (7), (8) and (9) 

 

1

C
T





                                                                 (7) 

 

1
1

1
1

1

C
B T







 

  
 

                                                     (8) 

 

1

1






                                                              (9) 

 

See Egghe (2005) (p. 134) or Egghe and Rousseau (2006), Appendix (p. 128-129) where a 

complete proof is given. 

 

We also need the following result on the h-index in case of Lotkaian systems (5). 

 

Proposition 2 (Egghe and Rousseau) 

 

Let us have a Lotkaian system as in (5). Then the h-index of this system is given by formula 

(10) 

 

1

h T                                                             (10) 

 

See Egghe and Rousseau (2006) for a proof (where also the above Proposition 1 is used). 

 

In the next section we will study the CIIs and CAIs in the case that  g r  is Zipf’s law. There 

we will show that, independent of the parameters in Zipf’s (or Lotka’s) law, we always have 
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that 
   1 2

j jI I  and 
   1 2

j jA A in case we have a situation as in Fig. 3. This shows that the 

CIIs and CAIs are useable impact measures (as shown in practise in Dorta-González and 

Dorta-González (2011)). 

 

 

The behavior of the CIIs and CAIs in case the 

citation curves are Zipfian 

 

We work in the continuous setting, i.e. where variables j, r are real numbers. 

 

In this setting the continuous versions of the definitions (1) of the CIIs and (2) of the CAIs are 

as follows. The “Central Interval Index” (CII) of radius j, 0 j h  , is defined as 

 

( )
h j

j
h j

I g r dr



                                                     (11) 

 

, where h is the h-index of the system. The “Central Area Index” (CAI) of radius j, 0 j h  , 

is defined as 

 

     
h j

j
h j

A h j g h j g r dr



                                       (12) 

 

   j jA h j g h j I                                               (13) 

 

These measures, of course, correspond with the graphical definitions in Figs. 1 and 2. We 

have the following proposition.  

 

Proposition 3:  

For all B, 0  , 1   we have, for all j such that 0 j h  : 

 

   
2 2

1 1 1
1

2
jI h h j h j

  
  





 
  

  
      

                               (14) 
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     

1

2 21
1 1 1

1

2
j

h
A h j h h j h j

h j

  
  





 
  

    
            

                (15) 

 

 

 

Proof:   

By (11) and (6) we have, for all j such that 0 j h  ,  

 

   

   

1 1

1 2 2
1 1 1

1

1

2

j

B
I h j h j

T h j h j

 

 
  







 

 
  

    
 

  
      

 

 

using (8) and (9). Using (10) this gives (14). Now we use (6) to yield 

 

     
 

B
h j g h j h j

h j


   


                                          (16) 

 

Using (8) and (9) yields that (16) equals 

 

 

1

1T
h j

h j

 
  

 
 

 

This, together with (10), (14) and (13) yields (15).                                                                   □ 

 

Now let us go back to the situation in Fig.3. Let us denote 

 

 
1

1
1

B
g r

r


                                                              (17) 

 

and 
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 
2

2
2

B
g r

r


                                                           (18) 

 

We have proved in Egghe (2011) that 
1 2  , hence, using (9) and denoting by 

1 , 2  the 

corresponding Lotka exponents, we have 1 2  . We want to show that (1) (2)

j jI I  and 

(1) (2)

j jA I , for all j, 0 j h  . In other words, we must show that jI  and jA  (in (14) and 

(15)) are decreasing functions of  . This will be proved now. 

 

Proposition 4:  

For all j, 0 j h  , the CIIs jI  and the CAIs jA  are decreasing functions of  . 

 

Proof:  

Note that in (14) and (15), h is constant, since the curves  1g r  and  2g r  intersect in the 

point (h,h) and hence that they have the same h-index. So in the calculation of the dependence 

of jI  and jA  of   in (14) and (15), we have to keep h constant (due to (10) this means that, 

if   increases, T must decrease in order to keep h constant). This makes it clear how to take 

the derivative of jI  and jA  with the respect to  , for all j 

 

  

       

   

       

1

2 2

1 1

2 2

1 1

2 2

1 1

1
' .

1 2

. ln ln

1

2

ln ln

j

j

dI
I h

d

h j h h j h

h j h j

h j h j h j h j





 

 

 

 

 

 

  







 

 

 

 

 

 

  
 


  



  
    

  

 
      
 

                        (19) 

 

(I) Let 2  . 

Then, by (19), we have to prove that 

 

   h j h j                                                       (20) 
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where  x  is defined as 

 

   
2 2 2

1 1 1
1

ln ln
2

x x h x x x
  

  





  

  


  


                                (21) 

 

It turns out that the function   is not increasing in in x. So we strictly have to prove 

(20). We denote 

 

h j h                                                             (22) 

 

with 0 1  . Hence 

 

 2h j h                                                        (23) 

 

and hence we must prove that  

 

    2h h                                                   (24) 

 

or 

 

   

     

2

1

2

1

1
ln ln

2

1
2 ln ln 2

2

h h h

h h h










 




 











 
   

 
      

 

 

or 

 

 

    

2

1

2

1

1
ln

2

1
2 ln 2

2

h

h










 




 











 
 

 

 
    

 

                                (25) 

 

It hence suffices (since  2h h    since 0 1  ) that the function 
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   
2

1
1

ln
2

h





   





 

  
 

                                         (26) 

 

increases in  . But 

 

     
2 2

1
1 1

2 1 1
' ln

1 2
h h h

 

 
 

    
  

 


 
  

   
  

 

 

   
2

1
1

2
' ln 0

1
h h






   






 

   
 

                            (27) 

 

since 2   and 0 1  . 

(II)  Let now 1 2   

Then, by (19), we have to prove that  

 

   h j h j     

 

with   as in (21) or, using (21) and (22) 

 

    2h h                                                (28) 

 

or (same argument as in (25)) 

 

      
22

11
1 1

ln 2 ln 2
2 2

h h



 

   
 




    

       
    

             (29) 

 

So now we have to show that (26) decreases in   (since  2h h    since 

0 1  ). But as in (27) 

 

   
2

1
1

2
' ln 0

1
h






   






 

   
 
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since 1 2   and 0 1  . This proves that CIIs jI  decrease in  . For the same 

result for the CAIs jA  it suffices to show that the function 

 

   

1

1h
h j

h j

 

 
 

   
 

                                              (30) 

 

decreases in   (for fixed h) (by (15) and the fact that  j jA I     and by the 

previous result). But 

 

 
 

1

1

1
1

1

1

1

1 1
' ln

1 ²

1 1
ln

1

1 1
ln ln

1 1

h h

h j h j h j

h
h h

h j h j

h h
h

h j h j

 

 


 

 




 








    
             

 
  

   

    
      

       

                      (31) 

 

But 

 

1

11
ln ln ln /

1

h h
h h

h j h j

  




 

               
 

                            (32) 

 

But h j h   so that 

 

1h
h

h j





 

 

and hence (32)>0 so that (31) is >0 and hence (by (31))    (and hence jA ) 

decreases in   (since 1  ). This completes the proof of Proposition 4.                    □ 
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Proposition 4 shows that in case of Fig.3, since in (17) and (18), 
1 2   (hence 

1 2  by 

(9)) that the jI  values and jA  values for  1g r  are larger than these values for  2g r  and 

hence the jI  and jA  values are higher in the more “selective” case (the curve  1g r ). These 

are theoretical justifications for the use of the CIIs jI  and the CAIs jA  as a complement to 

the h-index, as was meant in Dorta-González and Dorta-González (2011). 

 

 

Conclusions and remarks 

 

We have shown that the “Central Interval Indices” (CIIs) and the “Central Area Indices” 

(CAIs) do not always give higher impact values for more “selective” authors. However, if the 

citation curves follow the law of Zipf, then these indices give indeed higher impact values for 

more “selective” authors. In this sense, they are good complements to the h-index which is not 

the sensitive to highly cited papers.  

 

Since there are many CIIs and CAIs (dependent on the radius 1,..., 1j h  ) it is not easy to 

give interpretations to these values. Also, the calculation of these values is much more 

elaborate than the calculation of the h-index. 

 

Since if j increases, we include more and more citations to highly cited papers, it is interesting 

to further study this j-dependence, both theoretically and empirically. Still, if j h , we do not 

include the citations to the highest cited papers which can be considered as a disadvantage of 

these indices in comparison with e.g. the g-index and R-index. 
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