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Abstract. Non-Gaussian outcomes are often modeled using members of the
so-called exponential family. Notorious members are the Bernoulli model for
binary data, leading to logistic regression, and the Poisson model for count
data, leading to Poisson regression. Two of the main reasons for extending
this family are (1) the occurrence of overdispersion, meaning that the vari-
ability in the data is not adequately described by the models, which often
exhibit a prescribed mean–variance link, and (2) the accommodation of hier-
archical structure in the data, stemming from clustering in the data which, in
turn, may result from repeatedly measuring the outcome, for various mem-
bers of the same family, etc. The first issue is dealt with through a variety
of overdispersion models, such as, for example, the beta-binomial model for
grouped binary data and the negative-binomial model for counts. Clustering
is often accommodated through the inclusion of random subject-specific ef-
fects. Though not always, one conventionally assumes such random effects
to be normally distributed. While both of these phenomena may occur simul-
taneously, models combining them are uncommon. This paper proposes a
broad class of generalized linear models accommodating overdispersion and
clustering through two separate sets of random effects. We place particular
emphasis on so-called conjugate random effects at the level of the mean for
the first aspect and normal random effects embedded within the linear pre-
dictor for the second aspect, even though our family is more general. The
binary, count and time-to-event cases are given particular emphasis. Apart
from model formulation, we present an overview of estimation methods, and
then settle for maximum likelihood estimation with analytic–numerical in-
tegration. Implications for the derivation of marginal correlations functions
are discussed. The methodology is applied to data from a study in epileptic
seizures, a clinical trial in toenail infection named onychomycosis and sur-
vival data in children with asthma.
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1. INTRODUCTION

Next to continuous outcomes, binary and binomial
outcomes, counts and times to event take a promi-
nent place in applied modeling and the corresponding
methodological literature. It is common to place such
models within the generalized linear modeling (GLM)
framework (Nelder and Wedderburn, 1972; McCul-
lagh and Nelder, 1989; Agresti, 2002). This frame-
work allows one to restrict specification to first and
second moments only, on the one hand, or to fully for-
mulate distributional assumptions, on the other hand.
When the latter route is chosen, the exponential fam-
ily (McCullagh and Nelder, 1989) provides an ele-
gant and encompassing mathematical framework, be-
cause it has the normal, Bernoulli/binomial, Poisson
and Weibull/exponential models as prominent mem-
bers.

The elegance of the framework draws from certain
linearity properties of the log-likelihood function, pro-
ducing mathematically convenient score equations and
ultimately convenient-in-use inferential instruments,
both in terms of point and interval estimation as well
as for hypothesis testing.

Nevertheless, it has been clear for several decades,
for binomial, count and time-to-event data, that a key
feature of the GLM framework and many of the expo-
nential family members, the so-called mean–variance
relationship, may be overly restrictive. By this rela-
tionship, we indicate that the variance is a determin-
istic function of the mean. For example, for Bernoulli
outcomes with success probability μ = π , the vari-
ance is v(μ) = π(1 − π), for counts v(μ) = μ and for
the exponential model v(μ) = μ2. In contrast, for con-
tinuous, normally distributed outcomes, the mean and
variance are entirely separate parameters. While i.i.d.
binary data cannot contradict the mean–variance rela-
tionship, i.i.d. binomial data, counts and survival data
can. This explains why early work has been devoted
to formulating models that explicitly allow for overdis-
persion or, more generally, to proposing models that
enjoy less restrictive mean–variance relationships. For
purely binary data, hierarchies need to be present in the
data in order to violate the mean–variance link. One
such class of hierarchies is with repeated measures or
longitudinal data, where an outcome on a study sub-
ject is recorded repeatedly over time. With such mod-
els gaining momentum, not only for the Gaussian case
(Verbeke and Molenberghs, 2000), but also for non-
Gaussian data (Molenberghs and Verbeke, 2005), ex-

tensions of the GLM framework have been formulated.
For other types of outcomes, such hierarchical settings
further compound the issue of overly restrictive vari-
ance relationships. In all cases, hierarchies induce as-
sociation. These features taken together call for very
flexible models, doing proper justice to each of the
mean, variance and association structures.

Hinde and Demétrio (1998a, 1998b) provide broad
overviews of approaches for dealing with overdis-
persion, considering moment-based as well as full-
distribution avenues. Placing most emphasis on the
binomial and Poisson settings, they pay particular at-
tention to random-effects-based solutions to the prob-
lem, including but not limited to the beta-binomial
model (Skellam, 1948; Kleinman, 1973) for binary
and binomial data and with beta random effects, and
the negative-binomial model (Breslow, 1984; Lawless,
1987), where the natural parameter is assumed to fol-
low a gamma distribution. The said gamma distribution
also features in many so-called frailty models, that is,
specific random-effects models for time-to-event data
(Duchateau and Janssen, 2007). On the other hand, es-
pecially focusing on hierarchical data, the so-called
generalized linear mixed model (GLMM, Engel and
Keen, 1994; Breslow and Clayton, 1993; Wolfinger and
O’Connell, 1993) has gained popularity as a tool to
accommodate overdispersion and/or hierarchy-induced
association for outcomes that are not necessarily of
a Gaussian type, in spite of problems, not only of a
computational type, but also in terms of interpreta-
tion. These arise from the combination of general ex-
ponential family models with normally distributed ran-
dom effects. Unlike for Gaussian data, the derivation of
marginal moments and joint distributions is less than
straightforward, even though in this paper we make
progress beyond what is available in the literature. Part
of GLMMs popularity originates from the availability
of implementations in a variety of standard software
packages. Other solutions to accommodating overdis-
persion include mixture modeling and specific mod-
els for zero-inflated Poisson models (Ridout, Demétrio
and Hinde, 1998; Böhning, 2000; McLachlan and Peel,
2000).

Important unifying and computational progress has
been made by Lee and Nelder (1996, 2001a, 2001b,
2003) (see also Lee, Nelder and Pawitan, 2006) by
proposing so-called hierarchical generalized linear
models, offering a broad class of outcome and random-
effects distributions, combined with appealing compu-
tational schemes. Unification has also been reached by
Skrondal and Rabe-Hesketh (2004), who assemble un-
der the same roof a number of modeling strands, such
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as multilevel modeling, structural equations modeling,
latent variables, latent classes and random-effects mod-
els for longitudinal and otherwise hierarchical data.

In this paper we introduce a general and flexible
framework for such combinations, starting from arbi-
trary generalized linear models and exponential family
members. Specific emphasis is placed on normally dis-
tributed, binary, binomial, count and time-to-event out-
comes. There are various reasons to do so. First, non-
Gaussian hierarchical data exhibit three important fea-
tures: (1) the mean structure; (2) the variance structure;
and (3) the correlation structure. Our proposed frame-
work features: (a) a mean structure; (b) overdispersion,
often conjugate random-effects; (c) normal random ef-
fects. It will be clear from our case studies that model
fit can be improved, and hence model interpretation
changed, by shifting to the extended model. Second,
especially in cases where the variance and/or correla-
tion structures are of interest (e.g., surrogate marker
evaluation, psychometric evaluation, etc.), such exten-
sions are useful. Third, even when interest remains
with more conventional models, such as the GLMM,
the extended model can serve as a goodness-of-fit tool.
Fourth, because we can derive closed-form expressions
for both standard and extended models, the accuracy of
parameter estimation and resulting inferences can be
improved, while obviating the need for tedious numer-
ical integration techniques. Fifth, the analysis of the
case studies corroborates this need. Such needs were
recognized by Booth et al. (2003) and Molenberghs,
Verbeke and Demétrio (2007) who, in the context of
count data, formulated a model combining normal and
gamma random effects.

The paper is organized as follows. In Section 2 three
motivating case studies, with binary data, counts and
survival data, respectively, are described, with analyses
reported near the end of the manuscript, in Section 6.
Basic ingredients for our modeling framework, stan-
dard generalized linear models, extensions for overdis-
persion and the generalized linear mixed model, are the
subject of Section 3. The proposed, combined model
is described and further studied in Section 4. Avenues
for parameter estimation and ensuing inferences are ex-
plored in Section 5. There are several appendices. Sup-
plementary Material A offers generic approximations
for means and variances. Supplementary Material B–E
provide details for the Poisson case, the binary case
with logit link and the binary case with probit link,
and the time-to-event case, respectively. Implications
of our findings for the derivation of marginal correla-
tion functions are the topic of Section F in the Supple-
mentary Material.

2. CASE STUDIES

We will describe three case studies. The first one pro-
ducing count data, the second one with binary data, and
the third one of a time-to-event type.

2.1 A Clinical Trial in Epileptic Patients

The data considered here are obtained from a ran-
domized, double-blind, parallel group multi-center
study for the comparison of placebo with a new anti-
epileptic drug (AED), in combination with one or two
other AED’s. The study is described in full detail in
Faught et al. (1996). The randomization of epilepsy
patients took place after a 12-week baseline period
that served as a stabilization period for the use of
AED’s, and during which the number of seizures were
counted. After that period, 45 patients were assigned
to the placebo group and 44 to the active (new) treat-
ment group. Patients were then measured weekly. Pa-
tients were followed (double-blind) during 16 weeks,
after which they were entered into a long-term open-
extension study. Some patients were followed for up
to 27 weeks. The outcome of interest is the number of
epileptic seizures experienced during the most recent
week. The research question is whether or not the ad-
ditional new treatment reduces the number of epileptic
seizures.

2.2 A Casfe Study in Onychomycosis

These data come from a randomized, double-blind,
parallel group, multicenter study for the comparison
of two oral treatments (coded as A and B) for toe-
nail dermatophyte onychomycosis (TDO), described
in full detail by De Backer et al. (1996). TDO is a
common toenail infection, difficult to treat, affecting
more than 2 out of 100 persons (Roberts et al., 1992).
Anti-fungal compounds, classically used for treatment
of TDO, need to be taken until the whole nail has
grown out healthy. The development of new such com-
pounds, however, has reduced the treatment duration
to 3 months. The aim of the present study was to com-
pare the efficacy and safety of 12 weeks of continuous
therapy with treatment A or with treatment B . In to-
tal, 2 × 189 patients, distributed over 36 centers, were
randomized. Subjects were followed during 12 weeks
(3 months) of treatment and followed further, up to
a total of 48 weeks (12 months). Measurements were
taken at baseline, every month during treatment and
every 3 months afterward, resulting in a maximum of
7 measurements per subject. At the first occasion, the
treating physician indicates one of the affected toenails
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as the target nail, the nail which will be followed over
time. We will restrict our analyses to only those pa-
tients for which the target nail was one of the two big
toenails (146 and 148 subjects, in group A and group
B, respectively). One of the responses of interest was
the unaffected nail length, measured from the nail bed
to the infected part of the nail, which is always at the
free end of the nail, expressed in mm. This outcome has
been studied extensively in Verbeke and Molenberghs
(2000). Another important outcome in this study was
the severity of the infection, coded as 0 (not severe) or 1
(severe). The question of interest was whether the per-
centage of severe infections decreased over time, and
whether that evolution was different for the two treat-
ment groups.

2.3 Recurrent Asthma Attacks in Children

These data have been studied in Duchateau and
Janssen (2007). Asthma is occurring more and more
frequently in very young children (between 6 and
24 months). Therefore, a new application of an exist-
ing anti-allergic drug is administered to children who
are at higher risk to develop asthma in order to prevent
it. A prevention trial is set up with such children ran-
domized to placebo or drug, and the asthma events that
developed over time are recorded in a diary. Typically,
a patient has more than one asthma event. The different
events are thus clustered within a patient and ordered
in time. This ordering can be taken into account in the
model. The data are presented in calendar time format,
where the time at risk for a particular event is the time
from the end of the previous event (asthma attack) to
the start of the next event (start of the next asthma at-
tack). A particular patient has different periods at risk
during the total observation period which are separated
either by an asthmatic event that lasts one or more days
or by a period in which the patient was not under ob-
servation. The start and end of each such risk period
is required, together with the status indicator to denote
whether the end of the risk period corresponds to an
asthma attack or not.

3. REVIEW OF KEY INGREDIENTS

In Section 3.1 we will first describe the conven-
tional exponential family and generalized linear mod-
eling based on it. Section 3.2 is devoted to a brief re-
view of models for overdispersion. Section 3.3 focuses
on the normally distributed case.

3.1 Standard Generalized Linear Models

A random variable Y follows an exponential family
distribution if the density is of the form

f (y) ≡ f (y|η,φ)
(1)

= exp{φ−1[yη − ψ(η)] + c(y,φ)}
for a specific set of unknown parameters η and φ, and
for known functions ψ(·) and c(·, ·). Often, η and φ are
termed “natural parameter” (or “canonical parameter”)
and “dispersion parameter,” respectively.

It can easily be shown (Molenberghs and Verbeke,
2005) that the first two moments follow from the func-
tion ψ(·) as

E(Y ) = μ = ψ ′(η),(2)

Var(Y ) = σ 2 = φψ ′′(η).(3)

An important implication is that, in general, the mean
and variance are related through σ 2 =
φψ ′′[ψ ′−1(μ)] = φv(μ), with v(·) the so-called vari-
ance function, describing the mean–variance relation-
ship.

Key instances of the exponential family for normal,
binary, count and time-to-event data are listed in Ta-
ble 1, along with their exponential family elements.
The normal model is special, in particular, also be-
cause the overdispersion parameter is needed to al-
low for a variance other than unity. As a result, the
mean–variance relationship is absent for this model,
but present for all others. In the binary case, an al-
ternative to the Bernoulli model with logit link is
the probit model, where η = �−1(π) and �(·) is the
standard normal cumulative distribution function. Evi-
dently, this model is slightly less standard because the
probit model is not the natural link, as we will see in
Section 4.6, it has appeal in the overdispersed and/or
repeated contexts.

In the Weibull and exponential model, the decompo-
sition ϕ = λeμ is often employed, with notation as in
Table 1, allowing for μ to become a function of co-
variates. Evidently, here, while μ is a component of
the mean function, it is in itself not equal to the mean.
Note also that the Weibull model does not belong to
the exponential family in a conventional sense, unless
in a somewhat contrived fashion where y is replaced
by yρ . In the mean and variance expressions for the
Weibull (Table 1), �(·) represents the gamma function.

In some situations, for example, when quasi-likeli-
hood methods are employed (McCullagh and Nelder,
1989; Molenberghs and Verbeke, 2005), no full distri-
butional assumptions are made, but one rather restricts
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TABLE 1
Conventional exponential family members and extensions with conjugate random effects

Element Notation Continuous Binary Count Time to event

Standard univariate exponential family
Model Normal Bernoulli Poisson Exponential Weibull

Model f (y) 1
σ
√

2π
e−(y−μ)2/(2σ 2) πy(1 − π)1−y e−λλy

y! ϕe−ϕy ϕρyρ−1e−ϕyρ

Nat. param η μ ln[π/(1 − π)] lnλ −ϕ

Mean function ψ(η) η2/2 ln[1 + exp(η)] λ = exp(η) − ln(−η)

Norm. constant c(y,φ)
ln(2πφ)

2 − y2

2φ
0 − lny! 0

(Over)dispersion φ σ 2 1 1 1
Mean μ μ π λ ϕ−1 ϕ−1/ρ�(ρ−1 + 1)

Variance φv(μ) σ 2 π(1 − π) λ ϕ−2 ϕ−2/ρ [�(2ρ−1 + 1) − �(ρ−1 + 1)2]
Exponential family with conjugate random effects

Model Normal–normal Beta–binomial Negative-binomial Exponential–gamma Weibull–gamma

Hier. model f (y|θ) 1
σ
√

2π
e−(y−θ)2/(2σ 2) θy(1 − θ)1−y e−θ θy

y! ϕθe−ϕθy ϕθρyρ−1e−ϕθyρ

RE model f (θ) 1√
d
√

2π
e−(θ−μ)2/(2d) θα−1(1−θ)β−1

B(α,β)
θα−1e−θ/β

βα�(α)
θα−1e−θ/β

βα�(α)
θα−1e−θ/β

βα�(α)

Marg. model f (y) 1√
σ 2+d

√
2π

e−(y−μ)2/(2(σ 2+d)) (α + β)
�(α)

�(α+y)
�(β)

�(β+1−y)
�(α+y)
y!�(α)

(
β

β+1 )y( 1
β+1 )α

ϕαβ

(1+ϕβy)α+1
ϕρyρ−1αβ

(1+ϕβyρ)α+1

h(θ) θ ln[θ/(1 − θ)] ln(θ) −θ −θ

g(θ) − 1
2 θ2 − ln(1 − θ) θ − ln(θ)/ϕ − ln(θ)/ϕ

φ σ 2 1 1 1/ϕ 1/ϕ

γ 1/d α + β − 2 1/β ϕ(α − 1) ϕ(α − 1)

ψ μ α−1
α+β−2 β(α − 1) [βϕ(α − 1)]−1 [βϕ(α − 1)]−1

c(y,φ) − 1
2φy2 − 1

2 ln( 2π
φ ) 0 − ln(y!) ln(ϕ) ln(ϕρyρ−1)

c∗(γ,ψ) − 1
2γψ2 − 1

2 ln( 2π
γ ) − lnB(γψ + 1, (1 + γψ) lnγ

γ+ϕ
ϕ ln(γψ) − ln�(

γ+ϕ
ϕ )

γ+ϕ
ϕ ln(γψ) − ln�(

γ+ϕ
ϕ )

γ − ψγ + 1) − ln�(1 + γψ)

Mean E(Y ) μ α
α+β αβ [ϕ(α − 1)β]−1 �(α−ρ−1)�(ρ−1+1)

(ϕβ)1/ρ�(α)

Variance Var(Y ) σ 2 + d
αβ

(α+β)2 αβ(β + 1) α[ϕ2(α − 1)2(α − 2)β2]−1 1
ρ(ϕβ)2/ρ�(α)

[2�(α − 2ρ−1)�(2ρ−1)

− �(α−ρ−1)2�(ρ−1)2

ρ�(α)
]
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to specifying the first two moments (2) and (3). In such
an instance, the variance function v(μ) can be chosen
in accordance with a particular member of the expo-
nential family. If not, then parameters cannot be esti-
mated using maximum likelihood principles. Instead,
a set of estimating equations needs to be specified, the
solution of which is referred to as the quasi-likelihood
estimates.

In a regression context, where one wishes to ex-
plain variability between outcome values based on
measured covariate values, the model needs to incor-
porate covariates. This leads to so-called generalized
linear models. Let Y1, . . . , YN be a set of indepen-
dent outcomes, and let x1, . . . ,xN represent the cor-
responding p-dimensional vectors of covariate values.
It is assumed that all Yi have densities f (yi |ηi, φ),
which belong to the exponential family, but a differ-
ent natural parameter ηi is allowed per observation.
Specification of the generalized linear model is com-
pleted by modeling the means μi as functions of the
covariate values. More specifically, it is assumed that
μi = h(ηi) = h(x′

iξ), for a known function h(·), and
with ξ a vector of p fixed, unknown regression coef-
ficients. Usually, h−1(·) is called the link function. In
most applications, the so-called natural link function is
used, that is, h(·) = ψ ′(·), which is equivalent to as-
suming ηi = x′

iξ . Hence, it is assumed that the natural
parameter satisfies a linear regression model.

3.2 Overdispersion Models

It is clear from Table 1 that the standard Bernoulli,
Poisson and exponential models force the mean and
variance functions to depend on a single parameter.
However, comparing the sample average with the sam-
ple variance might already reveal in certain applica-
tions that this assumption is not in line with a particular
set of data, for count and time-to-event data, for exam-
ple. While this is one of the senses in which the binary
case is somewhat exceptional, because a set of i.i.d.
Bernoulli data cannot contradict the mean–variance re-
lationship, it would still hold for the related binomial
case, where the data take the form of ni successes out
of zi trials.

Therefore, a number of extensions have been pro-
posed, as briefly mentioned in the Introduction. Hinde
and Demétrio (1998a, 1998b) provide general treat-
ments of overdispersion. The Poisson case received
particular attention by Breslow (1984) and Lawless
(1987). Molenberghs and Verbeke (2005) mention
various model-based approaches that accommodate
overdispersion, including the beta-binomial model

(Skellam, 1948), the Bahadur model (1961), the mul-
tivariate probit model (Dale, 1986; Molenberghs and
Lesaffre, 1994) and certain versions of the generalized
linear mixed model (Breslow and Clayton, 1993). The
latter family will be studied in Section 3.3.

A straightforward and commonly encountered step
is to allow the overdispersion parameter φ �= 1, so
that (3) produces Var(Y ) = φv(μ). This is in line with
the moment-based approach mentioned in the previous
section, but can also be engendered by fully parametric
assumptions.

An elegant way forward is through a two-stage ap-
proach. For binary data, one would assume that Yi |πi ∼
Bernoulli(πi) and further that πi is a random variable
with E(πi) = μi and Var(πi) = σ 2

i . Using iterated ex-
pectations, it follows that

E(Yi) = E[E(Yi |πi)] = E(πi) = μi,

Var(Yi) = E[Var(Yi |πi)] + Var[E(Yi |πi)]
= E[πi(1 − πi)] + Var(πi)

= E(πi) − E(π2
i ) + E(π2

i ) − E(πi)
2

= μi(1 − μi),

underscoring that purely Bernoulli data are unable to
capture overdispersion.

Likewise, for the Poisson case, we assume that
Yi |ζi ∼ Poi(ζi) and then that ζi is a random variable
with E(ζi) = μi and Var(ζi) = σ 2

i . Also here then, it
follows that

E(Yi) = E[E(Yi |ζi)] = E(ζi) = μi,

Var(Yi) = E[Var(Yi |ζi)] + Var[E(Yi |ζi)]
= E(ζi) + Var(ζi) = μi + σ 2

i .

Note that we have not assumed a particular distribu-
tional form for the random effects πi and ζi , respec-
tively. Hence, this gives rise to a semi-parametric speci-
fication. Similar routes can be followed for other GLM,
too.

In case it is considered advantageous to make full
distributional assumptions about the random effects,
common choices are the beta distribution for πi and
the gamma distribution for ζi ; of course, these are not
the only ones.

Generally, the two-stage approach is made up of con-
sidering a distribution for the outcome, given a random
effect f (yi |θi) which, combined with a model for the
random effect, f (θi), produces the marginal model:

f (yi) =
∫

f (yi |θi)f (θi) dθi.(4)
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It is easy to extend this model to the case of re-
peated measurements. We then assume a hierarchical
data structure, where now Yij denotes the j th out-
come measured for cluster (subject) i, i = 1, . . . ,N ,
j = 1, . . . , ni and Yi is the ni -dimensional vector
of all measurements available for cluster i. In the
repeated-measures case, the scalar ζi becomes a vector
ζ i = (ζi1, . . . , ζini

)′, with E(ζ i ) = μi and Var(ζ i ) =
�i . For example, for the Poisson case, similar logic
as in the univariate case produces E(Yi ) = μi and
Var(Yi) = Mi + �i , where Mi is a diagonal matrix
with the vector μi along the diagonal. Note that a diag-
onal structure of Mi reflects the conditional indepen-
dence assumption: all dependence between measure-
ments on the same unit stems from the random effects.
Generally, a versatile class of models results. For ex-
ample, assuming that the components of ζ i are inde-
pendent, a pure overdispersion model follows, with-
out correlation between the repeated measures. On the
other hand, assuming ζij = ζi , that is, that all com-
ponents are equal, then Var(Yi ) = Mi + σ 2

i Jni
, where

Jni
is an (ni × ni)-dimensional matrix of ones. Such a

structure can be seen as a general version of compound
symmetry. Of course, one can also combine general
correlation structures between the components of ζ i .

Alternatively, this repeated version of the overdisper-
sion model can be combined with normal random ef-
fects in the linear predictor. This very specific choice,
proposed also by Thall and Vail (1990) and Dean
(1991), for the count case, will be the focus of the next
section.

General marginalization (4) may seem an elegant
and general principle, there is the issue of having to
decide which parameter to turn into a random one.
This is especially true if one considers the need to se-
lect an actual distributional form for the random ef-
fect. A noteworthy exception is, as always, the linear
mixed model, combining a normal hierarchical model
with a normal random effect. It forms the basis of the
two strands of random-effects models that are poten-
tially brought together in the combined models of Sec-
tion 4: on the one hand, normal random effects can
be considered with nonnormal outcomes, producing
the GLMM; on the other hand, gamma random effects
for the Poisson model, beta random effects with bino-
mial data and gamma random effects for the Weibull
model can be considered. This is, seemingly, a dis-
parate collection. However, they are bound together by
the property of conjugacy, in the sense of Cox and
Hinkley (1974), page 370, and Lee, Nelder and Paw-
itan (2006), page 178. The topic is also discussed by

Agresti (2002). Informally, conjugacy refers to the fact
that the hierarchical and random-effects densities have
similar algebraic forms. Conjugate distributions pro-
duce a general and closed-form solution for the cor-
responding marginal distribution.

We will first define conjugacy as is conventionally
done, that is, in models without the normal random ef-
fects and then, in Section 4, introduce a further prop-
erty, strong conjugacy, necessary for situations where
both normal and conventional conjugate random ef-
fects are present. To simplify notation, we will provide
the definition at a general distribution level, with nei-
ther subject- nor measurement-specific subscripts, so
that it can be applied to both univariate and longitudi-
nal data. The hierarchical and random-effects densities
are said to be conjugate if and only if they can be writ-
ten in the generic forms

f (y|θ) = exp{φ−1[yh(θ) − g(θ)] + c(y,φ)},(5)

f (θ) = exp{γ [ψh(θ) − g(θ)] + c∗(γ,ψ)},(6)

where g(θ) and h(θ) are functions, φ, γ and ψ are
parameters, and the additional functions c(y,φ) and
c∗(γ,ψ) are so-called normalizing constants. It can
then be shown, upon constructing the joint distribution
and then integrating over the random effect, that the
marginal model resulting from (5) and (6) equals

f (y) = exp
[
c(y,φ) + c∗(γ,ψ)

(7)

− c∗
(
φ−1 + γ,

φ−1y + γψ

φ−1 + γ

)]
.

Table 1 gives model elements, such as density or
probability mass functions, conditional on random ef-
fects and marginalized over these, as well as the ran-
dom effects distributions. For all models considered,
the constants and functions featuring in (5)–(6) are
listed, and finally marginal means and variances are
provided. For some models, these are well known
(Hinde and Demétrio, 1998a, 1998b) and/or easy to
derive. For the time-to-event models, a sketch can be
found in Appendix E. While there, the focus is on the
combined version of Section 4.8, the overdispersion
case considered here follows as a special case.

In the case of binary data, the model in Table 1 is
the familiar beta-binomial model. Note that the vari-
ance still obeys the usual Bernoulli variance structure.
This is entirely natural, given that we still focus on a
single binary outcome, in contrast to the more conven-
tional binomial basis model, where data of the format
“zi successes out ni trials” are considered. We do not
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consider this situation in this section, but rather leave it
to Section 4. In such a case, the variance structure be-
comes πi(1 − πi)[1 + ρi(ni − 1)], where ρi is a mea-
sure for correlation. All parameters, pi and ρi , can be
expressed in terms of αi and βi , “cluster-specific” ver-
sions of the beta parameters.

For count data, the familiar negative-binomial model
results. Unlike in the binary case, univariate counts are
able to violate the mean–variance relationship of the
Poisson distribution, hence the great popularity of this
and other types of models for overdispersion. The same
applies to the exponential distribution. Of course, al-
ready the Weibull model, with its extra parameter ρ,
alleviates the constraint.

The normal distribution case is a special one. Not
only is it self-conjugate, also the model is not iden-
tified, unlike all others. This is because both random
terms, seen from writing Yi = μi + bi + εi , are in di-
rect, linear relationship with each other. In the general-
ized linear context, the various random terms have no
direct linear alliance. The normal case will continue to
be “the odd one out” in models to come (Sections 3.3
and 4).

The parameters α and β in the beta and gamma dis-
tributions are not always jointly identified. It is there-
fore customary to impose restrictions, such as setting
one of them equal to a fixed value, for example, α = 1,
or constraining their mean or variance, etc. Such con-
straints operate differently, depending on other ele-
ments present in the models. For example, the presence
of additional random effects in a model for repeated
measures, such as in Section 4, alters the meaning and
restrictiveness of such constraints.

Recall that the models at the bottom part of Table 1
are not the only options, but rather common, elegant
choices, where the elegance draws to a large extent
from conjugacy.

3.3 Models with Normal Random Effects

The generalized linear mixed model (Engel and
Keen, 1994; Breslow and Clayton, 1993; Wolfinger
and O’Connell, 1993) is likely the most frequently
used random-effects model in the context of perhaps
non-Gaussian repeated measurements. Not only is it
a relatively straightforward extension of the general-
ized linear model for independent data (Section 3.1)
to the context of hierarchically organized data, on the
one hand, and the linear mixed model (Verbeke and
Molenberghs, 2000), on the other hand, but there is
also a wide range of software tools available for fitting
such models.

Let Yij be the j th outcome measured for clus-
ter (subject) i = 1, . . . ,N , j = 1, . . . , ni and group
the ni measurements into a vector Yi . Assume that,
in analogy with Section 3.1, conditionally upon q-
dimensional random effects bi ∼ N(0,D), the out-
comes Yij are independent with densities of the form

fi(yij |bi , ξ , φ)
(8)

= exp{φ−1[yijλij − ψ(λij )] + c(yij , φ)},
with

η[ψ ′(λij )] = η(μij ) = η[E(Yij |bi , ξ)]
(9)

= x′
ij ξ + z′

ij bi

for a known link function η(·), with xij and zij p-
dimensional and q-dimensional vectors of known co-
variate values, with ξ a p-dimensional vector of un-
known fixed regression coefficients, and with φ a scale
(overdispersion) parameter. Finally, let f (bi |D) be the
density of the N(0,D) distribution for the random ef-
fects bi .

These models closely follow the ones formulated in
the top part of Table 1, with key differences that now:
(1) data hierarchies are allowed for, in our setting ow-
ing to the longitudinal collection of data; (2) the natural
parameter is written as a linear predictor, a function of
both fixed and random effects.

Obviously, such models can be formulated for all
data settings considered in Table 1 and beyond. This
is conventionally done for continuous, Gaussian data,
producing the linear mixed-effects model (Verbeke and
Molenberghs, 2000), as well as for binary data and
counts. This kind of model is a bit less common for sur-
vival data, where so-called frailty models (Duchateau
and Janssen, 2007), rather of the type described in Sec-
tion 3.2, are more standard. Of course, also the accel-
erated failure time model with random effects deserves
mention, given that it takes the form of a linear mixed
model for logarithmic time.

We will not consider explicit expressions for such
models here, because they are relatively well studied
(Fahrmeir and Tutz, 2001; Molenberghs and Verbeke,
2005) and, at any rate, conveniently follow as special
cases from the combined models of Section 4.

4. MODELS COMBINING CONJUGATE AND
NORMAL RANDOM EFFECTS

4.1 General Model Formulation

Integrating both the overdispersion effects of Table 1
(Section 3.2) as well as the normal random effects of
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Section 3.3 into the generalized linear model frame-
work produces the following general family:

fi(yij |bi , ξ , θij , φ)
(10)

= exp{φ−1[yijλij − ψ(λij )] + c(yij , φ)},
with notation similar to the one used in (8), but now
with conditional mean

E(Yij |bi , ξ , θij ) = μc
ij = θij κij ,(11)

where the random variable θij ∼ Gij (ϑij , σ
2
ij ), κij =

g(x′
ij ξ +z′

ij bi), ϑij is the mean of θij and σ 2
ij is the cor-

responding variance. Finally, as before, bi ∼ N(0,D).
Write ηij = x′

ij ξ +z′
ij bi . Unlike in Section 3.3, we now

have two different notations, ηij and λij , to refer to the
linear predictor and/or the natural parameter. The rea-
son is that λij encompasses the random variables θij ,
whereas ηij refers to the “GLMM part” only.

It is convenient, but not strictly necessary, to assume
that the two sets of random effects, θ i and bi , are inde-
pendent of each other. Regarding the components θij

of θ i , three useful special cases result from assuming
that: (1) they are independent; (2) they are correlated,
implying that the collection of univariate distributions
Gij (ϑij , σ

2
ij ) needs to be replaced with a multivariate

one; and (3) they are equal to each other, useful in ap-
plications with exchangeable outcomes Yij .

Obviously, parameterization (11) allows for random
effects θij capturing overdispersion, and formulated di-
rectly at mean scale, such as described in Section 3.2,
whereas κij could be considered the GLMM compo-
nent, as in Section 3.3. The relationship between mean
and natural parameter now is

λij = h(μc
ij ) = h(θij κij ).(12)

We can still apply standard GLM ideas, in particular,
(2) and (3), to derive the mean and variance, com-
bined with iterated-expectation-based calculations. For
the mean, it follows that

E(Yij ) = E(θij )E(κij ) = E[h−1(λij )].(13)

4.2 Generic Approximations for Marginal Model
Elements

As we will see in ensuing specific cases (Sec-
tions 4.4–4.8), (13) allows for explicit expressions in
a good number of cases. Generic mean, variance and
covariance approximations can be derived using the
expansion, around bi = 0,

κij ≈ g(ηij ) + g′(ηij )z′
ij bi + 1

2g′′(ηij )z′
ij bib′

izij .

Details and expressions are provided in Appendix A.

4.3 Strong Conjugacy

In Section 3.2 the concept of conjugacy was intro-
duced and exemplified in a number of cases (see Ta-
ble 1). It is of interest to explore under what conditions
Model (10) still allows for conjugacy. The complica-
tion is the presence of the multiplicative factor κij in
the mean structure. To make progress, we will study
how conjugacy plays out between Model (10) and the
distribution of the random effect θij , given the multi-
plicative factor κij . In other words, conjugacy will be
considered conditional upon the normally-distributed
random effect bi . To this effect, write (suppressing
nonessential arguments from the functions)

f (y|κθ) = exp{φ−1[yh(κθ) − g(κθ)]
(14)

+ c(y,φ)},
generalizing (5), and retain (6). Applying the transfor-
mation theorem to (6) leads to

f (θ |γ,ψ) = κ · f (κθ |γ̃ , ψ̃).

Next, we request that the parametric form (6) be main-
tained:

f (κθ) = exp{γ ∗[ψ∗h(κθ) − g(κθ)]
(15)

+ c∗∗(γ ∗,ψ∗)},
where the parameters γ ∗ and ψ∗ follow from γ̃ and
ψ̃ upon absorption of κ . Then, the marginal model, in
analogy with (7), equals

f (y|κ) = exp
{
c(y,φ) + c∗∗(γ ∗,ψ∗)

(16)

+ c∗∗
(
φ−1 + γ ∗, φ−1y + γ ∗ψ∗

φ−1 + γ ∗
)}

.

Evidently, not every model satisfying conjugacy in
the sense of Section 3.2 will allow for the present
form of conjugacy. We will refer to this condition as
strong conjugacy. Examples include the normal, Pois-
son and Weibull (and hence exponential) models with
normal, gamma and gamma random effects, respec-
tively. A counterexample is provided by the Bernoulli,
and hence also binomial, model. Because the probit
model does not allow for conjugacy, not even in the
usual sense, it is out of the picture here, too. The latter
does not preclude the existence of closed forms in the
probit case, as we will see in Section 4.7.

Note that the transition from strong conjugacy is
a property entirely of the random-effects distribution,
and not of the data model, the latter of which is
needed, of course, for conjugacy itself. For example,
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for gamma random effects, we can write
1

κ
f (θ |α,β) = 1

κ

1

βα�(α)
θα−1e−θ/β

= 1

(κβ)α�(α)
(κθ)α−1e−(κθ)/(κβ)(17)

= f (κβ|α,κβ)

and, hence, a scaled version of a gamma random effect
is still a gamma random effect, with retention of α and
rescaling of β to κβ .

The importance of strong conjugacy lies, among oth-
ers, in the easy integration over the nonnormal ran-
dom effects θij . As a consequence, the resulting den-
sity is conditional on κ and hence on bi only, implying
that standard software for generalized linear or nonlin-
ear mixed-effects models, such as the SAS procedure
NLMIXED, can be employed, a point to which we will
return in Section 5.

We will now consider the normal, Poisson, binary
and time-to-event cases in turn. Details of the calcu-
lations for the Poisson case are given in Molenberghs,
Verbeke and Demétrio (2007) and summarized in Ap-
pendix B, while the binary and time-to-event cases are
supported by Appendices C, D and E, respectively.

There is no need to spell out the various models in
detail. The different versions of (10) follow straightfor-
wardly upon combining the models formulated in Ta-
ble 1 with the GLMM (8) and corresponding linear pre-
dictor (9). Precisely, the effect θ ought to be replaced
by θij κij , where κij is defined by setting η = ηij equal
to the linear predictor whence κij is expressed, for the
respective models, as μ, π , λ and φ.

4.4 Specific Case: Continuous, Normally
Distributed Data

The fully hierarchically specified linear mixed-ef-
fects model takes the form (Verbeke and Molenberghs,
2000)

Yi |bi ∼ N(Xiξ + Zibi ,�i),(18)

bi ∼ N(0,D),(19)

where ξ is a vector of fixed effects, and Xi and Zi are
design matrices. The rows of Xiξ + Zibi are made up
by the linear predictors (9).

Based upon (18) and (19), the marginal model can
be derived:

Yi ∼ N(Xiξ ,Vi = ZiDZ′
i + �i).(20)

We evidently consider a single set of random effects
only, because, in this case, the normal and conjugate
random effects coincide, a unique feature of the normal
model. Strong conjugacy is a fortiori evident.

4.5 Specific Case: Poisson-Type Models for Count
Data

From the general developments above, the Poisson
model with gamma and normal random effects com-
bined naturally follows. By way of overview, let us as-
semble all model elements:

Yij ∼ Poi(θij κij ),(21)

κij = exp(x′
ij ξ + z′

ij bi),(22)

bi ∼ N(0,D),(23)

E(θ i ) = E[(θi1, . . . , θini
)′] = ϑ i ,(24)

Var(θ i ) = �i.(25)

This model has the same structure of the one by Booth
et al. (2003). In the spirit of Table 1, the θij can
be assumed to follow a gamma model, producing,
what we could term, a Poisson–gamma–normal model
or, equivalently, a negative-binomial–normal model.
When the gamma distribution is chosen, it is implic-
itly assumed that the components θij of θ i are inde-
pendent. This is natural in many cases, in the sense
that the bi will induce association between repeated
measurements, with then the θij taking care of addi-
tional dispersion. In this case, �i reduces to a diag-
onal matrix. Nevertheless, it is perfectly possible to
allow for general covariance structures. When a fully
distributional specification would be desired, then one
could choose, for example, multivariate extensions of
the gamma model (Gentle, 2003).

As stated in general above, regarding the overdisper-
sion random effects, three situations could be of inter-
est: (1) the random-effects θij are independent; (2) they
are allowed to be dependent; (3) they are equal to each
other and hence reduce to θij ≡ θi .

The marginal mean vector and variance–covariance
matrix are derived in Appendix B. The existence of
such closed forms has important implications because
they allow, for example, for explicit correlation expres-
sions, on the one hand, and for a more versatile collec-
tion of estimation methods, on the other hand, a point
to which we will return in Section 5. The availability of
closed-form variance and joint-probability expressions
supplements the work of, for example, Zeger, Liang
and Albert (1988), who had stated that only explicit
mean expressions are available for a limited number of
generalized linear mixed models, other than the linear
mixed model.



MODELS WITH NORMAL AND CONJUGATE RANDOM EFFECTS 335

Let us consider strong conjugacy in this case. The
corresponding model elements in Table 1 change to

f (θ) = exp
{
(α − 1) ln θ − 1

β
θ − ln[βα�(α)]

}
,

f (y|λ = θκ) = exp{y ln θ − κθ − lny! + y lnκ},
φ = 1,

h(θ) = ln θ,

g(θ) = θκ,

γ = (βκ)−1,

ψ = βκ(α − 1),

c(y,φ) = lny! + y lnκ,

c∗(γ,ψ) = (1 + ψγ ) lnγ κ − ln�(1 + ψγ ).

Recall that the crux behind this result is (17).
Even though Molenberghs, Verbeke and Demétrio

(2007) did not do so, it is fairly straightforward to de-
rive the moments. Employing the moments’ expression
for the standard Poisson (Johnson, Kemp and Kotz,
2005, page 162), the expression conditional upon the
random effects is

E(Y k
ij ) =

k∑
�=0

S(k, �)(θij κij )
�,(26)

where S(k, �) is the so-called Stirling number of the
second kind. Integrating (26) over the random effects
produces, without any problem,

E(Y k
ij ) =

k∑
�=0

S(k, �)
β��(α + �)

�(α)

(27)

· exp
[
�x′

ij ξ + 1

2
�2z′

ijDzij

]
.

4.6 Specific Case: Bernoulli-Type Models for
Binary Data with Logit Link

Similar to the Poisson case in Section 4.5, a natural
binary-data counterpart to (21)–(25) is

Yij ∼ Bernoulli(πij = θij κij ),(28)

κij = exp(x′
ij ξ + z′

ij bi)

1 + exp(x′
ij ξ + z′

ij bi)
,(29)

completing the specification with (23)–(25). Unlike in
the Poisson case, closed forms for neither the mean nor
the variance follow when normal random effects are
present. When only overdispersion random effects are
included, especially when they are assumed to follow

a beta distribution, as in Table 1, conjugacy applies.
However, the beta distribution does not allow for the
multiplicative invariance as (17), which will preclude
strong conjugacy.

When the overdispersion random effects are as-
sumed to be equal, θij = θi , then the beta–binomial
model would follow if no normal random effects
are present. The same is true, by the way, for the
compound-symmetry model generated by the hierar-
chical random-intercepts model in the Gaussian case.

Explicitly considering θij ∼ Beta(α,β), then φij =
α/(α + β), and

σ 2
ij = σi,jj = αβ

(α + β)2(α + β + 1)
,

σi,jk = ρijk

αβ

(α + β)2(α + β + 1)
.

Observe that there are two correlations: ρijk , which de-
scribed the correlation between draws from the beta
distribution and (α + β + 1)−1. It is of course possible
to let α and β vary with i and/or j . In such cases, the
above and below expressions will change somewhat,
but computations are straightforward.

Using the general expressions, the above results can
be used to derive approximate expressions for means
and variance–covariance elements. For the special case
of no normal random effects, but maintaining the fixed
effects in (29), that is,

κij = exp(x′
ij ξ)

1 + exp(x′
ij ξ)

,(30)

we obtain

E(Yij ) = α

α + β
κij ,

Var(Yij ) = α

α + β
κij −

(
α

α + β

)
κ2
ij ,(31)

Cov(Yij , Yik) = ρijk

αβ

(α + β)2(α + β + 1)
κij κik.

If we further make exchangeability assumptions, that
is, κij = κik ≡ κi and ρijk = ρi , further simplification
follows. Finally, setting κi = 1, the conventional beta-
binomial follows. It is then easy to derive the resulting
binomial version by defining

Zi =
ni∑

i=1

Yij .(32)

Simple algebra then shows

E(Zi) = ni

α

α + β
= niπi,
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Var(Zi) = ni

αβ

(α + β)2

{
1 + (ni + 1)

1

α + β + 1

}

= niπi(1 − πi){1 + (ni − 1)ρ̃i},
with ρ̃i the beta-binomial correlation. Hence, the con-
ventional beta-binomial model follows.

In comparison to the longitudinal Poisson case, the
longitudinal binary case appears to defeat closed-form
solutions and strong conjugacy. However, this hinges
on the fact that we employ the logit link. In spite of
it being a very natural choice in the univariate case,
it does not combine very nicely with normal random
effects. Recall that this is known already from the
GLMM framework for binary data. Therefore, it is
sensible to study the probit link instead. The random-
effects probit model has received some attention in ear-
lier decades (Schall, 1991; Guilkey and Murphy, 1993;
Hedeker and Gibbons, 1994; McCulloch, 1994; Gib-
bons and Hedeker, 1997; Renard, Molenberghs and
Geys, 2004), with emphasis primarily on computa-
tional schemata to deal with the multivariate normal
integral. We will return to this aspect in Section 5.

4.7 Specific Case: Bernoulli-Type Models for
Binary Data with Probit Link

Introducing the probit version of the model, while at
the same time assuming that the overdispersion para-
meters are beta distributed, comes down to

κij = �1(x′
ij ξ + z′

ij bi),(33)

θij ∼ Beta(α,β).(34)

Like before, α and β could be allowed to vary with i

and/or j .
It now follows that the joint distribution can be writ-

ten as (details in Appendix D)

fni
(yi = 1) =

(
α

α + β

)ni

· �ni
(Xiξ ;L−1

ni
),(35)

with

Lni
= Ini

− Zi(D
−1 + Z′

iZi)
−1Z′

i .(36)

More details on the cell probabilities, as well as on
means and variances, can be found in Appendix D.

It is important to note that the existence of closed-
form expressions for the probit case opens a window of
opportunity for the logit case. Indeed, the well-known
approximation formulae, linking the normal and logis-
tic densities, proves useful here. As shown in Johnson
and Kotz (1970), page 6, and used in Zeger, Liang and
Albert (1988),

ey

1 + ey
≈ �1(cy),(37)

with c = (16
√

3)/(15π). Applied to (28)–(29), we find

πij ∼ θij

exp(x′
ij ξ + z′

ij bi)

1 + exp(x′
ij ξ + z′

ij bi)
(38)

≈ θij�1[c(x′
ij ξ + z′

ij bi )].
Applying (38) to (35) yields

fni
(yi = 1) ≈

(
α

α + β

)ni

· �ni
(cXiξ ; L̃−1

ni
),(39)

with

L̃ni
= Ini

− c2Zi(D
−1 + Z′

iZi)
−1Z′

i .

For the expectation, we find, based on (38) and (D.4)

E(Yij ) ≈ α

α + β
(40)

· �1(|I + c2Dzij z
′
ij |−1/2cx′

ij ξ),

with similar expressions for the variance and covari-
ance terms. Note that, upon estimating the parame-
ters within the probit approximation paradigm, back-
transformation to the original logit scale is possible,
using expressions such as (38) and (40). This opens
perspectives for alternative estimation methods for the
combined model with logit link, with the important
special case of the normal-logistic GLMM.

In the Bernoulli case, calculating the moments
is extremely simple. Indeed, the Bernoulli moments
are all identical. The conditional moments are all
E(Y k

ij |θij ,bi) = θij κij (k = 1,2, . . .). Hence, they all
reduce to (31). In the probit case, they equal to (D.4).

4.8 Specific Case: Weibull- and Exponential-Type
Models for Time-to-Event Data

The general Weibull model for repeated measures,
with both gamma and normal random effects, can be
expressed as

f (yi |θ i ,bi) =
ni∏

j=1

λρθij y
ρ−1
ij e

x′
ij ξ+z′

ij bi

(41)

· e−λy
ρ
ij θij e

x′
ij

ξ+z′
ij

bi

,

f (θ i ) =
ni∏

j=1

1

β
αj

j �(αj )
θ

αj−1
ij e−θij /βj ,(42)

f (bi) = 1

(2π)q/2|D|1/2 e−(1/2)b′
iD

−1bi .(43)

A few observations are in place. First, it is implicit that
the gamma random effects are independent. This need
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not be the case and, like in the Poisson case, extension
via multivariate gamma distributions is possible. Sec-
ond, setting ρ = 1 leads to the special case of an expo-
nential time-to-event distribution. Third, it is evident
that the classical gamma frailty model (i.e., no normal
random effects) and the Weibull-based GLMM (i.e., no
gamma random effects) follow as special cases. Fourth,
owing to the conjugacy result of Table 1 and prop-
erty (17) of the gamma density, strong conjugacy ap-
plies. This is typically considered for the exponential
model, but it holds for the Weibull model too, merely
by observing that the Weibull model is nothing but an
exponential model for the random variable Y

ρ
ij . It is

equally possible to derive this result by merely rewrit-
ing the factor φ = λκ . Fifth, the above expressions
are derived for a two-parameter gamma density. It is
customary in a gamma frailty context (Duchateau and
Janssen, 2007) to set αjβj = 1, for reasons of identifi-
ability. In this case, (42) is replaced by

f (θ i ) =
ni∏

j=1

1

(1/αj )
αj �(αj )

θ
αj−1
ij e−αj θij .(44)

Alternatively, assuming αj = 1 and βj = 1/δj , one
could write

f (θ i ) =
ni∏

j=1

δj e
−δj θij ,(45)

implying that the gamma density is reduced to an ex-
ponential one. Closed-form expressions for the mar-
ginal density, means, variances, covariances and mo-
ments are derived in Appendix E, where also a number
of related facts are derived.

Of course, in this context of time-to-event data,
further issues that deserve attention are as follows:
(1) censoring and how to deal with it; (2) derivation
of related functions, such as the survivorship function,
as well as the hazard, cumulative hazard and intensity
functions; (3) the possibility of nonparametric baseline
hazard functions. These are nevertheless not consid-
ered here. While in principle possible, we aim at focus-
ing on commonality between various GLM settings.

4.9 Implication for Computation of Correlation and
Derived Quantities

Up to here, we have provided closed-form expres-
sions for the marginal joint distributions, the moments,
and hence for means and variances, for the normal,
Poisson, probit and Weibull cases, with a combination
of normal random effects, on the one hand, supple-
mented, on the other hand, with conjugate random ef-
fects, taking a normal, gamma, beta and gamma form,

respectively. The obvious one missing from the list is
the logit model, but then the logit-probit connection,
as discussed in Section 4.7, comes to rescue. Gener-
ally, progress is possible whenever strong conjugacy
applies.

These results and the ensuing calculations are useful
for a number of reasons, such as: (1) parameter estima-
tion and derived inferences; (2) implementation of es-
timation algorithms, as will be discussed in Section 5;
and (3) the computation of derived quantities.

Such derived quantities include marginal correlation
coefficients, about which more detail is provided in the
Appendix (Section F). Of course, correlations are not
always of direct scientific interest and, when they are,
one might not be willing to base one’s entire model
choice on whether or not closed-form correlations are
available. That said, some considerations are in place.

First, our results indicate that closed-form correla-
tions exist for a number of commonly used models,
such as the Poisson–normal GLMM and the Weibull–
gamma frailty model. Second, the same holds true
for their extensions within our proposed model. Third,
when studying psychometric reliability and generaliz-
ability (Vangeneugden et al., 2008a, 2010), the cor-
relation function is the basic building block. Fourth,
correlation functions are also used in the context of
surrogate marker evaluation from clinical-trial data
(Burzykowski, Molenberghs and Buyse, 2005).

At the same time, the one important situation that
evades direct calculation of the marginal correlation is
the logit with beta and normal random effects, but then
the probit–logit correspondence can be invoked. On the
one hand, the probit link can be used in lieu of the logit
link; on the other hand, the calculations can be carried
out on the probit scale, where after the results can be
back transformed to the logit scale.

Other key derived quantities include marginal re-
gression parameters. Suppose, for example, that one is
interested in estimating the marginal treatment effect
from longitudinal clinical-trial data that are not nor-
mally distributed. In principle, a marginal model could
be fitted, which oftentimes is done via generalized es-
timating equations (Liang and Zeger, 1986). However,
when data are incomplete, such models pose specific
challenges even though remedies have been devised,
such as inverse probability weighting or a combination
with multiple imputation (for reviews, see Fitzmau-
rice et al., 2009). These, however, come with their own
problems. It is then attractive to fit a GLMM, with or
without additional random effects for overdispersion,
and use the closed-form mean expressions to derive
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marginal mean function. The estimand of interest is
then E(Yi |Ti = 1)−E(Yi |Ti = 0), where Ti is the ob-
vious indicator for the treatment to which the ith sub-
ject has been assigned. Precision estimation then pro-
ceeds via the delta method.

5. ESTIMATION

A priori, fitting a combined model of the type de-
scribed in Section 4 proceeds by integrating over the
random effects. The likelihood contribution of subject i

is

fi(yi |ϑ,D,ϑ i ,�i)

=
∫ ni∏

j=1

fij (yij |ϑ,bi , θ i )f (bi |D)(46)

· f (θ i |ϑ i ,�i) dbi dθ i .

Here, ϑ groups all parameters in the conditional model
for Yi . From (46) the likelihood derives as

L(ϑ,D,ϑ,�)

=
N∏

i=1

fi(yi |ϑ,D,ϑ i ,�i)

(47)

=
N∏

i=1

∫ ni∏
j=1

fij (yij |ϑ,bi , θ i )f (bi |D)

· f (θ i |ϑ i ,�i) dbi dθ i .

The key problem in maximizing (47) is the presence
of N integrals over the random effects bi and θ . It
is widely claimed that the absence of a closed-form
solution precludes an analytical-integration based so-
lution (Molenberghs and Verbeke, 2005), explaining
the popularity of Taylor-series expansion based meth-
ods, such as PQL and MQL, Laplace approximation
and numerical-integration based methods. These have
been implemented in, for example, the SAS procedures
GLIMMIX and NLMIXED. Several of the series ex-
pansion methods tend to exhibit bias, an issue taken up
in Breslow and Lin (1995), and suggesting the use of
alternative methods.

However, thanks to our results in Section 4, further
progress can be made. Closed-form integration, apart
from the normal case, is within reach for the Poisson,
probit and Weibull cases. Now, some closed forms in-
volve series expansions, and may be either time con-
suming or cumbersome to implement. This notwith-
standing, a variety of alternative approaches are pos-
sible.

Let us turn to the Poisson case. While closed-form
expressions can be used to implement maximum like-
lihood estimation, with numerical accuracy governed
by the number of terms included in the series, one can
also proceed by what we will term partial marginaliza-
tion. By this we refer to integrating (21)–(25) over the
gamma random effects only, leaving the normal ran-
dom effects untouched. The corresponding probability
is

f (yij |bi) =
(

αj + yij − 1
αj − 1

)
·
(

βj

1 + κijβj

)yij

(48)

·
(

1

1 + κijβj

)αj

κ
yij

ij ,

where κij = exp[x′
ij ξ + z′

ij bi]. Note that, with this ap-
proach, we assume that the gamma random effects are
independent within a subject. This is fine, given the
correlation is induced by the normal random effects.

Similarly, for the Weibull case we obtain

f (yij |bi ) = λκij e
μij ρy

ρ−1
ij αjβj

(1 + λκij e
μij βjy

ρ
ij )

αj+1 .(49)

Because there is lack of strong conjugacy, the logit case
defies the mere exploitation of conjugate form, such
as the negative-binomial form (48) and the Weibull–
gamma frailty form (49). Nevertheless, it is easy to de-
rive, for this case,

f (yij |bi) = 1

αj + βj

· (κijαj )
yij

(50)
· [(1 − κij )αj + βj ]1−yij .

For all of these, it is straightforward to obtain the
fully marginalized probability by numerically inte-
grating the normal random effects out of (48), (49)
and (50), using a tool such as the SAS procedure
NLMIXED that allows for normal random effects in
arbitrary, user-specified models.

The concept of partial integration always applies
whenever strong conjugacy holds. Indeed, an expres-
sion of the form (16) corresponds to integrating over
the conjugate random effect θ , while leaving the nor-
mally distributed random effect embedded in the pre-
dictor, κ in this notation. Recall that, while expressions
of the type (16) appear to be for the univariate case,
they extend without problem to the longitudinal setting
as well.

For the specific case of the marginalized probit
model, the computational challenge stems from the
presence of a multivariate normal integral of the
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form (35), a phenomenon also known from the fully
marginally specified multivariate probit model (Ash-
ford and Sowden, 1970; Lesaffre and Molenberghs,
1991; Molenberghs and Verbeke, 2005). Specific to
the context of the probit models with random effects,
Zeger, Liang and Albert (1988) derived the marginal
mean function, needed for their application of gener-
alized estimating equations as a fitting algorithm for
the marginalized probit model. It is one of the first
instances of the use of GEE to a nonmarginally speci-
fied model. Precisely, these authors derive the marginal
mean function and (a working version of) the mar-
ginal variance–covariance matrix. These are sufficient
to implement GEE or, with appropriate extension, also
second-order GEE. Note that our derivations yield, for
strong conjugate cases in general, as well as for a num-
ber of particular cases, not only the marginal mean and
variance, but also all moments and the entire joint dis-
tribution. Evidently, this is plenty to implement GEE,
but the other methods, described in this section, come
within reach, too.

In the same spirit, pseudo-likelihood can be used
(Aerts et al., 2002; Molenberghs and Verbeke, 2005).
This is particularly useful when the joint marginal dis-
tribution is available but cumbersome to manipulate
and evaluate, such as in the probit case. This is the idea
followed by Renard, Molenberghs and Geys (2004) for
a multilevel probit model with random effects, similar
in spirit to the probit models considered in Section 4.7.
Essentially, the joint distribution is replaced with a
product of factors of marginal and/or conditional dis-
tributions of lower dimensions. Because such a prod-
uct does not necessarily recompose the original joint
distribution, sandwich-estimator ideas are then used to
provide not only valid point estimates, but also preci-
sion estimates and inferences derived therefrom.

Schall (1991) proposed an efficient and general es-
timation algorithm, based on Harville’s (1974) mod-
ification of Henderson’s (1984) mixed-model equa-
tions. Hedeker and Gibbons (1994) and Gibbons and
Hedeker (1997) proposed numerical-integration based
methods, thus considering neither marginal moments
(means, variances) nor marginalized joint probabili-
ties. Guilkey and Murphy (1993) provide a useful early
overview of estimation methods and then revert to
Butler and Moffit’s (1982) Hermite-integration based
method, supplemented with Monte Carlo Markov
Chain ideas.

Further, one might, for example, opt for fully Bayes-
ian inferences. Alternatively, the EM algorithm can be
used, in line with Booth et al. (2003) for the Poisson

case. The EM is a flexible framework within which ei-
ther the conjugate, or the normal, or both sets of ran-
dom effects can be considered the “missing” data over
which expectations are taken.

Booth et al. (2003) also considered nonparametric
maximum likelihood, in the spirit of Aitkin (1999)
and Alfò and Aitkin (2000). In addition, ideas of hi-
erarchical generalized linear models (Lee and Nelder,
1996, 2001a, 2001b, 2003; Yun, Sohn and Lee, 2006;
Lee, Nelder and Pawitan, 2006) can be employed.

A suite of methods is available that employ trans-
formation results, essentially based on transforming
the nonnormal random effects to normal ones, or vice
versa. To briefly describe these, write the contribution
for subject i to the likelihood as

Li =
∫ [∏

j

f (yij |ui)

]
pu(ui) dui,(51)

where f (·) specifies the outcome model given the ran-
dom effects. Furthermore, pu(·) denotes the density of
the random effect, typically nonnormal. While the lat-
ter random effect can be vector-valued, let us illustrate
the method for the scalar case. To simplify notation
further, in (51), covariates and parameter vectors have
been suppressed from notation. Liu and Yu (2008) ad-
vocate a simple transformation:

Li =
∫ [∏

j

f (yij |ai)

]
pu(ai)

φ(ai)
φ(ai) dai,(52)

where now ai is a normal random effect. Evidently,
φ(·) is the standard (multivariate or univariate) normal
density. Liu and Yu (2008) complete their argument by
stating that then the new model[∏

j

f (yij |ai)

]
pu(ai)

φ(ai)

can be subjected to the conventional quadrature tech-
niques available in, for example, SAS’ NLMIXED pro-
cedure. A number of SAS implementations for impor-
tant particular cases are offered by these authors. Ob-
viously, the method can be expanded to our situation,
where apart from the nonnormal random effects, also
normal random effects are present. The justification of
the method simply follows by applying the transforma-
tion theorem at the level of the densities involved. The
usefulness of this method cannot be overestimated. It is
especially useful when partial integration is not possi-
ble, for example, when strong conjugacy does not hold,
like in the binary beta–normal–logit case.
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Alternatively, Nelson et al. (2006) advocate the
transformation

ui = F−1
u [(�(ai)],(53)

where Fu is the cumulative distribution function (CDF)
of ui and �(·) is the standard normal CDF, as be-
fore. Nelson et al.’s method, labeled probability inte-
gral transformation (PIT), comes down to generating
normal variates and then inserting these in the model
only after transformation (53), ensuring that they are
of the desired nature. It is tautologically clear that (53)
automatically ensures the support of the variable is cor-
rectly mapped along with the variable itself. By pass-
ing through the unit interval, by means of �(·), and
then applying Fu(·), one forces, for example, a gamma
variable to range over the positive half line, a beta
variable to be confined to the unit interval, etc., as it
should.

Lin and Lee (2008) present estimation methods for
the specific case of linear mixed models with skew-
normal, rather than normal, random effects.

Quite apart from the choice of estimation method, it
is important to realize that not all parameters may be
simultaneously identifiable. For example, the gamma-
distribution parameters in the Poisson case, α and β ,
are not simultaneously identifiable when the linear-
predictor part is also present, because there is alias-
ing with the intercept term. Therefore, one can set, for
example, β equal to a constant, removing the identi-
fiability problem. It is then clear that α, in the uni-
variate case, or the set of αj in the repeated-measures
case, describe the additional overdispersion, in addi-
tion to what stems from the normal random effect(s).
A similar phenomenon also plays in the binary case,
where both beta-distribution parameters are not simul-
taneously estimable.

6. ANALYSIS OF CASE STUDIES

6.1 A Clinical Trial in Epileptic Patients

We will analyze the epilepsy data, introduced in
Section 2.1. Note that the data were analyzed before
in Molenberghs and Verbeke (2005), Chapter 19, us-
ing generalized estimating equations (Liang and Zeger,
1986) and the Poisson–normal model. These authors
used a slightly different parameterization.

Let Yij represent the number of epileptic seizures pa-
tient i experiences during week j of the follow-up pe-
riod. Also, let tij be the time-point at which Yij has
been measured, tij = 1,2, . . . , until at most 27. Let us

consider the combined model (21)–(25), with specific
choices

ln(κij ) =
{

(ξ00 + bi) + ξ01tij , if placebo,
(ξ10 + bi) + ξ11tij , if treated,(54)

where the random intercept bi is assumed to be zero-
mean normally distributed with variance d . We con-
sider special cases: (1) the ordinary Poisson model,
(2) the negative-binomial model, (3) the Poisson–
normal model, together with (4) the combined model.
Estimates (standard errors) are presented in Table 2.
Clearly, both the negative-binomial model and the
Poisson–normal model are important improvements, in
terms of the likelihood, relative to the ordinary Poisson
model. This should come as no surprise since the latter
unrealistically assumes there is neither overdispersion
nor correlation within the outcomes, while clearly both
are present. In addition, when considering the com-
bined model, there is a very strong improvement in
fit when gamma and normal random effects are si-
multaneously allowed for. This strongly affects the
point and precision estimates of such key parameters as
the slope difference and the slope ratio. There is also
an impact on hypothesis testing. The Poisson model
leads to unequivocal significance for both the differ-
ence (p = 0.0008) and ratio (p = 0.0038), whereas
for the Poisson–normal this is not the case for the dif-
ference of the slopes (p = 0.7115), while some sig-
nificance is maintained for the ratio (p = 0.0376).
Because the Poisson–normal is commonly used, it
is likely that in practice one would decide in favor
of a treatment effect when considering the slope ra-
tio. This is no longer true with the negative-binomial
model, where the p-values change to p = 0.01310 and
p = 0.2815, respectively. Of course, one must not for-
get that, while the negative-binomial model accommo-
dates overdispersion, the θij random effects are as-
sumed independent, implying independence between
repeated measures. Again, this is not realistic and,
therefore, the combined model is a more viable candi-
date, corroborated further by the aforementioned like-
lihood comparison. This model produces nonsignifi-
cant p-values of p = 0.2260 and p = 0.1591, respec-
tively.

Thus, in conclusion, whereas the conventionally
used and broadly implemented Poisson–normal model
would suggest a significant effect of treatment, our
combined model issues a message of caution, because
there is no evidence whatsoever regarding a treatment
difference.
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TABLE 2
Epilepsy study. Parameter estimates and standard errors for the regression coefficients in (1) the Poisson model,

(2) the negative-binomial model, (3) the Poisson–normal model and (4) the combined model. Estimation was
done by maximum likelihood using numerical integration over the normal random effect, if present

Estimate (s.e.)

Effect Parameter Poisson Negative-binomial

Intercept placebo ξ00 1.2662 (0.0424) 1.2594 (0.1119)

Slope placebo ξ01 −0.0134 (0.0043) −0.0126 (0.0111)

Intercept treatment ξ10 1.4531 (0.0383) 1.4750 (0.1093)

Slope treatment ξ11 −0.0328 (0.0038) −0.0352 (0.0101)

Negative-binomial parameter α1 — 0.5274 (0.0255)

Negative-binomial parameter α2 = 1/α1 — 1.8961 (0.0918)

−2log-likelihood −1492 −6755

Poisson–normal Combined

Intercept placebo ξ0 0.8179 (0.1677) 0.9112 (0.1755)

Slope placebo ξ1 −0.0143 (0.0044) −0.0248 (0.0077)

Intercept treatment ξ0 0.6475 (0.1701) 0.6555 (0.1782)

Slope treatment ξ2 −0.0120 (0.0043) −0.0118 (0.0074)

Negative-binomial parameter α1 — 2.4640 (0.2113)

Negative-binomial parameter α2 = 1/α1 — 0.4059 (0.0348)

Variance of random intercepts d 1.1568 (0.1844) 1.1289 (0.1850)

−2log-likelihood −6810 −7664

Molenberghs and Verbeke (2005), Chapter 19, con-
sidered a Poisson–normal model with random inter-
cepts as well as random slopes in time. It is interest-
ing to note that, when allowing for such an extension
in our models, the random slopes improve the fit of the
Poisson–normal model with random intercept, but not
of the combined one with random intercept (details not
shown). As a consequence, the combined model with
random intercept is the best fitting one. At the same
time, note that fitting such a model establishes that the
presence of a conjugate random effect does not pre-
clude the consideration of normal random effects be-
yond random intercepts.

Recall that the data were analyzed, too, by Booth et
al. (2003). While we considered four different models,
these authors focused on the Poisson–normal and com-
bined implementations. There are further differences in
actual fixed-effects and random-effects models consid-
ered, as well as in us further considering inferences for
differences and ratios.

Let us now turn to the correlation functions. Given
that the gamma random effects are assumed indepen-
dent, we only need to consider the Poisson–normal and
combined cases; the versions with and without random
slopes are considered. Obviously, because the fixed-
effects structure is not constant but rather depends on

time, we have to apply the general correlation func-
tion (F.13). In the Poisson–normal case with random
intercepts only, and for the placebo group, based on
the parameter estimates in Table 2, we obtain

Corr(Y (t), Y (s)) = 35.58 · 0.99t+s

/(√
(4.04 · 0.99t + 35.58 · 0.97t )

· √
(4.04 · 0.99s + 35.58 · 0.97s)

)
,

where Y(t) represents the outcome for an arbitrary sub-
ject at time t . Calculations in all other cases are similar.
The smallest and largest values for the correlation func-
tions, for both arms, for both the Poisson–normal and
combined models, and for both choices of the random-
effects structure are given in Table 3. When only ran-
dom intercepts are considered, the correlations range
over a narrow interval; they are rather high and there is
little difference between the Poisson–normal and com-
bined models. However, turning to the models with
random intercepts and random slopes, several differ-
ences become apparent. First, the values exhibit a much
broader range between their smallest and largest val-
ues. Second, the range is somewhat overestimated by
the Poisson–normal model, which then narrows when
we switch to the combined model, thereby incorporat-
ing overdispersion effects, random intercepts and ran-
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TABLE 3
Epilepsy study. Observed smallest and largest values for the correlation function, for the Poisson–
normal and combined models, and for both treatment arms. The time pair for which the values are

observed is shown too (RI—random intercept; RS—random slope)

Smallest value Largest value

Model Arm ρ Time pair ρ Time pair

Poisson–normal, RI Placebo 0.8577 26 & 27 0.8960 1 & 2
Poisson–normal, RI Treatment 0.8438 26 & 27 0.8794 1 & 2

Combined, RI Placebo 0.8259 26 & 27 0.8981 1 & 2
Combined, RI Treatment 0.8383 26 & 27 0.8744 1 & 2

Poisson–normal, RI+RS Placebo 0.2966 1 & 27 0.9512 26 & 27
Poisson–normal, RI+RS Treatment 0.2936 1 & 27 0.9530 26 & 27

Combined, RI+RS Placebo 0.4268 1 & 27 0.9281 26 & 27
Combined, RI+RS Treatment 0.4225 1 & 27 0.9329 26 & 27

dom slopes. Thus, the random slope allows for the cor-
relation to range over a considerable interval, while
the overdispersion effect avoids the range to be overly
wide.

Within each model, there is relatively little differ-
ence between the placebo and treated groups, although
the difference is a bit more pronounced in the com-
bined model. Further, the correlation range within
every group is relatively narrow. The most notewor-
thy feature, unquestionably, is the large discrepancy
between both models. This is because the Poisson–
normal model forces the correlation and overdisper-
sion effects to stem from a single additional parameter,
the random-intercept variance d . Thus, considerable
overdispersion also forces the correlation to increase,
arguably beyond what is consistent with the data. In the
combined model, in contrast, there are two additional
parameters, giving proper justice to both correlation
and overdispersion effects. It was already clear from
the above discussion and that in Molenberghs, Verbeke
and Demétrio (2007) that the combined model is an im-
portant improvement. This now clearly manifests itself
in the correlation function, too.

6.2 A Clinical Trial in Onychomycosis

We will analyze the binary onychomycosis data, in-
troduced in Section 2.2. For the logit, consider the
model

Yij |(bi) ∼ Bernoulli(πij ),

logit(πij ) = ξ1(1 − Ti) + bi + ξ2(1 − Ti)tij
(55)

+ ξ3Ti + ξ4Titij ,

where Ti is the treatment indicator for subject i, tij is
the time-point at which the j th measurement is taken
for the ith subject, and bi ∼ N(0, d). Parameter esti-
mates for the logistic model, with and without the nor-
mal random effect, on the one hand, and with and with-
out the beta–binomial component, on the other hand,
as described in Section 4.6, are presented in Table 4.
Observe that the model becomes hard to fit when the
beta random effects are present, which is seen from es-
timates and standard errors in both the beta–binomial
model as well as the combined model. To understand
this, we must observe that the conjugate random ef-
fects in the Bernoulli case, unlike in the Poisson, bino-
mial and Weibull cases, cannot add to the variability,
only to the correlation structure. This means that there
is considerably less information available than in the
other cases. This does not mean that the beta random
effects are unnecessary, but rather that they challenge
the stable estimation of other model parameters.

6.3 Recurrent Asthma Attacks in Children

We will analyze the times-to-event, introduced in
Section 2.3. We consider an exponential model, that
is, a model of the form (41) with ρ = 1, and further a
predictor of the form

κij = ξ0 + bi + ξ1Ti,

where Ti is an indicator for treatment and bi ∼
N(0, d). Results from fitting all four models (with/
without normal random effect; with/without gamma
random effect) can be found in Table 5. A formal as-
sessment of the treatment effect from all four models
is given in Table 6. The treatment effect ξ1 is stably
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TABLE 4
Onychomycosis study. Parameter estimates and standard errors for the regression coefficients in (1) the logistic

model, (2) the beta–binomial model, (3) the logistic–normal model and (4) the combined model. Estimation
was done by maximum likelihood using numerical integration over the normal random effect, if present

Estimate (s.e.)

Effect Parameter Logistic Beta–binomial

Intercept treatment A ξ0 −0.5571 (0.1090) 17.9714 (1482.6)

Slope treatment A ξ1 −0.1769 (0.0246) 5.2454 (12970.0)

Intercept treatment B ξ2 −0.5335 (0.1122) 18.6744 (2077.13)

Slope treatment B ξ3 −0.2549 (0.0309) 4.7775 (12912.0)

Std. dev. random effect
√

d — —
Ratio α/β — 3.6739 (0.2051)

−2log-likelihood 1812 1980

Logistic–normal Combined

Intercept treatment A ξ0 −1.6299 (0.4354) −1.6042 (4.0263)

Slope treatment A ξ1 −0.4042 (0.0460) −6.4783 (1.4386)

Intercept treatment B ξ2 −1.7486 (0.4478) −16.2079 (3.5830)

Slope treatment B ξ3 −0.5634 (0.0602) −8.0745 (1.5997)

Std. dev. random effect
√

d 4.0150 (0.3812) 60.8835 (14.2237)

Ratio α/β — 0.2805 (0.0350)

−2log-likelihood 1248 1240

identifiable in all four models. As can be seen from Ta-
ble 6, the treatment effects are similar in strengths, but
including both random effects reduces the evidence,
relative to the exponential model. Needless to say, too
parsimonious an association structure might lead to lib-
eral test behavior.

6.4 The Need for the Combined Model

We have some evidence from the above three ex-
amples that there is a need for the combined model.
Some indication came, for example, from the correla-
tion functions in the epilepsy case. It is useful to per-

TABLE 5
Asthma study. Parameter estimates and standard errors for the regression coefficients in (1) the exponential model,
(2) the exponential–gamma model, (3) the exponential–normal model and (4) the combined model. Estimation was

done by maximum likelihood using numerical integration over the normal random effect, if present

Estimate (s.e.)

Effect Parameter Exponential Exponential–gamma

Intercept ξ0 −3.3709 (0.0772) −3.9782 (15.354)

Treatment effect ξ1 −0.0726 (0.0475) −0.0755 (0.0605)

Shape parameter λ 0.8140 (0.0149) 1.0490 (16.106)

Std. dev. random effect
√

d — —
Gamma parameter γ — 3.3192 (0.3885)

−2log-likelihood 18,693 18,715

Exponential–normal Combined

Intercept ξ0 −3.8095 (0.1028) 3.9923 (20.337)

Treatment effect ξ1 −0.0825 (0.0731) −0.0887 (0.0842)

Shape parameter λ 0.8882 (0.0180) 0.8130 (16.535)

Std. dev. random effect
√

d 0.4097 (0.0386) 0.4720 (0.0416)

Gamma parameter γ — 6.8414 (1.7146)

−2log-likelihood 18,611 18,629
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TABLE 6
Asthma study. Wald test results for the assessment of

treatment effect

Model Z-value p-value

Exponential −1.5283 0.1264
Exponential–gamma −1.1293 0.2588
Exponential–normal −1.2480 0.2120
Combined −1.0534 0.2921

form formal comparison of all nested models, using
Wald statistics, for each of the three cases. A summary
is given in Table 7. Note that, owing to the familiar
boundary problem that occurs when testing for vari-
ance components, mixtures of a χ2

0 and χ2
1 were used,

instead of the conventional χ2
1 (Molenberghs and Ver-

beke, 2007). In all three case studies it is clear that:
(1) independence is strongly rejected in favor of both
a model with normal random effects or a model with
conjugate random effects; (2) on top of one set of ran-
dom effects, there is a clear need for the other set
as well, hence providing very strong evidence for the
proposed combined model. The evidence is extremely
convincing in all three cases.

These findings, taken together, imply that the data
exhibit, at the same time, within-subject correlation
and overdispersion.

TABLE 7
All three case studies. Wald test results for comparison of nested

models

Null model Alternative model Z-value p-value

Epilepsy study
Poisson Negative-binomial 20.68 <0.0001
Poisson Poisson–normal 6.27 <0.0001
Negative-binomial Combined 6.10 <0.0001
Poisson–normal Combined 11.66 <0.0001

Onychomycosis study
Logistic Beta–binomial 17.91 <0.0001
Logistic Logistic–normal 10.53 <0.0001
Beta–binomial Combined 4.28 <0.0001
Logistic–normal Combined 8.01 <0.0001

Asthma study
Exponential Exponential–gamma 8.54 <0.0001
Exponential Exponential–normal 10.63 <0.0001
Exponential–gamma Combined 8.54 <0.0001
Exponential–normal Combined 3.99 <0.0001

7. CONCLUDING REMARKS

In this paper we have argued that, rather than choos-
ing between normal and nonnormal random effects, the
latter often of a gamma, beta or other conjugate type,
both can usefully be integrated together into a single
model, which we have termed the combined model.
Our work builds upon that of Molenberghs, Verbeke
and Demétrio (2007), who brought together normal
random effects to induce association between repeated
Poisson data, and a gamma distributed random fac-
tor in the log-linear predictor to fine tune the overdis-
persion. Their model produces the standard negative-
binomial and Poisson–normal models as special cases,
both when there are repeated measures as well as with
univariate outcomes.

The current paper builds upon this work, not only by
considering other important cases, such as binary and
time-to-event data and, for completeness, also the nor-
mally distributed case, but, in particular, by providing
an encompassing framework around it. Wherever pos-
sible, explicit expressions for the marginal joint dis-
tributions are derived, as well as for marginal means,
variances, covariances and moments in general. This is
possible in all cases, including the Poisson and Weibull
cases, but for binary data the logit links defies such
a closed form. However, we showed that a switch to
the probit link does allow for closed forms. The exis-
tence of these closed forms, producing expressions for
a variety of generalized linear mixed models as special
cases, has not been known to its fullest extent. We dis-
cuss their implications for: (1) general understanding;
(2) derived quantities such as correlations, treatment
effects, etc.; and (3) the construction of parameter esti-
mation and implementation.

For the binary case, we have exploited the logit-
probit relationship to derive probit-based closed-form
approximations to the logit case. For the Weibull situa-
tion, we have additionally generated a family of distri-
butions that encompass an entire collection of Cauchy-
type distributions.

To make these developments possible in their fullest
generality, we have introduced strong conjugacy,
which comes down to a version of the well-known con-
jugacy that is compatible with the additional introduc-
tion of normal random effects.

In terms of estimation, we have focused on maxi-
mum likelihood estimation. This can be done by in-
tegrating over the random effects, either fully analyti-
cally, using the explicit expressions derived, or by com-
bining analytic and numeric techniques. The latter has



MODELS WITH NORMAL AND CONJUGATE RANDOM EFFECTS 345

been implemented in the SAS procedure NLMIXED,
for the Poisson, binary and survival cases, and applied
to three case studies.

Of course, with the considerations of not only one
but multiple sets of random effects comes the obliga-
tion to reflect on the precise nature of such latent struc-
tures. As underscored by Verbeke and Molenberghs
(2009), full verification of the adequacy of a random-
effects structure is not possible based on statistical
considerations alone, because there is a many-to-one
map from hierarchical models to the implied marginal
model. Of course, this should not stop the user from
considering such models, but rather issues a word of
caution.

A number of topics have been mentioned in this pa-
per that deserve further research. These include, but are
not limited to, the following: (1) the construction of
model building and goodness-of-fit tool; (2) a detailed
study of the relative merits of various estimation meth-
ods and their implementation; (3) a study of the iden-
tifiability of (random-effects) parameters in the com-
bined model; (4) the incorporation of censoring in the
survival case; and (5) the explicit consideration of data
types and models not considered here.

The Poisson, binary and Weibull cases have been
implemented in the SAS procedure NLMIXED. All
datasets, programs and outputs can be found in a
WinZip archive on the web site www.censtat.be/soft-
ware.
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SUPPLEMENTARY MATERIAL

A family of generalized linear models for re-
peated measures with normal and conjugate ran-
dom effects: Calculation details (DOI: 10.1214/10-
STS328SUPP; .pdf). In Section A, generic approxi-
mate calculations are provided. Closed-form calcula-
tions for various cases are offered as well: for the Pois-
son case (Section B), for the binary case with logit link
(Section C), for the binary case with probit link (Sec-
tion D), and for the time-to-event case (Section E). Fi-
nally, Section F is dedicated to the derivation of mar-
ginal correlation functions.
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