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Abstract

Missing data often occur in regression analysis. Imputation, weighting, direct likelihood,
and Bayesian inference are typical approaches for missing data analysis. The focus is
on missing covariate data, a common complication in the analysis of sample surveys and
clinical trials. A key quantity when applying weighted estimators is the mean score contri-
bution of observations with missing covariate(s), conditional on the observed covariates.
This mean score can be estimated parametrically or nonparametrically by its empirical
average using the complete-case data in case of repeated values of the observed covariates,
typically assuming categorical or categorized covariates. A nonparametric kernel based
estimator is proposed for this mean score, allowing the full exploitation of the continuous
nature of the covariates. The performance of the kernel based method is compared to
that of a complete case analysis, inverse probability weighting, doubly robust estimators
and multiple imputation, through simulations.

Keywords: Missing Covariates, Weighted Estimating Equations, Doubly Robustness,
Mean Score Estimation, Kernel Weights

1. Introduction

Missing covariate data is a frequently encountered complication in the application of re-
gression models. Following the taxonomy of [16], the missing data mechanism is classified
as missing completely at random (MCAR), missing at random (MAR) or missing not
at random (MNAR). In what follows, we will assume MAR. Naively excluding subjects
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with missing covariates (so-called complete case analysis, CC) is known to possibly lead
to highly inefficient estimates and, moreover, if the missing data mechanism is not com-
pletely at random, such CC-estimates can be biased. It is nowadays well recognized that
the incorporation of the partially incomplete data into the analysis is a necessary and
worthwhile effort to increase efficiency and reduce bias. Multiple imputation (MI, [9])
results in improved and consistent estimates, provided the imputation model is correct.
Weighting by the inverse probability (IPW, [14]) of observing complete data on a unit
is a conceptually simple alternative approach, involving fewer modelling assumptions but
still inefficient and sensitive to the choice of the weighting model. The so-called doubly
robust estimator (DR, [13]) has been developed to improve the performance of the IPW-
estimators. [2] presented a nice intuitive review of these developments, contrasting these
estimators from both a theoretical and a practical viewpoint. They concluded that the
DR-estimator is an attractive alternative to multiple imputation. Results of MI are in
general not robust to misspecification of the imputation model. DR-estimators recover
a substantial proportion of the efficiency and are robust to either a wrongly specified
conditional mean or a wrongly specified drop-out model but may be sensitive to correct
specification of the weights and ordinarily result in efficiency loss. Although the DR-
estimators exist in general, calculating them is not always straightforward. [23] discussed
the numerical equivalence of the different estimators for categorical data.

There has also been some work in incorporating nonparametric components in the dif-
ferent approaches to deal with missing covariates. [20] investigated the properties of the
IPW-estimator when the selection probabilities are estimated by kernel smoothers. [21]
elaborated on this idea by also turning the (weighted) estimation equations into local lin-
ear weighted estimating equations, including additional kernel-based weights to estimate
the mean parameter of interest as a smooth function of continuous covariates. Finally,
[22] proposed kernel estimates for the selection probabilities and the other key quantity:
the conditional mean score contribution of partially observed covariate(s).

In this paper we propose an alternative nonparametric kernel-based estimator for the
conditional mean score of a partially observed case. This approach allows to estimate this
quantity nonparametrically, without the need to categorize the continuous covariates,
thus allowing to fully exploit the continuous nature of those covariates. It differs from the
kernel estimate of [22] in using all observed variables of the partially observed cases. We
compare the performance of the kernel-based method to that of a complete case analysis,
inverse probability weighting, doubly robust estimators and multiple imputation, through
simulations. We revisit the simulations in the review paper of [2].

The paper is organized as follows. In the next section we introduce notation while briefly
defining and reviewing the CC, MI, IPW and DR methods. In Section 3, we propose
our kernel based method to estimate the conditional mean score. In Section 4 we discuss
the performance of the proposed method in comparison with other methods, based on
simulations. Section 5 summarizes the main findings and concludes the paper.
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2. Methods for Regression With Missing Covariate Data

Let y be the outcome variable of interest, x be the partially missing covariate and z the
always observed covariate. The aim is to fit a parametric regression model EΘ(yi|xi, zi),
where Θ is a vector of parameters. In case all observations {(xi, zi, yi)}ni=1 are fully ob-
served, the parameter vector Θ can be consistently estimated by solving the (unweighted)
estimating equations

n∑
i=1

ψΘ(yi|xi, zi) = 0. (1)

For generalized linear models with canonical link function, ψΘ(yi|xi, zi) = Di{yi−G(Θ′Di)}
where Θ = (θ0, θ1, θ2), Di = (1, xi, zi)

′ and G is the link function of interest. Although
all methods can be formulated for vector-valued xi and zi, we simplify presentation to a
scalar-valued xi and zi.

Let δi indicate whether xi is observed or not:

δi =

{
1, if xi is observed,

0, otherwise.

We assume the probability πi of xi being observed to depend on (zi, yi) but not on xi, i.e.,

πi = P (δi = 1|xi, zi, yi) = P (δi = 1|zi, yi). (2)

So we assume xi to be missing at random (MAR), according to the taxonomy introduced
by [9].

In case xi is missing for some units (δi = 0), a complete case (CC) analyis is based on the
observed estimating equations

n∑
i=1

δiψΘ(yi|xi, zi) = 0. (3)

These CC-estimating equations are no longer guaranteed to have expectation 0 at Θ =
Θ*, Θ* being the true value, and parameter estimates are no longer guaranteed to be
consistent. So, next to being inefficient because of deleting observations, a CC-analysis
can lead to biased estimates [9].

This defect of biased estimating equations can be fixed by using weighted estimating
equations, with inverse probability weights 1/πi (IPW-estimating equations; [5, 24]):

n∑
i=1

δi
πi
ψΘ(yi|xi, zi) = 0. (4)

In this way, in the spirit of the Horvitz-Thompson estimator used in the analysis of survey
data [7], fully observed cases with a low probability to be observed get more weight in

3



order to reconstruct the subpopulation of partially observed cases, not included in the
analysis. Most often, especially in a missing data setting, the probabilities π(zi, yi) are
unknown. Equation (3) can then be solved using an estimator π̂(zi, yi) from, for example
a logistic regression analysis. The drawback of inefficiency remains relative to likelihood-
based estimates using all partially observed cases, but paradoxically it is more efficient to
use estimated rather than true weights [15].

Alternatively, [12] suggested to replace the unobserved quantity ψΘ(yi|xi, zi) in
n∑

i=1

{δiψΘ(yi|xi, zi) + (1− δi)ψΘ(yi|xi, zi)} = 0,

by the expected score
ϕ(zi, yi) = E{ψΘ(yi|xi, zi)|zi, yi}.

The so-called mean-score estimator is based on solving equation

n∑
i=1

{δiψΘ(yi|xi, zi) + (1− δi)ϕ(zi, yi)} = 0, (5)

with ϕ(zi, yi) replaced by an estimator ϕ̂(zi, yi).

The inverse probability weights, operating in equation (4) on the fully observed cases, can
also be applied to the partially observed cases in the second term in (5). This leads to
the estimating equations for the so-called doubly robust (DR)-estimator [13]:

n∑
i=1

{
δi
πi
ψΘ(yi|xi, zi) + (1− δi

πi
)ϕ(zi, yi)

}
= 0. (6)

The DR estimating equations are asymptotically equivalent to the full data estimating
score if at least one of the two components, π(zi, yi) or ϕ(zi, yi), is correctly specified. In
case z and y are categorical, these components can be estimated nonparametrically by
the empirical averages

π̂(zi, yi) =

∑n
k=1 δkI{zk = zi, yk = yi}∑n
k=1 I{zk = zi, yk = yi}

, i = 1, ..., n, (7)

and

ϕ̂(zi, yi) =

∑n
k=1 δkψΘ(yk|xk, zk)I{zk = zi, yk = yi}∑n

k=1 δkI{zk = zi, yk = yi}
, i = 1, ..., n. (8)

In this categorical setting, [23] showed that some of the estimators listed above are, next
to being asymptotically equivalent, also numerically the same.

In this paper we focus on the nonparametric estimation of ϕ(zi, yi). [22] proposed the
following estimator

ϕ̂WW (zi, yi) =

∑n
k=1 δkψΘ(yk|xk, zk)Kh{zk − zi, yk − yi}∑n

k=1 δkKh{zk − zi, yk − yi}
, if δi = 0 for i = 1, ..., n, (9)
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whereK is a (multivariate) kernel function andKh(·) = K(·/h) where h is a (multivariate)
smoothing parameter. The estimator ϕ̂WW (zi, yi) is used to replace the unobservable
quantities ψ(yi|xi, zi) for those cases for which (zi, yi) is observed, but xi is not (i.e.
δi = 0). A disadvantage of estimator (9) is that the observed part (zi, yi) is only used
indirectly. In the next section, we propose an alternative estimator, which allows to keep
that part of the data intact.

Another way to deal with missing covariate data is the use of multiple imputation [17].
Each missing value is then replaced by a vector of M imputed values. These values are
obtained by randomly drawing from the predictive distribution of the missing values given
the observed values. Then next, each data set completed by imputation is analyzed;
afterwards, the obtained estimates for each of the datasets are combined into a single
estimate. Let θ be a parameter of interest in our regression model, and θ̂m and Wm the
estimated parameter and its associated variance for imputed dataset m, m = 1, 2, . . . ,M .
Then, the combined estimate is

θ̂MI =
1

M

M∑
m=1

θ̂m. (10)

The total variability associated with this estimate contains two components: the average
within-imputation variance W and the between-imputation component B:

W =
1

M

M∑
m=1

Wm, B =
1

M − 1

M∑
m=1

(θ̂m − θ̂MI)
2. (11)

The total variability associated with θ̂MI is

T = W +
M + 1

M
B. (12)

Under MAR and given that the imputation model is correct, multiple imputation pro-
vides consistent parameter estimates. However, when the imputation model is wrongly
specified, parameter estimates might be biased.
In many applications, 3-5 imputations are sufficient to obtain excellent results. [11] state
that, after a few imputations, gains rapidly diminish and thus in most situations, there
simply is little advantage to producing and analyzing more than a few imputed datasets.
Therefore, in our simulation studies, we will use 5 imputations (thus, M=5).

3. A Nonparametric Mean-Score Estimator

In this section, we propose the use of a new nonparametric mean score estimator. Let us
start from the second term in the estimating equation (5). Estimator (9) for the mean
score for the partially observed data (δ = 0, x = ·, z = zi, y = yi) does not use the available
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information on the (z, y) variables, which potentially constitutes a substantial part of the
data. We propose the following estimator:

ϕ̂(zi, yi) =

∑n
k=1 δkψΘ(yi|xk, zi)Kh{zk − zi, yk − yi}∑n

k=1 δkKh{zk − zi, yk − yi}
, if δi = 0 for i = 1, ..., n. (13)

The theoretical motivation for estimator (13) is as follows. Consider a linear model
with normal homoscedastic error structure, for which ψΘ(yi|xi, zi) = Di{yi − Θ′Di} =
(1, xi, zi)

′{yi − (θ0 + θ1xi + θ2zi)}, such as, for instance, the intercept score function

E{ψ(int)
Θ (yi|xi, zi)|zi, yi} = yi − θ0 − E{θ1xi|zi, yi} − θ2zi, (14)

can be estimated by the kernel estimate (E{θ1xi|zi, yi} = E{θ1xi|zi, yi, δi = 1}, given that
MAR implies that xi and δi are independent, given zi and yi),

Ê{ψ(int)
Θ (yi|xi, zi)|zi, yi} = yi − θ0 −

∑n
k=1 δkθ1xkKh{zk − zi, yk − yi}∑n

k=1 δkKh{zk − zi, yk − yi}
− θ2zi

=

∑n
k=1 δk{yi − θ0 − θ1xk − θ2zi}Kh{zk − zi, yk − yi}∑n

k=1 δkKh{zk − zi, yk − yi}

=

∑n
k=1 δkψ

(int)
Θ (yi|xk, zi)Kh{zk − zi, yk − yi}∑n
k=1 δkKh{zk − zi, yk − yi}

.

This also holds for the other normal score functions as well as for general score functions,
because the conditional distribution Fx|zi,yi(x) in the mean score

E{ψΘ(yi|xi, zi)|zi, yi} =

∫ ∞

−∞
ψΘ(yi|x, zi)dFx|zi,yi(x), (15)

equals Fx|zi,yi,δi=1(x) and can be estimated consistently by (see, e.g., [1])

F̂x|zi,yi,δi=1(x) =

∑n
k=1 δkI{xk ≤ x}Kh{zk − zi, yk − yi}∑n

k=1 δkKh{zk − zi, yk − yi}
. (16)

Plugging estimator (16) in (15) leads to our estimator (13), which consequently consis-
tently estimates the mean score E{ψΘ(yi|xi, zi)|zi, yi}. Defining the classical Nadaraya-
Watson weights as wk(z, y) = Kh{zk − z, yk − y}/

∑n
j=1Kh{zj − z, yj − y} and π̂(z, y) =∑n

k=1wk(z, y)δk, our estimator (13) can be reformulated as

ϕ̂(zi, yi) =
n∑

k=1

δkwk(zi, yi)ψΘ(yi|xk, zi)/π̂(zi, yi). (17)

The estimator can be inserted in estimating equation (5) as well as in (6), leading to two
alternative estimators for the vector of parameters Θ of interest. Plugging (17) into (5)
(or analogously into (6)), leads to the following weighted estimating equations

n∑
i,j=1

wijψΘ(yi|xj, zi) = 0, (18)
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with weights (δij denoting Kronecker delta)

wij = δj

{
δij + (1− δi)

wj(zi, yi)

π̂(zi, yi)

}
,

and based on the nc =
∑n

i=1 δi fully observed data {(xi, yi, zi, δi = 1)}ni=1 and nc× (n−nc)
partly nonparametrically imputed data {(xj, δj = 1, yi, zi, δi = 0)}ni,j=1.

Each of the n− nc observations (·, yi, zi) with missing xi-value is replaced by nc imputed
observations (xj, yi, zi), with δj = 1 for j = 1, ..., n. These latter imputed data get weights
wj(zi, yi)/π̂(zi, yi), being larger for imputations xj with corresponding values (zj, yj) closer
to the (zi, yi)-value associated with the missing xi, and being larger in an area with
larger chance of having missing observations. Indeed, π̂(zi, yi) is a nonparametric kernel
estimator for the probability to observe xi at (yi, zi). The effect of π̂(zi, yi) on the weights
stresses the importance of the few available but highly informative x observations in a
‘sparse’ area with a lot of missingness.

Now, 14 can be rewritten as

E{ψ(int)
Θ (yi|xi, zi)|zi, yi} = yi − θ0 − θ1E{xi|zi, yi} − θ2zi,

and thus in the linear case, the nonparametric mean score estimator is imputing the
unobserved x with a weighted mean of the observed x variables, with weights according
to the distance between the observed part of that observation and the completers. For a
nonlinear model however, this property does not hold any more.

Note that the nc imputed values (xj, yi, zi) for the single original observation (·, yi, zi), all
keep the observed part (yi, zi) intact and get a total weight

∑n
j=1 δjwj(zi, yi)/π̂(zi, yi) = 1,

preserving the total contribution of a single observation. This also implies that the total
sum of the weights wij equals the total sample size n, as

∑n
i,j=1wij =

∑n
i δi +

∑n
i (1 −

δi)(
∑n

j=1 δjwj(zi, yi))/π̂(zi, yi) = n.

In general, the choice of a particular kernel K for the weights Kh{zk − zi, yk − yi} is
less crucial for kernel-based methods, as compared to the choice of the bandwidth(s) h
[6]. It can be any multivariate density K with mean centered at the origin and with h
referring to the covariance matrix, such as a bivariate normal density centered at (0, 0)
in case z and y are univariate variables. The choice of the covariance structure and
the various variances, which act as smoothing parameters, is not straightforward. One
reasonable simplifying option is to take an independence covariance structure such that
Kh{zk−zi, yk−yi} = Khz{zk−zi}×Khy{yk−yi}. In addition, both variance parameters
can be taken identical hy = hz. Another simplifying option is to first take the Euclidean
distance ||zk − zi, yk − yi|| and next a one-dimensional density Kh with mean 0 and
variance h, such as a (range truncated) normal density, Epanechnikov density, or uniform
density around 0. The choice of the bandwidth(s) (hz, hy) or h is not straightforward.
Various options to automatically select the best bandwidth were proposed in literature:
cross-validation, penalizing functions and the plug-in method (see e.g. Hardle 1990). As
discussed in the next paragraph we prefer to use the nearest neighbor method, by taking
the k “nearest” neighbors (see e.g. [18, 10]).
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Using estimator (13) in (5) and (6) leads to estimating equations based on a multi-
ply completed, imputed dataset with weights reflecting the importance of each single
imputed dataset. In practice, this multiply augmented dataset can be quite massive,
given that the original number of different observations n increases up to a maximum of
nc + (n − nc)nc = nc(1 + n − nc) different observations. Using kernel weights wj(zi, yi)
with bounded support can however considerably reduce the imputed dataset. In this case,
non-zero weights are given to datapoints which are ’close enough’ to the partly observed
datapoint. Another option to reduce the number of different observations is to use only
a fraction [αnc] (0 < α < 1) nearest neighbors in the kernel weights. This leads to
a total size of nc + (n − nc)[αnc] = n + (n − nc)([αnc] − 1). Taking only one nearest
neighbor ([αnc] = 1) leads to a single imputed dataset with exactly n observations, and
any additional neighbor would generate n − nc extra observations (albeit appropriately
downweighted).
Various simulation studies were done with different sample sizes and missingness percent-
ages. Some of these simulation studies are shown in the next section. They show that
using 3 nearest neighbors with a uniform kernel is an adequate choice, independent of
the sample size and the missingness percentage. Employing this combination of 3 nearest
neighbors and a uniform kernel, the difficulty of selecting a bandwidth is eliminated, since
whatever bandwidth one is using, after normalizing the weights all three neighbors will
have weight 1

3
.

In Figure 1, we illustrate the method of Wang & Wang and our new proposal with uniform
kernel and 3 nearest neighbors. Consider the dataset shown in the upper left panel, with
response variable y and a single covariate x. When some of the observations have missing
x, the dataset as observed might look as in the upper right panel. The middle left and right
panel illustrate the method of Wang & Wang and our new method respectively, focussing
on 1 incompleter, shown with a transparent square. The method of Wang & Wang gives
an extra weight to the 3 nearest neighbors, according to the distance between the y values
of the incompleter and the neighbors. Higher weights are shown with bigger dots. Our
new proposal is using these same three neighbors, but instead of giving these observations
a higher weight, their x value is imputed in the incompleter. So, the transparent square
is replaced with three ’virtual’ points, with weights that sum to 1 (shown by crosses).
Finally, in the lower panel, both methods are illustrated for the full dataset. In the case
of Wang & Wang, a weighted complete dataset is obtained, while in the case of the new
proposal a virtual imputed dataset is obtained. As mentioned earlier, in the linear case,
our new method coincides with imputing the unobserved x with a weighted mean of the
observed x variables. In Figure 2, the so-obtained dataset is shown. The crosses are the
imputed datapoints based on these weighted averages.

In the next section we will illustrate the performance of our estimator and compare the
method with the other methods, CC, MI, IPW and DR.
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4. Class Size Study Data

The simulation study was motivated by the analysis of the class size study, which was
carried out by Peter Blatchford and colleagues at the Institute of Education. The study
was set up to look at the effects of class size on educational achievement. Further details,
and the initial findings, were described in [3]. Broadly speaking, after adjusting for
variables reflecting social class, improvement in basic mathematics and English over the
course of pupils’ reception year declines as class sizes rise above 25. The study continued
to follow up students as they progressed through primary school. Attrition (due to failure
to renew contact with pupils) and missing covariates (due to incomplete information from
pupils and schools) are issues in the analysis of these data.
Analogously as in [2], we look into the properties of the various methods by simulating
data with a similar structure to the data in the class size project. Specifically, we generate
data from a four-dimensional normal distribution with mean and covariance equal to the
mean and covariance of the actual data for the variables post-reception literacy score
(which increases with literacy), pre-reception literacy score (which increases with literacy),
eligibility for free school meals (which is coded 1 for eligible) and gender (which is coded
1 for girls). The mean µ and variance Σ of this distribution, with variables in the above
order, were estimated from the data.

(Post,Pre,Meals,Gender) ∼ N4 (µ,Σ) , (19)

with

µ =


0.0201

0.0230

0.1668

0.4816

 and Σ =


1.0094 0.6418 −0.0710 0.0543

0.6418 0.9506 −0.0877 0.04950

−0.0710 −0.0877 0.1390 0.0032

0.0543 0.04950 0.0032 0.2497

 . (20)

Note that, as we simulated data from a normal distribution, all simulated data are con-
tinuous, also the variables Meals and Gender, which were discrete in the original dataset,
but taken to be continuous in the simulation setting of [2]. The variable Post is used as
the response variable, the other three as covariates. The distribution of Post, given Pre
(P), Meals (M) and Gender (G) becomes

Post|P,M,G ∼ N [µ(P,M,G), 1.0094] , (21)

with
µ(P,M,G) = −0.0214 + 0.6618P− 0.0952M + 0.0875G. (22)

9



4.1. Missing observations in one covariate

To compare the different methods, some simulation studies were set up. In Scenario
1, data were generated according to the 4-variate distribution in (19) with sample size
4873, the sample size in the original dataset. As was also done in [2], in every run, some
of the pre-reception literacy scores were set missing according to a Bernoulli trial with
probability:

1− π = [1 + exp(0.5 + 0.5× Post +G−M)]−1 . (23)

This yielded an average missingness percentage of around 30% over 200 runs. In each of
the runs, a full case analysis (i.e. the analysis on the original data, before introducing the
missingness), a complete case analysis (CC), multiple imputation (MI), inverse probability
weighting (IPW), doubly robust estimation (DR), the method of Wang and Wang (WW)
and our new proposal (based on equation 5) were fitted to the simulated data. For the
latter two methods, a uniform kernel with 3 nearest neighbors is used. The methods
are compared by the parameter estimates and by the overall mean squared error (MSE),
defined as

MSE =
1

m

m∑
j=1

1

n

n∑
i=1

(
µ̂(P

(j)
i ,M

(j)
i , G

(j)
i )− µ(P

(j)
i ,M

(j)
i , G

(j)
i )

)2

, (24)

where m = 200, the number of simulated datasets, and n=4873, the number of obser-
vations per run. Since we simulate from a multivariate normal model, and the multiple
imputation assumes this model, we expect the MI to have the best results.
Parameter estimates, sample variances of the parameter estimates and overall mean
squared errors for the different methods are presented in Table 1. A nonparametric
bootstrap is used to estimate the variance of the parameter estimates for all methods.
For the IPW and the DR, three different results are shown: in the first case, the cor-
rectly specified parametric function is used for the missingness model, in the second case,
a misspecified function with only effects of gender and meals are included, while in the
third case a nonparametric generalized additive model (GAM) with spline effects for all
three variables is assumed. For the MI, the correct imputation model is used. Almost all
methods behave well with parameter estimates close to the true ones and an overall MSE
around 0.7. However, the CC and the IPW with incorrectly specified weights perform
poorly. They both have biased parameter estimates and very high mean squared errors.
We also remark the bootstrap estimation of the variance behaves nice for most methods,
including our new method. The empirically observed variance and the bootstrap variance
are close to each other, although a bit conservative, for all parameters. In Scenario 1,
results from our new proposal are thus comparable with the other methods. We will next
describe a second scenario, based on the same dataset, but with a higher missingness
percentage in combination with a lower sample size.
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Figure 1: Illustration of our new proposal versus the method of Wang & Wang: dataset if fully observed
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Again, in each run, data were generated according to the 4-variate distribution (19). A
sample size of 400 was used instead of 4873 to reduce computation time. In every run,
some of the pre-reception literacy scores were set missing according to the following rule:

1− π = [1 + exp(0.2 + Post− 1.5G+ 0.1M)]−1 . (25)

This yielded an average missingness percentage of around 60% over the 200 runs.
The results of Scenario 2 are summarized in Table 2 and show some difference. First, as
expected and as in Scenario 1, the CC analysis and the IPW with incorrectly specified
weights show again biased parameter estimates and a high MSE compared to the other
methods. IPW with the correctly specified models for the missingness function has pa-
rameter estimates close to the true ones, and has highly reduced mean squared error. For
the DR estimates, it is clearly seen that parameter estimates are robust against misspeci-
fication of the missingness model. Since only the missingness model was misspecified, and
the mean function was the correct one, The DR estimating equations are asymptotically
equivalent to the full data estimating score, and thus provide good results.The parameter
estimates in WW seem to be biased, but the overall MSE is comparable to the IPW from
a correctly specified missingness model. Further, the imputation methods (MI and our
new method) behave very good in terms of overall MSE and are of the same order as the
doubly robust MSEs.
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4.2. Missing observations in two covariates

Methods like the complete case analysis and inverse probability weighting are easy to
implement, but also known to be biased and/or inefficient. The previous section illustrated
that multiple imputation, doubly robust estimation and our new proposal behave well
when dealing with one missing covariate. Although the doubly robust estimators exist
more generally [19], it is not completely clear how to calculate them in settings where
several covariates are missing [2]. Our new proposal can easily be generalized to the case
of several missing covariates. In this section, we will study the behavior of the different
methods for the case of two incomplete covariates.
In Scenario 3, again the 4 variables were generated according to the distribution in (20)
and with sample size 400. In every run, missingness was introduced in both the variables
Pre-reception literacy score and Meals, according to the following rules:{

1− π1 = [1 + exp(0.2 + Post + 1.5G+ 0.4M)]−1 ,

1− π2 = [1 + exp(0.2 + 1.7Post + 0.6P + 0.4G)]−1 ,

where 1−π1 is the probability that variable Pre is missing, while 1−π2 is the probability
that Meals is not observed, given that Pre is observed. In this way, the variables Meals
and Pre will not be missing at the same time, and thus the probability that Meals is
missing does only depend on the observed values of Pre. Therefore, the missing data
mechanism is MAR. This yielded an average missingness percentage of 56%. In variables
Pre and Meals, the average missingness percentage was 32% and 24%, respectively. While
the complete case analysis will throw away 56% of the information in the dataset and most
other methods will use this 56% only implicitly, our new proposal and the multiple im-
putation will use all available information explicitly in the analysis.
To each of the 200 simulated datasets, a full case analysis, a CC analysis, MI, IPW,
WW, and our new proposal were fitted. As one of the reviewers suggested, it might be
interesting to look at multiple imputation when the imputed values are obtained from a
nonparametric estimator of the predictive distribution of the missing values. Therefore,
we included such an estimator in the analysis. Using generalized additive models, the pre-
dictive distribution of the missing values is estimated and 5 imputed values are obtained.
Parameter estimates, sample variances, mean estimated variances using nonparametric
bootstrap and overall MSEs of all considered methods are summarized in Table 3. As
before, the CC analysis and the IPW with incorrectly specified weights exhibit biased
estimates and high MSE. The MSEs from the other methods are substantially lower.
Multiple imputation behaves very well and has the smallest MSE, almost as small as the
full case analysis. This was to be expected, given that the data are simulated from a
multivariate normal distribution, assumed by the multiple imputation method. The non-
parametric imputation still behaves well, but has larger MSE compared to the parametric
imputation. The larger MSE is due to the more biased parameter estimates, variances
are still small for the nonparametric version. The MSE of the nonparametric imputation
is comparable to that of the IPW with nonparametric weights. Our new proposal does
not make any assumption about the distribution, but it also behaves very good in terms
of MSE. Compared to the method of Wang and Wang, MSE reduces with 1.3373×10−2.
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As expected, the advantage of using all available information seems to be more clear in the
missing-more-covariate case. Whereas only the completely observed records contribute to
the CC and IPW analyses, also the partly observed records with one of the two covariates
observed contribute to the estimation procedure. Thus, compared to the missing-one-
covariate case, more information can be gained in the missing-two-covariates case and it
therefore might result in a stronger reduction in MSE compared to methods that only use
the fully observed observations explicitly.
The behavior of DR estimates could not be investigated in Scenario 3, since no extension
to the missing-more-covariates case is available for this method.
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4.3. Missing observations in three covariates

In this section, a fourth Scenario will be investigated. We will illustrate the behavior of
the different methods when three covariates have missing observations. Therefore, the
original study was extended with another covariate, which will be referred to as Extra.
Data were simulated from the five-variate normal distribution

(Post,Pre,Meals,Gender,Extra) ∼ N5 (µ,Σ) , (26)

with

µ =


0.0201

0.0230

0.1668

0.4816

1.5327

 and Σ =


1.0094 0.6418 −0.0710 0.0543 −0.3247

0.6418 0.9506 −0.0877 0.04950 −0.1572

−0.0710 −0.0877 0.1390 0.0032 0.1378

0.0543 0.04950 0.0032 0.2497 −0.4876

−0.3247 −0.1572 0.1378 −0.4876 6.8516

 ,

(27)

and with sample size 400. Missingness was introduced in the three original covariates:
Pre-reception literacy score, Meals and Gender. These variables were set missing with
probabilities respectively


1− π1 = [1 + exp(0.2 + Post + 1.5G+ 0.4M + E)]−1 ,

1− π2 = [1 + exp(0.2 + 1.7Post + 0.6P + 0.4G+ E)]−1 ,

1− π3 = [1 + exp(−5 + 1.1Post + P + 0.2M + 2E)]−1 ,

where 1− π1 is the probability that variable Pre is missing, 1− π2 is the probability that
Meals is not observed, given that Pre is observed, and finally, 1 − π3 is the probability
that Gender is not observed, given both Pre and Meals are observed. In this way, only
one covariate can be missing in the same observation, and thus MAR is guaranteed. This
yielded an average total missingness percentage of 65%: 21% in Pre, 15% in Meals and
29% in Gender. As in the other Scenarios, a CC analysis, MI, IPW, WW and our new
proposal were fitted. Parameter estimates, sample variances, mean estimated variances
using nonparametric bootstrap and overall MSEs are summarized in Table 4. All methods,
except the multiple imputation and the new proposal have high Mean Squared Errors.
Multiple imputation behaves best in terms of MSE (3.8944×10−2), followed by our new
proposal (6.2015×10−2).
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Figure 3: Sensitivity of new method and method of Wang and Wang to the choice of number of nearest
neighbors. Left: 1 missing covariate (sample size 400), middle: 2 missing covariates, right: 3 missing
covariates. MSE for Multiple Imputation and Doubly Robust Estimation are included for comparison.

4.4. Sensitivity of method to number of nearest neighbors

In previous simulation settings, 3 nearest neighbors were used with a uniform kernel
function. However, the results might be sensitive to the number of nearest neighbors used
in the analysis.
In Figure 3, the MSE is plotted as a function of the number of nearest neighbors for
Scenarios 2, 3 and 4. The method of Wang and Wang seems to be more sensitive to the
number of nearest neighbors, compared to the new method. For our new proposal, the
dependence on the number of nearest neighbors is rather limited. In the case of 1 missing
covariate, there is a minimum MSE when using 6 nearest neighbors, but the difference
with 3 nearest neighbors is only 0.0181 (or a difference of 1.6%). In the case of 2 covariates
with missing observations, the minimum MSE for the new proposal is reached for 3 nearest
neighbors. In the case of 3 missing covariates, a bit more sensitivity can be detected: the
MSE is decreasing with increasing number of nearest neighbors. The minimum is situated
at 10 nearest neighbors, which gives a difference of 0.6373 (or 10.2%) with the 3 nearest
neighbors.
These are only some illustrations of the sensitivity of the proposed method to the number
of nearest neighbors. In general can be said that our new proposal is not too sensitive to
the number of nearest neighbors. Although in some applications results could be better
with another number of nearest neighbors, using 3 neighbors is an adequate choice.

4.5. Computational Remarks

As was already mentioned in Section 3, the virtual imputed dataset can be quiet massive.
If the sample size is 4873 with a missingness percentage of 30%, like was the case in the
first simulation study, the size of the virtual imputed dataset becomes 4,990,293 using
all neighbors. When the missingness percentage increases to 60%, the size of the virtual
imputed dataset would increase to 5,700,825. For this reason, it is useful to use only a
fraction of the nearest neighbors to impute. In the simulation studies described before,
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only 3 nearest neighbors were taken into account. This means, for the previous examples,
that the virtual imputed datasets will have size 7,797 and 10,721, respectively, reducing
computation time. In Table 5, the computation times (in seconds) of the various methods
and for the different simulation studies are shown. The nonparametric versions of the
IPW and DR take considerably more time than the others, which is mainly due to the
nonparametric estimation of the missingness model. Further, doubly robustness, the
method of Wang & Wang, and our new proposal take more time than the other methods,
especially when the sample size is large. However, for smaller sample sizes the difference
with the other methods becomes smaller, and for n = 400, the method of Wang & Wang
and our new proposal are even faster than the doubly robust estimates. The missingness
percentage seems to have less impact for our new proposal, the computation times for
40% and 60% missingness are more or less the same.

Table 5: Computation time (in seconds) for the different methods and different datasets

One incomplete covariate Two incomplete covariates

n = 4873 n = 400 n = 400

30% missing 30% missing 60% missing 56% missing

Full 0.05 0.04 0.02 0.03

CC 0.05 0.04 0.04 0.03

MI 0.68 0.53 0.53 1.10

IPW correct 0.26 0.14 0.15 0.13

IPW wrong 0.30 0.26 0.20 0.12

IPW nonpara 84.75 6.88 6.31 4.05

DR correct 5.56 5.21 4.05 /

DR wrong 5.56 4.06 4.11 /

DR nonpara 109.74 11.39 10.33 /

WangWang 19.53 1.48 1.45 2.98

New 19.74 1.40 1.45 2.71

5. Discussion and Final Remarks

In this paper, an overview of methods to handle missing covariate data is presented. Also,
the use of a nonparametric kernel based mean score estimator is proposed. In line with
current common wisdom, naive methods like the complete case analysis should be avoided
in practice, since it is known that they lead in general to inefficient and biased estimates.
Multiple imputation and inverse probability weighting lead to improved estimates, but
only when the imputation and weighting models are correctly specified. The doubly
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robust estimators do not suffer from this property, but generalization to several missing
covariates is not straightforward in this case. The method of Wang & Wang is, similar to
our method, kernel-based, but less efficient in the sense that not all available information
is used. The new method we propose is using all available information directly in the
estimating equations.
In the simulation studies, two methods could be indicated as behaving poor: the complete
case analysis and the inverse probability weighting with incorrectly specified weights. The
multiple imputation behaves very well in the simulation studies, since it was based on
the correct imputation model. Our method also behaves very well in the missing-one-
covariate, missing-two-covariates and missing-three-covariates case. In the new proposal,
we used three nearest neighbors with a uniform kernel, and we showed that the method
is not too sensitive to the choice of the number of nearest neighbors. There are options to
find the best bandwidth and/or number of nearest neighbors (for example leave-one-out-
cross-validation), but these are computational intensive procedures. We therefore suggest
to use three nearest neighbors with a uniform kernel.
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