Available online at www.sciencedirect.com Procedia

pein ScienceDirect Computer
ELSEVIER Procedia Computer Science 00 (2012) 000-000 SCIen Ce

www.elsevier.com/locate/procedia

The 1% International Workshop on Agent-based Mobility, Traffic and Transportation
Models, Methodologies and Applications

Exploiting Graph-theoretic Tools for Matching and
Partitioning of Agent Population in an Agent-based Model for
Traffic and Transportation Applications

Daniel Keren®*, Ansar-Ul-Haque Yasar”®, Luk Knapen®, Sungjin Cho®, Tom
Bellemans®, Davy Janssens®, Geert Wets®, Assaf Schuster®, 1zchak Sharfman®
2Department of Computer Science, Haifa University, Haifa 31905 (Israel)

*Transportation Research Institute (IMOB), Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium)
“Faculty of Computer Science, Technion — Israel Institute of Technology, Haifa 32000 (Israel)

Abstract

In this position paper, we exploit the tools from the realm of graph theory to matching and portioning
problems of agent population in an agent-based model for traffic and transportation applications. We take
the agent-based carpooling application as an example scenario. The first problem is matching, which
concerns finding the optimal pairing among agents. The second problem is partitioning, which is crucial
for achieving scalability and for other problems that can be parallelized by separating the passenger
population to sub-populations such that the interaction between different sub-populations is minimal.
Since in real-life applications the agent population, as well as their preferences, very often change, we
also discuss incremental solutions to these problems.

© 2012 Published by Elsevier Ltd.

Keywords: Carpooling, Scalability, Agent-based, Modeling, Matching, Partitioning, Graph theory.

1. Introduction
The well-known carpooling application concerns the assignment or matching of passengers(agents) so

they may share a ride and as a result reduce travel costs, fuel, toll / parking costs, emissions and the

* Corresponding author. Tel.: (+972) 4-824-9730; Fax: (+972) 4-824-9331.
E-mail address: dkeren@cs.haifa.ac.il.

2 D. Keren et al./ Procedia Computer Science 00 (2012) 000-000

overall traffic load. In this paper we shall deal only with the restricted problem of pairing two agents.
Typically, every two agents are assigned (either by a coordinator or according to their own decision)
some compatibility measure, which is a positive number that determines their preference to ride together.
This measure can depend on many factors such as the proximity of residence and workplace of the agents,
their personal considerations / preferences, schedule compatibility, etc. One way to determine this
measure is for each potential carpooler to upload his/her data to a website or to an online service, allow a
coordinator to automatically determine it based on parameters as discussed earlier and then the
passengers(agents) can update the results. Note that the compatibility measure is not necessarily
commutative (e.g. agent A may want to ride with B, but not vice-versa), and it should be made
commutative (by taking the average, or minimum, of both corresponding measures).

In this position paper we advocate the tools from the realm of graph theory to matching and portioning
problems of agent population in an agent-based model for traffic and transportation applications. An
agent-based model is a class of computational models for simulating the actions and interactions of
autonomous agents with a view to assessing their effects on the systems as a whole [9]. We take the
agent-based carpooling application as an example scenario. The first problem is matching: the input is the
list of agents and their compatibilities, and the output is a (not necessarily complete) partitioning of the
agents to disjoint pairs. Typically, this partitioning attempts to maximize the sum of compatibility
measures of the pairs; following this, the agents may be allowed to reject their partners, or possibly
modify their preferences and have the coordinator run another matching.

The second problem, partitioning, concerns scalability. Since all solutions to the matching problem
run in super-linear time, solving it for a large number of agents may be prohibitive — even more so since
the agents’ preference may change rapidly, and it may be required to run the matching very often. A
provably advantageous paradigm for solving such large-scale problems is to “break them up” into smaller
sub-problems, and solve the sub-problems in parallel. To achieve this, the sub-problems should be as
independent as possible. Here, independence means that the agent population can be split into a disjoint
union of sets, such that for each two different sets, the overall sum of the compatibility measures taken
over all agents pairs such that one agent is in the first set and the other in the second set is as small as
possible. After this stage is completed, the matching is run in each subset independently.

Another important goal is to find an incremental solution to these problems. As noted before, the
agent population — and their preferences — are highly dynamic; i.e. people either retire or join the work
market, and they change their workplace and address, as well as their preferences for the carpool partner.
It is, of course, inconceivable to re-run the matching and partitioning every time such a change occurs; it
is necessary to apply an incremental algorithm, which will both identify when it is required to rerun the
two processes, and perform the task quickly, using the previous solution and relying on the fact that
typically the changes are relatively small.

2. Graphs and their Relation to the Agent-based Carpooling Application

Reminder: a graph G consists of a set of nodes, V, and a set of edges, E, such that each edge is
associated with a pair of nodes. Denote G = (V,E). A directed graph is the same as above, but where each
edge is associated with an ordered pair of nodes. In a weighted graph, each edge has an associated real
number with it, defined as its weight.

For the agents matching problem in an agent-based carpooling application, define a weighted graph
whose nodes are the potential agents, and there is an edge between any two agents who are potential

D. Keren et al./ Procedia Computer Science 00 (2012) 000-000 3

partners for carpooling. The edge weights are all non-negative, and the larger the weight, the higher the
preference of the two corresponding agents to carpool. There are various ways in which to define the
weight; at first the parameters which influence the weight should be chosen. One important parameter is
the amount of fuel (or distance, etc.) saved when two agents carpool; the other is their personal
preference, which may depend on various factors, e.g. how is it easy for the driver to pick up his/her
partner, how well do they get along, etc. The second parameter may be allowed to obtain negative values.
The overall weight is a combination of these parameters.After the graph has been constructed, we seek an
optimal matching in it, which will correspond to the assignment of the desired carpooling. Some
definitions relating to matching follow.

2.1 Matching and the carpooling problem

e Givenagraph G = (V,E), amatching M in G is a set of pairwise non-adjacent (disjoint) edges —
that is, no two edges share a common node.

e Anode is matched (or saturated) if it is an endpoint of one of the edges in the matching.
Otherwise the node is unmatched.

e The weight of a matching M is the sum of the weights of the edges in M.

e A maximum (optimal) matching is a matching such that it obtains the maximum weight of all
matchings. It does not have to be unique.

o If all the edge weights are equal, the problem reduces to finding a matching with a maximal
number of edges (which here is equivalent to finding a carpooling scheme which maximizes the
number of carpoolers). This problem is referred to as maximum cardinality matching, which is
easier to solve than the general problem. It corresponds to the case in which the only preference
for carpooling partners is binary (i.e. does agent A agree to ride with agent B or not).

Ideally, after the graph corresponding to the carpooling is constructed, we recover a maximum
matching and then assign the carpooling according to it — that is, two agents will carpool iff the edge
connecting them is in the matching. Note that no inconsistency may result from this assignment, as the
edges are disjoint. Note, also, that some agents may be left without partners.

Finding the optimal matching is non-trivial; as the following simple example demonstrates, a greedy
algorithm (which commences by choosing an edge with a maximal weight and then continues by
choosing an allowable maximal weight edge among those which remain), may not reach an optimal
solution:

A 6 B 8 C 6 D
® ® @ ®

The greedy solution here is to start by choosing the edge between B and C; however, that will
constitute the entire matching, as A,D will be left without partners. It is obvious, however, that a

maximum matching is given by edges E,ﬁ .

A special case of the matching problem is when the graph is bipartite — that is, its nodes can be
partitioned into two disjoint sets, V = X WY, X MY = ¢, such that all edges are between a node in X

and a node in Y. For the agent-based carpooling application, this may correspond to the case in which the
agent population is composed of drivers and non-drivers [1]. For a schematic example, see Fig. 1 (right).

http://en.wikipedia.org/wiki/Non-adjacent

4 D. Keren et al./ Procedia Computer Science 00 (2012) 000-000

2.2 Complexity of the maximum matching problems

Following the early famous work by Edmonds [6], various algorithm have been developed to solve the

maximum matching problem. There are solutions which run in O(| E | {/|V |) time. More recently,

methods based on relaxation have been introduced, which allow to apply a rich selection of optimization
techniques to the matching problem. While space does not permit a comprehensive survey of these
methods, we briefly demonstrate how they are applied for the case of a bipartite graph. Assume we have
four drivers(agents) and four non-drivers, and there is a compatibility measure C;; for every driver i and
non-driver j. In order to find an optimal matching, we can look at the following optimization problem:
define binary decision variables Xij which can attain values of 0 or 1, and maximize the expression

ZCU— Xij , subject to the constraints Vi, j: Z Xij» inj < 1. Note that these constraints guarantee that
ij i j

each driver/non-driver will be matched with only one non-driver/driver. Generally speaking, the main
difficulty in solving such optimization problems is the binary constraint; this can be relaxed to solving

exactly the same problem but with Xij allowed to attain every value between 0 and 1. After solving this

problem, driver i can be matched with non-driver j for which X;; is maximal.

drivers non-drivers

Fig. 1. Left: a maximal matching result for a graph with 15 nodes (or agents). Edge weights are depicted.
The edges corresponding to a maximum matching are colored in red. Right: schematic example for the
bipartite graph corresponding to drivers/non-drivers matching.

2.3 Incremental and online solutions

As discussed in the introduction, the input to the agent-based carpooling application is highly
dynamic. This necessitates developing, in addition to the well-studied batch solutions, algorithms which

D. Keren et al./ Procedia Computer Science 00 (2012) 000-000 5

are incremental or online. An incremental algorithm assumes that the optimal solution of the carpooling
for some input was computed already, and then it attempts to solve (either accurately or approximately)
the problem for the same input but under a small perturbation. Online algorithms assume that the entire
data arrives in an online fashion, e.g. each agent uploads his/her preferences, and the algorithm has to
immediately assign the agent a carpooling partner. Typically, online algorithm achieve results which are
inferior to incremental, but it enjoys a very fast “response time”. EXisting pairs show a reluctance against
being broken that grows with the inverse of the time remaining before the start of the trip (since
reorganizing human activities comes not for free).

3. Scalability and Graph Partitioning

A major difficulty with running both simulations and real life applications on large agent-based tasks
is the size of the problem. For the agent-based carpooling application, for example, the computational
complexity increases in a super-linear fashion, making it difficult to compute an optimal solution in the
presence of millions of agents. The same holds for other problems in large-scale transportation scenarios;
hence, the necessity of parallelizing these problems.

The crucial issue in the parallelization of a problem is the ability to decompose it into disjoint sub-
problems, whose solution can be run in parallel. For transportation problem, “disjoint” means that the set
of localities (and/or agents) can be partitioned into a disjoint union of sets which cannot interact with each
other; for example, if no travel is allowed between different nations, the problem can be solved for each
nation separately. Alas, this is not the case. In the terminology of graph theory, the graph representing e.g.
the agent-based carpooling application is connected, that is, for every two nodes (or agents) there is a path
connecting them. The most direct solution to this problem is to try and partition the graph to sets which
are: (i) nearly disconnected, and (ii) of roughly equal size. Property (i) guarantees that solving each sub-
problem separately is a good approximation to the global solution, and property (ii) guarantees that the
sizes of the sub-problems are roughly identical, which is necessary for an efficient parallel solution.

3.1 Graph partitioning — Problem definition and solution

We now formalize the partitioning problem, following the considerations discussed above. A cut in a
graph (V,E) is defined as a partition of the node set V into two disjoint sets A & B. The cut value is

defined as Cut(A,B) = Ze(i, j), where €(l, J) is the weight of the edge between nodes i,j
icA, jeB

(assumed to be 0 if no edge exists). Clearly, the smaller the cut value, the better is the partitioning for our

purpose, so the goal is to find a cut with minimal cut value (min cut). However, mincut often yields sets

very unbalanced in size, one of which may consist of a single node. To overcome this, [7] introduced a

measure for the cut which also attempts to balance the sizes of A and B, referred to as normalized cut

(Ncut), defined by
ze(i, DXiX; Ze(i, DXiX;

Ncut(A, B) = -| =A< LRI x,=1ieA), x, =-1(ieB) ,

> >

ieA ieB
where d, is the degree of node i (defined as the sum of edges which are incident on it). The main
difference is that here, the size of the cut is normalized by the sum of the degrees of the nodes in the two
sets A and B, thus biasing the partition towards larger sets. Minimizing Ncut is known to be NP-Hard [7],
however a good approximation can be found by reducing it to a generalized eigenvalue problem [7] with

6 D. Keren et al./ Procedia Computer Science 00 (2012) 000-000

a matrix whose elements are determined by the weights (in our case, compatibility measures) e(l, j) :
space does not allow us to cover the details. Here, too, the problem is relaxed in order to obtain an
efficient solution, hence the resulting X; will be real numbers (instead of 1 or -1); in order to define the
partition A,B a threshold T should be chosen, and , A(B) defined to be the set of indices i such that X; is
larger(smaller) than T. A schematic example of the resulting partition is provided in Fig. 2.

3.2 Incremental algorithm

The partitioning problem in the agent-based carpooling application is particularly amenable to
incremental analysis, since typically the overall change in the compatibility measures over time will be
slow. Since the solution is based on computing an eigenvalue problem, efficient algorithms from the
realm of perturbation theory can be applied [8].

Fig. 2. a graph (left) and a minimal balanced cut (right).
4. Previous Work

In [1], bipartite matching was applied in a simulation to traffic data collected in the Atlanta area,
yielding a substantial improvement over a greedy approach. A similar idea was introduced in [2]. Some
papers discuss the application of the related assignment problem to carpooling [3]. For a comprehensive
survey, see [4]. A theoretical study of a general assignment problem is offered in [5].

5. Conclusion and Future Work

In a nutshell in this paper, we explore the use of the graph-theoretic tools for matching and portioning
problems of agents in an agent-based model for the carpooling application that falls under the domain of
transportation and traffic modeling.

In this paper, as a proof of concept, we have first performed an initial experiment with a maximal
matching result for a graph with 15 agents (as illustrated in Fig. 1). We have as a second step performed
an experiment related to the partitioning problem with a limited number of agents based on computing an
eigenvalue (as illustrated in Fig. 2).

The outcome of both of our experiments show promising results to solve the matching and partitioning
of agents in an agent-based carpooling application. Moreover, the application of our proposed solutions is

D. Keren et al./ Procedia Computer Science 00 (2012) 000-000 7

not limited to the agent-based carpooling application only but can also be equally applicable to other
similar agent-based traffic and transportation models, methodologies and applications.

As a part of the future work, we intend to develop a prototype for the agent-based carpooling
application based on the concepts and solutions presented in this position paper with a large number of
agent population data. Furthermore, we intend to apply our solutions to other similar agent-based traffic
and transportation models, methodologies and applications.

Acknowledgements

The research leading tot these results has received funding from the European Union Seventh
Framework Programme (FP7/2007-2013) under grant agreement number 270833.

References

[1] Niels Agatz, Alan Erera, Martin Savelsbergh and Xing Wang (2010). The Value of Optimization in Dynamic Ride-Sharing: a
Simulation Study in Metro Atlanta. ERIM REPORT SERIES RESEARCH IN MANAGEMENT ERS-2010-034-LIS.

[2] Gyozo Gidofalvi, Gergely Herenyi, and Torben Bach Pedersen (2008).Instant Social Ride-Sharing. Proc. 15th World Congress
on Intelligent Transport Systems, p 8, Intelligent Transportation Society of America.

[3] Roberto Baldacci, Vittorio Maniezzo and Aristide Mingozzi (2004). An Exact Method for the Car Pooling Problem Based on

Lagrangean Column Generation. Operations Research, Volume 52 Issue 3, June 2004.

[4] Sophie N. Parragh, Karl F. Doerner and Richard F. Hartl. A survey on pickup and delivery problems: Part I: Transportation
between customers and depot, Part II: Transportation between pickup and delivery locations. Journal fiir Betriebswirtschaft 58 (1,
April), 21-51 and 58 (2, June), 81-117.

[5] James Zou, Sujit Gujar and David Parkes (2010). Tolerable Manipulability in Dynamic Assignment without Money . 24th
AAAI Conference on Artificial Intelligence (AAAI '10), 2010.

[6] Edmonds and Jack (1965). Paths, trees, and flowers. Canad. J. Math. 17: 449-467.

[7] Jianbo Shi and Jitendra Malik (2000). IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8), 888 — 905.

[8] Avraham Levy and Michael Lindenbaum (2000). Sequential Karhunen-Loeve Basis Extraction and its Application to Images.
IEEE Transactions on Image Processing, vol. 9(8), 2000, 1371 — 1374.

[9] Muaz Niazi and Amir Hussain. (2011). Agent-based Computing from Multi-agent Systems to Agent-Based Models: A Visual
Survey, Springer Scientometrics: 89(2), pp. 479-499.

http://uu.diva-portal.org/smash/record.jsf?pid=diva2:219978
http://dl.acm.org/author_page.cfm?id=81100085633&coll=DL&dl=ACM&trk=0&cfid=70268554&cftoken=69785389
http://dl.acm.org/author_page.cfm?id=81100161553&coll=DL&dl=ACM&trk=0&cfid=70268554&cftoken=69785389
http://harvard.academia.edu/SujitGujar/Papers/164157/Tolerable_Manipulability_in_Dynamic_Assignment_without_Money
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=34
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=83

