
DOCTORAATSPROEFSCHRIFT

Proefschrift voorgelegd tot het behalen van de graad van
doctor in wetenschappen, informatica, te verdedigen door:

Davy Vanacken

Promotor: prof. dr. Karin Coninx
Copromotor: prof. dr. Kris Luyten

Touch-based Interaction
and Collaboration in
Walk-up-and-use and
Multi-user Environments

2012 | School voor Informatietechnologie
 Kennistechnologie, Informatica, Wiskunde, ICT

D/2012/2451/46

Acknowledgments

After working one year as a researcher at the Expertise centre for Digital Media
(EDM), a research institute of Hasselt University, I took on the challenge of
doing my PhD in 2005, as a teaching assistant. I had the pleasure of getting to
know and work with many people who not only provided knowledge, guidance
and encouragement, but also a lot of friendship. Needless to say, I owe them
a great deal of gratitude.

First and foremost, I would like to address special thanks to my advisor,
prof. dr. Karin Coninx, for giving me the opportunity to work in the HCI
group of EDM. Her valuable feedback and advise had a great influence on my
dissertation, but also on how I developed as a researcher and teaching assistant
over the years. She instilled in me a confident and professional attitude that
will be valued throughout the rest of my career. Next, I want to thank my
co-advisor, prof. dr. Kris Luyten. His never-ending drive and creativity was a
source of inspiration, and had an important impact on the research presented
in this dissertation.

I would also like to thank prof. dr. Eddy Flerackers, our managing direc-
tor, and prof. dr. Frank Van Reeth, our deputy managing director, for giving
me the opportunity to work at EDM, and for being part of my jury. Further-
more, I want to express my thanks to the other members of my jury, prof. dr.
Johannes Schöning, prof. dr. Miguel Nacenta and prof. dr. Jan Borchers, for
their valuable comments with regard to this dissertation. Thanks also to the
chairman of my jury, prof. dr. Marc Gyssens.

Working at EDM would have been a lot less interesting without such great
colleagues, and I want to thank all of them, not only for their direct or indi-
rect contributions to my research, but also for all the fun we had together. In
particular, I would like to say thanks to my co-authors, Maarten Cardinaels,
Raf Ramakers, dr. Joan De Boeck, prof. dr. Alexandre Demeure and dr. Chris
Raymaekers. I would also like to single out dr. Mieke Haesen and dr. Anas-

ii Acknowledgments

tasiia Beznosyk, for the pleasant collaboration and all the help during the last
months of my PhD.

A big thanks to all the other colleagues I collaborated, travelled, lunched
and assisted courses with over the years: Jo Vermeulen, Tom De Weyer, dr.
Lode Vanacken, Sofie Notelaers, Stijn Agten, Jolien Schroyen, Heleen Van
Loon, Karel Robert, Kris Gabriëls, Jan Schneider, Tim Dupont, Tom Haber,
dr. Bert De Decker, Fredy Cuenca, dr. Jan Van den Bergh, Peter Vandoren,
and many others. Finally, I want to thank Luc Adriaens for all the video
recordings, and Ingrid Konings and Roger Claes for taking care of the admin-
istrative tasks and logistics.

On a more personal note, I would like to thank all of my friends and family
for their enduring encouragement and friendship. I especially want to thank
my parents, for giving me the opportunity to finish my studies and for the
abundant comfort provided throughout these years. Last but not least, I want
to thank my wife, Bieke, for all her patience, encouragement and love. You
always made sure that there is more to life than work.

Abstract

Touch-based interfaces are becoming increasingly ubiquitous: they can be
found on a variety of hardware platforms, ranging from mobile phones to large
public displays, and they allow a wide variety of applications, from single-
user casual games to multi-user tools that facilitate brainstorming. Although
touch-based interaction is supposed to be intuitive and “natural”, it nonethe-
less imposes specific requirements on the accessibility of a user interface. Due
to a lack of common conventions and consistency across applications, ges-
tures are often difficult to discover and learn. Furthermore, since most touch-
sensitive hardware supports multi-touch input nowadays, it allows multiple
people to interact simultaneously on a shared surface. This not only brings
about new opportunities with regard to collaboration, but also new research
challenges on how to support this kind of collaboration effectively.

In walk-up-and-use environments, accessibility of the user interface is of
great importance, as the limited interaction time and need for immediate use
of the system do not allow for much training or exploration. Therefore, we
explore the concept of making touch-based interfaces in walk-up-and-use envi-
ronments self-explanatory, for both single-user and multi-user settings. With
TouchGhosts, we propose a help system that demonstrates interaction tech-
niques to the users, for instance through visual “guides” such as animated
virtual hands. The graphical nature of our approach allows a clear view on
the synchronization of multiple inputs, which are typical for multi-touch in-
teraction. User studies indicate that animated help allows users to quickly
discover the available interaction possibilities, with a positive effect on collab-
oration, as users work together to learn the application.

When multiple users interact simultaneously in a highly collaborative set-
ting, additional challenges emerge, especially if the environment can include
both co-located and remote participants. Collaboration may cause conflicts
and misconducts, for instance. Therefore, collaborative environments are in

iv Abstract

need of floor control policies that resolve and prevent such problems grace-
fully, without interrupting the dynamic work flow. We apply a Focus+Roles
approach to a digital meeting system, iConnect: the user’s roles define a user’s
access rights and privileges during particular activities, while tracking the
users’ focus provides a means of handling problems associated with the typi-
cal lack of mutual awareness.

Continuing our research on collaborative systems, we investigate the re-
quirements of a storyboarding tool to support the various disciplines in a
multidisciplinary team. Storyboards are well suited to attain a common un-
derstanding during user-centered software design and development, because
they allow each team member to contribute to the decision making process. To
take full advantage of the different viewpoints and approaches that members
of a multidisciplinary team bring to the table, we explore how such teams cre-
ate storyboards through an observational study. Based on the lessons learned
from this study, we formulate a set of requirements to inform the design of a
tabletop tool for collaborative storyboarding.

Throughout our exploration of collaborative systems, we repeatedly en-
countered the need for identification of the different users around a shared
surface. Multi-touch hardware can track multiple inputs simultaneously, but
the majority of those systems are unable to associate contact points with
specific users. Therefore, we present Carpus, a non-intrusive identification
technique for mapping touches to their corresponding user by analyzing the
back of the users’ hands. This feature can improve a multi-user interface in a
number of ways, for instance by customizing help on a per-user basis, or by
tracking a user’s activities to prevent conflicts or unequal contributions.

Another aspect to consider, is the design and evaluation of touch-based and
multi-user interaction. We investigate how model-based design can facilitate
the development process by modeling environments through the use of high-
level diagrams. In this context, we discuss NiMMiT, a graphical notation
for expressing and evaluating multimodal user interaction. Because NiMMiT
is presently focused on single-user 3D virtual environments, we explore how
NiMMiT can be extended beyond these boundaries by reflecting on its current
limitations with regard to touch-based and multi-user interaction.

In summary, our main contributions include making touch-based interfaces
self-explanatory in single-user and multi-user walk-up-and-use environments,
and providing conflict-free multi-user environments that can non-intrusively
identify the user behind each action, for instance to facilitate collaborative
storyboarding. Furthermore, we present a model-based approach to design
and evaluate multimodal interaction techniques.

Contents

Acknowledgments i

Abstract iii

Contents ix

List of Figures xvi

List of Tables xvii

1 Introduction 1

1.1 A brief history of touch-based interaction 1

1.2 Challenges in the field at large 4

1.3 Hands-on experiences and research challenges 6

1.3.1 Walk-up-and-use environments 6

1.3.2 Co-located and remote collaboration 11

1.3.3 Storyboarding in a multidisciplinary team 16

1.4 Summary of research challenges, scope delineation and overview
of chapters . 22

I Self-explanatory interfaces for touch-based interaction 25

2 TouchGhosts: visual guides for multi-touch interaction 27

2.1 Introduction . 27

2.2 Related work . 31

2.3 Self-explanatory TouchGhost interfaces 36

2.3.1 Visualizations . 37

2.3.2 Invocations . 38

vi CONTENTS

2.4 TouchGhost architectures . 39

2.4.1 COMETs toolkit . 40

2.4.2 Microsoft .NET framework 42

2.4.3 Required meta-data in TouchGhost objects 43

2.4.4 Manipulating the actual user interface 44

2.5 Illustrative TouchGhost implementations 45

2.5.1 Invocations . 45

2.5.2 Visualizations . 47

2.5.3 Multi-user strategies . 49

2.6 Conclusion . 50

3 Evaluation of different TouchGhost strategies 53

3.1 Introduction . 53

3.2 Evaluation of single-user strategies 54

3.2.1 Participants and apparatus 54

3.2.2 Tasks . 56

3.2.3 Experimental design . 57

3.2.4 Procedure . 57

3.2.5 Results . 58

3.2.6 Other observations and discussion 60

3.3 Evaluation of multi-user strategies 62

3.3.1 Participants and apparatus 63

3.3.2 Tasks . 64

3.3.3 Experimental design . 73

3.3.4 Procedure . 74

3.3.5 Results . 74

3.3.6 Other observations and discussion 80

3.4 Conclusion . 83

II Enhancing collaboration in multi-user environments 85

4 Focus+Roles: socio-organizational conflict resolution and ac-
cess control in collaborative user interfaces 87

4.1 Introduction . 88

4.2 Related work . 89

4.3 Focus+Roles . 93

4.3.1 Roles in an organizational and meeting context 93

4.3.2 Passive and active focus 95

CONTENTS vii

4.3.3 Access control . 96

4.3.4 Overview of the Focus+Roles process 97

4.4 The iConnect environment . 97

4.4.1 Personal and shared workspaces 98

4.4.2 Embedding native applications in containers 99

4.4.3 User representation and data sharing 101

4.4.4 Integrating personal devices 103

4.4.5 A collaborative tabletop 104

4.5 Illustrative Focus+Roles implementation 106

4.5.1 Roles as a set of privileges 106

4.5.2 Focus as an amount of attention 109

4.5.3 Access control, content type and sensitivity 111

4.5.4 Limitations and possible extensions 111

4.6 Conclusion . 113

5 An observational study on collaborative storyboarding in mul-
tidisciplinary teams 115

5.1 Introduction . 115

5.2 Related work . 117

5.3 Observational study . 120

5.3.1 Participants and apparatus 120

5.3.2 Tasks and experimental design 121

5.3.3 Procedure . 122

5.3.4 Observations and results 122

5.4 Lessons learned . 127

5.4.1 Allow for differences, support agreements 127

5.4.2 Facilitate different approaches in structuring 129

5.4.3 Maintain the design rationale 130

5.4.4 Favor shared over personal space 130

5.4.5 Support visible and direct physical interaction 131

5.5 Conclusion . 132

6 Carpus: a non-intrusive user identification technique for in-
teractive surfaces 133

6.1 Introduction . 134

6.2 Related work . 137

6.3 Carpus . 139

6.4 Benefits and limitations . 140

6.5 Skin region and identity extraction 141

viii CONTENTS

6.5.1 Step 1: Extraction of the dorsal hand region 141

6.5.2 Step 2: Feature extraction 145

6.5.3 Step 3: Feature matching 146

6.5.4 Step 4: Relating touches to identified regions 147

6.6 System specifications and performance 148

6.7 Evaluation of Carpus . 148

6.7.1 Uniqueness of the dorsal hand region 149

6.7.2 Robustness against posture variations 150

6.8 Extending Carpus with tracking 154

6.9 Usage scenario . 156

6.10 Discussion . 158

6.11 Conclusion . 159

III An engineering perspective 161

7 NiMMiT: a graphical notation for modeling touch-based and
multi-user interaction techniques? 163

7.1 Introduction . 164

7.2 VR-DeMo and CoGenIVE . 165

7.3 Related work and early experiments 170

7.4 NiMMiT . 174

7.4.1 Requirements for describing user interaction 174

7.4.2 NiMMiT’s basic primitives 175

7.4.3 Creation and execution of a NiMMiT diagram 182

7.5 Case study: the Object-in-Hand metaphor 183

7.5.1 Selecting an object . 184

7.5.2 Non-dominant hand interaction 186

7.5.3 Synchronization with the dominant hand 188

7.6 Extensions to NiMMiT . 189

7.6.1 Adding support for evaluation 189

7.6.2 Integrating contextual and semantic knowledge 191

7.7 Considerations on multimodal, touch-based, and multi-user in-
teraction . 194

7.7.1 Modeling multimodality 194

7.7.2 Modeling touch-based and multi-user interaction 196

7.8 Conclusion . 205

CONTENTS ix

IV Conclusions 207

8 Reflections, contributions and future work 209
8.1 Reflection on the research challenges 209
8.2 Summary of overall contributions 212
8.3 Future work . 213

8.3.1 Refining (help for) touch-based interfaces 213
8.3.2 Group aspects and long-term effects of help 214
8.3.3 A storyboarding tool for multidisciplinary teams 215
8.3.4 The future of touch-based interaction and beyond . . . 215

8.4 Scientific contributions and publications 217

Appendices 221

A Documents of the single-user and multi-user evaluations of
different TouchGhost strategies 221
A.1 Textual help of the single-user evaluation 221
A.2 Questionnaires of the evaluations 223

B Documents of the observational study on collaborative story-
boarding in multidisciplinary teams 231
B.1 Personas . 231
B.2 Scenario . 233
B.3 Questionnaire . 234

C Nederlandstalige samenvatting 239

Bibliography 273

x CONTENTS

List of Figures

1.1 Two of our earlier custom-built interactive surfaces. 3

1.2 Two MuTable applications that were deployed in a secondary
school [Schneider 10]. 7

1.3 A few of the main scenes from the scenario regarding walk-up-
and-use environments. 9

1.4 The iConnect meeting environment, with a variety of devices
connected to the system [Cardinaels 06]. 12

1.5 A few of the main scenes from the scenario regarding co-located
and remote collaboration. 14

1.6 Part of a storyboard created for the development of an appli-
cation to visually explore video archives [Haesen 11a]. 18

1.7 A few of the main scenes from the scenario regarding story-
boarding in a multidisciplinary team. 19

2.1 Example of a self-explanatory TouchGhost interface. Visual
guides are merged with the actual user interface to inform the
user about the available interaction techniques within the cur-
rent context of use. 30

2.2 Example of a “virtual hands” visualization, demonstrating how
to resize by directly manipulating the actual picture. The red
circles on top of the fingertips are animated to indicate which
finger needs to be pressed. 37

2.3 Example of a pie menu as an explicit invocation strategy, listing
all available interactions on this particular interface component
(in this case, a pile of pictures). 38

xii LIST OF FIGURES

2.4 Example of a “virtual hands” visualization and explicit invo-
cation using a pie menu in the COMETs toolkit [Demeure 08].
The underlying application is a simple picture browser that ar-
ranges photographs in several piles. 40

2.5 TouchGhost objects attached to different parts of a COMETs
interface: (a) to a single component, (b) a set of components,
(c) a relationship. 41

2.6 The Microsoft .NET architecture. Enhanced interface compo-
nents are registered to the TouchGhost manager, which sets up
the invocation and visualization strategies. 43

2.7 An example of an explicit invocation strategy, using the “ques-
tion mark” invoker and context-sensitive pie menus. 46

2.8 Example of a demonstration video, with someone performing an
interaction technique step-by-step. Since demonstration videos
are typically very short, the usual media player functionality
such as play, pause or seek is not available. 47

2.9 Example of the “virtual hands” visualization strategies, show-
ing how to browse through a pile of pictures. The animated red
circles on top of the fingertips indicate which fingers need to be
pressed. 48

2.10 Virtual hands visualized in a separate overlay window to accom-
modate multiple users. The window is positioned in the bottom
right corner of the screen, and has a cancel button. After the
demonstration, a replay button will appear. 50

3.1 The three single-user visualization strategies we evaluated. . . . 55

3.2 The custom-built FTIR tabletop used during the evaluation
provides a 50-inch touch-sensitive surface, with a resolution of
1920 by 1080 pixels. 56

3.3 Means of the common questionnaire results for the three single-
user visualization strategies we evaluated. 59

3.4 The puzzle game with light, heavy and small puzzle pieces,
special “enlargement” cubes, and two avatars (the purple and
orange “disks” at the bottom of the screen). 63

3.5 Two users helping each other to solve the puzzle. 64

3.6 Double tapping the avatar selects/deselects the nearest colliding
cube. Selection is indicated by the bounding box. The green
dots are visual feedback provided by the application to indicate
successful recognition of touch points. 65

LIST OF FIGURES xiii

3.7 The image that accompanies the in-game textual help for the
orange avatar, showing the various types of cubes, the avatar,
and the confirmation button for enlarging small puzzle pieces. . 66

3.8 Small puzzle pieces can be enlarged by two people, with the
help of special enlargement cubes. 68

3.9 The completed puzzle, with all the pieces more or less in the
correct orientation and position. Animated help is being shown
in both corners of the screen. 69

3.10 Two users consulting the help (indicated by red arrows) at the
beginning of the game. 70

3.11 A few examples of the use of virtual fingers, with green dots in-
dicating presses. Important aspects of the animated sequences
are highlighted through text bubbles annotations. 71

3.12 The context-sensitive menu of the animated help. The purple
avatar has nothing selected, so only “Select” is available in the
corresponding menu on the left. The orange avatar selected a
small puzzle piece, so all related actions are available in the
menu on the right. 73

3.13 Means of the questionnaire results regarding the help for the
two multi-user visualization strategies we evaluated. 75

3.14 Means of the questionnaire results regarding how participants
learned the necessary actions. 78

3.15 Percentages of completely individual work, tight collaboration
and consulting help together in regard to the total amount of
time it took to complete the task, as observed in the video
recordings. 80

3.16 Two users consulting the help together during the game. 82

4.1 The iConnect environment. Users interact with the environ-
ment using touch-sensitive shared displays, or personal devices
such as laptops and PDAs. 99

4.2 SMART board interface: (a) each user is represented by an
avatar and controls a personal cursor; (b) data can be exchanged
by drag-and-drop operations; (c) annotations clarify a presen-
tation; (d) pop-up menus reveal the set of possible actions on a
container. 100

4.3 On a shared workspace, users are represented by an avatar and
a personal cursor. A user’s personal cursor can be operated
using a personal device such as a PDA. 102

xiv LIST OF FIGURES

4.4 Interface of the user’s personal workspace on a mobile device.
The personal workspace is divided into a private and a public
space. 103

4.5 A painting application is running in an iConnect container on
the whiteboard. The color chooser is distributed to the mobile
device of the user. 104

4.6 Tabletop client interface: (a) widgets can be rotated, moving
the handle rotates the widget around its center; (b) hierarchi-
cal pie menus allow users to trigger actions on objects in the
workspace; (c) user representations are embedded inside pie
menus. 105

4.7 Three users simultaneously interacting with a document using
their personal cursors. One user tries to move it while two oth-
ers center their attention on it. The system discreetly notifies
the users of the issue by means of a miniature stop sign and
does not allow the action to take place. 110

5.1 Setup of the observational study: (a) each participant posi-
tioned at a different corner; (b) contents of the toolbox that
was provided to each participant. 121

5.2 A shot of a video that recorded the table during a storyboarding
session and a visualization of the participants’ physical activ-
ity on the table throughout each of the three sessions, auto-
matically generated from the videos (darker color means more
frequent activity). 123

5.3 Frames from the videos that were recorded during each session,
showing the final storyboard of each group. 126

6.1 Carpus recognizes users by observing the dorsal region of their
hands with a high-resolution camera mounted above an inter-
active surface. 135

6.2 Unique features are extracted from the dorsal hand region. Fin-
gers are excluded from the region. 140

6.3 Extracting details from the dorsal hand region (step 1 and 2):
(A) detect skin region in the image; (B) detect fingers; (C) de-
tect wrist direction and position; (D) extract dorsal hand re-
gion; (E) encode fine-grained details using LBP. 143

6.4 Feature matching (step 3): finding similar patches in a prede-
fined neighborhood. 147

LIST OF FIGURES xv

6.5 The four tasks in our second experiment: (A) painting a flower;
(B) scaling and rotating images using one hand; (C) scaling and
rotating images using two hands; (D) pressing buttons. 151

6.6 The recognition rates for different group sizes for all four tasks
of our second experiment. 153

6.7 Carpus enables non-intrusive identification of (both hands of)
users, for example in a mobile phone retail environment, allow-
ing users to find more information about products and compare
specifications. 157

7.1 Overview of the overall VR-DeMo framework [Coninx 06b]. . . 166

7.2 The model-based user interface design process used in VR-
DeMo and CoGenIVE [De Boeck 06a]. 167

7.3 The task model structures various types of tasks in a hierarchi-
cal tree using the ConcurTaskTrees notation [Paternò 00]. . . . 168

7.4 The CoGenIVE tool, being used to interconnect the various
models of the user interface design process. 169

7.5 Early experiment with a rudimentary data-driven approach to
model interaction in virtual environments. This example rep-
resents object selection. 171

7.6 Early experiment with a basic state-driven approach to model
interaction in virtual environments. This example represents
the creation of a new object. 172

7.7 A NiMMiT diagram showing the basic building blocks. 176

7.8 The data type of input and output ports is reflected by a color
and a letter within the shape. 178

7.9 A pass-through state that splits a task chain in two separate
branches by using conditional state transitions. 179

7.10 A task chain with preconditions, indicated by the square box
on the event arrow. 180

7.11 Error handling in NiMMiT by means of a transactional task
chain and error arrow. 181

7.12 A collapsed task chain only shows the labels that are used as
input and output in the chain. 181

7.13 The CoGenIVE tool, being used to create a NiMMiT diagram. 182

7.14 The execution process of a NiMMiT diagram. The diagram is
converted to an XML file, which can be loaded and executed at
runtime. 183

xvi LIST OF FIGURES

7.15 The Object-in-Hand metaphor [De Boeck 04] allows the user to
utilize both hands to manipulate an object. 184

7.16 A NiMMiT diagram that models the interaction task of select-
ing an object. 185

7.17 A NiMMiT diagram that models the interaction of the non-
dominant hand in the Object-in-Hand metaphor. 187

7.18 A NiMMiT diagram that models the interaction of the domi-
nant hand in the Object-in-Hand metaphor. 188

7.19 Modeling contextual interaction as an “event-condition-action”
process in NiMMiT [Vanacken 08c]. 192

7.20 The use of concepts in a selection technique to only highlight
“selectable” objects [Vanacken 09b]. 193

7.21 Multimodal support within NiMMiT. 195
7.22 A conceptual NiMMiT diagram that illustrates the possible use

of extended events to indicate that all events need to originate
from the same user and finger. 199

7.23 A conceptual NiMMiT diagram that illustrates the possible use
of multiple events to represent the different stages of a gesture. 200

B.1 Photograph of Bob. 231
B.2 Photograph of Mary. 232
B.3 Photograph of Benjamin. 232
B.4 Photograph of Kate. 233

List of Tables

5.1 Overview of the mapping of requirements on collaborative table-
top design patterns of Remy et al. [Remy 10]. 128

6.1 A summary of the strengths and weaknesses of related user
identification techniques for interactive surfaces. 138

6.2 Recognition rates for the hands-down posture when one or both
hands of four, ten and twenty users are registered. 150

6.3 Data accumulated by tracking a hand over time, using Carpus
to identify that hand in all frames during and immediately after
a touch. 155

7.1 Partial summary of the pros and contras of state-driven and
data-driven notations. A more detailed comparison is given by
De Boeck et al. [De Boeck 06b]. 173

xviii LIST OF TABLES

Chapter 1

Introduction

Contents

1.1 A brief history of touch-based interaction 1
1.2 Challenges in the field at large 4
1.3 Hands-on experiences and research challenges . . . 6

1.3.1 Walk-up-and-use environments 6
1.3.2 Co-located and remote collaboration 11
1.3.3 Storyboarding in a multidisciplinary team 16

1.4 Summary of research challenges, scope delineation
and overview of chapters 22

1.1 A brief history of touch-based interaction

I would like to start my dissertation with a quote from Ben Shneiderman,
who somewhat prophetically stated the following in 1991 [Shneiderman 91]:
“I suspect we will be seeing touchscreens being used for more applications than
ever before.” Today, we can safely say his prediction came true. When I began
my PhD in 2005, as a teaching assistant, the technological landscape of touch-
based interaction was still quite different from what it is today. The touch-
sensitive hardware we had available in our research lab, was initially limited to
a few PDAs and a drawing tablet. At present, we have a wide variety of other
devices, such as smartphones, tablet computers, tabletops, workbenches, and
whiteboards. Considering the widespread use of commercial hardware such

2 Introduction

as satellite navigation devices, smartphones and tablets, we can even say that
touch is a prevailing form of input nowadays. As the research presented in
this dissertation covers a period of nearly seven years, it offers us an up-close
view on this fast evolution in the field of touch-based interaction.

The history of touch-sensitive controls actually pre-dates the age of the
personal computer [Buxton 12]. The concept of a touch screen was first intro-
duced in the 1960s, in the context of air traffic control [Johnson 65, Orr 68],
and gradually found its way to automated teller machines (ATMs), informa-
tion kiosks, and personal digital assistants (PDAs). The hardware evolved
from being able to detect only a single input point (i.e. single-touch input),
to recognizing the presence of two or more contact points (i.e. multi-touch
input), and even identifying physical objects that are put on the surface (i.e.
tangible input). Likewise, touch-based user interfaces progressed from simply
responding to discreet actions such as tapping with a stylus or finger, to more
advanced gestural interfaces that support continuous and coordinated actions
such as pinch and swipe gestures.

The year 2005 was an important landmark in the evolution of large multi-
touch surfaces, as Jeff Han presented a fairly straightforward technique that
enables robust multi-touch sensing through frustrated total internal reflection
(FTIR), an inexpensive and scalable approach [Han 05]. Not only the build-
it-yourself hardware caught people’s attention, but also the very attractive
multi-touch interaction techniques and applications that were demonstrated.
However, it was the release of consumer devices such as the Apple iPhone and
iPad that really drove the touch screen revolution we have seen in the last
couple of years.

In our research lab, we started building large interactive surfaces around
2005. Our first prototype was a “multi-touch” table that in fact consisted of
four single-touch panels, as depicted in Figure 1.1a. We gradually acquired
and constructed various setups, such as the FTIR-based surface shown in Fig-
ure 1.1b. Our hardware setups were extensively used in numerous student
and research projects, situated in domains such as education (e.g. IBBT GBO
project MuTable), media production (e.g. IBBT ICON project PISA), media
search (e.g. IWT SBO project AMASS++) and intelligent meeting environ-
ments (IBBT GBO project iConnect). These projects allowed our research
lab to gain a lot of hands-on experiences regarding surface computing. Even-
tually, this knowhow led to the founding of TinkerTouch1, a small company
that specializes in developing highly interactive touch-based applications.

1http://www.tinkertouch.com

http://www.tinkertouch.com

1.1 A brief history of touch-based interaction 3

(a) Tabletop consisting of four capacitive single-touch panels.

(b) Setup based on frustrated total internal reflection.

Figure 1.1: Two of our earlier custom-built interactive surfaces.

4 Introduction

1.2 Challenges in the field at large

Although touch-based interaction has been around for quite a while, it still
provides numerous challenges for designers and developers to this day. Some of
the well-known challenges [Shen 06, Ryall 06b, Müller-Tomfelde 10] relate to
the orientation of content when people are sitting on all sides of a tabletop, the
limited input precision of fingers compared to a computer mouse, the occlusion
of the content beneath a user’s fingers, accidental input by leaning on the
surface, the inefficiency of virtual keyboards for text input, and unreachable
or uncomfortable to work in regions in case of very large workspaces. In multi-
user interaction, some of the prominent challenges revolve around sharing data,
handling conflicts and privacy, integrating personal and shared devices, and
the identification of users.

Over the years, these and other research challenges led to developments in
various fields of touch-based and multi-user interaction (the references listed
here are merely a few examples, and by no means an exhaustive overview):

• the development and evaluation of novel interaction techniques (e.g. in-
teraction techniques to transfer objects across large distances on table-
tops [Reetz 06, Voelker 11], techniques that improve control through sep-
arability of spatial manipulations [Nacenta 09], multi-touch graph inter-
action techniques [Schmidt 10c]),

• enhancements to the accessibility of user interfaces (e.g. using feedfor-
ward and feedback [Bau 08] or physical metaphors [Bragdon 10] to help
users learn gestures, supporting the transition from implicit to explicit
interaction [Vogel 04], designing for engagement [Jacucci 10]),

• improvements to the collaborative aspect of multi-user environments
(e.g. cooperative gestures [Morris 06], virtual embodiments to improve
awareness and coordination [Pinelle 08], coordination techniques to re-
duce conflicts arising from indirect input [Pinelle 09], interaction tech-
niques for group support [Nacenta 10]),

• the exploration of various application domains (e.g. geographic informa-
tion systems [von Zadow 10], composing and playing music [Lynch 11],
gestural interaction in cars [Döring 11], touch-based input for elderly
users [Wacharamanotham 11], child-computer interaction [Tse 11]),

• studies on behavioral effects (e.g. deployments in public spaces such as
city centers [Peltonen 08] or museums [Hornecker 08a], territoriality in

1.2 Challenges in the field at large 5

collaborative workspaces [Scott 04], collaborative coupling around table-
tops [Tang 06]),

• new advances in hardware setups (e.g. user authentication using mobile
phones [Schöning 08], tangible controls [Weiss 09, Weiss 10] and tangible
private spaces [Möllers 11], haptic feedback on tabletops [Marquardt 09,
Weiss 11]),

• innovations with regard to the development process (e.g. pattern lan-
guages for interactive tabletops in collaborative workspaces [Remy 10],
toolkits for haptic interactions [Ledo 12], engineering approaches for
multi-touch interfaces [Luyten 10, Luyten 11]).

Detailing all the research on these topics is, however, beyond the scope of this
work. We come back to these research fields in Section 1.4, to outline the
scope of our work.

Although these developments happened on a variety of devices, we mainly
focus on the larger interactive surfaces in this dissertation, such as multi-touch
tabletops. Some of our research is nonetheless also applicable to other devices,
as we will address in the subsequent chapters. There are several dimensions
of large interactive surfaces to explore. First of all, there are various ways of
interacting with such a surface: one person can use it individually, multiple
persons can work in parallel without any real connection between them, or
those persons can tightly cooperate with one another. Secondly, the interactive
setup can be situated in a variety of settings, ranging from walk-up-and-use
surroundings to work environments. Present-day settings that are becoming
progressively more common include museums, exhibitions, hotels, restaurants,
retail stores, meeting rooms, and so forth.

Each of those examples comes with its own characteristics and require-
ments. In a single-user environment, for example, users are on their own,
with no immediate support or hindrance from others. In a multi-user envi-
ronment, on the other hand, users can cooperate to accomplish a task, but
actions of multiple people may conflict with one another, both intentionally
and accidentally. In addition, different settings lead to different requirements.
A walk-up-and-use system needs to be very accessible, for instance, since peo-
ple will simply walk away if it takes too long to figure out the user interface,
or if the user experience does not live up to their expectations. Of course,
accessibility is also important in a work environment, but the focus will often
be on productivity and effective collaboration.

As we (and others) explored the different dimensions throughout several

6 Introduction

projects and studies, we encountered various challenges that had to be over-
come. In the next section, we reflect on our experiences to identify the char-
acteristics and requirements of different environments, and to pinpoint and
clarify our research challenges.

1.3 Hands-on experiences and research challenges

In the following sections, we present some of the experiences with multi-touch
setups in walk-up-and-use and collaborative environments that we gathered in
the course of doing this PhD. The different topics are based on our practical
experiences with a variety of projects, ranging from large-scale projects to-
gether with industrial partners to small student projects, as well as a number
of user studies we conducted over the years. These hands-on experiences led
us to a number of research challenges that are addressed in this dissertation.
In this chapter, we primarily focus on the context in which the projects and
studies were situated, which we exemplify through a few illustrative scenarios.
More specific details on the various projects and studies will be provided in
the upcoming chapters.

1.3.1 Walk-up-and-use environments

Walk-up-and-use environments differ from the other examples presented in
this chapter in that it is necessary for the interface to be so self-explanatory
that first-time users can use it effectively without any prior introduction or
training. Everyday examples of walk-up-and-use systems are ATMs, public
transportation ticketing systems, and interactive information displays in public
places such as museums.

Background and experiences

Since the arrival of commercial surface computing platforms such as the Mi-
crosoft PixelSense2 (formerly called Microsoft Surface), we have seen a lot of
new walk-up-and-use applications. Interactive tabletops in hotel lobbies, for
instance, enable guests to explore all kinds of information about the city while
using an interactive map to plan their day trips. In a sports stadium, VIPs
can call up the statistics of the players and club at any time through a touch-
based interface. Restaurants and bars allow customers to order and pay their
meal or drinks by means of a tabletop application, or play a few casual games

2http://www.pixelsense.com

http://www.pixelsense.com

1.3 Hands-on experiences and research challenges 7

while waiting for their order. Museums try to enhance the visitor experience
by providing interactive content and by allowing visitors to explore some arti-
facts digitally, such as precious books that are otherwise inaccessibly displayed
in a closed showcase. All these examples fit the profile of a walk-up-and-use
application.

Another set of applications that are well suited for walk-up-and-use are
casual games. Casual games share some traits with walk-up-and-use systems,
as they should also be very accessible, thereby requiring a minimal amount
of training. Casual games target a mass audience, usually have very simple
gameplay mechanics, and can be played in short bursts, for example while
waiting for the train to arrive or during a lunch break. Those games can be
played individually, for example on a smartphone, but there is also a market for
collaborative casual gaming, for example teenagers visiting a museum during
a school excursion, learning about history by competing in teams in a casual
game on a tabletop.

(a) A collaborative presentation tool. (b) A casual game, Where’s Wally?

Figure 1.2: Two MuTable applications that were deployed in a secondary
school [Schneider 10].

Our experiences with walk-up-and-use and multi-touch systems are pri-
marily based on a wide range of projects and user studies that were carried
out in our research lab. One of the main goals of the IBBT GBO MuTable
project was, for instance, to develop interaction techniques that allow natural
interaction with all kinds of multimedia. In the context of this project, a col-

8 Introduction

laborative application to prepare presentations and a few casual games were
deployed in a secondary school [Schneider 10], as seen in Figure 1.2. Further-
more, TinkerTouch set up a lot of setups in walk-up-and-use surroundings,
such as exhibitions, museums and Pukkelpop, a large Belgian music festival.
An additional source of valuable information came from observing visitors
while they interacted with some of the interactive surfaces in our lab.

Illustrative scenario

This section describes a typical usage scenario of an interactive application
that can be deployed in, for instance, a mobile phone retail environment.
Families or friends shopping together for a new mobile phone can collaborate
on a multi-touch tabletop located inside the store to find more information
about products and compare specifications. Figure 1.3 includes a few of the
main scenes from the scenario.

John and Jane are looking for a new mobile phone, as Jane’s current phone
is outdated. At home, they look at some advertisements and they decide to
visit a nearby mobile phone retailer. The display window of the shop shows
a rather narrow selection of phones, but a nice looking model catches Jane’s
eye. John and Jane look for that particular phone inside the shop, and when
they find it, Jane tries it out for a few minutes. However, Jane is not entirely
convinced, since the phone costs more than she is willing to spend, and she
wants more detailed information.

Jane picks up the phone and she walks with John to an interactive display
in the shop. Because it is the first time that they have visited this store,
the application asks them to quickly register with the system. John enters his
name and e-mail address, and the system creates a new user profile. Jane then
puts the mobile phone on the interactive display to get more information. The
system recognizes the phone by means of a visual tag that is attached to its
back and the specifications of that particular model are displayed, together
with some promotional photographs.

While Jane is quietly going through the detailed specifications of the phone,
the application updates John’s user profile in the background, as it keeps track
of all products each customer looked at. This enables the application to ob-
serve a user’s interests in order to offer targeted advertisements, such as prod-
uct recommendations. As a result, several other phones are now publicized at
the top of the display, in the same price range and with more or less similar
features as the phone Jane chose from the display window.

While John reads through the specifications of some of the recommended

1.3 Hands-on experiences and research challenges 9

(a) John and Jane are looking for a new
mobile phone inside the shop.

(b) Putting a phone on the interactive dis-
play gives detailed information.

(c) While John explores recommended
phones, Jane compares two products with
a two-handed gesture.

(d) When John later returns to the dis-
play, it recognizes him and loads his pro-
file.

Figure 1.3: A few of the main scenes from the scenario regarding walk-up-and-use
environments.

10 Introduction

phones, Jane sees another interesting mobile phone and compares the two
products. To compare products, she performs an easy two-handed gesture.
John notices Jane’s actions and also wants to take a look at the new phone
in which she is interested. Jane then makes a copy of the information panel
through the use of another gesture and moves it over to John. John and Jane
are now both interested in the phone suggested by the system and go find it
in the shop. When returning to the interactive display, they notice that other
customers started a new session. However, when they approach the display,
the system recognizes them and automatically restores their list of mobile
phones. After looking at several phones for a while, Jane decides she wants to
sleep on it and they both leave the store.

After a few days, Jane has made up her mind and she returns to the store
to buy the phone. John is with her and while Jane is waiting in line at the
cash register, he walks up to the interactive display. The system recognizes
John, loads up his user profile and shows him all the phones they looked at
in the past. While waiting, John browses through some of the recommended
phones.

Research challenges

Multi-touch interfaces in walk-up-and-use environments such as public spaces
impose specific requirements on the accessibility of the user interface: most
users are not familiar with the interface and the user experience needs to be
exciting, since users simply walk away if the interface does not meet their
expectations. The interface is therefore supposed to support attractive, intu-
itive and very “natural” interaction, but there are few common conventions
regarding the use of gestures. This absence of conventions leads to a lack of
consistency across different applications and a low memorability of the ges-
tures. Furthermore, touch-based systems rarely support a hover state and
the typical aesthetic design of a gestural interface often provides little to no
perceived affordances, making it hard for users to find out which of, and how,
the various interface components respond to touches.

Complicating matters further, the limited interaction time and the need
for immediate use of the system do not allow for much training or exploration
of a walk-up-and-use interface. If a user is not immediately successful in
interacting, that person will simply give up and walk away. This leads to
a rather complex situation, in which the user interface has to be completely
self-explanatory. This might not be too big of a challenge if the application
offers little functionality, but as the interactions become increasingly more

1.3 Hands-on experiences and research challenges 11

complex, so does the challenge of providing a fully self-explanatory interface.
Looking at the scenario in particular, John and Jane must be able to interact
with the unfamiliar application without any real training. However, Jane
needs to somehow learn about the gestures to compare products or to copy an
information panel.

Another research challenge is related to the hardware setup itself. Multi-
touch surfaces are well suited to co-located collaboration because of their abil-
ity to track multiple inputs simultaneously, but the majority of those interac-
tive surfaces are unable to associate a contact point with the particular user
performing the touch. In the abovementioned scenario, Jane performs a two-
handed gesture to compare two products. For this kind of interaction to work
unambiguously, the system needs to be able to distinguish between Jane’s and
John’s input, so it knows that Jane is performing the two-handed gesture, as
opposed to both Jane and John each performing a single-handed gesture. In
addition, recognizing the users that are currently interacting with the hard-
ware enhances the walk-up-and-use characteristics of the system, seeing that
users no longer need to manually log into the application each time it has to
load their user profile.

1.3.2 Co-located and remote collaboration

The walk-up-and-use scenario in the previous section involved a fairly small
application, with a very limited amount of collaboration, as users mainly
browsed through some information. Professional work environments, on the
other hand, often necessitate far more extensive systems, with much more ad-
vanced forms of collaboration. For that reason, we discuss a comprehensive
meeting environment in this section.

Background and experiences

Achieving a common goal typically requires meetings on a regular basis. Defin-
ing a project proposal, discussing medical results, brainstorming on an adver-
tising campaign or putting together a storyboard for a new system: it all
requires people to meet from time to time. However, a lot of these meetings
are organized inefficiently. First of all, people usually all get together in the
same physical room, often requiring some participants to travel, which can be
both time consuming and costly. Furthermore, participants may bring along
one or more personal devices, such as laptops, tablets, PDAs and smartphones.
Incorporating those personal devices is challenging in traditional meeting room

12 Introduction

setups, thereby frequently limiting the participants’ capability of sharing par-
ticular information stored on a personal device during the meeting.

From 2005 to 2007, our research lab was involved in the IBBT GBO project
iConnect, shown in Figure 1.4, which provided us with some valuable insights
on multi-user environments. iConnect [Cardinaels 06] is a distributed sys-
tem to support meetings involving collaboration among both co-located and
geographically dispersed participants. Although remote participation is un-
questionably very useful at times, eliminating the time and costs associated
with travelling to one location, we acknowledge that some degree of co-location
is often preferred. Setting up a “mixed” meeting with both co-located and re-
mote participants carries configuration costs: a multitude of assorted devices
need to be connected to the system, enabling smooth collaborative interac-
tion and an effective way to share data. Allowing users to bring along their
own personal devices complicates the configuration, especially when people
frequently enter a meeting late or leave early.

Figure 1.4: The iConnect meeting environment, with a variety of devices connected
to the system [Cardinaels 06].

The iConnect system focuses on the continuously evolving nature of meet-
ings, providing a framework to facilitate the dynamics and location indepen-
dence of those meetings. In particular, iConnect aims to minimize configura-

1.3 Hands-on experiences and research challenges 13

tion steps, while maximizing smooth device integration. A “connected meeting
room” is realized by means of a flexible software platform, which is supportive
in that it does not constrain users, but allows to embed all kinds of files, such
as office documents, images and videos. By sharing these embed files over
a network, we ensure participants, either co-located or remote, have a syn-
chronized view while being able to annotate and interact with one another’s
data.

Illustrative scenario

The following scenario illustrates how the iConnect system supports a real-life
meeting. Figure 1.5 shows a few of the main scenes from the scenario. A
team of neurologists gathers to discuss the results of a particular brain scan,
and a secretary is present to take minutes of the meeting. Most of them have
brought along their personal laptop and/or a mobile device, such as a PDA
or mobile phone. As soon as they enter the meeting room, the system notices
the participants’ presence and each person is assigned an avatar in order to
identify the different users during the collaboration.

For starters, Jane, the department head and team leader, would like to
present an outline of what the meeting is about. She opens her Microsoft
PowerPoint file, counting several images of a brain scan, on an interactive
whiteboard. iConnect takes care of all presentation and interaction aspects, as
the slideshow application is smoothly integrated in the overall user interface of
the iConnect system. Jane browses her slides and explains the specifics of this
particular case. To accentuate a certain area of the brain scan, she annotates
an important part of one of the images shown on the slides.

Another neurologist, Jake, proposes to discuss the future treatment. To
clarify the patient’s condition, Jake wants to show an older brain scan of this
patient, which is stored on his laptop. He uploads the file to the whiteboard,
where Jane opens it. Jane sits down for a moment and studies the scan. She
indicates the problematic areas by encircling a few anomalies on the brain
scan, using her newly bought mobile phone as a remote touchpad. The other
participants are also able to use their personal device as a remote control,
but when Jake accidentally tries to close Jane’s PowerPoint presentation, the
system refuses to do so, since Jane is the one who is currently presenting on
the whiteboard.

One of the neurologists, Lucie, who is visiting from another hospital, re-
quests a copy of the scan so she can have a closer look. Normally Lucie would
have been able to copy the file herself, but as she is registered as a visitor and

14 Introduction

(a) Jane presents an outline of the meet-
ing on an interactive whiteboard and an-
notates the brain scan.

(b) The whiteboard shows a video stream
of a remote team, and additional brain
scans provided by Jake and Jacob.

(c) Three expert neurologists discuss
a specialized problem on an interactive
tabletop.

(d) Meanwhile, Jake and Lucie compare
files, while Jane debates a financial report
with Jacob.

Figure 1.5: A few of the main scenes from the scenario regarding co-located and
remote collaboration.

1.3 Hands-on experiences and research challenges 15

the scan has to be treated as confidential patient information, she does not
have the appropriate access rights. Jane, who has the necessary access rights
as department head, therefore has to drag the scan to Lucie’s avatar, which
results in the file being copied to Lucie’s personal device.

A senior team member, Jacob, wants to show a brain scan of a patient
suffering from a similar disorder. Unfortunately, the iConnect system does not
support the aged file format Jacob is still using. Jacob’s laptop, however, is
capable of opening such scans. To cope with this situation, the desktop screen
of Jacob’s laptop is duplicated on a small part of the whiteboard, next to
the other brain scans, thereby avoiding the difficulties of changing the current
hardware setup, such as connecting the laptop directly to the whiteboard’s
video source. The system takes care of possible issues with new content being
shown on the whiteboard on the fly, by ruling out unfavorable occlusions (i.e.
visual overlap between the new content and the previously opened images that
are still being discussed at the moment).

Meanwhile, a faraway team joins the meeting remotely. The iConnect
system transparently duplicates the workspace to their remote site, allowing
them to view and interact with the available scans. The mutual awareness
is enhanced by audio and video streams, illustrating the overall situation in
the other meeting room. After some time, three expert neurologists decide
to discuss a specialized problem. The group splits up: the trio moves to
an interactive tabletop, while the others remain at the whiteboard. Seated
around the table, the experts cooperate extensively, exchanging data between
one another. Again, care has to be taken with, for instance, people closing or
occluding another’s files.

In the meantime, the others are also having an open discussion. Jake and
Lucie opened several new files to compare the approaches of the two hospitals.
Because Jane quickly wants to discuss a financial report with Jacob, she opens
it on the whiteboard and starts going over the first page. When the three
experts reach a conclusion, they send the data to the whiteboard, and they
present their findings to the others. Finally, as the meeting comes to an end,
the meeting minutes are uploaded to a shared document space, remaining
available for future review. However, access to this data has to be treated
carefully, since it involves confidential information regarding a patient.

Research challenges

Allowing multiple people to interact in a highly collaborative environment
gives rise to several types of conflicts. In the scenario, we mentioned possible

16 Introduction

issues with Jake accidentally trying to close Jane’s presentation at an inoppor-
tune moment, or opening new files that could occlude a file that is currently
being discussed. These conflicts should be prevented or resolved, if possible
without interrupting the dynamic work flow by enforcing an explicit response
of the user. An intuitive approach is to assume that social protocols, such
as polite behavior and social standards, are adequately observed and suffice
to coordinate the actions of the group of users. Even though social protocols
perform well in some cases, they cannot prevent or resolve numerous types of
conflicts effectively, especially when remote users are involved. Consequently,
the highly collaborative nature of the environment calls for some interaction
management.

Additionally, with both co-located and remote users being present, suffi-
cient attention needs to go to mutual awareness and access control to shared
data. It is important that users are well aware of the possible effects and
ramifications of their actions, even if several smaller subgroups are working
separately from time to time, and that access to confidential information is
restricted. Just as with preventing or resolving conflicts, gaining information
regarding mutual awareness should be non-intrusive, without any interruption
to the work flow. It should enable a user to adjust to the observed circum-
stances, so his or her actions come seamlessly together with the collaborative
efforts of the others.

As in the aforementioned walk-up-and-use scenario, the identity of users
comes into play in a number of ways. First of all, when Jane is presenting
on the whiteboard, others should be restricted in what they can do on this
shared surface. Here we not only take Jane’s identity into account, but also the
role that Jane is currently performing, namely the role of presenter. Secondly,
access to shared files is based on the access rights of a user, which again can be
linked to both the identity (e.g. Lucy, who is visiting from another hospital)
and the roles of a person (e.g. Jane being the department head and team
leader, or Jacob being a senior neurologist).

Since the scenario is situated in a professional work environment, the lim-
ited time for training or exploration that is prominent in walk-up-and-use sys-
tems is less of an issue. However, there is always the possibility of a first-time
or infrequent user being asked to join the meeting unexpectedly. That should
not pose an actual problem when other, more experienced participants are in-
volved, but that first-time user might also be a lonesome remote participant.
In such circumstances, it is again important to be able to quickly discover how
the user interface is operated, without having to read an instruction manual,
for instance.

1.3 Hands-on experiences and research challenges 17

1.3.3 Storyboarding in a multidisciplinary team

In this section, we have an in-depth look at one particular kind of collabo-
ration, namely collaborative storyboarding among co-located members of a
multidisciplinary team. Our main goal is to investigate the specific require-
ments this particular context imposes on the design of digital tools for shared
interactive surfaces.

Background and experiences

The storyboarding process was developed at the Walt Disney Studio during the
early 1930s, as they were in the habit of drawing scenes on sheets of paper to
tell the story of an animated cartoon. Storyboards are still used extensively in
the film industry, to help visualize the scenes and story beforehand. Nowadays,
however, storyboards are also widely used in various other domains. Writers
use them for plotting the story of their books, or for planning advertising
campaigns and commercials. In industry, storyboards are for instance used
to develop process flowcharts, illustrate product usage scenarios, and visualize
promising new activities in business presentations. We are, of course, most
interested in the use of storyboarding in the field of computer science and
human-computer interaction.

In the context of software development, a storyboard can be seen as a nar-
rative that uses rich and iconic illustrations or images displayed in sequence
for the purpose of visually representing systems’ scenarios of use, as illustrated
in Figure 1.6. Storyboards can be hand-drawn or created digitally, and can be
used to describe the user’s daily doings, as well as the possible system designs
and the influence the system would have on the user’s activities. The sto-
ryboarding approach is well suited for depicting the requirements of systems
in different contexts of use and for creating a common understanding of the
application domain, much better than an abstract description. The practice of
visual thinking and brainstorming allows a group of people to collaborate, con-
cretizing ideas while fostering across-the-board ideas, resulting in a consensus
reached by the group as a whole.

The research on storyboarding in multidisciplinary teams was done to-
gether with dr. Mieke Haesen, who finished her PhD on combining user-
centered design and software engineering in 2011 [Haesen 11a]. Among other
things, she introduced the COMuICSer storyboarding approach and tool, and
investigated them through several user studies, which resulted in a number of
valuable experiences for our research lab.

18 Introduction

(a) Doing individual research. (b) Walking to the meeting room.

(c) Discussing search results. (d) Assembling selected videos.

Figure 1.6: Part of a storyboard created for the development of an application to
visually explore video archives [Haesen 11a].

Illustrative scenario

In this scenario, we describe part of a collaborative storyboarding session.
Figure 1.7 depicts a few of the main scenes from the scenario. During this
session, a multidisciplinary team tries to come up with the functional and
non-functional requirements of a future home automation system. The team
includes a human-computer interaction expert, two systems engineers and
a user interface designer, as well as the client and an application domain
specialist.

All team members were briefed in advance, as they received a number of
personas that represent typical end users and a scenario that revolves around a
home automation system to control the heating and lighting, which can assist
a household in saving money on energy consumption. This home automa-

1.3 Hands-on experiences and research challenges 19

(a) Kate goes over the scenario, displayed
on her tablet. Meanwhile, John takes
notes on hardware requirements using his
laptop.

(b) Different threads of discussion emerge,
as Oliver and John discuss the hardware,
and Jim asks Kate about the user profiles.

(c) The storyboard scenes are arranged in
the middle of the table, and different arti-
facts are attached.

(d) To preserve the results, Kate takes a
few pictures of the final storyboard and the
associated artifacts.

Figure 1.7: A few of the main scenes from the scenario regarding storyboarding in
a multidisciplinary team.

20 Introduction

tion system should allow family members, differing in age and technological
aptitude, to control settings using various devices, such as touchscreens, lap-
tops and smartphones. It should also be possible to automatically adapt the
settings according to personal profiles and the current activities of the family
members. Furthermore, the system should prevent environmentally unfriendly
situations from happening, for example people leaving the house without turn-
ing off the lights.

As the meeting starts, the client, Jim, introduces himself and his company,
and shortly recapitulates the goal of this get-together. The human-computer
interaction expert, Kate, then takes the lead, as she is the most experienced in
storyboarding. Kate goes over the scenario, displayed on her tablet computer,
highlighting the important aspects step by step. Meanwhile, one of the systems
engineers, John, who did not prepare the meeting beforehand, takes notes on
the possible hardware requirements for each of these steps on his laptop. When
Kate finishes, Jim has some additional requests, as he thinks it would be nice
if the system could also monitor the water consumption in each room of the
house. The application domain specialist, Oliver, immediately remarks that
the additional sensors would increase the costs quite a bit. John does not
agree entirely, but before he can speak his mind, Kate takes control of the
meeting again, because she does not want to deviate on this topic for now.
She makes a note of the client’s request, however, so they can return on it in
a later stage.

They start discussing a very basic scenario: how to control the heating and
lighting from the living room when only one person is present. Kate takes a
sheet of paper and quickly sketches this situation. Oliver suggests to mount
a touch-sensitive display against the wall as a control panel, and while Oliver
and John are discussing the hardware possibilities, the user interface designer,
Olivia, starts sketching a basic user interface based on a design she made a
while ago for a similar system. In the meantime, Jim asks Kate a few questions
about the user profiles. After a few minutes, the different threads of discussion
merge, and everyone focuses on the profiles and what should happen when one
user initiates a personal profile that conflicts with another user’s profile that
is currently active.

The resulting storyboard scenes are arranged in the middle of the meet-
ing room table. Olivia attaches her user interface design to the scene of the
living room. As the meeting progresses, they debate on the use of mobile
devices, and more and more scenes are collected on the table. Kate arranges
the storyboard scenes in the right sequence, and now and then attaches a note
with an important comment to a scene. She also checks her tablet, containing

1.3 Hands-on experiences and research challenges 21

her preparations, to make sure that they do not lose track of some impor-
tant aspects regarding the end users, such as the difference in technological
aptitude.

The brainstorm continues like this for a while, and after the meeting comes
to an end, Kate takes a few pictures of the resulting storyboard scenes and the
associated artifacts with her digital camera. She also collects all the sheets
of paper. Leo, the second systems engineer, leaves the meeting with mixed
feelings, as he was not able to contribute as much as he would have liked. As
the system should be able to detect people’s presence in particular rooms, Leo
prepared a list of hardware possibilities concerning indoor tracking beforehand.
However, Leo is a somewhat reserved person and this specific topic never came
up in much detail, so his list was never used during the meeting, and he fears
his preparations will go to waste.

Research challenges

As people with different backgrounds and goals gather, they will bring different
viewpoints and approaches to the table. Involving all team members in the
decision making process results in more comprehensive storyboards, so it is
important that each individual has the opportunity to contribute equally and
that a degree of mutual engagement is established. In the scenario, John does
not always agree with Oliver, but he never got the chance to express that
during the meeting. Likewise, Leo’s preparations were never used. Kate tries
to write down the most important comments, but some of the design rationale
will not be recorded, especially when smaller groups of people start working
in parallel for a while.

Since Section 1.3.2 also covers collaboration, the research challenges pre-
sented in that section are of course also valid for multi-user storyboarding.
However, while digital systems such as iConnect can support the collaborative
brainstorming process to some extent, care should be taken that the use of
such a system does not constrain the team’s creativity or flexibility. Mem-
bers of a multidisciplinary team are already accustomed to specific devices,
tools and approaches, and forcing them to change may hinder their creativity
and engagement. Some people prefer, for instance, hand-drawn storyboards
to digital storyboards, since it allows them all the freedom that comes with
working with regular paper. Forcing those people to use a specific drawing
tool on a tablet or a tabletop will not only limit their creativity, but also their
level of commitment, leading to less diversity in viewpoints and thus inferior
storyboards.

22 Introduction

While some members of the team may prefer to work with real paper, oth-
ers will like to use (a certain application on) a tablet or laptop. However, when
combining the paper and digital world, there is always the risk of useful infor-
mation being lost or forgotten, particularly if no tight coupling is maintained
between paper and digital artifacts. In the scenario, Kate takes a few pictures
of the results, but those do not include any of the digital artifacts, making
it harder to consult all the results of the brainstorming session afterwards
without overlooking or having to track down any additional information.

Storyboarding in a multidisciplinary team imposes some additional require-
ments on the research challenges presented earlier in this chapter. First of all,
the multidisciplinary team will often include external members, who are more
likely to be unfamiliar with any digital systems that might be used during the
meeting. Being too involved with training and exploration of a system during
the storyboarding session will lead to people being less involved in the actual
brainstorm, which should be avoided. Secondly, keeping track of (the identity
of) a user becomes more difficult if that user is not only using digital devices
and applications, but also regular paper, as we can no longer rely on using
identity-aware shared surfaces and tracking of the user’s personal devices.

1.4 Summary of research challenges, scope delin-
eation and overview of chapters

In this chapter, we presented some of our experiences with walk-up-and-use
and multi-user environments, which we illustrated through three scenarios
about get-togethers involving collaboration among co-located and/or remote
participants. Based on these experiences and scenarios, we put forward several
research challenges:

• Walk-up-and-use environments impose specific requirements on the ac-
cessibility of touch-based interfaces. There are few conventions regarding
the use of gestures, and the limited interaction time and need for imme-
diate use of the system do not allow for much training or exploration.
How can we make touch-based interfaces in walk-up-and-use environ-
ments self-explanatory, for both single-user and multi-user settings?

• Allowing multiple people to interact simultaneously in a highly collab-
orative environment gives rise to several types of conflicts and possible
misconducts, especially if that environment can include both co-located
and remote participants. How can we provide interaction management

1.4 Summary of research challenges, scope delineation and
overview of chapters 23

and enhance mutual awareness in a multi-user environment without in-
terrupting the dynamic work flow?

• To take advantage of the different viewpoints and approaches that mem-
bers of a multidisciplinary team bring to the table, it is important that
each member has the opportunity to contribute equally to the decision
making process and that a degree of mutual engagement is established.
How can a storyboarding tool support the various disciplines and main-
tain equitable contributions, without impacting the team’s creativity?

• Multi-touch tabletops are well suited to co-located collaboration because
of their ability to track multiple inputs simultaneously, but the majority
of those tabletops are unable to associate contact points with particular
users, a feature that can improve a multi-user interface in a number of
ways. How can we accomplish non-intrusive identification of the different
users around any tabletop, independently of the hardware technology?

To situate these research challenges in the overall field of touch-based and
multi-user interaction, we reconsider the research fields listed in Section 1.2.
The main focus of this dissertation lies in the fields of enhancing the accessi-
bility of touch-based user interfaces and improving the collaborative aspect of
multi-user environments. Since we approach these topics from various angles,
from both a user and developer perspective, we inevitably touch upon some of
the other research fields. However, as we occasionally venture into those fields,
it is always in support of our central goals, and it is never our primary intend
to create truly novel interaction techniques, application domains, hardware
systems or development processes.

In addressing our research challenges, we explore the abovementioned fields
as follows throughout the upcoming chapters:

• In the first part of this dissertation, we investigate the concept of a self-
explanatory user interface to enhance the accessibility of touch-based
interaction. In Chapter 2, we propose various strategies to assist users in
discovering and learning the functionality of a touch-based interface. We
approach this from the perspective of both the user and the developer.

• Subsequently, we present a few evaluations of different strategies in
Chapter 3, and based on our results and observations, we offer devel-
opers some useful insights into how to provide help. The evaluations in-
clude strategies that specifically target walk-up-and-use and multi-user
systems.

24 Introduction

• We continue our exploration of multi-user environments in the second
part of this dissertation, by examining how we can improve the col-
laborative aspects in two application domains: meetings in general and
storyboarding. In Chapter 4, we focus on interaction management, mu-
tual awareness and access control in the iConnect meeting environment,
supporting co-located as well as remote collaboration.

• Next, in Chapter 5, we discuss an in-depth observational study that
focuses on one specific kind of collaborative environment, namely sto-
ryboarding among co-located members of a multidisciplinary team. We
formulate and concretize a number of requirements to inform the design
of a tabletop tool for collaborative storyboarding.

• To conclude the second part, we move a little into the field of hardware
advances in Chapter 6, as we tackle a challenge that we encountered
on multiple occasions throughout the preceding chapters. We present a
non-intrusive solution to identify the different users around a table by
using an overhead camera that observes the back of the users’ hands.

• Finally, in the third part of this dissertation, we consider the develop-
ment process of touch-based and multi-user interfaces, as we explore a
graphical notation to support the development and evaluation of inter-
action techniques in Chapter 7.

To end with, we summarize our main conclusions, we reflect on our contribu-
tions, and we discuss various opportunities for future work in Chapter 8.

Part I

Self-explanatory interfaces for
touch-based interaction

Chapter 2

TouchGhosts: visual guides for multi-touch
interaction

Contents

2.1 Introduction . 27
2.2 Related work . 31
2.3 Self-explanatory TouchGhost interfaces 36

2.3.1 Visualizations . 37
2.3.2 Invocations . 38

2.4 TouchGhost architectures 39
2.4.1 COMETs toolkit . 40
2.4.2 Microsoft .NET framework 42
2.4.3 Required meta-data in TouchGhost objects 43
2.4.4 Manipulating the actual user interface 44

2.5 Illustrative TouchGhost implementations 45
2.5.1 Invocations . 45
2.5.2 Visualizations . 47
2.5.3 Multi-user strategies 49

2.6 Conclusion . 50

2.1 Introduction

In this chapter, we explore the concept of a self-explanatory touch-based
interface, and we introduce TouchGhosts [Vanacken 08b, Vanacken 09a]. A

28 TouchGhosts: visual guides for multi-touch interaction

TouchGhost interface facilitates the discovery and learning of touch-based in-
teraction techniques “on the spot”, as visual guides are merged with the ac-
tual user interface to inform users about the available interaction techniques,
if possible within the current context of use.

One of the biggest advantages of a graphical user interface (GUI), com-
pared to for example command-line or speech interfaces, is that commands do
not have to be memorized. Instead, the possibilities of the user interface can
be discovered by exploring the toolbars, menus and other widgets. Designers
of a GUI should make the important aspects of a system perceivable to the
user, to allow the user to easily translate goals into actions. For that reason,
most widgets in desktop environments provide affordances to the user, “sug-
gesting” how the interface component may be interacted with [Norman 88]. In
addition, as a result of the standardization of GUIs, a user can usually depend
on prior knowledge of other applications when confronted with a new inter-
face. In other words, the core functionality of an interface should be apparent
just by looking at it, and by exploring the different graphical components.

As gestural interfaces typically rely almost exclusively on direct manipula-
tion, there are little to no user interface components providing perceived affor-
dances or any means of discoverability [Norman 10a, Nielsen 10, Nielsen 11].
Often interface components are mostly hidden within the “smooth” aesthetic
design of the user interface, with no indication which of, and how, the vari-
ous components respond to touches. Although the smooth design might look
attractive, without any visual distractions, established GUI design guidelines
dictate that controls such as buttons should look raised, giving the impression
of being something that can be pressed, and that scrollbars and other inter-
active components should be visually distinctive. Traditionally, some sort of
lighting or dimensionality effects are used to indicate raised or lowered inter-
face components, but those effects are often absent in the design of gestural
interfaces.

To make things worse, touch-sensitive displays rarely support a hover state.
On a standard display we use a device such as a mouse or trackpad to indirectly
interact with the user interface. The hover state that can be accomplished with
such a device is commonly used as one of the important means to make users
aware of the user interface components that can be clicked and manipulated,
for example by adding a dimensionality effect to a button when a mouse cursor
is on top of it. A touch-sensitive display, on the other hand, just uses fingers
or a stylus to interact with it. As a result, most touch-based systems do
not support a hover state, and thereby lose an important way of providing
assistance to the user.

2.1 Introduction 29

A touch-based interface is supposed to support intuitive and “natural” in-
teraction through gestures, but users experience difficulties finding out how
to interact with such an interface due to a lack of familiarity. There are few
common conventions beyond a small set of widespread operations (e.g. select,
move, resize), resulting in a lack of consistency across different applications
and a low memorability of the gestures [Norman 10a, Nielsen 10, Nielsen 11].
Moreover, most gestures are hardly natural [Cao 08, Norman 10b] and some
commands elicit little gestural agreement [Wobbrock 09]. Touch affordances
can be a first step toward a good design, by communicating touch-based in-
teraction in an implicit way [Schöning 09], but as stated before, affordances
are mostly absent in current touch-based interfaces. Due to this characteristic
design of touch-based user interfaces, first-time or infrequent users have diffi-
culties figuring out or remembering what can be done with the interface and
how it can be done.

Looking at multi-touch interaction in particular, it allows much more than
just clicking and dragging, since interface components allow multiple con-
current points of control. Earlier deployments of multi-touch surfaces in
public spaces [Cuypers 08] and other observations of tabletops [Ryall 06b,
Hornecker 08a, Marshall 11] revealed that users are hesitant to touch the sur-
face at first and often imitate the traditional mouse interactions by trying to
operate the interface with merely one index finger, not fully exploiting the
multi-touch features. Only over time they gradually discover that multiple
fingers or specific hand postures can be used.

While single-finger gestures can be simple enough to discover through trial-
and-error, it is less likely that a user will discover interactions involving two or
more fingers “accidentally”, not to mention cooperative [Morris 06] or whole
hand [Wu 03] gestures. People rarely use multiple fingers together to interact
with an interface, except in very specific contexts that are well understood,
like zooming with two fingers. Therefore, gestures such as scrolling inside a
list view control with two fingers (as opposed to scrolling the entire window
with one finger) have a very limited discoverability rate.

Especially walk-up-and-use setups in public spaces, such as the ones we
described in Section 1.3.1, undergo these problems: the limited time of use
does not allow for much training or exploration. However, similar issues can be
found in the other scenarios from Section 1.3. Take, for example, the iConnect
system we described in Section 1.3.2. Since the scenario is situated in a work
environment, we can assume that there is time for at least some training and
exploration. However, a first-time or infrequent user might end up in a meeting
unexpectedly, which poses a problem if no experienced participants are present

30 TouchGhosts: visual guides for multi-touch interaction

to help out. The same holds true for storyboarding in a multidisciplinary team,
as described in Section 1.3.3. External people involved in the meeting, such
as external clients or designers for example, will probably be unfamiliar with
the system, and appointing a trained facilitator to provide technical support
and training [Galaczy 99] is not always feasible.

Figure 2.1: Example of a self-explanatory TouchGhost interface. Visual guides are
merged with the actual user interface to inform the user about the available interaction
techniques within the current context of use.

To assist users in exploring and learning the functionality of a user inter-
face, most applications include some sort of help system, in the form of an
instruction manual, embedded tooltips, an online help system, interactive tu-
torials, a virtual assistant, and so on. As multi-touch interfaces introduce new
and unfamiliar notions, such as multiple concurrent input streams and syn-
chronized interactions, new types of help systems are being explored. In this
chapter, we introduce the concept of a self-explanatory TouchGhost interface
to facilitate the discovery and learning of touch-based interaction techniques.
Figure 2.1 portrays an example of such a TouchGhost interface.

After considering the related work in the next section, we discuss different
TouchGhost strategies to invoke and visualize help in Section 2.3. We in-
troduce two distinct architectures in Section 2.4, including a Microsoft .NET
architecture that allows integration of a TouchGhost interface in new or exist-
ing .NET applications. Based on this architecture, we implemented a number

2.2 Related work 31

of examples, which are shown in Section 2.5. We finalize this chapter with
some conclusions and next, in Chapter 3, the results of several evaluations of
different TouchGhost strategies are presented.

2.2 Related work

In this section, we explore the existing work relating to various kinds of help,
including the use of videos, contextual help, menus, animations, and feedfor-
ward and feedback. We also examine how to encourage active involvement
and how to draw people’s attention.

A classification of help. Dworman and Rosenbaum [Dworman 04] address
a very basic question: why do users fail to use the help systems available
to them? To improve the initial interaction between users and help systems,
they discuss among other things help-seeking behavior and help system access.
They identified the most common types of help in current applications:

• text-based help, e.g. printed or digital manuals, tooltips integrated in
the application, online help systems and tutorials;

• interactive help, e.g. systems that try to make a diagnosis through ques-
tions and answers, virtual assistants;

• “show me what to do” help, e.g. demonstration videos, semi-transparent
overlays or animations;

• human help, e.g. help desks, colleagues and forums.

Most applications include some sort of help system that falls into one
of these categories. Plenty of studies unfortunately show that the content,
categorization and terminology of that help do not always meet the users’
needs [Duffy 93, Krull 01, Martin 05, Novick 06], as users may find tutorial-
style documentation too basic, but find a reference manual too technical and
overwhelming. Based on numerous studies, Grayling [Grayling 02] states that
users are often reluctant to consult help, preferring trial and error tactics.
They only open help when they are really stuck and they read text hastily
and inaccurately. Some users are not even aware help exists. However, it is
possible to improve help by making it an integral part of the user interface, for
instance by implementing it as embedded help panes or tooltips. Furthermore,
new evaluation protocols can help to identify existing learnability issues in an
application [Grossman 09].

32 TouchGhosts: visual guides for multi-touch interaction

Videos as “show me what to do” help. Since we focus on multi-touch se-
tups in public spaces, we are mainly interested in the third category of help pre-
sented by Dworman and Rosenbaum, the “show me what to do” help. Videos
are one approach of providing this kind of help, and learning through videos
has already been studied extensively. Zhang et al. [Zhang 06] explain the pos-
itive effects of interactive videos on both the learning outcome and the learner
satisfaction in e-learning, while Schwan and Riempp [Schwan 04] conclude that
the use of interactive features in videos results in a better processing and un-
derstanding of the visual information. The Ambient Help system [Matejka 11]
provides multiple videos and textual help on a secondary display to support
opportunistic learning, and Grossman and Fitzmaurice [Grossman 10] show
contextual videos in ToolClips as assistance for explaining functionality.

Vogel and Balakrishnan [Vogel 04] present a public interactive display that
supports the transition from implicit to explicit interaction with both public
and personal information. The system makes use of interaction techniques
such as simple hand gestures and touch screen input for explicit interaction.
On the subject of help, it provides a self-revealing mechanism that shows
videos of available gestures. The examples we present in Section 2.3 include
demonstration videos as one of the visualization strategies, and we will discuss
the advantages and disadvantages of such an approach in Chapter 3, based on
our evaluations.

Contextual help and guidelines. Videos are often shown in a separate
window, or a standalone video player. Contextual help, on the other hand, is
effective for learning how to use an interface by showing instructions on the
actual interface components that the user is interacting with, rather than in
a separate view. This approach allows hands-on practice and exploration at
the same time [Yeh 11]. Based on a case study on user-aided design of online
help, Knabe proposes some fundamental and very applicable design goals for
Apple Guide [Knabe 95], including:

• help should appear in the same application layer as the application being
used to complete the task;

• instructions should be presented in small chunks to minimize the user’s
reliance on memory;

• rather than showing an illustration of an object on the screen, the help
should point out the actual object.

2.2 Related work 33

In addition, Grayling [Grayling 02] postulates that help should meet five key
characteristics:

• context-specific, only containing facts relevant to the specific context;

• useful, containing all the information relevant to the context;

• obvious to invoke, the mechanism being clear to the user;

• non-intrusive, not distracting users before being invoked;

• easily available, not requiring digging through help topics or an index.

With TouchGhosts, we have similar goals in mind: the help should be
graphically presented within the actual context of use whenever possible,
and should be obvious to invoke, non-intrusive and easily available. In con-
trast, some systems show the help in an area separated from the application’s
workspace. GestureBar [Bragdon 09] is, for example, a separate toolbar that
provides animated images, detail tips and a practice area where the user can
test a gesture without actually performing the associated action.

Providing help through enhanced menus. A number of approaches en-
hance menus to improve learning of, for example, hotkeys [Grossman 07] and
stroke gestures as shortcuts to menu selection [Appert 09]. The Multi-Touch
Menu [Bailly 08] is invoked by touching a multi-touch surface with the palm
of the hand. The user can select a sub-menu from a pie menu with the thumb
of that hand, and the items from that sub-menu are then displayed near the
other fingers. Experienced users can skip going through the menu and quickly
invoke a command by just touching the surface with a thumb and finger in
the right formation. The Multi-Touch Menu helps users to learn gestures, but
is limited to static multi-finger postures.

Kurtenbach et al. [Kurtenbach 94] also propose interaction mechanisms
that make gestures self-explanatory for novices, but still allow experts to use
efficient command marks. The examples include marking menus and a crib-
sheet animator that uses iconic gestures and animated demonstrations. The
demonstration is shown in context, with text annotations to explain its fea-
tures. Although Kurtenbach’s system is limited to pen-based input, the crib-
sheet animator fits very nicely in the TouchGhost philosophy and is therefore
easily replicated by implementing an appropriate invocation and visualization
strategy, as we explain in the next section.

34 TouchGhosts: visual guides for multi-touch interaction

Animated help in traditional interfaces. The concept of using animated
help in a direct manipulation interface is not new, and has been studied
as far back as the eighties [Cullingford 82] and early nineties [Baecker 90,
Sukaviriya 90]. Tuck and Olsen [Tuck 90], for example, implemented a “guided
task” help prototype, providing instructions that guide the user while perform-
ing a task. They state that the system is not only entertaining and fun to use,
but also avoids the problems associated with an impatient expert demonstrat-
ing the intricacies of some application to novice users.

Harrison [Harrison 95] shows that a graphical representation of help in-
structions can increase performance and decrease the number of mistakes.
Palmiter and Elkerton [Palmiter 93] confirm these results, but indicate that
textual help may allow users to remember instructions more efficiently than
demonstrations. Tversky et al. [Tversky 02], on the other hand, state in the
context of facilitating learning that animations are not necessarily beneficial
compared to static graphics, because animations may be too complex or too
fast to be accurately perceived, and they often mismatch people’s conceptions
of motion. Although animated help has already been studied extensively, our
work differs in that it uses animated help for multi-touch interaction, so we
need to reassess its usability compared to other types of help under these new
circumstances.

Feedforward and feedback in gestural interfaces. Visual hints for dis-
covering, learning, and assisting with the completion of gestural interactions
have already been applied in tangible augmented reality systems [White 07].
The hints are graphical representations of potential actions and their con-
sequences in the augmented physical world. Similarly, Octopocus [Bau 08]
combines on-screen feedforward and feedback to help users learn, execute and
remember single-touch gestures. The help system dynamically visualizes the
current state of recognition and the optimal path of the possible gesture strokes
a user can perform to complete a gesture. The results of two experiments show
that OctoPocus is significantly faster and improves learning of arbitrary ges-
tures, compared to conventional help. One of the main limitations is the level
of visual complexity that users face if they enter the help mode without having
drawn any portion of a gesture.

Arpege [Bau 10] is a comparable technique that helps users learn and ex-
ecute multi-finger chord gestures on multi-touch surfaces by providing finger
by finger feedforward and feedback. Chord gestures are static multi-finger
postures that require the user to simultaneously place two or more fingertips
on a touch-sensitive surface (e.g. form an equilateral triangle by placing three

2.2 Related work 35

fingers on the surface). An experiment suggests that Arpege enables efficient
learning of chord gestures, and resulted in almost three times fewer errors.
Techniques such as Octopocus and Arpege make it possible to include arbi-
trary single-touch or multi-finger chord gestures in real-world applications,
but additional research is required to enable similar methods for multi-touch
gestures in general.

Gesture previews [Cleveringa 09] take a first step in that direction, as
the previews should not only inform the user of possible finishes after having
initiated a gesture, but also point out when and how cooperative gestures can
be initiated. Initial feedback on this preliminary work suggests that gesture
previews can make working with gestures easier for novice users, and that
they can encourage cooperation on tabletops. However, discovering all the
available gestures with this approach can be bothersome, as different previews
have to be shown over time if the set of gestures is too large to display at
once. The work is only presented in its early stages, and further research is
needed to examine how multi-touch and multi-user gestures can be visualized
in a comprehensible manner.

ShadowGuides [Freeman 09] build on this idea, providing assistance by
combining visualizations of the user’s current hand posture and the available
postures and completion paths necessary to finish the gesture. Freeman et
al. compared learning gestures with ShadowGuides to learning with video and
found that participants learning with ShadowGuides remembered more ges-
tures and expressed higher preference for the system. The ShadowGuides
approach resembles our “virtual hands” technique, explained in Section 2.3.1,
but focuses mainly on the visualization aspect. We have a broader look at
help systems and also propose various invocation strategies.

The Gesture Play system [Bragdon 10] uses the positive reinforcement of
physical metaphors to teach gestures, including spring widgets, button wid-
gets, and physical props to afford and constrain input. Evaluations indicate
that Gesture Play is more motivating for learning gestures because of its fun
nature. However, both ShadowGuides and Gesture Play do not explicitly
investigate or address the difficulties encountered in typical multi-user appli-
cations, which are very common on multi-touch systems.

Encouraging active involvement and drawing people’s attention. Ex-
periences with large displays in public spaces have unearthed an additional
challenge: people need to be encouraged to become actively involved, as en-
gagement is often shallow [Hornecker 08a, Marshall 11] and feelings of so-
cial embarrassment act as a barrier [Brignull 03]. One way to improve en-

36 TouchGhosts: visual guides for multi-touch interaction

gagement is allowing for gradual discovery as a challenge within the appli-
cation [Jacucci 10]. In the Worlds of Information application, help topics are
presented as spheres that are in constant motion. The main help travels slowly,
emitting slogans that encourage people to try the interface, while small help
spheres travel at a faster speed. People become engaged in catching these small
spheres, and once caught, they explain the gestural interface, for instance by
playing a short animation.

The public interactive system by Vogel and Balakrishnan [Vogel 04] that
we mentioned earlier includes an implicit interaction phase that is initiated as
a user walks past the screen, and is used to demonstrate to the user that the
display is interactive. It takes into account the user’s body location, body ori-
entation, and head orientation to fine-tune the communication with the user.
Likewise, visual feedback such as mirrored silhouettes and images of passers-
by can also be an effective way of communicating interactivity [Müller 12].
However, as it takes time to notice the interactivity, passers-by often already
passed the public display and have to walk back to interact. Covert inter-
action through mobile devices [Kaviani 09], for example by sending votes or
comments using text messages, is another possibility to encourage interaction.
The covert interaction eliminates the social embarrassment and can be learned
through large animated instructions, shown on the public display.

Another point of attention is making sure that users notice (all the re-
lated components of) the provided help when it is being shown. Users of
traditional tutorials and help systems often have difficulty finding the inter-
face components described or pictured in the procedural instructions. Sten-
cils [Kelleher 05] is an interaction technique for presenting tutorials that uses
translucent colored stencils containing holes. The stencils direct the user’s
attention to the correct interface component and prevent the user from in-
teracting with other components. Multi-layer designs [Kang 03] structure an
interface so that a simpler interface is available for users to get started and
more complex features are accessed as they move through the more advanced
layers. The associated Integrated Initial Guidance overlays help on top of
the functional interface, in order to locate and demonstrate the main widgets
using preset animations. We use comparable techniques to steer the user’s
attention toward the right spot, as will be discussed in Section 2.5.

2.3 Self-explanatory TouchGhost interfaces

The foundation of our work is the concept of a self-explanatory touch-based
interface, a TouchGhost interface [Vanacken 08b, Vanacken 09a]. It is not our

2.3 Self-explanatory TouchGhost interfaces 37

intent to put forward one ideal help system for touch-based interfaces, since
one solution rarely fits all. Therefore, we offer the freedom to customize a
TouchGhost interface through various TouchGhost strategies, either at design
time or at runtime. The visualization strategy determines what type of visual-
ization of the help is presented to the user, the invocation strategy determines
how the help system can be invoked.

2.3.1 Visualizations

Possible visualizations of a TouchGhost guide include playing short demonstra-
tion videos, representing the user’s fingers as small annotated dots, imitating
real actions through animated virtual hands, depicting the actions in a small
storyboard, and so forth. Each visualization strategy has particular advan-
tages and disadvantages, which are discussed extensively in the next chapter,
where we present the results of a number of user studies.

Figure 2.2: Example of a “virtual hands” visualization, demonstrating how to resize
by directly manipulating the actual picture. The red circles on top of the fingertips
are animated to indicate which finger needs to be pressed.

Animated virtual hands can demonstrate interaction techniques by directly
manipulating the application’s interface. This method has the distinctive ad-
vantage of presenting the help within the context of use, on the interface com-
ponents the user is currently working with, as depicted in Figure 2.2. Demon-
stration videos, on the other hand, only show a generic example of how to
perform a particular interaction, but are easy to implement. The help system
can simply show a guide and be done with it, or it can ask the user to repeat
the interaction that was just demonstrated. The user will first be offered the
explanation, immediately followed by an opportunity to try the interaction
technique, either in the actual application or in a sand-boxed environment.

38 TouchGhosts: visual guides for multi-touch interaction

Deciding on the most suitable visualization strategy depends on a number
of factors, such as the properties of the hardware, the type of application,
the target group, whether it is a multi-user or a single-user system, and so
on. Playful animated hands, for instance, might not suit users in a profes-
sional setting, while they can be an engaging solution in public spaces. As
said before, one solution rarely fits all: the TouchGhost architecture permits
different strategies that can be selected beforehand or dynamically at runtime,
an approach we elaborate on in Section 2.4.

2.3.2 Invocations

An explicit invocation strategy, as found in most help systems, requires the
user to explicitly request help. A straightforward example of an explicit in-
vocation is simply pressing a help button or holding a finger on an interface
component longer than a predefined threshold. Next, the system can display
all the available interactions on that particular interface component in a pie or
list menu, as seen in Figure 2.3. Once the user selects the appropriate menu
item, the corresponding visual guide is shown. In this way, the user can eas-
ily discover and explore the interaction techniques supported by a particular
component.

Figure 2.3: Example of a pie menu as an explicit invocation strategy, listing all
available interactions on this particular interface component (in this case, a pile of
pictures).

Alternatively, if supported by the hardware setup, a user may hover with
a finger above an interface component to invoke help, somewhat similar to

2.3 Self-explanatory TouchGhost interfaces 39

hovering with a mouse cursor to prompt a tooltip. The TouchGhost interface
can then show one particular TouchGhost guide, or all the guides one after
another. The order in which guides are presented, can depend on general usage
statistics (e.g. show the guide related to the most common action first). In
that case, an “observer” service needs to be running alongside the application,
recording all events on the user interface in order to accumulate the necessary
statistics.

With explicit invocation strategies, we need to keep in mind that users must
be aware of how to access the help system. Users will notice a conveniently
located help button, but they might not be able to figure out the “hold your
finger on an interface component longer than a predefined threshold” or hover
method on their own. Therefore, it may be useful to show a TouchGhost guide
on how to use the help system as soon as a new user starts to interact with
the application.

Implicit invocation strategies aim to assist the user based on the way he
or she is interacting with the application. The user might be operating an
interface incorrectly or very ineffectively, without knowing the existence of a
more efficient technique. The system might be able to propose improved ways
of interacting using the information collected by the observer, such as general
usage statistics (e.g. which actions occur often, rarely or never) and interaction
patterns (e.g. which actions often, rarely or never occur consecutively). For
instance, if the user is only generating single-touch events in a multi-touch
interface, the help system can offer information on multi-touch interaction
techniques by launching the appropriate TouchGhost guides.

The system can also assist the user after a considerable delay in the user’s
activities or after repeated erroneous actions. Based on the user’s preceding
input, it can visualize the possible actions the user can perform to complete a
gesture, similar to ShadowGuides [Freeman 09]. In case of erroneous actions, it
can be hard to predict what the user is actually trying to achieve. In situations
like that, the help system can only recommend the most likely guides to the
user. Care should be taken when implementing implicit invocation strategies,
since too many uncalled-for or misguided interruptions will likely disturb the
user, increasing the cognitive load and significantly reducing the user’s overall
performance.

In public spaces, a dedicated “engagement” strategy can continuously in-
voke the available TouchGhosts one after another when the system has been
inactive for some time. Passers-by will become more aware of the system and
its intended use, while passive bystanders will be attracted to explore the new
possibilities of the touch-based interface.

40 TouchGhosts: visual guides for multi-touch interaction

2.4 TouchGhost architectures

The software architecture of a TouchGhost interface determines how the help
system is integrated into the underlying application. In this section, we elabo-
rate on two different architectures that we used to develop TouchGhost inter-
faces, and the requirements they impose on the development of applications.
The concept of a TouchGhost interface is, however, not bound to a specific
architecture, and can be applied in many other ways, as we make evident in
the next chapter.

2.4.1 COMETs toolkit

The first TouchGhost interface, shown in Figure 2.4, was implemented with
the use of the COMETs (COntext Mouldable widgET) toolkit [Demeure 08].
The underlying application is a very simple picture browser that arranges
photographs in several piles, and allows users to look through and resize these
photographs. The user can call for help by pressing a large avatar. Next, a pie
menu appears on top of the interface components, and the user can select a
specific action. The TouchGhost interface then shows the user how to perform
that action by means of animated virtual hands.

The COMETs toolkit is a special-purpose user interface toolkit that allows
querying the underlying semantics of a user interface. This toolkit is based
on high-level interactors (e.g. a “choice” widget instead of a radio button
widget), and a COMETs widget can be decorated with meta-data, expressing
the widget’s role in the interactive system. As a result, we can query a concrete
user interface, which is defined as a graph of COMETs, for the meaning of
user interface components (e.g. which task they support) and for relationships
between different parts of a user interface (e.g. whether a “draggable” object is
“droppable” into a particular zone). Although the use of the COMETs toolkit
is not really necessary, it provides a valuable level of abstraction to link help
to an application, which is why we decided on this toolkit to implement a first
TouchGhost interface.

To provide the required help, TouchGhost meta-objects can associate vi-
sual guides with every action available in the user interface. If an interface
supports, for instance, actions such as playing, pausing and rewinding videos,
then the visual guides demonstrating these actions are assembled in a video
meta-object. By using the COMETs toolkit, such a meta-object can not
only be associated with a single user interface component (e.g. a picture, Fig-
ure 2.5a), but also with a set of user interface components (e.g. two objects

2.4 TouchGhost architectures 41

(a) A large avatar is always visible in the
left corner of the screen.

(b) After pressing it, a menu appears on
top of the interface components.

(c) After selecting the right item from the
menu, the virtual hands show the user how
to resize the picture.

(d) After selecting the left item from
the menu, the virtual hands show how to
browse through a pile of pictures.

Figure 2.4: Example of a “virtual hands” visualization and explicit invocation using
a pie menu in the COMETs toolkit [Demeure 08]. The underlying application is a
simple picture browser that arranges photographs in several piles.

42 TouchGhosts: visual guides for multi-touch interaction

Figure 2.5: TouchGhost objects attached to different parts of a COMETs interface:
(a) to a single component, (b) a set of components, (c) a relationship.

that can be merged, Figure 2.5b) or a relationship between several user inter-
face components (e.g. a controller that pilots a slideshow, Figure 2.5c). As a
TouchGhost interface usually consists of several meta-objects, a TouchGhost
manager traverses the graph of COMETs, making the necessary visual guides
available through the user interface.

The COMETs toolkit is suited for different modalities, including multi-
touch, but its rich semantics come at a price: the toolkit has a steep learning
curve and does not integrate with established toolkits such as the Microsoft
.NET framework1.

2.4.2 Microsoft .NET framework

For our second TouchGhost application, we opted for the Microsoft .NET
framework, because of its widespread use, rich feature set and support for
multi-touch interaction. The proposed architecture allows easy integration of
a TouchGhost interface into new or existing .NET applications and does not
impose one single solution, but offers the freedom to select or add appropriate
invocation and visualization strategies at will.

One of our goals was to create a software architecture that allows a loose
coupling between the help system and the underlying application, in order to
minimize the modifications that need to be made to that application. Inte-
grating a TouchGhost interface involves the following three steps:

1http://www.microsoft.com/NET

http://www.microsoft.com/NET

2.4 TouchGhost architectures 43

1. Create and configure a TouchGhost manager.

2. Associate a TouchGhost meta-object with each user interface component
that should support help, and specify relationships if needed.

3. Register all these interface components to the TouchGhost manager.

The TouchGhost meta-object is similar to the meta-object in the COMETs
architecture. This meta-object “enhances” a user interface component with
the necessary information that typical invokers and visualizers require, such
as the list of interaction techniques supported by the component and which
guides are associated with those techniques. Compared to the COMETs ar-
chitecture, a meta-object can only be associated with a single user interface
component, not with a set of interface components or a relationship between
several interface components. To overcome this limitation, relationships be-
tween components can be specified in the TouchGhost meta-object. What
kind of additional information the meta-object may need, depends on the
type of visual guides that are to be supported, as we will discuss shortly in
Section 2.4.3.

Figure 2.6: The Microsoft .NET architecture. Enhanced interface components are
registered to the TouchGhost manager, which sets up the invocation and visualization
strategies.

The TouchGhost manager is responsible for setting up the invocation and
visualization strategies. To that end, it manages an abstract invoker and vi-
sualizer, as summarized in Figure 2.6. Concrete invocation and visualization

44 TouchGhosts: visual guides for multi-touch interaction

strategies have to be added to the manager, either by choosing from existing
strategies or by implementing custom alternatives. The selection of strategies
is usually made beforehand, during design, but it is also possible to select
strategies at runtime, from the collection of strategies defined in the program-
ming code. Finally, the enhanced interface components are registered to the
TouchGhost manager, which makes them available to the invokers and visual-
izers. As a result, a strategy has access to both the interface component itself,
as well as the additional meta-data.

2.4.3 Required meta-data in TouchGhost objects

Depending on the type of visualization, the TouchGhost meta-object may need
to collect additional information on the user interface component. Guides that
are based on videos, text or images are visualized in a separate media player. In
that case, the meta-object merely maps each interaction technique supported
by the interface component to the corresponding guide. If applicable, the
position, size and orientation of the related user interface component can be
used to position the media player conveniently in its surrounding area.

The more complicated guides, such as the virtual hands, require additional
information to be included in the TouchGhost object. Since the virtual hands
reproduce the actual interaction techniques, the visualizer requires information
on how those techniques should be performed. To that end, a TouchGhost
object can include a collection of “Gestures”. Each gesture is composed of
at least one “GesturePart”, which holds event data such as the type of event
(e.g. press, move, release), when and where the event has to occur, which
finger should trigger it, and so on. When a guide is invoked, the virtual hands
perform the interaction technique based on this meta-data.

2.4.4 Manipulating the actual user interface

To provide the help within the current context of use, the virtual hands ma-
nipulate the actual interface that is in front of the user. To maintain a loose
coupling between the help system and the application, the virtual hands em-
ulate real input from the user’s hands. Whenever a virtual hand moves or
touches the surface, it will generate exactly the same event as a real user
would (e.g. press, move, release). The underlying application will simply react
to events, whether their source is real or virtual. As a result, the virtual hands
offer an added advantage during development and debugging, as they can be
used to simulate multi-touch gestures on a regular desktop computer.

2.5 Illustrative TouchGhost implementations 45

If actual interface components are being manipulated by the help system,
it is sometimes necessary to restore them to their original state. The virtual
hands might, for instance, show the user how to delete an object by actually
performing the action. Of course, we do not want this action to be permanent,
so we need to be able to restore the previous state of the application. A
straightforward solution to this problem is to take advantage of the “undo” of
the application, if such functionality is at hand.

Another option is to make a temporary clone of the component in question.
This implies, however, that the component needs to have a method to clone
it. If such functionality is not available, it either needs to be implemented,
or the application will not be able to show the help for this particular action
on the actual user interface component. To avoid this issue, the application
can switch to a different visualization strategy, showing a short demonstration
video for example.

2.5 Illustrative TouchGhost implementations

Using the aforementioned Microsoft .NET architecture, we developed a num-
ber of invocation and visualization strategies. As a test case, we implemented
a simple .NET multimedia application, in which users can browse through and
manipulate (piles of) pictures in various ways, and watch video fragments by
means of a lightweight video player. Individual pictures can be added to an
existing pile of pictures, which means that this particular action involves a
relationship between two different user interface components. This relation-
ship needs to be specified in the TouchGhost meta-object associated with the
picture component, as stated in Section 2.4.2.

The developed strategies are primarily intended for multi-touch systems in
public spaces, since these environments impose some challenging requirements
on the accessibility of the user interface. In public spaces, users typically
interact with the system over a short time-span, and thus have limited time to
learn and explore the possibilities of the user interface. Additionally, we can
hardly make any assumptions about the target users, since they are usually
very diverse. Therefore, these invocation and visualization strategies need to
be as accessible as possible.

In Chapter 3, we present more TouchGhost implementations. Those im-
plementations build upon the results of an initial evaluation of the strategies
discussed in this section and have a very specific focus, for instance on sup-
porting multiple users.

46 TouchGhosts: visual guides for multi-touch interaction

2.5.1 Invocations

Our first strategy to invoke help is the explicit “question mark” invoker, where
a large help button is always visible at the top of the application, as depicted
in Figure 2.7a. When the user touches this button, the help is activated.
Figure 2.7b illustrates how the help button changes into a cancel button, while
smaller help buttons appear on the interface components that contain one or
more TouchGhost guides. All these buttons are slightly animated, to draw
people’s attention, and will disappear once the user touches the cancel button
or after some time of inactivity. Pressing one of the smaller buttons calls
a context-sensitive pie menu, portrayed in Figure 2.7c, listing the available
guides of that particular interface component. Once the user selects a menu
item, the associated guide is shown.

As a secondary invocation strategy, we developed an implicit strategy that
continuously invokes random guides when the user interface has been inactive
for some time. By touching the surface, the invoker will be deactivated. This
strategy is mainly intended to make people more aware of the system and
its intended use. To ensure that people are not afraid of interrupting the
continuous stream of guides, we put a text message on the screen, encouraging
them to touch the surface.

2.5.2 Visualizations

Our first strategy to visualize help, shown in Figure 2.8, demonstrates an
interaction technique by showing a short video of someone performing the
technique step-by-step. When the invocation strategy activates a TouchGhost
guide, a media player emerges in one of the corners of the screen and starts
playing the corresponding video. Once the video comes to an end, a replay
button appears for just a few seconds, after which the media player disappears.
The small cancel button is always present, so the user can close the video at
any moment. Since the demonstration videos are typically very short, the
usual functionality such as play, pause or seek is not available. This strategy
allows users to interact with the interface while the media player is active.

Figure 2.9 illustrates the second visualization strategy, which effectively
simulates real hands by displaying two virtual hands on top of the application.
These hands demonstrate the interaction technique on the actual interface
component the user is interested in. In other words, this guide shows you
exactly what to do in the current context of use. The user can interrupt the
guide at any time by touching the large cancel button at the top, as can be
seen in Figure 2.7. After the demonstration, a replay button will appear next

2.5 Illustrative TouchGhost implementations 47

(a) A large, animated help button is always
visible at the top of the application.

(b) After pressing it, smaller buttons ap-
pear on top of the interface components.

(c) Pressing a component’s button calls a pie
menu that lists the available guides.

Figure 2.7: An example of an explicit invocation strategy, using the “question mark”
invoker and context-sensitive pie menus.

to the cancel button for a brief moment, so users can watch it again without
having to go through the menu. During the virtual hands demonstration,
a translucent colored layer covers the entire interface, except for the related
components, similar to the stencils technique [Kelleher 05]. This layer directs
the user’s attention to the right interface component and prevents the user
from interacting with other components, which could otherwise conflict with
the actions of the virtual hands.

The virtual hands are currently represented by 2D bitmaps, with animated
dots indicating a press or release. The 2D representation of the hands and

48 TouchGhosts: visual guides for multi-touch interaction

(a) Someone showing how to browse
through a pile of pictures step-by-step.

(b) When the video comes to an end, a
replay button appears for a few seconds.

Figure 2.8: Example of a demonstration video, with someone performing an inter-
action technique step-by-step. Since demonstration videos are typically very short,
the usual media player functionality such as play, pause or seek is not available.

fingers can be limiting at times, for instance when trying to depict a flicking
or pinching motion. Although it would require a lot more effort, it is possible
to replace the current bitmaps with 3D models that are much more expressive.
These models will match real hands more closely and can actually imitate the
press or release motion of a finger. We expect this to have a positive effect on
the users’ first reaction, since they will need less time to get acquainted with
the concept of the virtual hands.

2.5.3 Multi-user strategies

Multi-touch interfaces lend themselves perfectly to collaborative applications.
However, having multiple users interact with the application simultaneously,
introduces some new challenges regarding help. The invocation and visualiza-
tion strategies we described in Section 2.5.1 and Section 2.5.2 are usable in
a multi-user environment, but they might not be the optimal solution. Fur-
thermore, observations of MultiSpace [Everitt 06], CityWall [Peltonen 08] and
MuTable [Schneider 10] suggest that there may be ways to support or enhance
supportive collaboration and social learning.

Collaborative work often involves periods of tightly coupled group activ-
ities, alternated with more loosely coupled individual work [Bergqvist 99,
Tang 06]. A group of users frequently starts to collaborate on one topic

2.5 Illustrative TouchGhost implementations 49

Figure 2.9: Example of the “virtual hands” visualization strategies, showing how to
browse through a pile of pictures. The animated red circles on top of the fingertips
indicate which fingers need to be pressed.

and eventually splits into several subgroups, working separately in multiple
threads. Such threads close, split off and merge repeatedly, and a collabora-
tive system should support fluid transitions between activities, and between
personal and group work [Scott 03]. Considering these group dynamics, it is
important that one user’s actions do not unnecessarily interrupt others. For
that reason, animated hands are for instance more difficult to implement in
a multi-user setting, since the hands take control over the interface and sev-
eral instances may be demonstrating interaction techniques simultaneously to
different users. This inevitably leads to cluttering and confusion. In addi-
tion, the virtual hands “lock” the parts of the interface that are involved in
the demonstration of the technique, meaning that others might have to wait
for the animation to end as well. This locking is necessary to avoid user ac-
tions that invalidate the current demonstration, such as closing or deleting an
involved object.

Depending on the properties of the hardware setup, there can also be a
problem of orientation, for example when users are sitting or standing around

50 TouchGhosts: visual guides for multi-touch interaction

an interactive table. When users invoke the help system of a particular in-
terface component, the help widgets (e.g. the pie menu, media player, virtual
hands, etc.) are given the same orientation as that component. We assume
that users habitually orient an object toward themselves when interacting with
it, or that the system automatically rotates it toward the users. However, some
interface components cannot be rotated, and some users like to share the help
with other users. As a more advanced solution, the invocation strategy can try
to detect the orientation of user’s fingers to create an orientation-aware help
system [Wang 09]. One might also simply consider the use of a visualization
strategy such as demonstration videos, since users can easily rotate the media
player in the direction they see fit.

Figure 2.10: Virtual hands visualized in a separate overlay window to accommodate
multiple users. The window is positioned in the bottom right corner of the screen,
and has a cancel button. After the demonstration, a replay button will appear.

Since we also wanted to have the animated virtual hands available in col-
laborative applications, we created a new visualization strategy, shown in Fig-
ure 2.10. It basically demonstrates the interaction techniques in a separate
overlay window, containing a scaled down copy of the related interface compo-
nents. The overlay window is positioned in one of the corners of the screen and
has cancel and replay buttons, similar to the media player in Section 2.5.2. In
this way, we avoid cluttering when multiple instances are active, the animated
hands no longer interrupt other users, and the window can be rotated to meet
the user’s wants. However, we also lose the advantage of showing the actions
on the interface components of the actual user interface that the user needs
to manipulate. In Section 3.3 of Chapter 3, we present an evaluation of a

2.6 Conclusion 51

very similar multi-user strategy, and we look into aspects such as supportive
collaboration and social learning.

2.6 Conclusion

A TouchGhost interface facilitates the discovery and learning of multi-touch
interaction techniques. Visual guides, such as animated virtual hands, are
merged with the actual application to demonstrate the supported interaction
techniques, if possible within the context of use. In this chapter, we explored
the concept of a self-explanatory TouchGhost interface and discussed a number
of strategies to invoke and visualize help. We elaborated on two TouchGhost
architectures, one based on the COMETs toolkit and one on the Microsoft
.NET framework. The COMETs toolkit is suitable because it is based on
high-level interactors, and thus provides a valuable level of abstraction to link
help to an application. The Microsoft .NET framework, on the other hand,
is very widespread, and our .NET architecture allows easy integration of a
TouchGhost interface in new or existing .NET applications due to a loosely-
coupled architecture.

In a multi-user setting, problems may arise when several users invoke the
help system at the same time. Animated hands are, for instance, more difficult
to implement in a multi-user setting, since we need to avoid confusion and
unnecessary interruptions. Four or six instances of the animated hands may
be demonstrating interaction techniques simultaneously, which will inevitably
lead to cluttering. Depending on the hardware setup, there is also the problem
of orientation. Other visualization strategies can be more practical, such as
showing each user the help in a separate and, if necessary, rotatable widget.

For now, we focus on multi-touch interfaces on large interactive surfaces,
since there is an important need for these types of solutions, especially when
targeting walk-up-and-use environments such as public spaces. However, we
believe our approach can fit other devices (e.g. tablets, smartphones) and
ways of interacting (e.g. free-hand gestures, tangible interaction) as well, since
a TouchGhost interface helps users to discover interaction techniques that are
not directly perceivable by the graphical representation of the user interface.

In the next chapter, we present the results of our user studies on differ-
ent invocation and visualization strategies that we presented throughout this
chapter, in both single-user and multi-user environments.

52 TouchGhosts: visual guides for multi-touch interaction

Chapter 3

Evaluation of different TouchGhost strategies

Contents

3.1 Introduction . 53
3.2 Evaluation of single-user strategies 54

3.2.1 Participants and apparatus 54
3.2.2 Tasks . 56
3.2.3 Experimental design 57
3.2.4 Procedure . 57
3.2.5 Results . 58
3.2.6 Other observations and discussion 60

3.3 Evaluation of multi-user strategies 62
3.3.1 Participants and apparatus 63
3.3.2 Tasks . 64
3.3.3 Experimental design 73
3.3.4 Procedure . 74
3.3.5 Results . 74
3.3.6 Other observations and discussion 80

3.4 Conclusion . 83

3.1 Introduction

In Chapter 2, we presented the concept of our self-explanatory TouchGhost
interface, and we discussed various TouchGhost strategies to invoke and visu-
alize help, each with different advantages and disadvantages. In this chapter,

54 Evaluation of different TouchGhost strategies

we evaluate a number of those approaches by way of user studies. The first
evaluation, found in Section 3.2, targets a few general invocation and visualiza-
tion strategies, while the second evaluation, presented in Section 3.3, targets
strategies that are focused on a collaborative environment. Both sections fol-
low the same pattern, as we present the participants and devices involved in
the study, the tasks that those participants had to complete, our experimental
design and the procedure we followed, the outcomes of the study, and various
observations and points of discussion. We end this chapter with some general
conclusions that summarize the outcome of our user studies.

3.2 Evaluation of single-user strategies

We conducted an initial evaluation of one invocation (“question mark” in-
voker) and two visualization (video and virtual hands) strategies described in
the previous chapter. We added a third visualization, namely textual help, to
establish a baseline for comparison. With the textual help, we took a minimal-
istic approach, providing action- and task-oriented instructions [Carroll 98].
Figure 3.1 illustrates the visualizations used in the experiment.

In this first evaluation, we are mainly interested in seeing how a single
user interacts with the system and how we can improve the current approach.
The primary goal of this evaluation is not to prove that one visualization
strategy is better than another, but to make an assessment of the strengths
and weaknesses of the various methods.

3.2.1 Participants and apparatus

We recruited nine volunteers, six female and three male, ranging in age from
twenty-two to thirty-one. All participants were recruited among university
staff and students, and either have a computer science background, or have
experience working on computer science projects in one way or another. We
asked about both their experience with multi-touch surfaces, as well as their
familiarity with gesture-based interfaces. One participant was an expert with
multi-touch surfaces, while another person indicated to have a lot of experience
with gesture-based interfaces, due to extensive use of an iMac Touchpad. How-
ever, the average rating across the participants was “very little” to “some”,
both with multi-touch surfaces, as well as gesture-based interfaces.

We conducted the experiment on a custom-built tabletop, based on Frus-
trated Total Internal Reflection (FTIR) [Han 05], as shown in Figure 3.2. The
interactive tabletop offers a 50-inch (127 centimeters) touch-sensitive surface,

3.2 Evaluation of single-user strategies 55

(a) Virtual hands. (b) Textual description.

(c) Demonstration video.

Figure 3.1: The three single-user visualization strategies we evaluated.

with the rear projection providing a high-definition resolution of 1920 by 1080
pixels. The setup uses a Point Grey Firefly camera to detect input (640 by
480 pixels at 60 Hz) and can handle an arbitrary amount of concurrent touch
points.

The recognition software of the tabletop, FTIRCap [Cuypers 08], han-
dles the camera and projection calibration, analyzes the captured frames and
sends the detected touch points to client applications. The image capture,
analysis and transmission occur at a frequency of 60 Hz, for fluent low-
latency interaction. To communicate with a client application, FTIRCap
uses UDP together with either a deprecated custom protocol or the TUIO
protocol [Kaltenbrunner 05]. The TUIO data can be transformed into native

56 Evaluation of different TouchGhost strategies

Figure 3.2: The custom-built FTIR tabletop used during the evaluation provides a
50-inch touch-sensitive surface, with a resolution of 1920 by 1080 pixels.

Microsoft Windows 7 touch events with Multi-Touch Vista1, for example when
running applications using the Microsoft .NET framework.

3.2.2 Tasks

For the experiment, we created three task sets, each connected to a different
widget:

• The picture widget supports “add the picture to a picture pile”, “show
the gray values”, and “adjust the overlay color of the picture”.

• The picture pile widget (contains several pictures) supports “go to the
next or previous picture”, “browse through the entire pile at once by
expanding it”, and “scatter the pictures across the surface”.

• The video player widget supports “play or pause the video”, “modify
the playing speed”, and “change the audio volume”.

1http://multitouchvista.codeplex.com

http://multitouchvista.codeplex.com

3.2 Evaluation of single-user strategies 57

Each of these sets encloses an ordered sequence of tasks that the participant
was asked to complete by performing the appropriate gestures. In addition
to three gestures that the user had not yet encountered in a prior task, each
widget also supported two common gestures, namely moving and resizing.
The gestures ranged from very basic single-finger gestures to more complex
gestures involving multiple fingers. A session ended as soon as the participant
correctly performed all the gestures from the three task sets, which took about
ten to fifteen minutes. To give an overview of the various gestures, we list the
explanations we provided in the in-game textual help in Appendix A.1.

3.2.3 Experimental design

We used a balanced Latin Square within-participant design, with the three
different visualizations as well as the three task sets, to counter-balance the
order effects. To collect qualitative feedback, we used a post-experiment ques-
tionnaire, which can be found in Appendix A.2, to assess which visualization
the participants liked and what features they liked best. A five-point Likert
scale was used in the questionnaire, with 1 indicating strong disagreement and
5 indicating strong agreement. We also measured the discovery rate and ob-
served the participants throughout the experiment to gather information on
their behavior and the type of errors they made.

3.2.4 Procedure

Beforehand, the participants were asked to read a brief introduction, which
described the experiment and some practical information. However, we did not
explain the invocation or visualization strategies, since we wanted to simulate a
walk-up-and-use environment. We did introduce the participants to the multi-
touch hardware, as several of them had never used it. We wanted to avoid
errors due to participants not maintaining a sufficient amount of pressure on
the surface while moving, something that happened quite often during the pilot
studies. The participants could try the surface in a very simple application
that only visualized the detected pressure points.

We encouraged the think-aloud protocol in our introductory text. One
observer took notes throughout each session about actions and things said by
participants. Participants could invoke the help system at any time and as
little or as often as they wanted, but they were not allowed to ask the observer
for help of any kind. They were allowed to try a task without consulting the
help, but an overabundance of repetitive guessing and fooling around was dis-
couraged by the observer to ensure participants stayed focused on the task at

58 Evaluation of different TouchGhost strategies

hand. After the three task sets, the participants were asked to fill in a ques-
tionnaire concerning the different strategies. Participants were encouraged to
give as much feedback as possible.

3.2.5 Results

In this section we provide the analysis of the invocation and visualization
strategies. The findings are mainly based on the subjective evaluation pro-
vided by participants through the questionnaire, and on the analysis of some
of our observations during the experiment (more observations are reported in
Section 3.2.6). For clarity, we concisely list the questions from the question-
naire, which can be found in its entirety in Appendix A.2:

• Q1: The help system was easy to activate.

• Q2: I understood the help system without any explanation.

• Q3: The help system explained the gesture clearly.

• Q4: After consulting the help system, I could easily replicate the gesture.

• Q5: The help system allowed me to discover the gesture quickly.

• Q6: Overall, I found this technique effective.

• Q7: I did not find reading the text bothersome.

• Q8: I would like to have more controls (pause, navigation bar, . . .).

• Q9: The graphical feedback (red dot to indicate a press) was clear.

• Q10: I would like to have more controls (rewind, speed up, . . .).

First, we will have a look at the invocation strategy. A few gestures were
rather common (e.g. move, resize), but the majority of the gestures was very
difficult to find out through “guessing”, as several of them required the use of
three or more fingers. As a result, each participant had to use the help at least
once per task set. All the participants were able to invoke the help system
without any explanation and ranked its ease-of-use highly in the questionnaire
(Q1: mean = 4.76, σ = 0.44).

All participants managed to complete all the given tasks, so the discovery
rate was 100% across the board. Some errors were made, but the participants
were always able to correct themselves. We observed a few notable differ-
ences in the type of errors between the different visualization strategies, as we

3.2 Evaluation of single-user strategies 59

Figure 3.3: Means of the common questionnaire results for the three single-user
visualization strategies we evaluated.

discuss throughout the subsequent paragraphs. The questionnaire results of
the common questions related to the visualization strategies are summarized
in Figure 3.3 (due to the limited number of participants, the differences are
statistically insignificant).

When asked if they understood the workings of the visualization strat-
egy without any explanation (Q2), they ranked text (mean = 4.56, σ = 0.73)
slightly above video (mean = 4.22, σ = 0.97) and virtual hands (mean = 4.11,
σ = 1.05). These results were expected, since the textual help is very straight-
forward and resembles traditional help systems the most, while participants
reported that they needed a little time to get acquainted with the virtual hands
and the way press and release events were visualized. On this topic, they also
stated that the graphical feedback (Q9) was clear (mean = 4.22, σ = 0.83).
Next, we evaluated if the help system explained the gesture clearly (Q3). As
simultaneous actions of multiple fingers were not always recognized right away,
videos explained gestures the least clearly (mean = 3.44, σ = 1.24) compared
to textual help (mean = 4.11, σ = 0.78) and animated hands (mean = 3.78,
σ = 1.20). Participants proposed adding visual clues to the videos, to draw
people’s attention.

Participants could reproduce the gestures a bit more easily (Q4) with the
textual help (mean = 4.33, σ = 0.71) and video (mean = 4.22, σ = 0.97).
The virtual hands (mean = 3.89, σ = 1.45) did not allow the participants
to interact with the application during the animation. Text and video, on

60 Evaluation of different TouchGhost strategies

the other hand, gave the participants the opportunity to perform the gestures
while the help was shown on the screen. In case of the textual help, we
observed that participants occasionally first read the entire text and then
executed the gesture step-by-step, while consulting the textual instructions
again. The text widget had to be closed manually, while the media player
automatically disappeared after playing the video and showing a replay button
for a few seconds. Some participants pressed the replay button and performed
the gesture together with the video, because they wanted to be absolutely sure
they did it right. The participants did not express a strong opinion on having
more controls (pause, rewind, etc.) on the video player (Q8: mean = 2.67,
σ = 0.87) or virtual hands (Q10: mean = 3.33, σ = 1.00).

The virtual hands (mean = 4.11, σ = 0.93) and video (mean = 4.22,
σ = 0.83) allowed participants to discover gestures the quickest (Q5), thanks
to their visual nature. Participants had to interpret the textual help (mean =
3.56, σ = 1.24) and map it to actual actions on the interface component. For
instance, the text contained no information on which hand or finger to use,
which led to users trying to perform some gestures in very uncomfortable or
even physically impossible manners. A few participants suggested speeding
up the animations of the virtual hands, since they had to wait for the anima-
tion to finish before they could perform the task. However, the majority of
participants simply canceled the visual guide as soon as the gesture was clear
to them. One participant suggested using sketches as a visualization strategy
or adding iconic representations of the gestures to the pie menu. This would
offer a quicker view of the gesture and would improve the system’s usability
for the more experienced users.

Overall, the participants found all the visualization strategies to be effec-
tive (Q6), with no clear preference for one or the other (hands: mean = 4.22,
σ = 0.83; video: mean = 4.11, σ = 0.93; text: mean = 4.00, σ = 0.71), al-
though some participants did note the animations were more fun. When asked
if they did not found reading the text bothersome (Q7), participants tended
to disagree (mean = 2.67, σ = 0.71), stating that they did find it somewhat
bothersome.

3.2.6 Other observations and discussion

Our experiment shows that each participant succeeded in executing all tasks,
which indicates that the visualization strategies provided sufficient and ap-
propriate information to discover and learn the gestures. However, our obser-
vations, the think-aloud remarks and the feedback given in the questionnaire

3.2 Evaluation of single-user strategies 61

form provided some additional insights and uncovered a number of potential
improvements.

When the participants invoked the textual help or videos, some of them
did not notice the help widget at first. It was positioned at the bottom right
of the application and since the screen is quite large, participants would not
see it if they were focusing on the pictures in the middle of the screen. In
the case of videos this led to people missing the first part, meaning they had
to restart the video once it was finished. We deliberately placed the widget
in one of the corners, so users would have plenty of space to carry out the
gestures. However, we should either explicitly draw people’s attention to the
widget when it appears on the screen, or we should position it so that it would
be noticed even when focusing on items in the middle of the screen.

On several occasions, we noticed users accidentally performing a gesture.
Often, they had difficulties replicating the unintentional gesture or figuring out
what effect it had on the interface. Nielsen [Nielsen 10, Nielsen 11] reported
similar issues with accidental activation occurring when users touch things by
mistake or make a gesture that unexpectedly initiates a feature. In that case,
a help system that allows users to ask why something happened would be
preferable. Myers et al. [Myers 06] propose such an applications framework,
which allows users to ask questions about why things did or did not happen
and how the related features of the application can be used.

The textual help can clearly convey information such as “put two fingers
close to each other, on top of the element”. The video or animated hands,
on the other hand, show the two fingers on top of the picture and in close
proximity. Some participants have a tendency to generalize this to “put two
fingers down somewhere”, which results in the gesture not being recognized by
the system, or even being recognized as one of the other gestures supported by
the system. In contrast, a few participants tried to reproduce every gesture as
accurately as possible, without making any generalization. The video shows,
for example, how to resize a picture by putting the left index finger on the
left-hand side of a picture and the right index finger on the right-hand side of
a picture. While those actions could be generalized as “put any two fingers
on the picture”, some participants tried to replicate the gesture exactly like
that, even if it was far from the most comfortable solution in their particular
situation.

Animations and videos take a certain amount of time to watch, and the
speed of the actions that are being performed needs to be carefully balanced
so that novice users have no problems to interpret what is happening. Ex-
perienced users, however, want a quicker way of discovering gestures. One of

62 Evaluation of different TouchGhost strategies

the options is showing a storyboard of the actions instead of an animation or
video, since different users can process that kind of information at different
speeds. Help must serve the needs of both novice and experienced users, so
ideally the help system would be able to adjust to a particular user. Ryall et
al. [Ryall 06a] give a similar suggestion to customize the level of hints deliv-
ered in an educational tabletop application on a per-user basis, reflecting each
user’s current level of mastery. It is also possible to take into account a user’s
history, for example earlier answers and interactions.

The current implementation of the virtual hands does not allow users to
interact with the application for the duration of the animation. Some users,
however, wanted to imitate the hands during the demonstration, to practice
the gesture. One solution is to provide a copy of the actual interface compo-
nent in a sand-boxed environment, to allow users to safely experiment with
the gesture, much like the practice area of the GestureBar [Bragdon 09] for
example. The virtual hands could also demonstrate the gestures in several
discrete steps. Once the user successfully reproduces a step, the hands show
the next step. However, most gestures are fairly simple, and thus difficult to
partition in discrete steps.

In summary, the results of this first experiment indicate that users do not
have a distinct preference for one method or another. However, our obser-
vations revealed some important consequences of existing limitations, such as
not being able to interact during an animated sequence. Furthermore, we no-
ticed textual help being excellent at clearly conveying some particularities of
an interaction. In the next section, we describe our second experiment, which
takes into account these conclusions.

3.3 Evaluation of multi-user strategies

In Section 2.5.3 of the previous chapter we put forward some considerations
on multi-user TouchGhost strategies, and we proposed a possible solution by
demonstrating interaction techniques in a separate overlay window, containing
a scaled down copy of the related interface components. In this section, we
present the setup and results of our evaluation of such a multi-user strategy,
and we discuss how the results from the first evaluation influenced the design
of this multi-user approach. This research was done in collaboration with dr.
Anastasiia Beznosyk, who focused on the effects of help on the cooperative
and communicative characteristics of casual games.

In this second experiment, we compared two different conditions: animated
help in a separate overlay window and textual help. To this end, we developed

3.3 Evaluation of multi-user strategies 63

Figure 3.4: The puzzle game with light, heavy and small puzzle pieces, special
“enlargement” cubes, and two avatars (the purple and orange “disks” at the bottom
of the screen).

a collaborative 3D puzzle game in Unity2, an integrated game development tool
for creating 3D games. We favored Unity over the Microsoft .NET architecture
we used in our first experiment because it enabled us to quickly create an
interactive 3D environment with rigid-body physics. Figure 3.4 shows the
casual two-player puzzle game.

3.3.1 Participants and apparatus

We recruited twenty-eight volunteers to participate in the experiment, three
female and twenty-five male, ranging in age from twenty-two to forty-five. All
participants were recruited among university staff and students, and either
have a computer science background, or have experience working on computer
science projects in one way or another. Most participants indicated to have
very little experience with a multi-touch tabletop and six participants had
no experience with tabletops at all. All except two participants had some
experience with playing any type of multi-player games. According to the
self-evaluations on the questionnaire, the average player experience with multi-
player games was 2.9 on a scale from one (never played) to five (playing almost
every day).

2http://unity3d.com

http://unity3d.com

64 Evaluation of different TouchGhost strategies

The hardware setup we used during this evaluation, a custom-built multi-
touch tabletop, is identical to the one described in Section 3.2.1. To avoid any
issues with orientation within the user interface, we asked all participants of
a session to stand on the same side of the tabletop. A video camera recorded
the sessions for later analysis.

3.3.2 Tasks

The participants were divided in pairs, and each pair had to complete a puzzle.
In collaborative applications, interacting in parallel often is the most common
form of “multi-user” interaction [Peltonen 08, Jacucci 10]. However, our game
is designed in such a way that it encourages and sometimes requires two users
to collaborate tightly by means of simultaneous input [Ryall 06a] to complete
the puzzle, as demonstrated in Figure 3.5. In this section, we first have a look
at the puzzle game and the various ways of manipulating the puzzle pieces,
and next we discuss the two different help systems the application provides in
support of these tasks.

Figure 3.5: Two users helping each other to solve the puzzle.

3.3 Evaluation of multi-user strategies 65

Solving the puzzle

The puzzle consists of nine puzzle pieces, scattered across the tabletop’s sur-
face. Each puzzle piece is represented as a cube, with a picture on one of its
sides. However, not all puzzle pieces act in the same way, as we include three
different kinds of pieces: three light puzzle pieces, three heavy puzzle pieces,
and three small puzzle pieces. In addition, three special “enlargement” cubes
are present. Those three cubes serve a special purpose and are not part of the
actual puzzle that needs to be assembled, as they do not have a picture on one
of their sides. The type of a cube is visually indicated by the cube’s texture,
as illustrated in Figure 3.4: light and small pieces have a sky texture, heavy
pieces a brick texture, and the enlargement cubes have a sky texture with a
blue cross on top.

(a) Selected by one user, the
bounding box has the same color
as the avatar. This puzzle piece is
being moved.

(b) Selected by two users simul-
taneously, the bounding box is
green. This puzzle piece is being
rotated in 3D.

Figure 3.6: Double tapping the avatar selects/deselects the nearest colliding cube.
Selection is indicated by the bounding box. The green dots are visual feedback pro-
vided by the application to indicate successful recognition of touch points.

In a regular tabletop application users would be able to interact directly
with the puzzle pieces. However, our tabletop setup does not support the iden-
tification of user input, like the DiamondTouch [Dietz 01] for example, which
means the application cannot support straightforward identity-differentiating
group input and logging [Ryall 06a]. To enforce actions to be executed by a
particular user and to log the necessary data about the actions of individuals,
each user is assigned an avatar (the purple and orange “disks” at the bottom of

66 Evaluation of different TouchGhost strategies

the playing field in Figure 3.4) that is used to interact with the cubes. In order
to manipulate a cube, the user first moves his or her avatar to the cube and
then selects it by double tapping the avatar. Double tapping the avatar for a
second time deselects the cube. Selection is indicated by showing the bounding
box of the cube, in the same color as the involved avatar, as demonstrated in
Figure 3.6a. Because users frequently forget to sustain enough pressure on the
multi-touch surface for their input to be accepted, green dots provide visual
feedback to indicate successful recognition of touch points.

By keeping one finger on the avatar, the selected cube is slowly lifted up
in the air. To provide extra feedback, a heavy cube is lifted slower and less
high than a light or small cube. While lifted, any type of cube can be moved
or rotated. However, heavy cubes will move and rotate at a greatly reduced
speed. To overcome this slowdown, heavy cubes can be selected and lifted
by two avatars simultaneously, restoring the normal manipulation speeds and
lifting height. To indicate that two users selected a cube, the bounding box is
colored green, as can be seen in Figure 3.6b.

To solve the puzzle, users need to perform four types of actions: moving
puzzle pieces, rotating puzzle pieces in 2D, rotating puzzle pieces in 3D, and
enlarging small puzzle pieces by using the special enlargement cubes. To
give a brief overview of the different manipulations, we list the explanation
provided in the in-game textual help. The textual explanation is accompanied
by Figure 3.7, which visually represents the different elements of the game.

Figure 3.7: The image that accompanies the in-game textual help for the orange
avatar, showing the various types of cubes, the avatar, and the confirmation button
for enlarging small puzzle pieces.

3.3 Evaluation of multi-user strategies 67

• Select To select a block, drag your avatar to it. When the avatar and
block collide, tap the avatar twice in quick succession. To deselect, double
tap the avatar again.

• Move To move a block, keep pressing your avatar with one finger to lift
the block off the floor and at the same time drag the block around with
another finger.

• Rotate To rotate a block, first lift it off the floor. To rotate in 2D, put
two fingers on the block and move one of them. To rotate in 3D, put
two fingers on the block and then spin the block around by moving over
it with a third finger.

• Enlarge To enlarge a block, move a small block and special block close
to each other. While both blocks are selected, simultaneously press the
two confirmation buttons located at the top of the screen.

• Heavy block Heavy blocks move and rotate slower than light blocks.
However, a heavy block can be selected and lifted by two avatars simul-
taneously to increase the speed of those actions.

Figure 3.6a illustrates the movement of a puzzle piece, by lifting and drag-
ging the cube. Figure 3.5 and Figure 3.6b depict the rotation in 3D, again
lifting the cube and then using three fingers to spin it in a particular direc-
tion. Two users are collaborating to manipulate the heavy puzzle piece at an
increased speed, by lifting the cube with two avatars simultaneously. Finally,
Figure 3.8 shows two users working together to enlarge a small puzzle piece,
by moving the small cube and a special enlargement cube close to each other
and pressing the two confirmation buttons at the same time.

The puzzle game carries on until all the small puzzle pieces are enlarged,
and the puzzle pieces are (more or less) in the correct orientation and position,
as in Figure 3.9. The application does not check for correctness automatically,
this is simply done visually.

Help

Similar to the first experiment, users have to discover and learn all the different
actions by themselves, using the TouchGhost interface that is present in the
application. Half of the pairs play the puzzle game with the textual help

68 Evaluation of different TouchGhost strategies

(a) Move a small cube and special cube close to each other (indicated by red arrow)
and simultaneously press the two confirmation buttons.

(b) The small cube and special cube are then transformed into one normal-sized,
heavy cube (indicated by red arrow).

Figure 3.8: Small puzzle pieces can be enlarged by two people, with the help of
special enlargement cubes.

3.3 Evaluation of multi-user strategies 69

Figure 3.9: The completed puzzle, with all the pieces more or less in the correct
orientation and position. Animated help is being shown in both corners of the screen.

we listed in the previous section, the other participants get animated help
as a visualization strategy, demonstrating interactions in a separate overlay
window. In both cases, users are able to interact with the application while
consulting the help, so they can try actions while reading text or watching an
animation. This solves the problem revealed in Section 3.2.6, where the virtual
hands temporarily prohibited users from interacting with the application.

The textual help has only one manner of invocation: pressing the button
with the question mark, located at the top of the interface. When the game
is started, the textual help automatically opens and users can close it by
pressing that same button, as indicated in the help (“To open or close this
help, tap the button with the question mark”). Each user has an individual
panel that displays the help on his or her side of the tabletop, as illustrated
by Figure 3.10a. The textual help is accompanied by an image, Figure 3.7,
that indicates the various objects in the environment.

The animated help visualizes the interaction techniques in a separate over-
lay window, containing a scaled down copy of the relevant parts of the user
interface (i.e. the avatars, cubes, and buttons), as described in Section 2.5.3
and shown in Figure 3.9 and Figure 3.10b. Virtual fingers are animated on top
of the cubes and avatars, and to indicate a press during an animated sequence,
we use the green dots that are used as visual feedback when the user touches
the surface. To help with the problems of users not generalizing particular as-

70 Evaluation of different TouchGhost strategies

(a) Textual help. An image of the various components is followed by descriptions
of all the actions, as reported in the previous section.

(b) Animated help. The most important aspects of an animated sequence are
annotated, as depicted in detail in Figure 3.11.

Figure 3.10: Two users consulting the help (indicated by red arrows) at the begin-
ning of the game.

3.3 Evaluation of multi-user strategies 71

Figure 3.11: A few examples of the use of virtual fingers, with green dots indicating
presses. Important aspects of the animated sequences are highlighted through text
bubbles annotations.

pects of a demonstration or generalizing some aspects too quickly, as reported
in Section 3.2.6, we annotate the animated sequences with a minimal amount
of text. The annotations point out important aspects of the interaction, such
as the type of cube that is involved, so users know that they have to pay atten-
tion to this. Figure 3.11 shows three examples of this visualization strategy,
including the use of virtual fingers, green dots to represent presses, and text
bubbles annotations.

As the animated sequences are annotated, they were prerecorded rather
than generated on the fly like in the Microsoft .NET application we evaluated
in Section 3.2. However, both visualizations, textual help and animated help,
are individualized to some degree. Figure 3.7 contains an orange avatar, for
example, while the other user is shown an image with a purple avatar. The
same is true for the animations, which will always show the avatar of the
corresponding user. The advantage of prerecorded animations is that they
grant us a lot more flexibility as to what an animation can include. Animations
that are generated on the fly only show one particular action in one specific
situation, and it is up to the user to decide if that action can be generalized
or not when encountering a comparable situation. When a user learned how
to rotate a light puzzle piece, she might just replicate that action when trying
to rotate a heavy piece, without ever finding out that heavy pieces can be
manipulated faster with two users. The prerecorded animations not only show
how to rotate a light puzzle piece, but also quickly point out that heavy pieces
behave in a slightly different way.

72 Evaluation of different TouchGhost strategies

In contrast to the textual help that offers the explanations of all the pos-
sible actions at once, animations are invoked in a step by step manner. When
the game starts, an implicit invocation strategy triggers the animation that
shows users how to select a puzzle piece with their avatar. Once the user suc-
cessfully selects one of the cubes, the application automatically demonstrates
how to move it, and after a certain amount of time how to rotate it in 2D
and 3D. If the user selects a small cube, the application also explains how to
enlarge it a short while after all the basic actions (e.g. movement and rota-
tion) have been shown. If a single user selects and manipulates a heavy cube,
the invocation strategy displays an animation as a reminder after a while, to
indicate that this type of cube can be manipulated faster with the help of the
other user.

Initially, we intended to show one animated sequence that demonstrates
all the possible actions one after another at the start of the game, comparable
to the textual help. However, pilot studies revealed that users had quite
some difficulties coping with the long animation. In contrast, reading the text
was not a problem, as users could process it at their own speed and pause
in between to try out some of the actions. We also used these pilot studies
to optimize the speed and length of the animated sequences, to make sure
that people are able to read the annotations comfortably and interpret all the
actions. This resulted in animations that take around twenty to twenty-five
seconds.

Although the implicit invocation strategy triggers all the animations au-
tomatically at one moment or another, users can also activate a specific ani-
mation through an explicit strategy, in the form of a simple menu. This menu
is context-sensitive, as it only lists actions that are currently available to the
user. If the user has nothing selected, only “Select” will be available in the
menu, and once the user has selected a cube, all the actions that are available
on that type of cube will be listed in the menu, as illustrated in Figure 3.12.
Users can watch animations as often as they like, and are always in control
of the system: animations that are explicitly invoked by the user through the
menu will never be interrupted by the implicit invocation strategy, while ani-
mations that are automatically shown will be interrupted if the user initiates
an animation through the menu.

The overlay windows that show the animations are located in the bottom
corners of the application, to avoid any overlap. However, during the pilot
studies, we observed issues similar to the ones reported in Section 3.2.6, as
users did not always notice an animation immediately. The problem is less
distinct, as we now have two users working on the tabletop instead of just

3.3 Evaluation of multi-user strategies 73

Figure 3.12: The context-sensitive menu of the animated help. The purple avatar
has nothing selected, so only “Select” is available in the corresponding menu on the
left. The orange avatar selected a small puzzle piece, so all related actions are available
in the menu on the right.

one, which results in users standing closer to the corners and thus noticing
something popping up in their corner more easily. To avoid users missing the
first few seconds of an animated sequence, we added an “introduction” to the
sequence, showing the name of the interaction technique for a few moments
to draw people’s attention. We also experimented with other methods, such
as displaying an arrow that points in the direction of the animation near the
user’s avatar, but this only led to clutter and confusion, as some users for
instance assumed that they had to move their avatar in the direction of the
arrow.

3.3.3 Experimental design

For this experiment, we used a between-subjects design. The twenty-eight par-
ticipants were randomly divided in fourteen pairs, with seven pairs testing the
animations and the other seven pairs getting the textual help. The condition
was randomly assigned to the pairs. Subjective data was collected through a
post-experiment questionnaire (Appendix A.2), using a visual analogue scale:
participants were asked to give a rating by placing a mark at the appropriate
position on a continuous ten-centimeter line, representing the point between
“not at all” and “very much” that they felt represented their perception best.

74 Evaluation of different TouchGhost strategies

We also observed the participants throughout the experiment to gather infor-
mation on their individual and collaborative behavior, the use of the help and
the type of errors they made.

We measured and logged task completion time, the amount of time players
worked individually (i.e. selected a cube on their own) or collaboratively (i.e.
selected a cube together), and the number of times help was accessed. Af-
terwards, the video recordings of all the sessions were analyzed to determine
the amount of time players spent watching or reading help together, the first
time and amount of time players communicated, and the first time players
collaborated. The logged amount of individual and collaborative work was
also revised during this analysis, to provide a more comprehensive assessment
of those aspects.

3.3.4 Procedure

Similar to the procedure in Section 3.2.4, the participants were asked to read
a brief introduction beforehand, describing the experiment and some practical
information about the hardware. Again, we did not explain the invocation
or visualization strategies, since we wanted to simulate a walk-up-and-use en-
vironment. During the experiment, we encouraged the think-aloud protocol
and we filmed each session, recording all the participants’ actions and com-
munication. Two observers also took notes about actions and things said by
participants. Participants could invoke the help system at any time and as lit-
tle or as often as they wanted, but they were not allowed to ask the observers
any questions.

The participants had a printed image of the finished puzzle at their dis-
posal, as seen in Figure 3.10. Since there was no snapping mechanism in place
to position puzzle pieces very precisely against each other, it was not required
to achieve a perfect result. Upon completion of the puzzle task, the partici-
pants were asked to fill in a questionnaire about their former experiences and
their findings regarding the puzzle task, the collaboration with their partner,
and the help system. Participants were encouraged to give as much feedback
as possible.

3.3.5 Results

In this section, the use of the textual help and animations in the puzzle game
are analyzed. The findings are based on performance logs, the subjective
evaluation provided by participants through the questionnaire and analysis of
the videos recorded during the experiment.

3.3 Evaluation of multi-user strategies 75

The help system

Just as in the first experiment, all participants managed to complete the given
task. It took approximately thirty minutes for each pair to complete the puz-
zle. The results of the subjective evaluation regarding the help, provided by
participants through the questionnaire, are summarized in Figure 3.13 (the dif-
ferences are again statistically insignificant). These results are clearly compa-
rable with the results of the single-user experiment, reported in Section 3.2.5.
Here are the related questions from the questionnaire, which can be found in
its entirety in Appendix A.2:

• Q11: It was clear how to use the help without any explanation.

• Q12: The help explained the required actions clearly.

• Q13: After consulting the help, I could easily replicate the actions.

• Q14: It was clear how to perform cooperative tasks.

• Q15: The help allowed me to discover the required actions quickly.

• Q20: Help took me out of the game experience.

Figure 3.13: Means of the questionnaire results regarding the help for the two
multi-user visualization strategies we evaluated.

As we used avatars to interact with the cubes in the puzzle game, it was
very difficult to find out the required actions through trial-and-error. All the

76 Evaluation of different TouchGhost strategies

participants were able to invoke the help system without any explanation and
ranked its clarity highly in the questionnaire (Q11) in both the text (mean =
7.0, σ = 2.6) and animation (mean = 7.1, σ = 2.6) condition. With the
textual help, some participants first read the complete text and then started
to try the various actions, while others only read the first part and then tried
that particular action before reading and trying the next part. In some cases,
one participant read part of the text out loud, while the other participant
performed the actions.

All participants had to reopen the textual help at least a handful of times
at a later stage. To be precise, each pair reopened the textual help 9.6 times
on average, or more or less five times per participant. In case of animated
help, the animations that were automatically shown by the implicit invocation
strategy were mostly disregarded, except for the one that was shown when
the application started. Once a participant successfully selected a cube, for
example, the invocation strategy automatically triggered the animation on
how to move, but that animation was typically ignored as the participant
first tried deselecting and selecting other cubes. Afterwards, the participant
explicitly initiated the animation through the menu. Pairs used the menu
about 9.4 times on average to trigger a specific animation.

When asked if the visualization strategy explained the gesture clearly
(Q12), animations (mean = 5.6, σ = 1.9) were rated higher than text (mean =
4.1, σ = 2.4). This is in contrast with the first test, but there are some notable
differences between both experiments that explain this outcome. The anima-
tions are now annotated to highlight the most important aspects, thereby
combining the advantage of text and animations to a certain degree. The text
is also “enhanced” by including one image that shows all the essential com-
ponents, but a graphical representation of each action may further improve
the clarity of the textual descriptions. The disadvantage of not being able to
interact with the application during animations is no longer present, and as
a result there is almost no difference between animations and text when it
comes to replicating the actions easily (Q13), with animations (mean = 5.3,
σ = 2.3) scoring even marginally better than text (mean = 5.0, σ = 2.5) this
time.

The more advanced actions in the second experiment were more complex,
as some of them required two users to cooperate. If we consider the enlarge-
ment of a small puzzle piece, the animation clearly visualizes two avatars being
used, while the textual description merely implies the use of two avatars by
stating that both cubes need to be selected. Results from the questionnaire
indicate that the textual help (mean = 5.9, σ = 2.0) performed only slightly

3.3 Evaluation of multi-user strategies 77

worse than animations (mean = 6.3, σ = 1.7) in making clear how to perform
cooperative tasks. However, in our observations we clearly noticed quite a few
participants struggling with enlargement in case of textual help. It took them
a while to figure out that they needed to cooperate to enlarge an object, as
some first tried, for instance, to select two cubes with only one avatar, which
is not possible.

As indicated in Section 3.3.2, the textual description of a particular in-
teraction technique was limited to a few short sentences, while the annotated
animations took about twenty to twenty-five seconds. The animated help
(mean = 6.5, σ = 2.1) allowed participants to discover gestures quicker (Q15)
than the textual help (mean = 5.3, σ = 2.5), thanks to the visual nature
that makes it easier to interpret the help. We regularly noticed users try-
ing a gesture while reading the textual help out loud, and actually counting
the number of fingers they put down on the tabletop. Compared to the first
experiment, the length and speed of animation were less of an issue, since
participants could interact while the animation was playing. However, a few
participants expressed their annoyance when they wanted to watch the last
part of an animated sequence again, but they had no means of skipping the
first part.

An interesting conclusion concerning textual and animated help in the con-
text of gaming is the reasonably large difference regarding the game experience
(Q20). Participants indicate that textual help (mean = 5.1, σ = 3.2) took
them out of the game experience, which is less of an issue with animated help
(mean = 3.3, σ = 1.8).

Learning from different sources

The questionnaire also included some questions related to the way participants
learned the necessary actions:

• Q16: I learned most of the actions through the help.

• Q17: I learned a lot by talking to my partner.

• Q18: I learned a lot by watching my partner’s actions.

• Q19: I had to consult help multiple times for a particular action.

The results are shown in Figure 3.14. The differences between text and
animation are negligible, but it is interesting to see how participants rate the
different ways of gathering information. Participants learned the most from

78 Evaluation of different TouchGhost strategies

Figure 3.14: Means of the questionnaire results regarding how participants learned
the necessary actions.

consulting the help (Q16) and from talking to their partner (Q17). Watch-
ing their partner’s actions (Q18) is a close third, which we found somewhat
surprising, as we expected participants to learn more by watching each other
than by talking. However, our observations indicate two possible reasons for
this. First of all, explaining something verbally allows you to continue your
current task, a behavior that we observed repeatedly. In addition, participants
regularly explained an interaction technique when seeing the other person do-
ing it wrong. They often tried to correct the mistakes of the other participant
verbally at first, and only if that did not succeeded, they demonstrated how to
do it. These results highlight that supportive collaboration and social learning
are important aspects in a multi-user environment.

We already reported that almost all users had to consult the help multiple
times, which is confirmed by the questionnaire (Q19). Although the logs show
that participants opened the textual help and animations roughly the same
amount of times, there is a slight difference noticeable in Figure 3.14. This
inconsistency is actually very logical, as animations only explain one action
and then automatically close. Textual help, on the other hand, contains the
descriptions of all the actions, so the user can open the help once and then
read about as many actions as he or she wants, which only counts as one
access to the help in our logs. In addition, since the textual help needs to be
closed manually, it was occasionally left open for some time. The difference
was even more pronounced during our observations, as we regularly noticed

3.3 Evaluation of multi-user strategies 79

participants opening an animation, but then being interrupted by the other
participant and thus having to activate it again afterwards.

Level of collaboration

A secondary goal of our study was to investigate how in-game help can in-
fluence the level of collaboration during the game. In addition to the results
from the questionnaire, we analyzed the video recordings of all the sessions
and logged the amount of time participants worked individually or in tight
collaboration, the amount of time they spent consulting help together, the
first time they collaborated and communicated, and the total amount of com-
munication. However, this part of the study primarily concerns dr. Anastasiia
Beznosyk’s research [Beznosyk 12] and is mostly beyond the scope of this dis-
sertation. It will therefore not be discussed in detail, as we only look into the
results that are directly related to the help system.

For the video analysis, we considered activities to be completely individual
if the participants really focus on two separate tasks and do not communicate
in any way. Tight collaboration, on the other hand, includes two participants
either working closely together to accomplish a task (e.g. enlarging a small
puzzle piece, manipulating a heavy piece together), communicating with each
other (e.g. discussing a strategy, explaining actions), or consulting the help
together (e.g. watching an animation together, one participant reading a piece
of text to the other one). The sum of the individual and collaborative time
is not necessarily equal to the total amount of time it took to complete the
task, as some activities were considered to be neither completely individual
nor in tight collaboration (e.g. two participants each moving a different cube
with the goal of clearing a pathway).

When relating this data to the total amount of time it took to com-
plete the task, Figure 3.15 clearly shows a statistically significant increase
(t12 = 2.44, p = 0.031) of completely individual work in case of textual help
(mean = 31.4%, σ = 13.8) compared to animated help (mean = 16.9%,
σ = 7.5), and a statistically significant decrease (t12 = −2.39, p = 0.034)
in tight collaboration (mean = 29.0%, σ = 9.2) compared to animated help
(mean = 41.1%, σ = 9.6). One cause of these differences is the moment par-
ticipants started their first collaboration, as it took them significantly longer
(t12 = 2.21, p = 0.047) with textual help (mean = 511 seconds, σ = 316
seconds) than with animations (mean = 214 seconds, σ = 164 seconds).

The fact that it took longer for the first collaboration to happen can be
logically explained, seeing that some pairs read the whole text before start-

80 Evaluation of different TouchGhost strategies

Figure 3.15: Percentages of completely individual work, tight collaboration and
consulting help together in regard to the total amount of time it took to complete the
task, as observed in the video recordings.

ing to interact. Nonetheless, it does not completely explain the difference
in amount of individual activities and tight collaboration, as the other pairs
also had to spend some time watching other animations once they figured out
the basic interactions. There are, however, a few other factors to take into
account. First of all, if we look specifically at how much time participants
spent consulting help together (thus reading the same text or watching one
animation together), we see a statistically significant difference (t12 = −3.28,
p = 0.007) between textual help (mean = 1.8%, σ = 1.3) and animated help
(mean = 5.0%, σ = 2.3), which accounts for part of the aforementioned differ-
ence in amount of individual and collaborative activities. Secondly, if a user
is manipulating a heavy cube, the implicit invocation strategy displays an an-
imation after a while to remind the user that the cube can be manipulated
faster with two. The animated help thus invites users to collaborate more.

3.3.6 Other observations and discussion

We took a minimalistic approach with the annotations that are used to point
out important aspects in the animated sequences, to avoid users having to read
too much and animations becoming lengthier as a result. Based on the pilot

3.3 Evaluation of multi-user strategies 81

studies, we tried to identify the most essential aspects that needed highlight-
ing. However, several participants still made errors because they overlooked
some important information that was not included in the annotations. The
most common mistake was putting fingers on the wrong component. To select
a cube, for example, the user had to double tap on the avatar, but occasionally
participants tried to double tap the cube instead. The accompanying annota-
tion only includes the fact that the user needs to double tap, but not that it
has to be on the avatar. We wrongfully presumed that the location would be
sufficiently clear from the animation itself. This issue could have been easily
avoided by extending the annotation.

Another issue we observed frequently, was participants accidentally per-
forming an action without truly knowing what happened or how they did it.
Additionally, some participants executed actions in an uncomfortable or un-
controlled manner, for example by using the wrong fingers or by momentarily
losing contact with the surface of the tabletop during movements. Our ap-
proaches, both textual descriptions and annotated animations, only “explain”
actions to the user, but do not offer a lot of feedback during or after the exe-
cution of an action, except for the green dots to confirm a successful press and
the actual effect on the cube when an action is performed correctly. An ap-
proach like Gesture Play [Bragdon 10] provides both feedback and feedforward
during the execution of a gesture, and clearly indicates whether the gesture is
being performed appropriately. This kind of feedback improves a user’s ability
to successfully execute an action the way it was intended to be, and would be
an excellent addition to our current approach.

While the menu to invoke animations was very easy to use, the animations
shown automatically by the implicit invocation strategy were less effective.
Although one pair never used the menu and learned all actions through those
automatically triggered animations, other participants mostly ignored them.
We expected that once a user successfully completed an action, he or she
would (more or less) immediately proceed to the next action. However, this
appeared to be untrue, as users repeated the same action a number of times
to confirm that they understood its workings completely. This kind of unpre-
dictable behavior makes it difficult to automatically show help at appropriate
times, although simply waiting for the user to be completely inactive for a
while before triggering a new animation may somewhat lessen this problem.
The animation that suggests manipulating heavy puzzle pieces with two users
instead of one did seem to be noticed more often, since it only starts to appear
after participants learned all the basic actions and it is repeated each time a
single user manipulates a heavy cube for a while.

82 Evaluation of different TouchGhost strategies

(a) Textual help was mostly consulted indi-
vidually, but occasionally one user tried to
explain a description.

(b) Animated help was more frequently
watched together, as indicated by the re-
sults in Section 3.3.5.

Figure 3.16: Two users consulting the help together during the game.

In Section 3.3.5 we reported that participants spent much more time con-
sulting help together in case of animations. Our observations confirm this,
as we noticed participants consulting the textual help mostly on their own,
although occasionally one user tried to explain a description to the other user,
as illustrated by Figure 3.16a. Animations, on the other hand, were frequently
watched together, as seen in Figure 3.16b. This seems rational, as animations
are easier to watch from different angles, while text is more difficult to read
when not standing more or less in front of it. These insights indicate that
it may be preferable to provide only one shared help panel somewhere in the
middle of the screen, which would invite more collaboration and social learn-
ing. This approach has the added benefit of being more flexible regarding
the number of users that the application supports, as the current approach is
optimized for two users. Further research is needed, however, as we may see
different results if users have to share one help panel.

In this experiment, we observed only two participants who worked together
throughout each session. With different group sizes, people develop different
work strategies in achieving the same collaborative goal [Ryall 04]. In other
words, as the number of participants increases, we may see different behaviors,

3.4 Conclusion 83

such as a group splitting in smaller subgroups, which in turn can influence how
participants deal with the help provided by the application and how they sup-
port one another. To get more insights into the behavior of a larger group of
users in this particular context, additional studies are required. Furthermore,
when targeting walk-up-and-use scenarios in public places, we also need to
evaluate the various approaches with a more diverse selection of users, includ-
ing people with very limited computer skills, children and elderly people, and
so on.

In both experiments presented in this chapter, we evaluated complete ges-
ture sets and we never investigated individual gestures. It is conceivable that
particular visualizations suit specific types of gestures better than others. Vir-
tual hands may, for instance, be more effective for multi-user gestures, while
text may be better for very complex single-user gestures (or the other way
around). In addition, care has to be taken with generalizing our results to
any walk-up-and-use application, since both experiments were conducted in
our research lab. In a real walk-up-and-use environment, users will be less
committed to completing their task, and factors such as social embarrassment
come into play.

3.4 Conclusion

We conducted an initial evaluation of textual help, demonstration videos and
animated virtual hands. The questionnaire results indicate that users do not
have a distinct preference for one approach or another, but our observations
revealed some important consequences of existing limitations, such as not be-
ing able to interact during an animated sequence. Based on our experiences
with the first experiment, we built a puzzle game and investigated textual
and animated help in a collaborative setting. The second study shows that
animated help allows users to quickly discover the available interaction possi-
bilities, with less of a negative impact on the game experience. Animated help
also has a positive effect on collaboration, as users work together to explore
and learn the application.

When comparing different strategies, we should not only consider the user,
as we did in our studies, but also the developer. Once the help system is in
place, it is rather easy to generate the gestural information required for the
virtual hands in the Microsoft .NET architecture. The process of constructing
gestures can even be automated to some extent, for example by extracting the
necessary data from a gesture’s description in the recognition software, or by
recording the events during a demonstration of the gesture (i.e. learning by

84 Evaluation of different TouchGhost strategies

example). The text, videos or annotated animations require more attention,
since they have to be manually updated each time a gesture changes or a new
gesture is added.

This chapter concludes the first part of the dissertation, on self-explanatory
interfaces. In the next part, we continue with our “multi-user” research, as
we investigate various ways of enhancing collaboration in multi-user environ-
ments.

Part II

Enhancing collaboration in
multi-user environments

Chapter 4

Focus+Roles: socio-organizational conflict resolution
and access control in collaborative user interfaces

Contents

4.1 Introduction . 88

4.2 Related work . 89

4.3 Focus+Roles . 93

4.3.1 Roles in an organizational and meeting context . . . 93

4.3.2 Passive and active focus 95

4.3.3 Access control . 96

4.3.4 Overview of the Focus+Roles process 97

4.4 The iConnect environment 97

4.4.1 Personal and shared workspaces 98

4.4.2 Embedding native applications in containers 99

4.4.3 User representation and data sharing 101

4.4.4 Integrating personal devices 103

4.4.5 A collaborative tabletop 104

4.5 Illustrative Focus+Roles implementation 106

4.5.1 Roles as a set of privileges 106

4.5.2 Focus as an amount of attention 109

4.5.3 Access control, content type and sensitivity 111

4.5.4 Limitations and possible extensions 111

4.6 Conclusion . 113

88
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

4.1 Introduction

Along with the advantages of supporting and enhancing group productiv-
ity [Galaczy 99], collaborative applications introduce a number of challenges.
In particular, allowing multiple people, either co-located or remote, to in-
teract in a shared workspace simultaneously, gives rise to uncertainty and
unpredictability. This brings about several types of conflicts and intrusions,
as we previously described in the scenario of Section 1.3.2. Consequentially,
collaborative applications call for some interaction management, but to fully
exploit the advantages of group productivity, the regular work flow should be
interrupted as little as possible.

Providing concurrent, multi-user interaction allows users to take full ad-
vantage of group dynamics and different interaction styles [Scott 03]. However,
concurrency can lead to conflicts, and if no synchronization mechanism is in
place, the system may end up in an inconsistent state. A very common type of
conflict is, for example, caused by several people trying to manipulate a shared
resource at the same time. To counter this problem, numerous strategies are
available: execute activities sequentially, try to merge both actions or only al-
low one of the users to manipulate the object at the same time, among others.
In such circumstances, the floor control policy of an application determines
how conflicts are handled [Dommel 97]. In addition, data sharing has to be
treated carefully in a multi-user environment, since others can easily access
the data and may have dishonest intentions.

In this chapter, we explore possible uses of a user’s roles and focus to pro-
vide conflict handling and access control, and we present our Focus+Roles ap-
proach [Vanacken 07a]. Roles have already been applied widely, for instance
in behavioral and social sciences, psychology, business and software project
management, and agent system modeling [Zhu 06]. Furthermore, through ob-
servations, natural roles have been identified in CSCW (Computer-Supported
Cooperative Work) systems. CoWeb [Guzdial 00] is, for instance, a tool that
does not enforce or explicitly support specific roles. However, as the collabora-
tive tool matured, several well-defined roles emerged over time. Providing new
features and tools to address the concerns and activities related to those partic-
ular roles has allowed more users to become actively involved. This illustrates
the potential of using role-based mechanisms in a collaborative environment.

In addition to roles, we take the users’ focus into consideration. In real-
life circumstances, a person’s physical presence provides numerous indications
relating to that person’s center of attention. We notice if someone is looking
at one item in particular (primarily based on head movements and eye gaze),

4.2 Related work 89

we often point our finger at things or use other hand gestures, distinct facial
expressions may reveal a person’s intentions, and so on. As a result of such a
rich awareness of one another, many conflicts are avoided in a natural way. We
customarily refrain from moving a document while we are aware that others
are reading it, for instance. In contrast, a lack of awareness of one another’s
activities can cause confusion and unintentional side-effects in a collaborative
environment. We therefore investigate how the users’ focus can be used to
handle certain consequences of a lacking awareness.

We apply our approach to a collaborative meeting environment, iConnect,
resulting in graceful (e.g. correct in a socio-organizational context) conflict
handling and access to shared data. After the related work in the next section,
we present our interpretation of roles and focus, and our take on access control
in Section 4.3. In Section 4.4, we give an overview of the iConnect system,
and we describe how we integrated our Focus+Roles approach as a proof of
concept in Section 4.5. Finally, in Section 4.6, we end this chapter with our
conclusions.

4.2 Related work

In this section, we explore the existing work relating to various kinds of conflict
handling and access control, the use of roles within those mechanisms, and
mutual awareness in multi-user environments.

Reaching beyond social protocols. An intuitive approach to floor con-
trol is to assume that “social protocols”, such as polite behavior and social
standards, are adequately observed and suffice to coordinate the actions of a
collaborating group of users in CSCW systems [Johanson 02]. Even though
social protocols perform well in some cases, they cannot prevent or resolve
numerous types of conflicts which may lead to an inconsistent system state or
hinder users in their activities. Users often fail to realize the side-effects of
their actions, or become confused when other users in a collaborative session
operate on a shared resource simultaneously [Greenberg 94].

Numerous issues have been reported over the years, as multi-user environ-
ments that rely on social protocols were explored. In Dynamo [Izadi 03], an
interactive surface that supports media sharing, users described inconveniences
with conflicting interaction, such as one user closing a document belonging to
someone else. Moreover, the high degree of freedom concerned users, because
it may easily lead to malpractices, such as stealing other people’s work. Mul-
tiSpace [Everitt 06] explores the use of an interactive table to support ad-hoc

90
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

collaboration in a multi-device environment. Problems were reported with
regard to overlapping documents, as people liked to maximize their current
document in the shared space, regardless of other documents that were actively
being edited.

Coordination policies reaching beyond social protocols, employing direct
manipulation mechanisms to avoid and resolve conflicts, can improve multi-
user interfaces [Morris 04]. Solutions include the use of rank to factor in
differences in privilege among users, or privatising strategies to restrict a user’s
access to a subset of documents. While one such policy may suffice in a
constrained environment, multifaceted systems such as iConnect, described
in Section 4.4, have need of a more extensive strategy that combines several
approaches.

Roles as a set of privileges. A different class of policies is described in
terms of roles, which are used to associate specific categories of users (e.g.
authors and book editors) with particular policies (e.g. an author and editor
policy). In Quilt [Leland 88], a tool for collaborative document production,
different document views are provided based on the user’s position in a per-
mission hierarchy that reflects a number of social roles and communication
types. Quilt includes roles such as writers, readers and commentators, which
control the degree of access that individuals have to the document.

Turoff [Turoff 91] outlines a set of primitive privileges (such as read, mod-
ify, append, use and assign) for computer-mediated communication systems
and defines roles as a subset of these privileges. Turoff also adds the concept of
a ticket to handle unpredictable needs. A ticket allows users to pass a specific
privilege that they possess to another user. Tickets can be made conditional,
so they can only be used a limited number of times or during a limited time
interval, and usually notify the issuer when they are used.

Kansas [Smith 98], a shared application environment, augments social pro-
tocols by considering a user’s role. The role determines the amount of visual
output, to avoid users being overwhelmed by too much irrelevant information,
and can limit the user’s input capabilities. Although this fairly restricted ap-
proach to roles is capable of preventing some conflicts, users still had to resort
to verbal communication to coordinate tightly-coupled collaborative activities.
Furthermore, problems arose from unintentional user actions, which may have
consequences that are hard to undo.

As shown in the related work, assigning sets of privileges to specific cate-
gories of users allows a floor control policy to prevent a number of conflicts,
since it basically prohibits particular users to perform certain activities. In

4.2 Related work 91

addition, this method can easily prevent unauthorized access to shared data.
For those reasons, we also define our roles as a set of privileges, as presented
in Section 4.3.1.

Roles as a set of responsibilities. Another tactic is to define a role
through a set of responsibilities, specifying how different categories of users
have different duties. The system can then enforce a user to perform these
duties according to particular policies or protocols [Simone 95]. Such a pol-
icy is expressed as a set of rules in the organizational context, for instance
a set of rules on how to handle a software bug (e.g. registering, diagnosing,
and correcting). Additional rules may state that a role can be exercised only
by someone with, for example, a certain skill or rank (e.g. verifying a bug
correction must be done by a senior designer).

Lupu and Sloman [Lupu 97] similarly propose roles that are defined in
terms of authorization and obligation policies for a particular manager posi-
tion, specifying what actions that manager is permitted or obliged to perform.
Their framework also makes it possible to specify interaction protocols, and
how different managers should coordinate and synchronize their activities. Our
approach currently limits roles to a set of privileges, and does not explicitly
include responsibilities and protocols. Providing this kind of additional infor-
mation to a floor control policy makes it more cumbersome, but also enables
more factors to be taken into account while detecting and handling conflicts.

Access control through role-based approaches. We already discussed
access control to some extent throughout the previous examples. However,
the most prevalent method of authorization management is role-based access
control (RBAC) [Sandhu 96, Sandhu 99, Osborn 00, Park 01, Ferraiolo 01],
which associates access control rights with roles. When users are assigned
the appropriate roles, they simply acquire the associated access control rights.
These roles are typically created based on the various job functions in an orga-
nization, and can be easily reassigned to users. Organizational roles are fairly
static, however, and transitory roles, which can alter dynamically throughout
a collaborative session, are not supported as such.

Temporal-RBAC [Bertino 01] is an extension of the RBAC model that al-
lows some form of transitory roles, through periodic enabling and disabling
of roles, and temporal dependencies among such actions. In addition, Gener-
alized Temporal-RBAC [Joshi 05] also allows expressing duration constraints
on roles, user-role assignments and role-rights assignments. Other extensions,
such as GEO-RBAC [Bertino 05] and Ex-RBAC [Cui 07], take into account

92
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

spatial and location-based information to activate roles. The numerous RBAC
approaches mainly handle authorization management, but do not address, for
instance, issues related to a lack of mutual awareness.

Edwards [Edwards 96] extended Intermezzo, a coordination infrastructure,
with roles that represent not only statically-defined collections of users, but
also dynamic descriptions that are evaluated at runtime. Whereas static roles
are implemented by associating a list of users with a set of access control rights,
dynamic roles are implemented by associating a predicate function with such
a set of rights. When a user requests access, Intermezzo first applies the static
roles and then evaluates the associated predicate functions to see if access may
be granted. Edwards’ specification language is powerful, but rather complex,
which makes it difficult for end-users to add new or adjust existing policies
and roles.

Coordination on interactive surfaces. The results of a study on multi-
touch input versus multiple mice indicate that interactive surfaces enable fluid
interaction and switching of roles between co-located users [Hornecker 08b].
Moreover, higher levels of awareness are reported in case of multi-touch input,
accompanied by significantly more actions that interfere with one another.
Analysis shows that interference was quickly resolved, and therefore suggests
the possibility of increasing resources for dealing with interference instead of
trying to eliminate conflicts. However, the study only takes into account co-
located users gathered around an interactive surface.

Two customs that people uphold on a tabletop are to use orientation of
objects to coordinate actions and mediate communication [Kruger 03], and
to informally divide the space into areas that support shared and individ-
ual work (e.g. personal, group, and storage areas) [Scott 04]. Several stud-
ies show that people maintain a personal territory on a shared surface, and
that people spend most of their time interacting in their personal territo-
ries [Ryall 04, Nacenta 07]. Using indirect techniques to interact with shared
workspaces reduces territorial behavior and awareness, resulting in poor co-
ordination. New coordination techniques, designed specifically for tabletops,
can reduce conflicts arising from indirect input by allowing users to protect
objects when they work near their personal areas, or by allowing users to set
certain protection levels dynamically [Pinelle 09].

Building on the idea of distinct areas, the UbiTable [Shen 03] combines
an interactive table with personal laptops and PDAs to support face-to-face
collaboration. The workspace allows users to conveniently share documents
through private, personal and public spaces. Private data is not visible or

4.3 Focus+Roles 93

accessible to others, and the owner always retains control over the distribu-
tion and duplication of documents, even after they have been transferred to
the shared space. In iConnect, a similar notion of personal and shared spaces
exists, as described in Section 4.4.1, but documents do not explicitly retain
knowledge of ownership once they are transferred to a shared space, so addi-
tional access control is needed.

If we can relate the contact points on the interactive surface to a particu-
lar user, for instance by using a DiamondTouch [Dietz 01] or the identification
technique we propose in Chapter 6, privileged access to widgets or documents
can be accomplished through identity-differentiating widgets [Ryall 06a] or
virtual lenses that allow for personalized input and output [Schmidt 10b]. Fur-
thermore, providing visual cues on ownership, in the form of distinct borders
of territories or through distinct coloring of the interactive objects, can help to
maintain social protocols on a shared tabletop, reducing the need for policies
in those circumstances [Fetter 11].

4.3 Focus+Roles

In the next sections, we examine the user’s roles and focus: we define the terms
in the context of our work and discuss their significance during collaborative
meetings. In addition, we consider some useful properties concerning access
control, which we relate to the collaborative items in our environment.

4.3.1 Roles in an organizational and meeting context

In our approach of using roles to provide conflict handling and access control,
users can not only adopt various long-lasting roles within the organizational
hierarchy, but may also switch dynamically from one transitory role to another
throughout a collaborative meeting. By bringing this kind of information
about users into the system, our floor control policy is capable of dynamically
adjusting to those users, their characteristics, and their ongoing activities,
thereby preventing a lot of common conflicts.

A user’s role in an organizational context is determined by a job descrip-
tion, defined as a collection of responsibilities, privileges and associated orga-
nizational tasks. We call such an organizational role static, since it changes
rather infrequently. In our approach, static roles are defined as a set of privi-
leges, and represent lines of work such as department heads, project managers,
software engineers, developers, accountants, technical and administrative sup-
port, and so on. Likewise, a person’s proficiencies can be considered reasonably

94
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

fixed, as they do not change on a regular basis. Therefore, our static roles can
also be based on proficiencies, and thus include C++ experts, network special-
ists, hardware professionals, and so on. Users may adopt several static roles
at once, since people sometimes fulfill more than one role in an organization
and often have several proficiencies.

In the context of a collaborative meeting, a role is determined by a user’s
current activities within the group, defined as a second collection of privileges.
Since a user switches from one activity to another on a regular basis during
a meeting [Bergqvist 99], we call this role dynamic. Dynamic roles represent
presenters and attendees, chairpersons, brainstorm participants, facilitators,
and so on. Users may adopt only one dynamic role at once, yet they can
switch roles whenever the need arises. If the environment is able to detect
the current activities of its users, the dynamic roles of these users can also be
updated automatically.

In a collaborative environment, possibly intrusive activities such as brows-
ing through a set of slides or altering the contents of a slide are mostly carried
out by a rather narrow subgroup of users. This subgroup consists of those
users taking on a dynamic role that is inherently related to the activity. One
can expect, for instance, a speaker to browse through a slideshow or alter a
slide, whereas an attendee will not. Users outside the subgroup generally per-
form non-intrusive actions such as observing the ongoing activities or taking
notes. We exploit these characteristics of collaboration to prevent a range of
conflicts.

To illustrate this approach, we look at our scenario from Section 1.3.2.
Jane, the department head, presents an outline of what the meeting is about.
In her role of speaker, Jane can navigate through the slideshow unhindered,
since her dynamic role is closely related to that activity. In contrast, to prevent
conflicts with other users during Jane’s presentation, attendees are limited
to non-intrusive actions such as observing the slideshow on a shared screen.
As a result, Jake’s accidental attempt to close Jane’s Microsoft PowerPoint
presentation is prohibited during the talk, thereby averting an inconvenient
disruption.

Another example of a conflict includes two users trying to move the same
object simultaneously. If Jane and Jake both try to move a particular docu-
ment during Jane’s presentation, Jane’s action will be given priority, given her
dynamic role as a presenter compared to Jake’s role as an attendee. However,
when several users adopt one and the same dynamic role, collaborative activi-
ties may result in a power struggle. In such circumstances, the organizational
hierarchy is of overriding importance, or, in other words, the users’ static roles.

4.3 Focus+Roles 95

In our scenario, all users take on an identical dynamic role for the duration
of the open discussion toward the end of the meeting. If Jane and Jake now
try to move a document simultaneously, Jane’s action will be given priority
because she is the department head.

4.3.2 Passive and active focus

Awareness of individual and group activities is essential to successful collabo-
ration [Dourish 92, Gutwin 99], and in a collaborative environment that allows
users to participate in both a co-located and remote manner, the natural sense
of mutual awareness is inadequate. As already stated in Section 2.5.3, typical
collaborative work involves periods of tightly coupled group activities, alter-
nated with more loosely coupled individual work [Bergqvist 99, Tang 06]. A
group of users frequently begins to collaborate on one topic, and eventually
evolves into several smaller subgroups, working separately in multiple threads.
Such threads close, split off and merge repeatedly, making it difficult for users
to stay informed about all ongoing parallel activities, including the other group
members’ current state and goals.

The inevitable lack of mutual awareness brings about many conflicts, which
have to be resolved by instructing or requesting someone to take certain ac-
tions or even through negotiation. However, such engagements disrupt the
work flow. A sense of mutual awareness should be attained in the course of
doing the work, without having to resort to deliberate actions. We therefore
provide a method to counter the lack of mutual awareness, by taking advan-
tage of a user’s focus. We define two different kinds of focus: passive focus
and active focus. A user’s passive focus is determined by perceptual activities
such as reading a document, watching a video or listening to an audio stream.
The user’s active focus, on the other hand, involves interactions such as ma-
nipulating a spreadsheet, moving or resizing an item, and leafing through a
text document. In other words, active focus requires some form of user input,
while passive focus implicates the perception of output.

Our scenario from Section 1.3.2 illustrates a few useful applications of
focus. While people are still discussing Jane’s and Jake’s brain scans, Jacob
wants to show another scan of a patient suffering from a similar disorder.
However, Jacob is not permitted to disturb the others by overlapping their
brain scans, since a large number of users are centering their attention on those
scans. Therefore, the system rules out unfavorable occlusions when showing
new contents on the whiteboard. Later during the meeting, Jake and Lucie
are comparing the approaches of two hospitals, and Jane starts discussing a

96
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

financial report with Jacob. Jane thereby loses track of all nearby activities,
and, not aware of the ongoing discussion between Jake and Lucie, may try
to resize the financial report so that it overlaps some of the other documents.
However, Jane is not permitted to disturb Jake and Lucie by overlapping their
documents, since they are centering their attention on them.

4.3.3 Access control

In a collaborative meeting room that includes shared surfaces, such as a multi-
touch tabletop, access control can be a very sensitive issue, particularly in an
organizational context where some information has to be treated as confi-
dential. Although all documents that are discussed during the meeting are
available on a single surface, some belong to individuals who may wish to pro-
hibit certain types of access by their colleagues. Access restrictions can limit a
user’s ability to manipulate a document, for example opening, copying, print-
ing, editing or removing the document.

From an organizational perspective, access rights and restrictions are re-
lated to the user’s static roles. A financial report, for example, mainly concerns
users with an administrative role, while developers are generally not qualified
to understand or handle such information. Moreover, the financial document
may contain sensitive information, which should not be accessible to everyone.
Instead of the traditional operating system’s approach of being able to set cer-
tain permissions on a file, we allow a user’s access rights to be inferred from
the associated roles, in combination with the document’s content type (e.g. fi-
nancial report, patient file, brain scan) and sensitivity (e.g. highly confidential,
internal).

To illustrate this process, we refer to our scenario from Section 1.3.2 once
more. Jane shows several images of a brain scan to inform the others of
a particular case. Since the patient files are accessible to all neurologists
working at the same hospital, everyone is allowed to make a personal copy of
Jane’s slideshow, except for Lucie and the members of the remote team, who
are employed at another hospital. Later, Jane opens a private spreadsheet,
containing some financial prognoses. Given that this financial information is
highly confidential, nobody else is authorized to distribute it, and as a result
copying or printing the spreadsheet is prohibited.

Controlling the access of users is not only applicable to documents in a
shared workspace. The collaborative group dynamics can also benefit from
restricted access to other types of objects in the application, including menu
items or toolbar buttons. Functionalities such as closing the entire workspace

4.4 The iConnect environment 97

or automatically tiling all items should be used with care in a multi-user
environment. The dynamic roles of a user pose a solution, since the set of
current activities often determines which users should be in control of the
system. The speaker should, for example, be able to tile the workspace, as
opposed to the attendees.

4.3.4 Overview of the Focus+Roles process

All the abovementioned approaches are incorporated into a Focus+Roles pro-
cess, which can be summarized as follows:

1. When a user performs an action, we first check that user’s dynamic
role. If the user lacks the required privileges, the action is prohibited.
Otherwise, we continue to the next step.

2. If the user’s action involves accessing a document (e.g. open, copy, print,
edit), we check all the user’s static roles and the meta-data associated
with the document to decide if that type of access may be granted.

3. To resolve if the action can be executed safely, we also take into account
other users’ passive and active focus, if applicable (i.e. the action involves
something others may be focusing on, such as opened documents).

4. Finally, we check for any conflicting activities. If the user’s action con-
flicts with another user’s action, we decide on the outcome of this conflict
by comparing dynamic roles. If both users have the same dynamic role,
their static roles are the decisive factor.

In this way, the Focus+Roles policy provides effective conflict handling and
access control, with minimal intrusions into the normal work flow. Throughout
the next sections, we describe how this policy was implemented in an existing
multi-user environment.

4.4 The iConnect environment

As a proof of concept, we added a Focus+Roles policy to the collaborative
iConnect [Cardinaels 06] environment, which we already mentioned briefly in
Section 1.3.2. In this section, we introduce the iConnect environment in more
detail.

The IBBT GBO project iConnect aimed at the creation of a computer-
supported collaborative meeting room, and is in some respects similar to sys-
tems such as i-LAND [Streitz 99], iRoom [Johanson 02], Dynamo [Izadi 03],

98
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

MultiSpace [Everitt 06] or WeSpace [Wigdor 09]. The iConnect environment
meets a lot of the same requirements as, for instance, the WeSpace project:
provide a shared display, allow the use of personal laptops, support native ap-
plications on the system, maintain interactivity of existing applications, retain
user control over own data, support equitable and visible input, and provide
an interactive table. These requirements were derived for a collaborative tool
to support scientists conducting collaborative research across multiple disci-
plines [Jiang 08]. In this section, we clarify how the iConnect environment
meets those requirements, and how it supports both co-located and remote
participants.

4.4.1 Personal and shared workspaces

As described in the scenario in Section 1.3.2, the iConnect environment fa-
cilitates simultaneous engagement of multiple users, sharing arbitrary data
and employing heterogeneous input and output devices. The key feature
to accomplish such an environment is an architecture to support a seam-
less integration of the shared devices already present in the meeting room
and personal devices users may bring along [Cardinaels 06]. Such a dis-
tributed system results in the coordinated existence of both shared and per-
sonal workspaces [Streitz 94, Rekimoto 98]. Shared workspaces allow several
users to interact with shared data simultaneously, while personal workspaces
are only accessible by a single user and contain private data, which is not
shared with the other users unless explicitly stated.

An iConnect meeting room can be equipped with a multitude of shared de-
vices, such as interactive whiteboards (e.g. SMART board1) and tabletops (e.g.
DiamondTouch [Dietz 01]). Using a shared device, co-located as well as remote
users may perform actions that are reflected on the shared workspace. The
users’ personal devices, such as laptops and PDAs, act as a personal workspace,
which can be used in conjunction with the shared workspace (tablets and
smartphones were less widespread when the iConnect project started in 2005,
and are therefore not explicitly supported, but those portable devices have
similar characteristics to PDAs). Figure 4.1 shows a typical iConnect setup
during a meeting.

To implement the abovementioned functionality, the iConnect environment
includes a workspace server and a number of clients, all interconnected by a
network. Users not able to physically attend the meeting can interact with a
duplicated workspace remotely. The workspace server hosts a workspace that

1http://www.smarttech.com/smartboard

http://www.smarttech.com/smartboard

4.4 The iConnect environment 99

Figure 4.1: The iConnect environment. Users interact with the environment using
touch-sensitive shared displays, or personal devices such as laptops and PDAs.

is shared across iConnect clients using Virtual Network Computing (VNC)2,
a graphical desktop sharing system that allows a user to remotely control an-
other computer. Since VNC’s standard input behavior is single user-oriented,
cursors are managed by and rendered on the server.

4.4.2 Embedding native applications in containers

The shared workspace is capable of embedding native applications which may
be useful during a meeting, such as the typical office applications (e.g. Mi-
crosoft Word, PowerPoint and Excel) or viewers, to support various data
formats (e.g. PDF documents using Adobe Acrobat Reader). An ActiveX
container acts as a bridge between native Microsoft Windows oriented appli-
cations and the iConnect software. All functionality of the application is ac-
cessible, and interacting with the application through iConnect does not differ

2http://www.realvnc.com

http://www.realvnc.com

100
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

from interacting with the application launched outside the iConnect system.
If an appropriate application is available, the associated data formats can be
supported. In addition, containers can embed custom applications, such as a
video streamer or a special-purpose painting system [Van Laerhoven 06].

The shared workspace offers a generic set of operations to manipulate its
containers. Since a shared workspace can be mirrored on various shared de-
vices (clarified in the next section), container operations are represented in
suitable widgets, such as a toolbar at the edge of the screen. Standard win-
dow operations (e.g. moving, resizing, minimizing . . .) are a classic subset of
the container operations. However, more specific operations may be needed,
such as rotating a container on a horizontal display. Containers also support
annotations: a widget provides basic tools for drawing scribbles and prim-
itive shapes on top of a container and its embedded contents, as shown in
Figure 4.2c.

4.4.3 User representation and data sharing

Figure 4.2a illustrates how each user is represented by an avatar. During
an iConnect meeting, each individual can be identified through this avatar,
whether that person is working co-located or remote. Each user also com-
mands an individual cursor in a shared view. One of the complications re-
garding multiple cursors on a single display is determining which cursor be-
longs to a particular user. We therefore attach a miniature representation of
the user’s avatar to each cursor. The personalized cursor gives an idea about
the user’s current action and state, allowing users to distinguish one another’s
actions. Other types of virtual embodiments, such as virtual arms or pan-
tographs, could further improve the awareness of others’ actions and locations
on tabletops [Pinelle 08].

The personalized cursor allows a user to manipulate (e.g. open, close, move,
resize) objects, write down annotations, transfer data to and from a personal
space, and so on. A user’s personal cursor can be operated either at the shared
display itself, or from a distance, using a personal device such as a PDA. In
that case, the screen of the personal device is transformed into a touchpad, as
depicted in Figure 4.3. Cursors disappear after being inactive for a while, to
avoid cluttering the workspace.

By dragging and dropping a container on an avatar, the container’s em-
bedded data source (e.g. a document) is copied to the personal device of the
corresponding user. The client software on the personal device decides how to
process the arriving data (e.g. open the document). When a user is associated

4.4 The iConnect environment 101

Figure 4.2: SMART board interface: (a) each user is represented by an avatar and
controls a personal cursor; (b) data can be exchanged by drag-and-drop operations;
(c) annotations clarify a presentation; (d) pop-up menus reveal the set of possible
actions on a container.

102
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

Figure 4.3: On a shared workspace, users are represented by an avatar and a personal
cursor. A user’s personal cursor can be operated using a personal device such as a
PDA.

with multiple personal devices, a pop-up menu appears, and the target de-
vice can be selected, as illustrated in Figure 4.6c. In Section 4.5.3, we discuss
how users can retain control over their own data, by preventing, for example,
unauthorized users from copying private documents from others to their own
personal devices.

When a user drags a container outside the workspace’s boundaries and
into one of the “toolbars”, as seen in Figure 4.2, the widget is replaced by a
small icon representing the container’s embedded application. This icon can
be dropped on an avatar or a special-purpose button, such as a “kill” button
which closes the container (adding a close button to each container tends to
cause accidental closures). Since moving large widgets on a shared workspace
can be very annoying to other users, we provide an alternate approach to
initiate a drag-and-drop. Containers are equipped with a “drag bullet”, shown
in Figure 4.2b, enabling users to drag the container to a target, such as an

4.4 The iConnect environment 103

avatar, by only moving the outline of the container. This avoids disturbing
other users.

4.4.4 Integrating personal devices

(a) Private space allows users to
locally organize, view and ma-
nipulate documents.

(b) Public space allows users
to operate their personal cursor
and serves as a tool palette.

Figure 4.4: Interface of the user’s personal workspace on a mobile device. The
personal workspace is divided into a private and a public space.

The user’s personal workspace, for instance on a mobile device such as a
PDA, is divided into two subspaces: a private and a public space. Figure 4.4
shows both spaces. The private space mimics the shared interface, allowing
users to locally organize, view and manipulate documents. Due to screen
space constraints on small mobile devices, documents are represented by icons,
although it is also possible to view and edit documents. The public space
serves as a coupling between the shared and the personal workspaces, since
users can operate their personal cursor with it. In that case, the screen of
the mobile device is transformed into a touchpad, with movements and clicks
being mapped onto the user’s cursor.

Backed by a dynamic environment model that is updated at runtime, iCon-
nect can migrate parts of a user interface to personal devices in order to facil-
itate the interaction with shared data and other devices. To allow the user to

104
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

Figure 4.5: A painting application is running in an iConnect container on the
whiteboard. The color chooser is distributed to the mobile device of the user.

change the cursor’s function when using the mobile device as a remote touch-
pad, we distributed a drawing toolbar to the mobile device, as illustrated in
Figure 4.4b. Figure 4.5 displays a second example, with a special-purpose
painting application [Van Laerhoven 06] running on the whiteboard and the
associated color chooser distributed to the mobile device of the user. This way,
the mobile device may serve as a tool palette for the whiteboard [Rekimoto 98].
A complete description of iConnect’s dynamic environment model and user in-
terface migration is, however, beyond the scope of this work.

4.4.5 A collaborative tabletop

Large displays and in particular tabletops are one of the most common set-
tings for human collaboration [Pinelle 06]. They naturally support co-located
collaborative work: people can display and manipulate task artifacts, they
enable verbal and gestural communication and allow people to be aware of
co-participants’ actions. Furthermore, a multi-touch tabletop promotes more
equitable participation in co-located group settings [Rogers 09, Wigdor 09].
Although occasionally integrated into meeting rooms, we believe the user in-

4.4 The iConnect environment 105

terface of a tabletop environment should not merely be an extension of desk-
top systems, and the unique affordances of tables should be taken into ac-
count [Shen 04].

Figure 4.6: Tabletop client interface: (a) widgets can be rotated, moving the handle
rotates the widget around its center; (b) hierarchical pie menus allow users to trigger
actions on objects in the workspace; (c) user representations are embedded inside pie
menus.

Horizontal displays, where users can sit or stand at different sides, suffer
from the fact that documents oriented toward one user may be hard to read by
others. To overcome this issue, we have included containers that can be rotated
in the tabletop interface, as shown in Figure 4.6. Users can pass a container to
others (the container will automatically rotate in an ellipse around the centre
of the table) or duplicate it to provide a similar view in the desired angle. In
addition, Figure 4.6a illustrates how containers can be rotated around their

106
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

own centre, so they can be oriented manually as well.
To accommodate interaction with existing applications on interactive sur-

faces, we simulate the typical “right click” of a mouse by pressing and holding
a pen or finger stationary over a small period of time. This action triggers
a short feedback animation, illustrated in Figure 4.2d, followed by a pop-up
menu. In the tabletop interface we opted for pie menus instead of linear menus,
as shown in Figure 4.6b. Pie menus arrange all items in a circle around the
cursor, thus making all items equidistant [Balakrishnan 04]. As our system
does not recognize where a user is sitting or standing around the table, pie
menus have the added benefit of improving readability. This results in a very
convenient way of triggering actions on large interactive displays.

The current tabletop interface could be extended to further enhance its
integration in an environment that contains portable devices and ancillary
displays such as a whiteboard. First of all, additional visualization mechanisms
can improve the visual connectivity between the various displays or personal
devices [Wigdor 06, Everitt 06]. The interaction can also be expanded by
adding proxy objects to the tabletop interface, allowing some control over the
other displays in the environment. Such a proxy can, for instance, take the
form of a virtual camera to alter the viewpoint in a geospatial application
shown on one of the displays [Forlines 06]. To easily move objects from one
display to another, the proxy can implement a technique such as worlds in
miniature [Wigdor 06], or radar views and pick-and-drop, which have been
found to be the most efficient when comparing the performance of various
techniques for multi-display reaching [Nacenta 05]. Furthermore, mechanisms
for sharing documents in a co-located tabletop environment can be used to
support transitions between periods of active collaboration and periods of
individual activity [Ringel 04].

4.5 Illustrative Focus+Roles implementation

Simultaneous interactions in a highly collaborative environment such as iCon-
nect cause various kinds of conflicts on a regular basis, which disturb the
dynamic work flow and group coordination. Since iConnect is primarily tar-
geted at common daily meetings, in which users typically take on a variety
of roles and share data frequently, it provides an appropriate test case. In
this section, we provide some of the particulars regarding our Focus+Roles
implementation in the iConnect environment. Throughout the section, we il-
lustrate our approach using the scenario about a team of neurologists from
Section 1.3.2.

4.5 Illustrative Focus+Roles implementation 107

4.5.1 Roles as a set of privileges

As described in the overview of the Focus+Roles process in Section 4.3.4,
a user’s static roles are primarily employed to provide the necessary access
control. A user’s dynamic role, on the other hand, is put to use to prevent
intrusive activities or resolve conflicts. In the iConnect environment, static
and dynamic roles associate categories of users (e.g. department heads) with
specific sets of privilege levels (e.g. full privilege to access financial records).
The roles are written down in an XML format, as shown in Listing 4.1 and
Listing 4.2.

<ContentPrivilege role="DEPARTMENTHEAD" content="PATIENT" level="100"/>

<ContentPrivilege role="DEPARTMENTHEAD" content="FINANCIAL" level="100"/>

<ContentPrivilege role="SENIORPHYSICIAN" content="PATIENT" level="100"/>

<ContentPrivilege role="SENIORPHYSICIAN" content="FINANCIAL" level="30"/>

<ContentPrivilege role="PHYSICIAN" content="PATIENT" level="90"/>

<ContentPrivilege role="PHYSICIAN" content="FINANCIAL" level="0"/>

Listing 4.1: Partial description of static roles. This particular example shows, for
instance, physicians with no access to financial documents and department heads with
full access to such documents.

To provide access control in the iConnect environment, we associate each
static role with a set of privilege levels for specific types of content (e.g. pa-
tient files, financial records), as illustrated in Listing 4.1. In that example,
physicians have, for instance, no access to financial documents, while depart-
ment heads have full access. Instead of implementing a privilege as a binary
“allowed” or “not allowed”, which is the traditional operating system’s ap-
proach, privilege levels can range from zero to one hundred, indicating to
what extent a user is suited to handle a particular type of content (more on
this in Section 4.5.3, where we discuss access control in detail).

A dynamic role is expressed in terms of privilege levels for specific actions
(e.g. move or close a document), as seen in Listing 4.2. Every time a user
performs an action in the iConnect environment, the privileges of that user’s
dynamic role are checked. The privilege level specifies whether a user may
perform a particular action or not, and to what extent a user’s action is given
priority in case of conflicts. A privilege level of zero basically stands for “not
allowed”, meaning the user is not able to perform that type of action. An
attendee of a presentation is, for instance, typically not allowed to close docu-
ments. Rather than also prohibiting attendees to move documents, their very

108
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

restricted privilege level permits moving new information to an open space on
the whiteboard, but without overlapping other documents, as we explain in
the next section.

<ActivityPrivilege role="ATTENDEE" activity="MOVE" level="10"/>

<ActivityPrivilege role="ATTENDEE" activity="CLOSE" level="0"/>

<ActivityPrivilege role="PRESENTER" activity="MOVE" level="100"/>

<ActivityPrivilege role="PRESENTER" activity="CLOSE" level="100"/>

<ActivityPrivilege role="BRAINSTORM" activity="MOVE" level="50"/>

<ActivityPrivilege role="BRAINSTORM" activity="CLOSE" level="30"/>

<ActivityPrivilege role="FACILITATOR" activity="MOVE" level="100"/>

<ActivityPrivilege role="FACILITATOR" activity="CLOSE" level="100"/>

Listing 4.2: Partial description of dynamic roles. This particular example shows,
for instance, attendees who are not allowed to close documents and presenters with
full privileges.

In case a conflict occurs in the iConnect environment, for example when
two users try to move the same document simultaneously, the user with the
highest privilege level for that action gets precedence over the other user.
When both users have the same dynamic role, their static roles are taken
into account and the outcome is based on the privilege levels for the type of
content that is being manipulated. If, for instance, a brainstorm participant
and a facilitator simultaneously try to move a patient file, the facilitator “wins”
because of the higher privilege level for moving documents. If both users are
brainstorm participants, on the other hand, privileges for moving documents
are the same. Assuming that one user is the department head and the other
a physician, the department head gets priority because of the higher privilege
level with regard to patient files.

<ActivityPrivilege role="BRAINSTORM" activity="MANIPULATE" level="50"/>

<ActivityPrivilege role="FACILITATOR" activity="MANIPULATE" level="100"/>

Listing 4.3: To make the process of describing dynamic roles less tedious, privileges
can also be associated with categories of actions.

Instead of linking privileges of a dynamic role to very specific actions such
as “open” and “close” in the XML file, privileges can also be associated with
categories of actions, as shown in Listing 4.3. The “manipulate” category
bundles a number of similar actions, such as moving and resizing documents,

4.5 Illustrative Focus+Roles implementation 109

to make it less tedious to describe dynamic roles. The current XML format is
a very straightforward approach, which is somewhat limited in expressiveness,
but very easy to handle, as it provides an accessible way to adjust exist-
ing roles or add new ones. A specification language such as the one used in
RBAC [Sandhu 96] or Intermezzo [Edwards 96] can be used as a more expres-
sive alternative.

While a user’s static roles are fixed from the beginning of a collaborative
meeting, the environment must allow the user to easily switch between dy-
namic roles during the course of the collaboration. Since iConnect requires
each user to log on to the system, static roles are simply recovered from a
database. The dynamic role, however, must be selected by the user when con-
necting to the environment, and may be changed at any time, for example by
means of a personal device such as a PDA.

4.5.2 Focus as an amount of attention

As stated in Section 4.3.2, we consider two kinds of focus: a user’s passive
focus is centered around the perception of output, while a user’s active focus
requires some form of input. Based on both passive and active focus, each
container (e.g. a text file, spreadsheet, picture, video) in the iConnect envi-
ronment is attributed an “amount of attention”. This amount is simply an
accumulative value that represents to what degree users are currently focusing
their attention on that container, and is used to overcome conflicts that are
caused by a lack of awareness.

Each user commands a personal cursor on a shared surface in the iConnect
environment, as described in Section 4.4.3. To detect a user’s passive focus,
we analyze that user’s cursor movements: when a user starts hovering over
a container, the system assumes that the user’s center of attention shifted
to that container. Therefore, the amount of attention associated with the
container is increased. When the user’s cursor leaves the container, the value
is decreased. Of course, this approach is merely an estimate of the user’s
passive focus, as it is likely that a user sometimes places the cursor on top of a
container without really focusing on that container, or vice versa. Tracking a
user’s eye gaze, head orientation or posture can definitely improve the passive
focus recognition.

Active focus is determined by explicit actions on a container, such as open-
ing a document, browsing through slides, or editing a spreadsheet. Those ac-
tions can simply be detected by filtering all the input events on the container.
Each time an explicit action is performed, the amount of attention associated

110
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

with the container is slightly increased. If a user is, for instance, editing a
spreadsheet, the value increases with each alteration to reflect the current at-
tention that the document is receiving. However, if the user stops editing the
spreadsheet, the amount of attention has to decrease accordingly. One option
is to remove the increase in attention as soon as the user’s cursor leaves the
container, but that approach does not take into account someone working on
several documents at once. Therefore, we progressively diminish the amount
of attention over time, so the value slowly returns to zero if users are no longer
involved with the document.

Figure 4.7: Three users simultaneously interacting with a document using their
personal cursors. One user tries to move it while two others center their attention on
it. The system discreetly notifies the users of the issue by means of a miniature stop
sign and does not allow the action to take place.

If a user performs an action that influences a shared container, the con-
tainer’s current amount of attention is compared to the user’s privilege level for
that particular action. The outcome of this comparison determines whether
the system carries out the action or notifies the users of the intrusion. It is
important that users are notified discreetly, to avoid disrupting the others.
Consider, for example, two brainstorm participants discussing a slide. If a
third participant suddenly tries to move the slideshow, that action is prohib-
ited due to the slideshow’s high amount of attention. A miniature stop sign is
displayed next to the user’s personal cursor, as illustrated in Figure 4.7. If the
third user was a brainstorm facilitator, the action would have been allowed,

4.5 Illustrative Focus+Roles implementation 111

since a facilitator has the maximum privilege level for moving documents, as
seen in Listing 4.2.

4.5.3 Access control, content type and sensitivity

A practical workspace in a collaborative meeting environment requires docu-
ment formats such as text files, slideshows, spreadsheets, pictures, video files,
and so on. However, the document format not always provides a sufficient
indication of the actual content: a text file may contain an internal memo
or a simple note, and spreadsheets can hold confidential information about
finances or a commonly available planning. Therefore, we employ a secondary
classification, based on meta-data such as content type and sensitivity.

When uploading a document to the iConnect environment, the user has
to state the type of content (e.g. financial report, patient file, brain scan) and
the document’s sensitivity (e.g. highly confidential, internal). In some cases, it
is possible for the system to determine one or both properties automatically,
although the owner of the document will always have the final say in this
matter. Ordinarily, a C++ file always contains programming code, for instance,
and a bank statement is usually considered to be delicate information.

If a user tries to access a document in any way (e.g. actions such as open,
delete, copy, print), the privileges of that user’s static roles are compared to
the meta-data associated with the document. If the user lacks the necessary
privilege level for that particular type of content and degree of sensitivity,
access to the document is denied. A regular physician will, for instance, never
be able to make a personal copy of a financial document. The physician
will have to abandon this intent, or ask someone with the necessary privilege
level for assistance. A senior physician, however, is allowed to copy a financial
document if it is not marked as highly confidential through its sensitivity, since
that role has limited access to financial information, as seen in Listing 4.1.

4.5.4 Limitations and possible extensions

Incorporating role management and focus tracking into floor control policies
is only a start, and further refinements and additional features are needed to
improve the usability of the system. First of all, users need more feedback
when a conflict or intrusive action is prevented. Currently, they are discreetly
notified of the prevention, but without any additional information, confusion
will occasionally arise, since some users might have no idea why their action
was prohibited by the system. However, the feedback should not disrupt the
work flow. One possible solution is to show additional feedback on the user’s

112
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

personal device, so he or she can access this feedback when necessary, and
ignore it otherwise. In addition, the current roles of a user could be visualized,
for example by adding some iconic representations to the user’s personal avatar
and cursor, since it may give an indication as to why an action is currently
not allowed.

The reliability of the existing approach to adopting dynamic roles depends
largely on the goodwill of the users. Currently, users are responsible for man-
ually updating their role, and this approach can easily fail if users forget to
do it, or if they select the wrong role on purpose, to circumvent the system’s
restrictions. Depending on the available hardware setup in the meeting rooms,
it might be possible to automatically deduce a user’s current dynamic role,
ensuring smoother and more reliable role transitions. If the system supports,
for example, tracking of a user’s location in the meeting room, it is safe to
assume that a user standing next to a projection screen is currently practicing
the role of presenter, and the ones sitting in front of the screen the role of
attendee.

By storing users’ static roles in a database and not making those users
responsible for updating their own roles, it is harder to bypass the system’s
access control. However, users are not in direct control of the access to their
documents, as the system handles access control autonomously. This lack of
control causes a degree of uncertainty, and will prohibit a lot of users from
sharing very sensitive or confidential data. To overcome this uncertainty, the
system should enable a user to set certain access rights when sharing docu-
ments, similar to IMPROMPTU [Biehl 08], stating if other members of the
group are allowed to modify or only view the data, for example.

Currently, our approach handles conflicting actions on the global level of
documents, so two users cannot edit the same document simultaneously. How-
ever, in a highly collaborative environment, multiple users may want to edit
a document together, seeing one another’s changes in real-time. A potential
solution is to embed a Web browser in a container, and rely on a Web-based
office suite such as Google Docs3, so text files, spreadsheets and presentations
can be opened and edited by multiple users concurrently. Another possibility
is using an approach like CoWord [Xia 04] to add real-time collaboration to
single-user applications such as Microsoft Word or PowerPoint.

To further refine our floor control mechanism, we can track a user’s inter-
action history. By considering all past and present actions on an object, we
can define a degree of ownership for each user, which is useful when deciding

3http://docs.google.com

http://docs.google.com

4.6 Conclusion 113

on a particular action, such as deleting a document. If others were far more
active on a document, they should be in control of the most sensitive activi-
ties, and not a user who barely paid any attention to it until now. In addition,
an “honesty” policy can benefit less assertive people, whose actions will fre-
quently be suppressed by more prevailing users. An algorithm can determine
the activity rate of each individual and subsequently prioritize a less active
user’s actions to work toward balanced contributions.

To increase the overall flexibility and to avoid some users being left out
from time to time because of a lack of privileges, the system could offer users
more autonomy by providing a means for one user to grant temporary priv-
ileges to another user, for example through a ticket mechanism [Turoff 91].
Further flexibility can be achieved by taking a mixed-initiative approach to
the conflict handling, by merely warning a user of a possible conflict and giving
that user the opportunity to complete the action anyway. In this manner, the
system blends a floor control policy with social protocols.

4.6 Conclusion

Social protocols represent a popular floor control choice in present-day collab-
orative environments. However, such solutions are not always infallible. Our
Focus+Roles approach effectively provides both conflict handling and access
control, by introducing roles and focus. As a proof of concept, we added a
Focus+Roles policy to the iConnect environment.

As a result, iConnect users can adopt a variety of static roles, represent-
ing their organizational function and proficiencies. In addition, a dynamic
role specifies the user’s current activities throughout a collaborative iConnect
meeting, and a user may switch from one such role to another at any time. Our
floor control policy dynamically adjusts to the users’ roles, while focus tracking
attempts to overcome the typical lack of mutual awareness, thereby reducing
confusion and unintentional effects. Furthermore, we allocate properties such
as content type and sensitivity to the documents in the iConnect environment,
allowing for effective access control when combined with the users’ roles.

It should prove interesting to include other properties in the floor control
policy, such as the specific properties of different devices, since users will be-
have differently when seated around a tabletop compared to standing in front
of a vertical display [Rogers 04b, Everitt 06], and their behavior might change
depending on the type of personal devices they brought along [Pering 10]. Be-
havior will also be governed by the various roles that are taken on by the
different members of the group. However, further studies are needed to assess

114
Focus+Roles: socio-organizational conflict resolution and access

control in collaborative user interfaces

the behavior of a group of users in those particular circumstances.
In the next chapter, we explore some aspects of collaborative meetings in

more detail, by conducting an in-depth investigation of one case in particular,
namely storyboarding in co-located, multidisciplinary teams.

Chapter 5

An observational study on collaborative
storyboarding in multidisciplinary teams

Contents

5.1 Introduction . 115
5.2 Related work . 117
5.3 Observational study 120

5.3.1 Participants and apparatus 120
5.3.2 Tasks and experimental design 121
5.3.3 Procedure . 122
5.3.4 Observations and results 122

5.4 Lessons learned . 127
5.4.1 Allow for differences, support agreements 127
5.4.2 Facilitate different approaches in structuring 129
5.4.3 Maintain the design rationale 130
5.4.4 Favor shared over personal space 130
5.4.5 Support visible and direct physical interaction . . . 131

5.5 Conclusion . 132

5.1 Introduction

In the previous chapter, we presented the use of the roles and focus of users as
a way to achieve conflict resolution and access control in a collaborative envi-
ronment. One of the devices in that environment was an interactive tabletop,

116
An observational study on collaborative storyboarding in

multidisciplinary teams

and although our general Focus+Roles approach is applicable to this kind of
shared surface, we never fully explored the collaborative potential of the table-
top in particular. We also made some assumptions on the behavior and needs
of users, such as the way they organize a shared workspace, or the influence of
different roles during the collaboration. To explore these aspects in more de-
tail, we conduct an in-depth investigation of one specific case: storyboarding
in co-located, multidisciplinary teams.

In this introduction, we first answer the questions: why do we consider mul-
tidisciplinary teams, and why in the context of storyboarding? User-centered
design and development of software systems typically involves design teams
that include multidisciplinary skills and perspectives, which is beneficial for
the overall user experience of the resulting system. These teams generally
involve team members having expertise in human-computer interaction, user
interface design and systems engineering, as well as end-users and application
domain specialists [Int 10]. Several participatory design techniques support
the collaboration within these teams. However, since the team members often
have different expectations of the representation and transformation of end-
user needs and concepts for the future software system, it is a challenging task
to ensure that they all reach a common understanding in the first stages of
user-centered approaches.

An accessible and very useful participatory design technique for user-
centered design and development of software systems is storyboarding. A
storyboard is a narrative that uses rich, iconic pictures to visually represent
systems’ scenarios of use, and is well suited for creating a common understand-
ing of the application domain. Based on the framework for the organization
of participatory design tools and techniques of Sanders et al. [Sanders 10],
storyboarding can be considered as a technique that supports the generation
of ideas or design concepts for the future. More specifically, in user-centered
approaches, storyboarding takes place during the requirements elicitation of
a future system. The storyboard notation is very suitable to depict the func-
tional and non-functional requirements of the system in different contexts of
use. Furthermore, annotated storyboards can be used throughout the design
and development process [Haesen 11b]. Storyboards help in keeping focus on
the end-user and enable design teams to share concepts with a broad audi-
ence [Cilella 11].

Several efforts are presented toward the creation of digital tools that focus
on individual or collaborative storyboarding as part of a software development
process [Truong 06, Atasoy 11, Haesen 11b]. These tools concentrate on the
(re)use of storyboards, which is interesting to support adaptations and consis-

5.2 Related work 117

tency checks with the system’s requirements. However, none of the studies and
tools consider the respective contributions of team members having different
skills, perspectives and goals in the creation of storyboards. Because the ex-
isting tools have proven the benefits of digitizing storyboards for user-centered
design and development purposes, we are investigating the requirements for a
digital tool that supports the collaborative creation of storyboards within a
multidisciplinary team.

As stated in Section 1.3.3, we believe that a digital tool for collaborative
storyboarding should balance creative aspects, the needs of several disciplines
represented by the multidisciplinary team, and support for equitable contri-
butions. In this chapter, we present an observational study on storyboarding
by multidisciplinary teams. In Section 5.3, we describe the setup of this study
and we present an overview of the observations and results. Our insights lead
to concrete recommendations on how a digital storyboarding tool can effec-
tively facilitate this type of group work on an interactive tabletop, as reported
in Section 5.4. Section 5.5 summarizes our conclusions.

5.2 Related work

In this section, we explore the existing work relating to digital storyboarding
tools that are targeted toward individual designers, the suitability of inter-
active tabletop systems to support collaborative storyboarding in multidisci-
plinary teams, and present-day storyboarding tools for tabletops.

Digital tools for individual designers. SILK [Landay 95] is a digital tool
that enables designers to quickly sketch a user interface by using an electronic
pad and stylus. Unlike paper sketches, electronic sketches can easily be anno-
tated and modified using gestures. Furthermore, the sketches are interactive,
so end-users can experience the envisioned interaction before the interface be-
comes finalized. The tool allows the designer to define interface behaviors by
sketching storyboards, which specify how a screen should change in response
to user actions [Landay 96]. DENIM [Lin 00] is a closely related tool for Web
interface design, enabling designers to quickly sketch and link pages, and in-
teract with them. The tool’s use of storyboards for behaviors is similar to
SILK. The zoomable canvas enables a designer to quickly move among various
ways of viewing a website, such as a sitemap and storyboard.

Anecdote [Harada 96] is a tool to support the design of multimedia appli-
cations. It allows a designer to create a set of annotated storyboards, which
are organized in a hypermedia structure. Different views, such as a timeline

118
An observational study on collaborative storyboarding in

multidisciplinary teams

that enables linear editing of the hypermedia structure, facilitate the use of
various design styles. Anecdote supports simulating the execution and trans-
forming the prototype into the final application. DEMAIS [Bailey 01] is an-
other sketch-based multimedia design tool, intended for a pen-based tablet.
The tool uses a designer’s ink strokes and textual annotations to transform a
static storyboard into a working example, supporting experience-based explo-
ration, similar to the other tools.

The suitability of interactive tabletops. The abovementioned tools are
targeted toward individual designers, and the storyboards do not take into
account the larger context of use of an application. We already suggested
some high-level requirements for collaborative storyboarding in the introduc-
tion: support creativity, the needs of several disciplines represented by the
multidisciplinary team, and equitable contributions. Digital meeting systems
can be designed to support such requirements, since they enable a structured
decision-making process that encourages full participation by all team mem-
bers [Galaczy 99]. Furthermore, such systems promote creativity by allowing
all team members to generate ideas simultaneously and by allowing them to
immediately respond to the ideas of others.

In an exploration of the creative storyboarding process to determine best
practices and guidelines, Truong et al. [Truong 06] highlight the importance of
being able to share and be inspired by artifacts created by other members of
the design team. A design tool should therefore allow users to show what they
are creating and allow members of the same team to observe and easily use
artifacts from other members. Pinelle et al. [Pinelle 06] confirm this, as they
observed storyboarding on a regular table to explore how highly-integrated
collaboration can be supported by digital tabletops. Although the study fo-
cuses on collaboration, not on storyboarding, the proposed design principles
also include “make artifacts and actions visible to others”. Taking this into
account, shared surfaces such as interactive tabletops look like a proper can-
didate to facilitate collaborative storyboarding.

To reinforce this statement, we consider the requirement of supporting
equitable contributions. Avila-Garcia et al. [Avila-Garcia 10] identify ac-
tive participation and involvement of all the team members as an important
challenge to support decision making in multidisciplinary team meetings. A
study [Rogers 04a] on how novel fingertip interactions can support collabora-
tive decision-making on a tabletop reveals that team members communicate
a lot with their fingers. This “finger talk” results in much discussion, sharing
of ideas and invitations to others to take a turn, respond, confirm or partic-

5.2 Related work 119

ipate. This reinforcement of balanced participation is confirmed by a later
study on equal opportunities [Rogers 09], which shows that tabletops produce
more equitable participation in terms of physical actions in co-located group
settings. Moreover, extending the tabletop with a set of tangible artifacts (e.g.
physical 3D models) leads to more equitable participation in terms of verbal
contributions.

Digital storyboarding tools for tabletops. Interactive tabletops are al-
ready used to support collaborative storyboarding. Storify [Atasoy 11] is, for
instance, a tool to assist design teams in incorporating user experiences into
the design process. It provides assistance in organizing the elements of an
experience similar to the elements of a story, such as characters, settings, plot
and theme. The design process consists of a number of stages, such as team
members organizing parts of their individual collection of inspirational ma-
terials (such as sketches, images, text, Web links, sound tracks and videos)
that are needed for the specific context they have in mind, and composing a
storyboard with the gathered materials to clarify the experience. In one of
the final stages, the generated concepts are evaluated by designers, users and
other stakeholders. To accommodate different audiences, Storify can present
the outcome in different presentation formats, which can be annotated during
discussions. The development of Storify is still in progress, but the require-
ments include an individual mode that lets designers work with their personal
devices and a collaborative mode in which the team works together on a shared
interactive table and wall projection display.

Coeno-Storyboard [Haller 05] is a face-to-face presentation environment for
storyboard discussions using tabletop technology in combination with a wall
projection and portable computers such as laptops and tablets. Users can cre-
ate artifacts (e.g. scenario sequences, scribbles) on their personal computer,
move them to the shared tabletop for discussion, and then to a timeline on
the wall-sized projection for final organization. Artifacts can only be moved,
rotated or scaled on the table. In a pilot study, users indicated that, instead
of always having to edit or create artifacts on a personal computer, the ta-
ble should allow more actions. To move artifacts from the table to the wall,
users either use virtual keypads on the table, or one person assumes the role
of a coordinator and organizes the artifacts by moving them with a wireless
mouse. Although Coeno-Storyboard aims to allow participants from different
domains (e.g. designers, modellers, project managers) to interact easily with
the system, no specific attention is given to the multidisciplinary aspect. In
addition, several assumptions are made that we intend to explore in our obser-

120
An observational study on collaborative storyboarding in

multidisciplinary teams

vational study, such as having one person assuming the role of a coordinator
and organizing artifacts on a timeline.

StoryCrate [Bartindale 12] is a tangible tabletop interface to support live
film production during a shoot. The interface uses a storyboard as a shared
data representation, enabling a greater awareness of current progress for the
entire crew and facilitating team creativity. The work mainly focuses on film
production, but observations revealed a few interesting findings that we want
to investigate in more detail: a designated operator was appointed to maintain
data and the tangible objects facilitated the transfer and holding of control
over the interface when users gathered around it.

5.3 Observational study

In this section, we present the details of our observational study, which pro-
vides us with valuable information on how multidisciplinary teams organize
their tasks, what kind of artifacts they produce and how they collaborate in
storyboarding sessions.

5.3.1 Participants and apparatus

Twelve participants, four female and eight male, ranging in age from twenty-
two to forty-six, were divided in three groups of four people. All of them were
experienced researchers, who have expertise in the design or development of
interactive systems from HCI and/or UI design perspective. Participants’
backgrounds varied from computer science to history, visual arts and product
design.

Each participant was instructed to take on a particular role during the
study, so that each team consisted of an HCI specialist, a UI designer, a sys-
tems analyst, and a stakeholder (end-user or application domain specialist).
We assigned roles based on the participants’ skills and expertise. The results
from the post-study questionnaire indicate that most participants felt “com-
fortable” to “very comfortable” in their role. Three participants felt “neutral”
toward the attributed role, and nobody felt uncomfortable. All but one par-
ticipant had at least one year of experience in being part of a multidisciplinary
team. All participants in the role of HCI specialist and approximately one-
third of the others had experience in creating storyboards.

We acknowledge that assembling multidisciplinary teams in this way may
yield different results compared to actual teams that have been working to-
gether for some time. However, we consider this to be a preliminary study to

5.3 Observational study 121

Figure 5.1: Setup of the observational study: (a) each participant positioned at a
different corner; (b) contents of the toolbox that was provided to each participant.

aid us in outlining a number of initial requirements, and we intend to observe
multidisciplinary teams in a real-life setting at a later stage in order to confirm
and refine these requirements.

The storyboarding sessions were carried out in a room equipped with a
regular table (160 by 160 centimeters) and four chairs positioned around it so
that each group member would be seated at a different corner (Figure 5.1a).
A video camera recorded the sessions for later analysis. On top of the table,
participants could find a stack of A4 sheets to create storyboard scenes and a
box with images representing personas and items from the scenario used for
the study. Each participant also had a personal box of “tools”: a pencil and
ballpoint pen, colored pens and highlighters, an eraser, a ruler, scissors, glue,
adhesive tape, a notebook, post-it notes, and index cards (Figure 5.1b).

5.3.2 Tasks and experimental design

Instructions for the task and a description of the participant’s role and re-
sponsibilities were provided to each participant. We decided to use personas
and a scenario as identical starting points for all storyboarding sessions, be-
cause these documents describe the use of a future software system and can be
related to storyboards [Haesen 11b]. The personas (Appendix B.1) and sce-
nario (Appendix B.2) that were provided to the participants revolved around
a home automation system to control the heating and lighting, which can as-

122
An observational study on collaborative storyboarding in

multidisciplinary teams

sist a household in saving money on energy consumption. The system can
be controlled by different family members (differing in age and technologi-
cal aptitude), using different devices (e.g. touchscreen, laptop, smartphone).
Although not explicitly mentioned, the scenario suggested that the system
should take into account settings related to personal profiles and activities,
that settings of profiles should be merged in certain situations, and that the
system should be able to detect people’s presence in particular rooms. In order
to fine-tune our setup and procedure, we first conducted a pilot study.

5.3.3 Procedure

Each group was asked to create a storyboard that represents the given sce-
nario. Once they read and understood all instructions, including personas and
scenario, each participant had fifteen minutes to prepare individually. They
were asked to write down or sketch anything considered to be important, bear-
ing in mind their specific role and goals. After preparation, the participants
were asked to start the storyboarding task. Each group was told they had sixty
minutes, and we stopped groups after the allotted time. Two observers took
notes throughout each session about actions and things said by participants.
Upon completion of the storyboarding task, the participants were asked to
fill in a questionnaire about their former experiences, their findings regarding
the storyboarding task and collaboration within a multidisciplinary team, and
opportunities for future storyboarding tool support. The questionnaire can be
found in Appendix B.3.

5.3.4 Observations and results

In this section, we present the findings of our study, based on the results of the
questionnaire and the observations made throughout the three storyboarding
sessions. Figure 5.2 visualizes the physical activity on the table throughout
the sessions. If a region has a darker color, it means there was more frequent
physical activity in that region, and vice versa. We automatically generated
this visualization from the video recordings, based on the movements of par-
ticipants. Because our participants were seated at a prearranged location
around the table and tended to stay at that location throughout the sessions,
we can more or less associate physical activity on the table with particular
participants. This approach obviously has its limits, since it does not consider
participants reaching across the table, for instance. Therefore, we have to rely
on our observations to interpret the physical activity correctly.

5.3 Observational study 123

Figure 5.2: A shot of a video that recorded the table during a storyboarding session
and a visualization of the participants’ physical activity on the table throughout each
of the three sessions, automatically generated from the videos (darker color means
more frequent activity).

Individual preparation

During the individual preparation prior to the collaborative storyboarding,
several participants highlighted phrases in the provided text. All participants
structured the information in a certain manner: a few used bulleted lists, while
others represented it by means of graphical artifacts, ranging from diagrams
to sketches. Materials used during preparation include the available images,
colored pens and highlighters, notebooks, post-it notes and index cards.

In terms of content, the roles of the participants were clearly expressed
in the artifacts they prepared. The HCI specialists mainly focused on the
relationship between personas, devices and tasks, the designers focused on
UI designs and accompanying requirements, the systems analysts focused on
the devices and their connections, and the stakeholders focused on general
requirements and the needs of the personas. In all sessions, participants began
to explain their prepared artifacts to the others once the cooperation started,

124
An observational study on collaborative storyboarding in

multidisciplinary teams

but in two out of three sessions, not all members presented their preparation.
Artifacts were rarely included explicitly in the storyboard, but participants
did use them during discussions.

Storyboarding task

The approach to the storyboarding task differed in the three teams. Team
A started by shortly discussing their strategy for storyboarding and decided
to first depict the equipment and users in the different rooms of the house.
Almost immediately after this decision, they started creating the first scene
collaboratively, in a shared space in the middle of the table. Next, the team
implicitly split in two to prepare other scenes. Awareness was maintained,
since participants frequently switched between cooperating with their neighbor
and cooperating with the entire team, and a lot of the work was done in the
middle of the table. The HCI specialist maintained the relationship between
the storyboard and the scenario. For team A, Figure 5.2 clearly shows the high
degree of activity of the HCI specialist, the cooperation between neighbors,
and cooperation with the entire team.

Team B first discussed the system based on the requirements mentioned by
the stakeholder. After a discussion of approximately fifteen minutes, in which
some decisions regarding the system were already made, the HCI specialist
reminded the team of the storyboard and took the lead in creating the scenes.
The other team members were actively involved in the discussion and handed
required images to the HCI specialist. Once the HCI specialist started creating
a new scene, the stakeholder and designer finalized the former scene together.
Figure 5.2 shows the high activity corresponding to the leading role of team
B’s HCI specialist, as well as the stakeholder and designer collaborating to
complete scenes.

Not unlike team B, team C first discussed the system based on the re-
quirements presented by the stakeholder. This discussion lasted nearly thirty
minutes before a first scene was created. While discussing the devices for the
system, the available images were put in the middle of the table to debate the
different options and to decide which devices should be used. Again, it was
the HCI specialist who reminded the team of the storyboard and who, based
on the discussion, started creating the different scenes. Team C shows the
least amount of cooperation between participants in Figure 5.2. The seem-
ingly high activity of the systems analysts was actually caused by the HCI
specialist, who was active in that region while creating scenes.

When considering the storyboarding sessions altogether, system features

5.3 Observational study 125

that were implicitly described in the scenario led to a lot of discussions. Some-
times it was just one person who noticed a particular requirement, but in
many cases, visually representing situations sparked these discussions. Par-
ticipants used the part of the table in front of them as personal workspace,
and the available images were scattered across the middle or side of the table
to give everyone an overview, somewhat similar to the findings of Scott et
al. [Scott 04].

Resulting storyboard

The resulting storyboards consisted of seven to ten scenes, and can be seen
in Figure 5.3. All storyboards contained scenes representing personas and
devices, and showed the status of particular devices (e.g. a light that was
switched on or off). Two storyboards contained text to indicate the location
or general situation of scenes. One team added post-it notes to the story-
board that would remind team members of particular features, difficulties and
decisions.

Structuring the scenes of the storyboard was done in different ways. Team
A created a visual representation of all rooms and their equipment, and con-
sequently for each room the situation was depicted in different scenes. Teams
B and C tried to put the scenes in a chronological order, based on the flow
of events in the scenario. Extra scenes were inserted into the storyboard se-
quence when considered necessary. Scenes were labeled with numbers, and in
team C, titles were added to each scene as well.

Multidisciplinary team

HCI specialists rated their direct contribution to the storyboard highest on
average. Most systems analysts, designers and stakeholders rated their direct
contribution considerably lower: analysts and designers prepared artifacts that
were used to a lesser extent during the session, and stakeholders were more
verbally involved. We can clearly relate these ratings to the amount of phys-
ical activity seen in Figure 5.2 (e.g. team B’s systems analyst and team C’s
designer and stakeholder ranked direct contribution lowest). Stakeholders and
systems analysts rated their general influence on the storyboard notably higher
than their direct contribution. Frequent discussions between stakeholders and
analysts about feasibility and costs of particular approaches account for this
difference.

The participants confirmed in the questionnaire that being part of a mul-
tidisciplinary team had a positive impact on the storyboarding session, since

126
An observational study on collaborative storyboarding in

multidisciplinary teams

Figure 5.3: Frames from the videos that were recorded during each session, showing
the final storyboard of each group.

5.4 Lessons learned 127

it resulted in different perspectives, ideas and considerations. All participants
responded positively when asked about the usefulness of a digital storyboard-
ing tool. Features that were often reported as being essential point toward
the traditional benefits of digital systems: the ability to locate tools or im-
ages more easily, editing operations such as moving or scaling items in a scene,
cloning or reorganizing scenes and other artifacts in the storyboard, and saving
scenes and artifacts for later reuse.

5.4 Lessons learned

The observations of the teams indicate that findings of a study on a creative
activity such as storyboarding are not easily generalizable. Although teams
created storyboards in different ways, we could identify some emerging work
practices. We summarize the main requirements to support the work practices
that were most valuable during storyboarding, and provide concrete sugges-
tions on what type of design constructs can support these requirements in a
digital tool. We relate our requirements to design patterns for collaborative
tabletop applications described by Remy et al. [Remy 10]. Table 5.1 gives a
structured overview of the associated design patterns.

5.4.1 Allow for differences, support agreements

One of the first things to bear in mind is the individual preparation of a
storyboarding session. Atasoy and Martens [Atasoy 11] mention for example
that most designers continuously accumulate graphical material. They fre-
quently use this material as a source of reference and inspiration, browsing
through their collection to see if anything might be useful for the project at
hand. A digital tool should not only be able to import all kinds of digital
artifacts, but tangible artifacts such as paper documents should be considered
as well, since paper is still a very ubiquitous medium. Prior studies indicate,
for instance, that a designer still prefers pencil and paper early in the design
process [Bailey 01]. This maps to the pattern Input Tangibles, or Replace
Physical Paperwork in case hardware support for tangibles is missing.

In our study, preparation resulted in many different artifacts, including
device or task descriptions, UI designs, and requirements. Relations between
artifacts were also considered during preparation. As the representation style
and viewpoints differed greatly and the members of a multidisciplinary team
are already accustomed to specific tools and devices, we should not enforce one
particular way of preparing artifacts. The accustomed tools and devices can

128
An observational study on collaborative storyboarding in

multidisciplinary teams

T
a
b

le
5
.1

:
O

ve
rv

ie
w

of
th

e
m

ap
p

in
g

of
re

q
u

ir
em

en
ts

o
n

co
ll

a
b

o
ra

ti
ve

ta
b

le
to

p
d
es

ig
n

p
a
tt

er
n

s
o
f

R
em

y
et

a
l.

[R
em

y
1
0
].

5.4 Lessons learned 129

be supported by integrating personal devices through the pattern Embedding
Electronic Devices, and by allowing an easy exchange of data between devices
and the storyboarding tool.

Given the differences in the prepared artifacts and viewpoints, the team
members had to come to an agreement on several occasions. All teams, for ex-
ample, had to agree on the devices that would be used in the home automation
system. They also had to agree on a visual representation, so they scattered
the available images across the table and chose which picture would repre-
sent a particular person, room or device. Since involving all team members in
the decision making process results in more comprehensive storyboards, the
tool should enable everyone to contribute in the same way, preventing more
quiet users from being less involved and facilitating balanced decisions sup-
ported by the entire team. We already mentioned that interactive tabletops
produce more equitable participation in the related work section, which can
be enhanced by the pattern Balanced Participation. To enforce decisions sup-
ported by the entire team, a voting widget [Ryall 05] may require all users (or
a quorum) to agree.

5.4.2 Facilitate different approaches in structuring

Structuring the storyboard happened in two ways: one team preferred a spa-
tial arrangement, connecting scenes to a particular location, while the others
employed a temporal arrangement by organizing their scenes chronologically.
Since there is no “one best solution”, a digital tool should not be restricted to
one particular arrangement and should allow teams to create (different alter-
natives of) scenes and connections between them freely. In Storify [Atasoy 11],
for instance, a team can add multiple alternatives per storyboard frame with
the purpose of discussing various user experiences. The Anecdote [Harada 96]
tool, on the other hand, allows various design styles by providing several views
of the design, including an outline view, timeline view, and scene view.

Creating multiple alternatives of a scene and switching between multiple
arrangements of scenes can offer different perspectives. However, teams will
not take advantage of such features if the actions are too time-consuming. Ex-
isting tools like SILK [Landay 95], DENIM [Lin 00] and DEMAIS [Bailey 01]
support quick creation and editing of sketches by means of gestures, which
can be achieved on a tabletop through the pattern Hand Gestures. To quickly
move between various views of a design, DENIM relies on zooming, which can
be achieved through the pattern Zoomable Interface.

130
An observational study on collaborative storyboarding in

multidisciplinary teams

5.4.3 Maintain the design rationale

Visually representing the future home automation system stimulated the teams
to discuss some unclear and challenging features. Despite the interesting dis-
cussions, almost none of those considerations or decisions were included in
the storyboard. Since the design rationale is often valuable for later stages of
user-centered design and development, a digital tool should include features to
record the rationale. After investigating the relationship between imagery and
design rationale, Wahid et al. [Wahid 10] state the importance of presenting
the rationale in a designer-digestible format. This format depends on factors
such as the homogeneity of the team and the familiarity of the team with the
problem.

To maintain the design rationale, the digital tool can monitor all the arti-
facts and (encourage team members to) connect those artifacts to the story-
board (e.g. connect a designer’s user interface sketches to a particular scene).
SILK [Landay 95] also enables, for instance, designers to examine, annotate
and edit a complete history of the design. Maintaining the design rationale,
in combination with the balanced participation we mentioned earlier, may
lessen the dissatisfaction some participants reported regarding the extent of
their contribution, because their artifacts did not end up in the actual story-
board. To keep track of vocal discussions, audio or video annotations can be
connected to the storyboard.

To monitor all storyboard artifacts, the tool can track their ownership or
origin by applying the pattern User Identification. Haller et al. [Haller 05]
state the importance of clearly identifying who is manipulating each data
object in Coeno-Storyboard. Similarly, Avila-Garcia et al. [Avila-Garcia 10]
use a DiamondTouch [Dietz 01] tabletop to identify the input of up to four
different users, because identifying, saving and tracking contributions made by
team members can be relevant in a decision making scenario. To support easy
logging and audit trail creation, identity-differentiating widgets [Schmidt 10b]
or lenses [Schmidt 10b] can be incorporated. The subject of user identification
is discussed in more detail in Chapter 6.

5.4.4 Favor shared over personal space

While preparing, participants each created a personal workspace. Within the
boundaries of our observational study, privacy was never an issue when par-
ticipants shared data. In a real-life setting, however, privacy might come into
play from time to time [Shoemaker 01], although further studies are required
to investigate this aspect in the context of storyboarding in multidisciplinary

5.4 Lessons learned 131

teams. In case privacy becomes a concern, the pattern Private Space is appli-
cable.

During the cooperative storyboarding sessions, almost all work was done in
the shared space between two participants or toward the middle of the table,
even when multiple scenes were being created in parallel. Personal workspaces
were still used sporadically, for actions such as writing on a post-it note or
consulting the instructions or preparation. The sides of the table were mainly
used for storage (e.g. toolboxes, available images, finished scenes). Since space
is often at a premium, care has to be taken with personal workspaces or
toolboxes taking up lots of space, leaving too little shared space to support a
clear overview (as requested by participants in the questionnaire) and effective
collaboration.

A straightforward, but not always feasible approach is to use a tabletop
that offers enough space for all team members and their expected tasks, as
stated in the pattern Large Collaboration Table. Integrating personal devices
through the pattern Embedding Electronic Devices can reduce the problem of
limited space, since they can act as personal workspaces. The pattern Phys-
ical Object Storage Bin can be applied to store unused physical objects, and
the digital space can be extended by making space-demanding components
zoomable through the pattern Zoomable Interface. Another solution is to ex-
tend the environment with additional displays. Ryall et al. [Ryall 04] state
that for larger groups it might be necessary to add additional vertical displays
for shared information. Avila-Garcia et al. [Avila-Garcia 10] also suggest the
addition of one or more vertical displays. However, their goal is to accommo-
date passive team members, as one of the displays could show the interactions
that are taking place on the tabletop. In our case, we want to avoid mem-
bers being passive, and adding more displays may have a detrimental effect
on balanced participation.

5.4.5 Support visible and direct physical interaction

All participants favored a shared device such as an interactive tabletop when
asked about their preference for a digital system, because it makes collaborat-
ing easier and it encourages involvement and discussion. They commented that
physical interactions on a shared surface emphasize what is being done and
make participants explicitly aware of the progress and contributions. Some
participants voiced concerns over the fluency of sketching and text entry on
a digital tabletop. These concerns can be alleviated to some extent by in-
corporating additional input devices, such as a physical pen (the pattern Pen

132
An observational study on collaborative storyboarding in

multidisciplinary teams

Input Device) and keyboard (the pattern On-Screen Keyboard or Physical
Keyboard), or by supporting paper (the pattern Input Tangibles or Replace
Physical Paperwork). About half of the participants also suggested including
a personal device to consult preparations or take notes, with the ability to
easily share items with others (achievable through the aforementioned pattern
Embedding Electronic Devices). A point of attention, however, is the possi-
ble decrease of mutual awareness and involvement when personal devices are
being used extensively.

5.5 Conclusion

Digitizing the collaborative storyboarding process, and with it the resulting
artifacts, broadens the opportunities to reuse them at later design and devel-
opment stages. To enable an informed design of collaborative storyboarding
tools, we identified the following basic requirements through an observational
user study that includes an analysis of group interaction in multidisciplinary
teams: allow for differences and support agreements, facilitate different ap-
proaches in structuring, maintain the design rationale, favor shared over per-
sonal space, and support visible and direct physical interaction. By taking into
account these lessons learned, resulting tools will be more likely to engage all
team members, while respecting individual contribution and creativity. We
strive for a balance in participation among members of a multidisciplinary
team because involvement of all members results in more complete story-
boards. The result of a storyboarding session should reflect all opinions and
artifacts, also those of more reserved team members. Incorporating viewpoints
of multiple disciplines remains a challenge, however, and cannot be entirely
accounted on the storyboarding tool.

Our study also uncovered a limitation in analyzing video recordings. Fig-
ure 5.2 visualizes the physical activity of participants on the table. As stated
in Section 5.3.4, this visualization is automatically generated from the videos,
but only represents the physical activity on the whole and not the activity of
each user individually (for instance by visualizing each user’s movements in a
different color). Consequently, analysis was time-consuming, as it required us
to rely on our observations to interpret the activity of individuals. In the next
chapter, we propose a technique for non-intrusive identification of the different
users around a table, which can, among other things, help with future analyses
of a user’s physical activity.

Chapter 6

Carpus: a non-intrusive user identification
technique for interactive surfaces

Contents

6.1 Introduction . 134

6.2 Related work . 137

6.3 Carpus . 139

6.4 Benefits and limitations 140

6.5 Skin region and identity extraction 141

6.5.1 Step 1: Extraction of the dorsal hand region 141

6.5.2 Step 2: Feature extraction 145

6.5.3 Step 3: Feature matching 146

6.5.4 Step 4: Relating touches to identified regions 147

6.6 System specifications and performance 148

6.7 Evaluation of Carpus 148

6.7.1 Uniqueness of the dorsal hand region 149

6.7.2 Robustness against posture variations 150

6.8 Extending Carpus with tracking 154

6.9 Usage scenario . 156

6.10 Discussion . 158

6.11 Conclusion . 159

134
Carpus: a non-intrusive user identification technique for

interactive surfaces

6.1 Introduction

Interactive surfaces such as tabletops are well suited to support co-located
collaboration because of their ability to track multiple inputs simultaneously,
and we already presented various uses of such systems in collaborative environ-
ments throughout the previous chapters. However, the multi-user experience
on these devices can be enriched significantly if the inputs on the surface are
identified by associating them with particular users. That way, the system is
able to differentiate between the actions of multiple users.

New opportunities are, for example, widgets that are customized on a per-
user basis [Ryall 05] or virtual lenses that allow for personalized input and
output in a multi-user application [Schmidt 10b]. In addition, we also covered
a number of opportunities in the preceding chapters:

• Based on our evaluation of various strategies to invoke and visualize
help, we mentioned in Section 3.2.6 that help must serve the needs of
both novice and experienced users, so ideally the help system would be
able to adjust to a particular user.

• In the collaborative puzzle game we presented in Section 3.3.2, partic-
ipants of our study had to use a personal avatar to interact with the
puzzle pieces, because we wanted to log data regarding individual users.

• Whenever the rules of that puzzle game require two people to collaborate,
players can easily “cheat”. Since the game cannot prohibit interacting
with someone else’s avatar, one player is able to control both avatars at
once, for instance to move heavy objects at a faster speed.

• In Chapter 4, we discussed interaction management and access control.
When the user’s identity is readily available with every touch, it is pos-
sible for multi-user applications to enforce such protocols more strictly
on tabletops [Morris 04, Piper 06].

• In the previous chapter, we pointed out the usefulness of user identifica-
tion in different circumstances, for instance to keep track of an object’s
ownership and origin during a storyboarding session, and to help with
the analysis of users’ activities during an observational study.

Although several approaches exist for identifying users of a touch display,
each has important limitations. Some techniques require additional instru-
mentation of the users at the start of each session [Marquardt 11, Meyer 10,

6.1 Introduction 135

Roth 10] or the use of a mobile device [Schöning 08]. Others are error-prone
because they identify the shoes that the user is currently wearing [Richter 12],
which requires additional methods to associate those identified shoes with the
actual touch points on an interactive surface. DiamondTouch [Dietz 01] and
Medusa [Annett 11] assign an identity to fixed positions around an interac-
tive table, making them unsuitable for free-flow environments. In contrast to
these approaches, Schmidt et al. [Schmidt 10a] presented a system that uses a
biometric technique. However, very specific hand postures are required each
time the user’s identity is needed, which impedes the “naturalness” of the
interaction.

Figure 6.1: Carpus recognizes users by observing the dorsal region of their hands
with a high-resolution camera mounted above an interactive surface.

Because of these limitations, we decided to explore user identification by
looking at the user’s hands by means of a high-resolution camera. Mounting
a camera above a tabletop is a fairly inexpensive solution, and more impor-
tantly, non-intrusive from a user’s point of view. We started from the very
rudimentary idea of using the color model of hands to distinguish multiple
users. As initial results were poor, we continued to explore new ways of ana-
lyzing the camera images. Our exploration finally led to a novel technique to
relate touch points on an interactive surface to a user with high accuracy. We
named our technique Carpus.

136
Carpus: a non-intrusive user identification technique for

interactive surfaces

Carpus [Ramakers 12] supports walk-up-and-use scenarios in which each
touch can be identified transparently once users have been registered. By
mounting a high-resolution camera above an interactive surface, as sketched in
Figure 6.1, we are able to extract identifying information from the back of the
human hand (also known as the dorsal region) during traditional multi-touch
interactions. As a result, our technique is non-intrusive and can be used in
combination with a large range of touch technologies, including sensor-based,
optical-based and vision-based hardware. Carpus supports user identification
for setups intended for ad-hoc or informal collaboration [Gutwin 08], with
users collaborating in unplanned fashion.

As a proof of concept, we developed a prototype of the application for
a mobile phone retail environment that we described in our scenario in Sec-
tion 1.3.1. The system can differentiate between actions of customers searching
together for information about new products, a task that frequently involves
collaboration [Morris 08]. In such a situation, it is possible for the system to
interpret two-handed gestures unambiguously while multiple users are inter-
acting simultaneously. In addition, a profile can be created for each customer,
making it possible for the system to track a user’s interests in order to recom-
mend other relevant products.

Our main contribution is a new technique to identify touch points on a
surface non-intrusively by observing the back of the users’ hands. By applying
this identification technique, the actions of multiple users of an interactive
surface can be differentiated. Our approach is robust for hand postures that
are common during the practical use of multi-touch systems. For traditional
pointing, which is most common in touch-based interaction [Ryall 06a], Carpus
uniquely identifies both hands of a user with more than 97% accuracy, even
when up to twenty users are registered. As a result, it even becomes possible
to differentiate between actions performed by a user’s right and left hand
in order to support non-symmetric division of labor [Guiard 87]. For more
complex hand postures, which are less common, the recognition rates drop
to 82% in the worst case scenario. A smaller group size is recommended to
achieve higher recognition rates in these situations.

In the next section, we present more of the related work on identifying
users. We briefly explain our Carpus approach in Section 6.3 and its benefits
and limitations in Section 6.4. Next, we go through the details of the different
steps of the algorithm in Section 6.5, followed by a summary of the algorithm’s
performance in Section 6.6. In Section 6.7, we investigate how unique the
dorsal hand region is and we study the robustness of Carpus against posture
variations. We also consider the benefits of adding a tracking algorithm to

6.2 Related work 137

Carpus, in Section 6.8. Finally, we illustrate the usefulness of Carpus by means
of a scenario in Section 6.9, we discuss the overall results in Section 6.10, and
we present our conclusions in Section 6.11.

6.2 Related work

Identifying users is a challenging and prominent issue in surface computing
research. In this section, we review the previous efforts in more depth.

Limitations of existing solutions. As summarized in Table 6.1, existing
approaches to user identification on interactive surfaces have at least one of
the following limitations:

1. The naturalness of the interaction is impeded due to users being re-
quired to wear additional instrumentation or because of limitations on
the supported hand postures.

2. Users need to stay at a fixed position or area around the interactive sur-
face to preserve their identity. Changing position or leaving and reen-
tering the area results in a new identity being assigned.

3. Associating an identity to a touch point on the surface can be difficult,
resulting in ambiguities and accuracy problems.

Using additional instrumentation or specific hand postures. Visual
tags [Marquardt 11] can be easily used to identify users. Electronic tags such
as the IdWristband [Meyer 10] or the IR-Ring [Roth 10] are also able to iden-
tify users reliably, in this case by flashing a unique sequence in the infrared
spectrum to the interactive surface. However, these techniques require users
to wear equipment, and if users want to preserve their identity over multi-
ple sessions, they always have to wear the same tag or they have to “log in”
each time to associate their current tag with their identity. This overhead can
be a burden, especially when the system is used for short, spontaneous and
unplanned interactions.

Schöning et al. [Schöning 08], on the other hand, require the use of a mobile
device to authenticate with the system, while Schmidt et al. [Schmidt 10a] ex-
tract biometric geometry features from the human hand. In order to measure
these metrics reliably, however, a hand needs to be placed flat on the interac-
tive surface. These approaches require either additional equipment or unusual
hand postures, interrupting the “naturalness” of multi-touch interaction.

138
Carpus: a non-intrusive user identification technique for

interactive surfaces

Non-
intrusive

Location
invariant

Unambiguous
association

IdWristbands [Meyer 10] –
√

–

IR-Ring [Roth 10] –
√

–

Tagged gloves [Marquardt 11] –
√ √

HandsDown [Schmidt 10a] –
√ √

Mobile Phone [Schöning 08] –
√

–

DiamondTouch [Dietz 01]
√

–
√

Medusa [Annett 11]
√

– –

Interaction workspaces [Kim 09]
√

– –

Hand tracking [Dohse 08]
√

–
√

User tracking [Thelen 12]
√

–
√

Bootstrapper [Richter 12]
√ √

–

Carpus
√ √ √

Table 6.1: A summary of the strengths and weaknesses of related user identification
techniques for interactive surfaces.

Making use of positional data. Other researchers have presented non-
intrusive user identification by associating touches to users’ positions around
an interactive tabletop. DiamondTouch [Dietz 01] leverages a specialized ca-
pacitive surface to transmit an electrical charge through a user’s body when
touching it. A receiver unit inside each user’s chair is used to register all touch
events of the user who is currently sitting on that chair. If users swap chairs,
their “identity” will change.

Annett et al. [Annett 11] instrumented a tabletop with arrays of proximity
sensors to relate each touch to a user’s position. Although this technique can
track users’ bodies that are moving near the tabletop, the system cannot
preserve identities when users move further away, unless it requires user to log
in each time they return to the tabletop. The same holds true for assigning
movable and resizable regions to individual users, or using heuristics to divide
the interactive surface into discrete territories [Kim 09]. When a touch point
is located in a certain region, the system assumes that it belongs to the user
associated with that region.

Tracking (the hands of) users with an overhead camera [Dohse 08] or depth
sensor [Thelen 12] results in similar limitations. It enables the tabletop to
associate each touch with a user, but if a user leaves the area that is being
observed by the overhead camera or depth sensor, that user will be assigned

6.3 Carpus 139

a new identity upon return. These identification techniques can be practical
in situations where the users’ positions around the table are fixed or where
it is unnecessary to preserve identities when users leave, but they cannot be
used in free-flow environments where the interaction is interrupted frequently
by other activities and the users’ positions around the table are likely to vary.

Identifying the user’s shoes or gait. A few projects have demonstrated
the potential of revealing identities by observing shoes or gait. Bootstrap-
per [Richter 12] extracts features from the top of a user’s shoes, whereas Mul-
titoe [Augsten 10] observes shoe sole patterns. Orr et al. [Orr 00] took another
approach, identifying users by analyzing the forces and timings while walking
on custom-built floor plates. However, these extracted features are not unique,
as users can wear the same shoes or walk with an abnormal gait.

In addition, identification techniques such as shoe recognition, or for in-
stance face recognition [Abate 07], suffer from a large space between the touch
point and the region where the identity is extracted. Relating touches to
these identified regions requires additional tracking, and is therefore more
challenging and error-prone. This unreliable gap can be eliminated entirely
by extracting the user’s identity directly from the touch, using for example fin-
gerprints [Holz 10]. However, more research is needed to integrate fingerprint
scanning into multi-touch hardware.

6.3 Carpus

Our approach uses a high-resolution overhead camera, as shown in Figure 6.1,
and works as follows:

1. Carpus continuously captures frames from above the interactive surface
and extracts the visible dorsal hand regions.

2. Only when a user performs a “touch down” event, unique features are
extracted from the hand region visible at the location of the touch point
in the last captured frame.

3. These unique features are matched against a database of feature-user
pairs that was constructed beforehand during a short training session.

4. The resulting user identity associated with that touch becomes avail-
able to the application running on the interactive surface. The surface
then tracks the touch point to automatically identify subsequent finger
movements.

140
Carpus: a non-intrusive user identification technique for

interactive surfaces

The dorsal hand region, which is marked in Figure 6.2, is well suited to
user identification in a collaborative environment for several reasons. To be-
gin with, each person’s dorsal hand regions have many strongly identifying
characteristics, such as lines, grooves, folds and furrows [Napier 93]. Further-
more, the dorsal hand region is quite large and is also the part of the hand
that is the least flexible [Napier 93], making it possible to capture consistent
patterns in the skin over many frames. The dorsal hand region is visible to
an overhead camera throughout the majority of hand postures encountered
during interaction with a tabletop, something that is not true of fingers (e.g.
when performing vertical touches [Wang 09]).

Figure 6.2: Unique features are extracted from the dorsal hand region. Fingers are
excluded from the region.

6.4 Benefits and limitations

Carpus overcomes some drawbacks of current identification approaches (Ta-
ble 6.1). Our technique provides transparent identification of users by ex-
tracting unique features directly from the back of the hand. Once users are
registered, Carpus supports real walk-up-and-use scenarios. Furthermore, the
camera can be mounted above any type of surface and captures the entire
interaction. As a result, each touch point can be unambiguously related to
an identified skin region, enabling identification of touches even when arms of
users overlap. Carpus is also able to differentiate between the two hands of a
user, which enables non-symmetric devision of labor [Guiard 87].

6.5 Skin region and identity extraction 141

Carpus is, however, subject to a few limitations. First, the dorsal hand
region needs to be clearly captured by the camera. When performing very
fast movements, it is possible that the camera cannot capture a sharp im-
age of the hand. This can easily be addressed by using a camera with an
appropriate shutter speed. Furthermore, while Carpus can handle most com-
mon hand postures encountered during typical multi-touch interactions, some
techniques [Morris 06, Harrison 11b] require the user’s hand to be in such a
position that the back is not visible to an overhead camera. In order to get a
clear image of the dorsal region in those circumstances, we can add multiple
cameras to our setup, capturing the hand from different points of view.

Secondly, Carpus has not been designed to offer authentication for privacy
or security reasons. The current version of our algorithm can differentiate
between users working simultaneously on an interactive surface, but has dif-
ficulties eliminating users who are not registered. As a result, the automatic
detection of a “new” unregistered user is unreliable, and thus the users’ hands
need to be registered beforehand to achieve higher recognition rates. How-
ever, registration is only a one-time cost compared to techniques that require
configuration at the start of each session [Meyer 10, Roth 10].

Lastly, the reported recognition rates are only representative for groups of
people with Caucasian skin. We recruited people with similar skin color for
the evaluation of Carpus, because the similarity makes it harder to find unique
features. Further research is needed to investigate the effect of different skin
types on the accuracy of Carpus.

6.5 Skin region and identity extraction

In order to identify a hand that is visible in a captured frame, Carpus performs
the following four steps:

Step 1: Extraction of the dorsal hand region.

Step 2: Feature extraction.

Step 3: Feature matching.

Step 4: Relating touches to identified regions.

6.5.1 Step 1: Extraction of the dorsal hand region

First, the dorsal hand region needs to be detected in a captured frame. When
a touch event occurs, Carpus does this in three sub-steps:

142
Carpus: a non-intrusive user identification technique for

interactive surfaces

A. Extraction of the skin region.

B. Detection of visible fingers.

C. Detection of the position of the wrist.

Two iterations of this algorithm are executed for each detected skin region.
During the second run, a more accurate segmentation is used in order to
detect the dorsal region of the hand more precisely in particular situations, as
we explain below.

A. Extraction of the skin region

Skin segmentation [Phung 05] involves finding ranges of intensity values for
which most skin pixels fall in a given color space. The image is first converted
to the YCrCb color space [Phung 02] to obtain a decision rule that is robust
under varying illumination conditions. To support various types of human
skin, all pixels in a relatively large intensity range are classified as skin:

Y > 20, 85 < Cb < 135, 135 < Cr < 180 (6.1)

Figure 6.3-A1 shows areas of pixels that were selected using this static
segmentation rule. Because of the large intensity range, shadowed regions
between fingers are erroneously classified as skin pixels. Therefore, a second,
more dynamic skin segmentation rule is used after the position of the wrist
and the fingers are detected. This dynamic segmentation rule is based on the
average (µ) and standard deviation (σ) of the intensity of the pixels in the
detected dorsal region:

µY − 2σY < Y < µY + 2σY

µCr − 2σCr < Cr < µCr + 2σCr

µCb − 2σCb < Cb < µCb + 2σCb

(6.2)

In Figure 6.3-A2 the shadowed regions between the fingers are correctly
excluded with dynamic segmentation. Parts of an arm or finger are sometimes
erroneously classified as non-skin regions because of variations in the observed
skin color. However, this does not influence the outcome of our algorithm,
since only the back of the hand is used.

6.5 Skin region and identity extraction 143

Figure 6.3: Extracting details from the dorsal hand region (step 1 and 2): (A) detect
skin region in the image; (B) detect fingers; (C) detect wrist direction and position;
(D) extract dorsal hand region; (E) encode fine-grained details using LBP.

144
Carpus: a non-intrusive user identification technique for

interactive surfaces

B. Detection of visible fingers

Once the skin regions are extracted from a captured frame, fingers need to
be detected in order to exclude these regions from the final contour. We first
detect the tips and then the phalanges of the fingers, as depicted in Figure 6.3-
B. To detect fingertips, we use a curvature-based approach similar to Malik
and Laszlo [Malik 04] and Segen and Kumar [Segen 98]. The vectors from
each contour point k to k + n and k− n are computed (n is a fixed value and
depends on the distance between two contour points). If the angle between
the two vectors is below some threshold, then the contour point is marked as
a fingertip.

We use a relatively high angular threshold value of 60 degrees to make the
fingertip detection algorithm more “greedy”. Our algorithm even classifies the
knuckles of folded fingers as fingertips, because we want to exclude all visible
finger regions from our contour and are not interested in the exact position of
the real fingertips. The misclassification of finger valleys is avoided by taking
into account the sign of the angle between two vectors while processing the
contour in counterclockwise direction. Finally, non-maximal suppression is
used to avoid detecting fingertips too close to one another.

In order to extract entire finger regions, the phalanges of the fingers also
need to be detected. Boreki and Zimmer [Boreki 05] do this by finding the
position of finger valleys between two consecutive fingertips. However, we
need to support all hand postures, even when only one finger is visible (e.g.
pointing). Therefore, we take a different approach. Our algorithm starts
roaming the skin contour from each detected fingertip to the left and right.
Each contour point is then classified as part of a finger phalange until the
length of the finger has reached a maximum value or the angle between two
phalanges exceeds an angular threshold value. This threshold is inversely
proportional to the length of the finger and ranges between 40 and 60 degrees
in our algorithm.

C. Detection of the position of the wrist

Before we are able to detect the position of the wrist, we need to determine
its orientation. The orientation of the wrist is based on the orientation of
the arm, which is given as the principal axis of inertia of the extracted skin
region. The orientation of the principal axis, shown in Figure 6.3-C, can be
computed from the image moments up to the second order, as described by
Freeman et al. [Freeman 98]. When the aspect ratio of the skin region along
the direction of the principal axis is almost equal to 1:1 (e.g. a user with long

6.5 Skin region and identity extraction 145

sleeves performing a vertical touch), this approach is less reliable. In that
case, we use the principal axis of the entire arm region, obtained by doing an
additional background subtraction step.

Once the orientation of the wrist is known, the precise position of the
wrist can be determined. Kioke et al. [Koike 01] assume that this position
is always located at a fixed distance from the top of the hand. However, we
observed that the distance from the wrist to the top of the hand can vary
extensively, even when fingers are detected, because hands are free to move
in three dimensions when working on an interactive surface. Therefore, we
take an approach similar to Choi et al. [Choi 09], and evaluate the width of
the contour along the direction of the principal axis from the finger tips to
the arm region. The width of the contour has very specific characteristics at
the position of the wrist. In the direction of the fingertips, the width will
vary significantly, but in the direction of the arm, the width will be fairly
constant. We consider the wrist to be located outside the finger regions, at
the position where the width ratio reaches its maximum value, as illustrated
in Figure 6.3-C.

6.5.2 Step 2: Feature extraction

Once the dorsal hand region is detected using the algorithm described in
the previous step, as shown in Figure 6.3-D, unique features need to be ex-
tracted from this region. There are several interest point detectors, such as
SIFT [Lowe 99] and SURF [Bay 08]. However, the skin of the hand is flat and
does not contain a lot of these interest points. Therefore, we use the pattern
of the entire skin region as a feature. Before we can compare skin patterns
in different images (step 3), a texture descriptor is needed to quantize these
patterns. Color histograms [Swain 91] are the most straightforward image
descriptors, but this technique is very sensitive to changes in illumination.
During preliminary studies, we noticed that color histograms are not able to
capture unique information consistently over time, because the illumination
of the hand changes significantly due to shadows cast by the user’s body.

Local Binary Patterns (LBP) [Ojala 96] is a technique to describe very fine-
grained details of textures in images. In contrast to color histograms, LBP
is invariant to any monotonic change in intensity values. The LBP-operator
labels the pixels of an image by thresholding the three by three neighborhood
of each pixel with the center value. The decimal representation of the number
formed by the concatenation of all binary digits in the neighborhood is the
intensity value of the central pixel in the local pattern, as explained in Fig-

146
Carpus: a non-intrusive user identification technique for

interactive surfaces

ure 6.3-E1. Carpus uses Circular Local Binary Patterns (CLBP) [Ojala 02],
an extension to the basic LBP. The CLBP-operator samples the neighborhood
circularly with a variable radius. If a point on the circle does not correspond
to image coordinates, the point gets interpolated. The CLBP-operator is thus
able to capture patterns at different scales: a small radius captures local de-
tails, whereas a larger radius captures more global information.

In our preliminary exploration, we noticed that the luminance component
of the hand’s skin texture (i.e. the hairs, lines, grooves, folds and furrows)
contains most of the discriminative information. The color information was
not very discriminative. Therefore, we only capture information in the luma
(Y) component of the extracted skin regions. When capturing details at radii
two, five and ten using the CLBP-operator, we can describe most of the unique
features of the dorsal region of the human hand, as seen in Figure 6.3-E2.

6.5.3 Step 3: Feature matching

To identify users, Carpus matches descriptions of textures captured using the
CLBP-operator with a database of previously captured features. Before fea-
tures of different images can be compared, we need to ensure that these fea-
tures are captured at the same scale. Therefore, we only process a detected
dorsal hand region when a “touch down” event is performed.

A naive approach to comparing descriptions of textures would be a simple
histogram comparison. When using this approach, however, all spatial infor-
mation is lost. Through experiments, we discovered that without this spatial
information, the extracted features are not very discriminative. Therefore, we
use a technique similar to Ahonen et al. [Ahonen 04]. First, the skin region
is divided into square patches of equal size, as illustrated in Figure 6.4. We
currently use patches of twenty by twenty pixels. Next, histograms of these
local micropatterns are computed. Histograms of the same patch, which con-
tain information of fine-grained details at different scales, are concatenated to
form a single description of the patch.

Opposed to the approach of Ahonen et al. [Ahonen 04], the local his-
tograms of all patches in an image are not concatenated. Concatenation of
these local histograms implies the integration of the hand’s shape as a feature.
Since the shape of the hand can vary significantly under different postures,
we take another approach. Carpus compares two images by finding the best
match for each patch in a predefined neighborhood around the corresponding
position in the other image, as shown in Figure 6.4. We use a neighborhood
of two times the patch size.

6.5 Skin region and identity extraction 147

Figure 6.4: Feature matching (step 3): finding similar patches in a predefined
neighborhood.

Experimenting with different histogram comparison metrics, we found that
the histogram intersection technique provides the best matching of patches.
As a result, the similarity between features extracted from two dorsal hand
regions is the sum of the number of similar pixels for each of the patch’s best
matches. An unknown hand is assigned the identity of the dorsal hand region
in the training set with the highest number of similar pixels.

6.5.4 Step 4: Relating touches to identified regions

Once the identities of all extracted dorsal hand regions are known, each touch
point on the interactive surface needs to be related to an identified skin region.
In some touch identification techniques [Richter 12, Meyer 10], bridging the
spatial “gap” between the region where the identity was extracted (e.g. shoes,
wristband) and the actual touch point may cause errors. Carpus is able to
relate touch points to identified skin regions unambiguously, since each touch
is directly related to a single dorsal hand region by the contour of the fingers
detected in step 1.

The resulting user identity associated with that touch is made available
to the application running on the interactive surface through UDP messages.
The surface then tracks the touch point (for instance through its recognition
software, which in our case is FTIRCap [Cuypers 08]) to automatically identify
subsequent finger movements. Only identifying a hand on a “touch down”
event, and not during subsequent movements, enhances the performance of
our system significantly.

148
Carpus: a non-intrusive user identification technique for

interactive surfaces

6.6 System specifications and performance

For our experiments, we use a Philips BDT4225EM/06 42-inch (107 centime-
ters) multi-touch display, which can detect up to six simultaneous touches
through an infrared grid on top of the screen (Carpus was also informally
tested in combination with other technologies, such as an FTIR tabletop).
The display is mounted horizontally on a table, and a Point Grey Grasshop-
per2 camera with a resolution of 1624 by 1224 pixels is mounted above the
surface. The overhead camera transmits 22 frames per second at 45 dots per
inch via its network interface to an off-the-shelf laptop computer (2.1 GHz
Intel Core 2, 4 GB RAM) running Carpus. Artificial light sources are used to
ensure that over different sessions of our experiment, the lighting conditions
remain unchanged.

Carpus is able to identify users in real-time and scales well to higher reso-
lutions. Moreover, we did not focus on the performance of our implementation
of the algorithm, so many optimizations are possible. The extraction of the
dorsal hand region (step 1) takes 28 milliseconds on our system if only one
hand is visible in a single frame with a resolution of 1100 by 790 pixels, 41
milliseconds if two hands are visible and 52 milliseconds if three hands are
visible. When using a higher resolution camera, as in our setup, this step
can still be performed at the specified lower resolution without reducing the
accuracy of our identification technique.

After the position of the dorsal hand region is detected, features can be
extracted from the original high-resolution image. The feature extraction and
matching step is only executed on a hand that is detected at the position of
the “touch down” event in the last frame, to ensure that all extracted features
have the same scale. This process takes on average 43 milliseconds when the
hand is captured at 45 dots per inch. When sixteen samples are used for
each registered hand, matching features of a single hand takes on average 68
milliseconds if four hands are registered, and 155 milliseconds if eight hands
are registered.

6.7 Evaluation of Carpus

In this section, we present two experiments with regard to Carpus: we first
investigate the uniqueness of the dorsal hand region to validate our overall
approach, and next, we evaluate to what extent Carpus can handle posture
variations.

6.7 Evaluation of Carpus 149

6.7.1 Uniqueness of the dorsal hand region

In this first experiment, we evaluate the uniqueness of the dorsal hand region
over different users, as well as over different hands of the same user. Here, we
only consider the hands-down posture [Schmidt 10a], because in this posture
the overhead camera can capture clear images of the dorsal region. The ro-
bustness of Carpus with regard to posture changes will be tested in a second
experiment, which we discuss in the next section.

Tasks

We recruited twenty-two participants, five female and seventeen male, between
twenty-two and fifty years old. We instructed them to take off all jewelry
(jewelry could actually increase the recognition rates, because it often provides
very unique features). Each participant sat down at an interactive tabletop
and placed her/his left and right hand flat on the surface with fingers spread.
They did this at fifteen predefined positions that were evenly distributed over
the entire surface area. In each position, our camera captured a single image.
These images are used to train and test our system.

Procedure

From a set of 660 images, we simulated six scenarios that differed in the
number of hands registered with the system (four, ten and twenty users, each
registering one or two hands). For each scenario, we generated twenty-five
sets of randomly drawn groups. For each set, a ten-fold cross-validation with
a stratified random selection of training images is performed for each hand,
resulting in a total of 34000 trials (for each scenario twenty-five sets × ten
trials × two hands × number of users). A hand region is correctly identified
if the system can not only match it to the correct user, but also to the correct
hand of that user.

Results

Table 6.2 lists the recognition rates of our technique for the six scenarios. The
accuracy is very high in all scenarios, although it slightly decreases when larger
groups of users are registered with the system. These results demonstrate that
our extracted features are unique, even for fairly large groups of users. In addi-
tion, note that if both hands of a user are registered, our system can distinguish
between each hand the vast majority of the time. This enables identification
of both hands and thus non-symmetric devision of labor [Guiard 87].

150
Carpus: a non-intrusive user identification technique for

interactive surfaces

Group size

4 10 20

One hand registered 99.5% 99.4% 99.1%

Two hands registered 99.4% 99.4% 99.0%

Table 6.2: Recognition rates for the hands-down posture when one or both hands
of four, ten and twenty users are registered.

6.7.2 Robustness against posture variations

In the first study, we showed that the dorsal hand region can be used to reliably
map hands to users. The goal of this second study is to show that Carpus is
sufficiently robust for postures that are common during the practical use of
multi-touch systems. When interacting on a tabletop, the overhead camera
often gets a clear view of the dorsal hand region, e.g. when clicking a button,
as shown in Figure 6.5-A. When scaling or rotating an object, as depicted
in Figure 6.5-B and Figure 6.5-C, however, the captured dorsal hand region
can be skewed, potentially influencing the accuracy of the recognition. To
evaluate to what extent Carpus can handle posture variations, we ran a second
experiment.

Tasks

We asked our twenty-two participants to perform four additional tasks. During
these tasks, we did not give any instructions regarding hand postures with the
purpose of capturing natural interaction.

1. In the first task, participants were asked to color the contours of a flower
in a painting application using only their right hand (Figure 6.5-A). The
application showed a preview of the flower, with the colors we expected
the participants to use.

2. In the second task, participants scaled and rotated ten images (evenly
spread out over the surface area) to fit them in a box using tradi-
tional free transformation gestures (Figure 6.5-B). This task was first
performed with the right hand and afterwards repeated with the left
hand. The center points of the images were fixed, so that there was no
need to move them.

3. In the third task, those same images were displayed and participants

6.7 Evaluation of Carpus 151

Figure 6.5: The four tasks in our second experiment: (A) painting a flower; (B) scal-
ing and rotating images using one hand; (C) scaling and rotating images using two
hands; (D) pressing buttons.

were asked to scale and rotate them using both their left and right hand
together (Figure 6.5-C).

4. Finally, each participant was asked to click fifteen buttons that were
spread out over the surface area, first with their right hand and after-
wards with their left hand (Figure 6.5-D).

Data collection

During this experiment, all interaction was captured by our overhead camera
and streamed to a PC, together with all touch events (“down”, “move” and
“up”). Afterwards, all frames were extracted in which one or more “down”
events were registered, and these frames were used in simulations as training
and test data. For the first, second and third task, we collected on average

152
Carpus: a non-intrusive user identification technique for

interactive surfaces

35.5, 82.8 and 39.7 images per participant, respectively. For the last task, 30
images per participant were captured. In total, we collected 5009 images. For
the third task, in which two hands are visible at the same time, we provided the
position of the left and right hand to the system by processing those images by
hand. With this data, the correctness of the result of our hand identification
algorithm can be verified.

Procedure

Using our collection of captured frames, we simulated six scenarios that dif-
fered in the number of hands registered with the system (four, ten and twenty
users, each registering one or two hands). For each scenario, we generated
twenty-five sets of randomly drawn groups. We trained the system with ran-
domly drawn samples for each hand that needed to be registered. This training
set consisted of four samples of hands in the hands-down posture from the pre-
vious experiment, and four samples of the pointing task (task 2) and the free
transformation task with one (task 3) and both hands (task 4). We deter-
mined that this collection of sixteen training samples per hand is needed if a
large range of postures is to be supported.

After the training phase, we tested our system with ten randomly drawn
samples for each hand in each of the four tasks (the randomly drawn samples
were always different from the training samples), resulting in a total of 136000
trials (for each scenario twenty-five groups × ten trials × two hands × four
tasks × number of users). As in the first experiment, a hand region is correctly
identified if the system can relate it to the correct user and the correct hand
of that user.

Results

Figure 6.6 summarizes our findings of the second experiment. These results
show that hands in a pointing posture can be identified very accurately, be-
cause the overhead camera has a clear view on the dorsal hand region.

Carpus had the greatest difficulty identifying a single hand in a free trans-
formation gesture, such as the one in Figure 6.5-B. We observed that users
often rotated their hand in various directions while performing such a ges-
ture. As a result, the dorsal hand region was highly skewed in many of the
captured frames. In that case, matching features is much more difficult. We
also noticed that, because of tilting of the hand, the space between two fin-
gers was sometimes almost entirely occluded. That makes it harder for our
algorithm to detect all fingers correctly, in order to exclude them. Parts of

6.7 Evaluation of Carpus 153

Figure 6.6: The recognition rates for different group sizes for all four tasks of our
second experiment.

fingers still present in the feature extraction step will produce unreliable data,
which can influence the accuracy of our technique. However, even for these
challenging hand postures, the recognition rate for a smaller group of users is
still relatively high.

The accuracy for the painting task was somewhat surprising, as we antici-
pated that this recognition rate would be almost identical to the pointing task
because of the similarity of the expected hand posture. After analyzing our
captured data, we noticed that some users tilted their hand during this task to
reduce the occlusion of the active painting area, in order to paint the contour
more precisely. This behavior causes the extracted dorsal hand region to be
skewed, and makes feature matching more difficult. However, the results of
this experiment show that, even when no instructions are given and the user
can naturally interact with the surface, Carpus provides an accurate technique
for identifying touches of a small group of users.

We reproduced our entire experiment, after adding four randomly drawn
images of the painting task to the training set. The recognition rate of the
painting task was significantly higher (97%, 96.5%, 97.8%, 96.2%, 96.1% and

154
Carpus: a non-intrusive user identification technique for

interactive surfaces

95.5% for the six scenarios). The accuracy for the other tasks remained al-
most unchanged. This suggests that the recognition rate can be improved by
training the system with samples of hand postures that are more similar to
the hand postures that will occur in the application.

One can imagine many other hand postures that can be used on interactive
surfaces. However, our tasks produced a wide range of postures that are very
common during the practical use of multi-touch systems.

6.8 Extending Carpus with tracking

As discussed in Section 6.3, Carpus captures frames and extracts the visible
hand regions continuously. However, unique features are only extracted from
the hand region when a user performs a “touch down” event. In other words,
the algorithm only considers the last captured frame when identifying a user.
In this section, we consider tracking and identifying a user’s hand as it moves
across the screen, gathering data about that user’s identity over time. If we
can relate a user’s hand to measurements from previous frames, we may be
able to prevent certain errors during the identification, for instance when the
dorsal hand region is not clearly visible to the overhead camera (e.g. the user’s
hand is tilted sideways or upside down).

To implement a suitable tracking algorithm, we first have to consider a
few restrictions of Carpus. First of all, Carpus assumes that all the dorsal
hand regions that need to be identified are located at approximately the same
distance from the overhead camera. In our current approach, Carpus only
identifies a hand when it touches the surface, so this requirement is always
satisfied. A tracking algorithm can take this constraint into account in a
similar manner, by limiting the identification of a tracked hand to frames
during and immediately following touches. Alternatively, we could scale the
dorsal hand regions to the correct size, but the payoff of this added complexity
would be minimal, as the user’s hand is less likely to be in a reliable posture
when it is floating in the air.

Moreover, we do not have a reliable method of automatically assessing the
trustworthiness of an identity provided by Carpus. Every now and then, a
mismatch of identities occurs even if the feature matching step results in a
considerable similarity. Therefore, we cannot simply use tracking as a fallback
option in case Carpus is incapable of determining the correct identity, but we
need to come up with another way of using the temporal data. Bearing in
mind these different factors, we propose the following approach:

6.8 Extending Carpus with tracking 155

• We accumulate data by tracking a hand over time, using Carpus to
identify that hand in all frames during and immediately after a touch.
This results in a dataset that contains the tracking ID of the hand, the
user identities that Carpus associates with that hand over time, and the
number of times that a certain identity occurs, as shown in Table 6.3.

• When a sufficient amount of data is available, we analyze it to determine
if we should rely on the tracking rather than on the identification pro-
vided by Carpus. In the dataset in Table 6.3, it is safe to assume that
the hand with ID 0 belongs to the user with ID 1. In such a case, the
tracking data can be used to “override” the identity provided by Carpus.

• If the accumulated data is not conclusive, as is the case with hand ID
1, both the tracking data and the results provided by Carpus are not
very dependable. We keep relying on Carpus and add new data to the
dataset, which will hopefully become more conclusive over time. In
addition, we can report to the application that the provided identity is
not very reliable.

hand ID user ID
number of

occurrences

0 1 28

0 5 2

1 4 3

1 3 2

Table 6.3: Data accumulated by tracking a hand over time, using Carpus to identify
that hand in all frames during and immediately after a touch.

Although this approach can help to improve the overall recognition rate
of Carpus, it also has some limitations. First of all, the algorithm has no
immediate effect, as we have to accumulate a sufficient amount of data before
tracking comes into play. Possible errors made by Carpus will therefore not
be prevented during that period. Furthermore, if a user’s first interactions
do not involve reliable postures, tracking may take longer to establish the
correct identity, as is the case with hand ID 1 in Table 6.3. Finally, if a
hand disappears from the camera’s field of view and then reappears, it will be
assigned a new hand ID, and the data has to be accumulated again.

Initial tests indicate that tracking the users’ hands, using OpenCV’s1 pyra-

1http://opencv.org

http://opencv.org

156
Carpus: a non-intrusive user identification technique for

interactive surfaces

midal implementation of the Lucas-Kanade algorithm [Lucas 81], can prevent
a number of errors. However, further research is needed to find the optimal
parameters (e.g. the various thresholds used by the tracking algorithm) and
to assess the exact effect on the recognition rates. Note that tracking was not
considered in the aforementioned studies, because it would bias the results
depending on the reliability of the tracking and the type of user interface (e.g.
how frequently a user’s hands leave and enter the surface area).

Tracking can also be useful in other ways. We found, for instance, that
the recognition rate is higher when training the system with samples of hand
postures that are more similar to the postures that occur in the application.
This suggests that the accuracy of our technique could be improved for some
hand postures by refining the training set over time with samples of hand
postures that are performed in the actual application. The tracking algorithm
can be used to accomplish this, as samples for which no good match is found
in the training set can be added to the training data after a reliable sample of
the same hand has been identified.

6.9 Usage scenario

Carpus enables non-intrusive and transparent identification of users on inter-
active surfaces. This allows an entire range of new applications in which people
collaborate on a shared surface, such as buying new products [Morris 08]. We
developed an interactive application that can be deployed in, for example, a
mobile phone retail environment. Families or friends shopping together for a
new mobile phone can collaborate on a multi-touch tabletop located inside the
store to find more information about products and compare specifications.

Figure 6.7 illustrates a typical usage scenario, which we already described
in detail in Section 1.3.1. John and Jane are looking for a new mobile phone.
A nice looking phone catches their attention and they walk to the interactive
display to get more information about this product. (A) Because it is the first
time that they have visited the store, a simple widget allows them to very
quickly register both hands with the system. (B) Jane then puts the phone on
the interactive display to get more information (the device is currently recog-
nized by a visual tag). (C) Identity information from Carpus is used to create
a temporary profile for each customer. This makes it possible to track the
user’s interests in order to provide product recommendations. (D) While John
reads through the specifications of recommended phones, Jane finds another
nice mobile phone and compares two products using a two-handed gesture.
(E) Carpus unambiguously recognizes this gesture because the system can

6.9 Usage scenario 157

Figure 6.7: Carpus enables non-intrusive identification of (both hands of) users, for
example in a mobile phone retail environment, allowing users to find more information
about products and compare specifications.

158
Carpus: a non-intrusive user identification technique for

interactive surfaces

distinguish between the input of both users. (F) John notices Jane’s actions
and also wants to take a look at the product in which she is interested. Jane
then makes a copy of the information by moving it with her left hand to John.
(G) John and Jane are now both interested in the phone suggested by the sys-
tem and go find it in the shop. When returning back to the interactive display,
they notice that other customers started a new session. However, when they
touch the display, the system uses the identify information to restore their
session.

6.10 Discussion

Carpus extracts identity features from the back of the human hand. However,
as mentioned in the benefits and limitations section, the detection of this
region is difficult in two particular situations. The first situation is when
identification is needed while performing a very fast gesture, such as a swipe-
gesture. It is possible that the camera cannot capture a sharp image of the
dorsal region. This problem can be addressed by using a camera with an
appropriate shutter speed, or by adding tracking capabilities to the algorithm
in order to identify the dorsal region during slow movements, and track the
arm during fast movements.

Secondly, researchers have investigated new types of interactions in which
the dorsal hand region is not always clearly visible to the overhead cam-
era [Morris 06, Harrison 11b]. Tracking the hands, as described in Section 6.8,
can only partially solve this problem, because the system needs to gather reli-
able data before the tracking algorithm can take over. Using multiple cameras
that observe the dorsal hand region from different points of view may alleviate
this issue, making it much more likely that the system can capture a clear im-
age of the dorsal hand region. Such a multi-camera setup can also be used to
reduce occlusion problems that are inherent to the use of overhead cameras.
This is especially the case when vertical displays or tilted tables are used in
combination with Carpus.

In our first study, we found that the dorsal hand region is unique over a
large group of users. In a second study, we demonstrated the robustness of our
technique for a range of hand postures. Carpus has the highest recognition
rate (97.3% when twenty users register both hands) when a user clicks buttons,
which is a very common action in interfaces. Since we only identify a user when
a “touch down” event occurs, a lot of other interactions are actually reduced
to clicking (e.g. moving sliders, scrollbars and objects).

The recognition rate was the lowest when identifying scale and rotate ac-

6.11 Conclusion 159

tions performed by a single hand, as in Figure 6.5-B. This is expected, because
users rotate their hands in all directions when performing such gestures. As
a result, the camera captures a skewed view of the dorsal region that is more
difficult to match with the training set. However, user identification during
these actions is only required in very specific circumstances and the majority of
applications only need the user’s identity during pointing actions [Ryall 06a].
In addition, a tracking algorithm can be used to improve the recognition in
such circumstances, as discussed in Section 6.8.

The recognition rate of Carpus is most likely sufficiently accurate for all
postures when a small group of users are registered with the system. However,
even in these situations, Carpus is currently not intended for applications that
require real security (e.g. accessing emails, online banking). As the dorsal
hand region contains no papillary ridges, our extracted features are not as
persistent and immutable as fingerprints. It is, for example, possible for the
skin to get a tan, and wounds can result in permanent scars. However, more
long-term research is needed in this area to investigate the effects of these
changes on the recognition rate of Carpus.

As already mentioned in the benefits and limitations section, our technique
has some difficulties eliminating users who are not registered. In an additional
study, we tested our system with four known and four unknown users, which
resulted in an acceptance rate of 87% and a false acceptance rate of 7%. These
results indicate that explicit registration is needed when higher reliability is re-
quired. However, registering with the system is only a one-time cost compared
to systems that require configuration at the start of each session.

When a reduced reliability is acceptable, for example in case of very short
interactions with non-crucial applications, spontaneous registration is possi-
ble. We already demonstrated the potential use of interactive widgets as a
means for transparent registration in our usage scenario. We are exploring
several interactive widgets for registration purposes that can be easily inte-
grated in applications. Registration can be as simple as performing a single
gesture before first usage (e.g. similar to the interactions required to unlock a
smartphone). However, more experiments are needed to make sure that a suf-
ficient number of different hand postures are captured during the interaction
with this widget to get the best possible accuracy rates.

6.11 Conclusion

In this chapter, we presented Carpus, a non-intrusive technique for identifying
users of interactive surfaces. Our approach relies on the extraction of unique

160
Carpus: a non-intrusive user identification technique for

interactive surfaces

information from the back of the human hand. This hand region is extracted
from high-quality images captured by an overhead camera. Fine-grained fea-
tures are encoded using a special pattern description technique. For traditional
pointing tasks, Carpus can uniquely identify both hands of a user with 97.3%
accuracy, even when large groups of users are registered. For more complex
gestures that occur less often, smaller group sizes are recommended to achieve
a higher recognition rate.

Carpus enables touch identification for non-crucial applications in walk-
up-and-use scenarios in which users interact frequently and in an unplanned
fashion. In addition, our presented technique is able to differentiate between
the two hands of a user, opening up even more interaction possibilities. Car-
pus is also easy to deploy and can be used in combination with all existing
touch technologies. This makes Carpus suitable in many situations in which
touch identification can enrich the multi-user experience, for example by using
approaches such as iDwidgets [Ryall 05] and IdLenses [Schmidt 10b].

Pertaining to the research presented in this dissertation, possible applica-
tions of Carpus include customizing help on a per-user basis to better suit the
needs of particular users, enforcing game rules that require several players to
cooperate, upholding floor control policies and access control to documents
on shared surfaces, and tracking the origin and ownership of artifacts during
a collaborative storyboarding session. We also expect that Carpus can sat-
isfy the demand for easy to deploy techniques to identify users in groupware
studies, such as the observational study we presented in Chapter 5, or studies
regarding territoriality [Scott 04], orientation [Barnkow 12], and so on. With
Carpus, analysis of users’ behavior will be significantly less time consuming,
as each action is automatically associated with a particular user.

Part III

An engineering perspective

Chapter 7

NiMMiT: a graphical notation for modeling
touch-based and multi-user interaction techniques?

Contents

7.1 Introduction . 164

7.2 VR-DeMo and CoGenIVE 165

7.3 Related work and early experiments 170

7.4 NiMMiT . 174

7.4.1 Requirements for describing user interaction 174

7.4.2 NiMMiT’s basic primitives 175

7.4.3 Creation and execution of a NiMMiT diagram . . . 182

7.5 Case study: the Object-in-Hand metaphor 183

7.5.1 Selecting an object 184

7.5.2 Non-dominant hand interaction 186

7.5.3 Synchronization with the dominant hand 188

7.6 Extensions to NiMMiT 189

7.6.1 Adding support for evaluation 189

7.6.2 Integrating contextual and semantic knowledge . . . 191

7.7 Considerations on multimodal, touch-based, and
multi-user interaction 194

7.7.1 Modeling multimodality 194

7.7.2 Modeling touch-based and multi-user interaction . . 196

7.8 Conclusion . 205

164
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

7.1 Introduction

In the preceding chapters, we discussed touch-based and multi-user interaction
mostly from the perspective of the users of a system, although we also proposed
a number of software approaches and lessons learned in support of the designer
and developer. This chapter focuses entirely on the design and development of
interactive systems, as we present NiMMiT, a graphical notation for modeling
multimodal interaction techniques. Since the notation was designed with 3D
virtual environments in mind, we reflect on the possibilities of using NiMMiT
for modeling touch-based and multi-user interaction. Throughout this chapter,
we not only explain NiMMiT, but also a number of extension that others have
made over the years. My personal contributions to NiMMiT were mainly
situated at the beginning of my PhD, as I developed the original notation
together with dr. Joan De Boeck.

Designing and developing an intuitive and easy to use application is almost
never a straightforward undertaking, in spite of the extensive knowledge and
tools that we have at our disposal nowadays. When designing user interfaces,
we are presented with a large number of possibilities: choosing, combining and
adapting existing interaction techniques (e.g. particular multi-touch or multi-
user gestures), or developing new custom-made solutions. As the acceptance
of an interaction technique typically depends on the actual application setup
and the target users, the most appropriate method to evaluate a particular
solution is by testing it in a user experiment. However, testing several alter-
natives implies that each one must be fully implemented. This situation often
results in an iterative process in which a solution is designed, implemented
and evaluated multiple times.

To shorten the development cycle and to enable quick prototyping of
several alternatives, a model-based user interface design (MBUID) approach
can be adopted [Da Silva 00]. A MBUID process facilitates the develop-
ment of a user interface by defining it at different levels of abstraction. An
overview of different model-based processes reveals several common proper-
ties [Clerckx 04, Meixner 11]: nearly all processes start with a task model
abstraction and gradually evolve toward the final user interface through an
incremental approach. During each increment, the model is converted into a
new one by means of an automatic transformation (through certain mapping
rules) or manual adaptation by the developer.

In the IWT SBO project VR-DeMo [Coninx 06b] that was carried out in
our research lab from 2003 until 2008, the use of a MBUID process to de-
velop interactive virtual environments [Cuppens 05] pointed out the need to

7.2 VR-DeMo and CoGenIVE 165

also specify interaction in a high-level manner, rather than having to manu-
ally code it. However, until recent work on multi-touch and gestural inter-
faces [Paternò 09, Spano 12], MBUID approaches lacked the means to easily
describe rich interaction techniques (i.e. not just interacting with buttons and
menus, but with the actual objects in the environment through direct manip-
ulation or multimodal interaction).

In this chapter, we propose NiMMiT [Vanacken 06, De Boeck 07], together
with the CoGenIVE tool [De Boeck 08, De Boeck 09]. They were developed
in the context of the VR-DeMo project, in order to facilitate the design and
prototyping of multimodal interaction techniques with a minimum of coding
effort. NiMMiT allows a designer or developer to quickly test different alter-
natives or adjust existing interaction techniques according to the findings of an
evaluation, thereby shortening the development cycle significantly. Moreover,
the high-level description introduces a way to easily communicate about and
reuse solutions. While the CoGenIVE tool facilitates the creation of NiMMiT
diagrams, the VR-DeMo application framework supports automatic execution
of the interaction techniques by interpreting the graphical representation.

In the next section, we summarize the overall model-based process of VR-
DeMo and CoGenIVE, and how NiMMiT fits in this approach. In Section 7.3,
we describe existing graphical notations for modeling interaction techniques.
Based on some initial experiments, we put forward a number of requirements
to describe interaction in Section 7.4. We also explain the basic primitives of
our NiMMiT notation, and we show how NiMMiT diagrams are created and
automatically executed in VR-DeMo. We illustrate the use of NiMMiT by
means of an extensive example in Section 7.5. In Section 7.6, we summarize
the approach of NiMMiT extensions to support evaluation, and integrate con-
textual and semantic information. Finally, in Section 7.7, we reflect on the
use of NiMMiT for multimodal, touch-based and multi-user interaction, and
we present our conclusions in Section 7.8.

7.2 VR-DeMo and CoGenIVE

It is beyond the scope of this chapter to fully explain the overall model-based
framework for the development of virtual environments in which NiMMiT fits.
However, since this framework is responsible for the interpretation and auto-
matic execution of NiMMiT diagrams, we summarize some of its important
aspects.

The goal of the VR-DeMo project is to facilitate the development of in-
teractive virtual environments by defining all aspects of the application at a

166
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

Figure 7.1: Overview of the overall VR-DeMo framework [Coninx 06b].

high level of abstraction. To this end, conceptual models are transformed into
source code or interpreted by the application framework at runtime, as seen
in Figure 7.1. The process is divided in two main parts: the scene generator
relies on an ontology to design a virtual scene and the behavior of the scene’s
objects, and the interaction generator defines the user interaction. The scene
generator is part of the research that was executed by our partners in the VR-
DeMo project, the VUB-WISE research lab. However, this scene generator is
not mandatory and will therefore not be discussed in detail, as our interaction
generator can also use existing virtual scenes, or scenes that are generated in
another way.

The process of the interaction generator, shown in Figure 7.2, is supported
by the CoGenIVE (Code Generation for Interactive Virtual Environments)
tool. This process usually starts from a task model, describing the possible
tasks that can be performed by both the user and the system. We use the
ConcurTaskTrees (CTT) notation [Paternò 00], which structures various types
of tasks (i.e. user, abstract, interaction, and application tasks) in a hierarchical
tree with temporal relationships between subtasks at the same abstraction

7.2 VR-DeMo and CoGenIVE 167

Figure 7.2: The model-based user interface design process used in VR-DeMo and
CoGenIVE [De Boeck 06a].

level, indicating which tasks should be performed in sequence, which tasks
can be performed in parallel, and so on. Figure 7.3 illustrates the use of the
CTT notation.

From this task model, a dialog model is automatically derived using the
approach of Clerckx et al. [Clerckx 04]. The dialog model is implemented as a
state transition diagram, in which each state represents a set of tasks that can
be performed at a given moment (e.g. after selecting an object, that object
can be moved and rotated). In other words, the different states in the dialog
model correspond to the enabled task sets of the task model [Paternò 00].
Some tasks will cause a transition from one state to another (e.g. selecting
or deselecting an object), thereby enabling another set of tasks. Instead of
automatically deriving the dialog model, it can also be created manually in
the CoGenIVE tool, so the task model is optional.

The dialog model can be “annotated” with a presentation and interac-
tion description model. The presentation model describes the user interface
widgets, such as menus and dialogs, while the interaction description model
specifies the user interaction that relies on direct manipulation or multimodal
input. The task tree in Figure 7.3 contains several interaction tasks that typ-

168
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

Figure 7.3: The task model structures various types of tasks in a hierarchical tree
using the ConcurTaskTrees notation [Paternò 00].

ically fit into the interaction description model, such as navigate, select, move
and rotate. However, such tasks may also end up in the presentation model
(e.g. instead of using direct manipulation, an object can be rotated by setting
angular values in a dialog widget), or may not need further modeling because
they correspond to an atomic action of the framework (e.g. deselect an object).

As in most MBUID approaches, the presentation model describes the user
interface widgets at an abstract level, which means that the model does not
define the exact looks of the interface, but only what functionality is pro-
vided through the widgets. CoGenIVE saves the presentation model as a set
of files in the VRIXML format [Cuppens 04], an XML-based user interface
description language intended for 2D/3D hybrid widgets. In the final user in-
terface, concrete widgets are instantiated, such as 2D menus and dialogs that
are positioned in 3D space [Coninx 97, Raymaekers 01].

The interaction description model defines interaction tasks that rely on
direct manipulation or multimodal input. One such example is selecting
an object, which is a very common task that can be carried out in vari-
ous ways, such as the traditional virtual hand selection, ray casting, or even
speech [Bowman 04]. The technique to select an object could be decomposed
into its atomic parts in the task model, but this approach is not very practical,
as it results in unwieldy models. Furthermore, the framework has to be able
to automatically execute the modeled interaction techniques. We therefore
propose another notation, NiMMiT, which is discussed in the next section.

The dialog, interaction description and presentation model can all be cre-

7.2 VR-DeMo and CoGenIVE 169

Figure 7.4: The CoGenIVE tool, being used to interconnect the various models of
the user interface design process.

ated with the CoGenIVE tool. Once created, the different models have to
be interconnected. This is a manual process, in which the designer or devel-
oper indicates which events (either originating from an input device, or from
a user interface widget) correspond to a particular task. Such a task can be
an atomic interaction task, or an interaction that is described in NiMMiT.
Figure 7.4 shows the CoGenIVE tool being used to interconnect the models.
The pane at the top contains the dialog model, where a specific state can be
selected. The bottom pane in the middle shows how events are associated with
tasks for that specific state. All the available events are shown in the bottom
left pane, while all the task are listed in the bottom right pane.

Once the entire design process is completed, the specified models are used
to automatically generate a runtime binary of the application. CoGenIVE also
produces repository files that are interpreted by the application at runtime.
These XML-based files typically contain descriptions of the user interface wid-
gets and interaction techniques. To increase flexibility, the generated source
code of the application is made available. This enables a programmer to mod-
ify the source code if necessary, for instance to add specialized features. To

170
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

support an iterative prototyping process, manual modifications to the source
code need to be limited to designated regions. If the interaction description
model and presentation model are modified, changes in those regions are pre-
served in a subsequent iteration.

7.3 Related work and early experiments

In this section, we explore existing notations for modeling interaction tech-
niques and we present a few of our initial experiments on modeling interaction
in 3D virtual environments. The graphical notations described in literature
can roughly be divided into two families: data-driven approaches and state-
driven approaches.

Data-driven approaches. Notations such as Labview1, a graphical pro-
gramming language, and UML [Ambler 04] focus specifically on the data or
object flow. Their basic element is “activity”, supporting data input and out-
put, and the execution of such an activity is driven by the presence of valid
input data.

InTml [Figueroa 02], ICon [Dragicevic 04], which is used in the MaggLite
user interface toolkit [Huot 04], the OpenInterface Platform [Lawson 09] and
Squidy [König 10] are examples of data-driven notations for user interaction
modeling. Such diagrams consist of connected building blocks, sometimes
called filters, which are composed of input ports, output ports and possibly
some state information. An input port is used to receive information of a
particular type and an output port sends the generated information to all
filters that follow. In such a case, the control flow of the diagram is directed
by the data, since a filter is executed when it receives a legal value on all of
its input ports.

State-driven approaches. Notations such as statecharts [Harel 87] and
Petri nets [Petri 62] are based on the formal mechanisms of finite state ma-
chines. A basic element of such a notation is a state transition, which has the
general form “when event a occurs in state A, the system transfers to state B,
if condition C is true at that time”. We noticed many of the existing inter-
action techniques are of this nature. For instance, when the button is pressed
while an object is selected, we start dragging the object.

1http://www.ni.com/labview

http://www.ni.com/labview

7.3 Related work and early experiments 171

Some state-driven notations are extended to support data flow, or add ac-
tions to state transitions, which are executed each time the transition happens.
Examples are Colored Petri nets [Jensen 94] and Object Petri nets [Valk 98].
In the domain of user interaction modeling, notations are for the most part
derived from finite state machine solutions, but optimized for a specific pur-
pose. IOG [Carr 97], ICO [Palanque 94, Navarre 09], HsmTk [Blanch 06],
Chasm [Wingrave 09], Malai [Blouin 10], statechart modeling of interactive
gesture-based applications [Deshayes 11] and SMUIML [Dumas 11] are mainly
state-driven approaches, for instance.

Figure 7.5: Early experiment with a rudimentary data-driven approach to model
interaction in virtual environments. This example represents object selection.

Early data-driven experiments. In a preparatory study, we conducted
several experiments, describing existing interaction metaphors using different
notations. Figure 7.5 shows one of our early experiments with a straight-
forward data-driven approach, based on InTml and ICon. The big rectangles
represent filters, the circles are input ports and the diamonds are output ports.
The arrows model the data flow, while the small rectangles indicate input from
or output to a device or the application.

The example in Figure 7.5 represents the selection of an object. The first
filter handles the collision detection between the pointer and the objects. If
the pointer collides with an object, the filter outputs this object. When the
second filter receives an object as input, this object is highlighted. The third
filter requires two inputs before it can be executed: an object and a button
click. If both inputs are present, the highlighted object is selected.

We found data-driven approaches to be very intuitive and easy to compre-
hend. Unfortunately, a lot of interaction techniques are difficult to model due
to the absence of states, and rather complex structures have to be designed in
order to enable or disable certain parts of the diagram. Assume we want to

172
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

extend the example in Figure 7.5, so users can move a selected object. If the
object is deselected, a user should no longer be able to manipulate it, which
means we have to temporarily disable that part of the diagram. This kind of
behavior is typically much easier to model with a state-driven solution.

Figure 7.6: Early experiment with a basic state-driven approach to model interaction
in virtual environments. This example represents the creation of a new object.

Early state-driven experiments. We also conducted a number of experi-
ments with state-driven approaches, as illustrated in Figure 7.6. The approach
in this example is based on Interaction Object Graphs and Interactive Cooper-
ative Objects. The circles depict states and arrows represent state transitions,
with events as labels. The rectangles are actions that will be executed when-
ever the corresponding state transition occurs. Each action may contain one or
more conditions, which have to be fulfilled before the action can be executed.

The example in Figure 7.6 represents the creation of a new object. When
the user presses the button of the input device, a temporary object is created.

7.3 Related work and early experiments 173

Pro Contra

State-
driven

• fits the intuitive feeling of different
“phases” during an interaction

• lacks the data flow necessary for auto-
matic execution of a diagram

• fairly easy to read by humans • risk of state explosion

Data-
driven

• easy to understand principle, and
therefore easy to learn notation

• difficult to enable or disable different
parts of a diagram

• limited number of primitives • can be more difficult to edit

Table 7.1: Partial summary of the pros and contras of state-driven and data-driven
notations. A more detailed comparison is given by De Boeck et al. [De Boeck 06b].

As long as the button is pressed, the object can be moved around. When the
user releases the button, the temporary object is replaced with a definitive
object. Before finishing the interaction, this definitive object is selected.

We noticed that, while describing a technique using a state-driven nota-
tion, the lack of data handling can be restricting at times, especially when
automatic execution of the diagram is required. In the example in Figure 7.6,
for instance, we create a new object that is selected immediately after its cre-
ation. However, it is impossible to explicitly indicate that we want to select
the newly created object, and not some other object. Moreover, diagrams such
as Petri nets quickly become very complex, even when describing a reasonably
simple interaction.

Overview of our findings. A partial overview of the pros and contras of
state-driven and data-driven notations is summarized in Table 7.1. For a more
detailed comparison, we refer to the work of De Boeck et al. [De Boeck 06b],
in which an in-depth evaluation of the different notations is performed, using
cognitive dimensions [Green 89].

Based upon these findings, we concluded that a data-driven approach will
benefit from the inclusion of states, and vice versa. Therefore, we developed
NiMMiT, a notation for modeling multimodal interaction techniques that is
both state-driven and data-driven. The combination of both concepts allows
us to maintain data flow, while inheriting the formalism of state transition di-
agrams, which is necessary for interpretation and execution of diagrams. As a
testament to its strengths, a number of recent solutions also combine state and
data flow concepts, such as StateStream [de Haan 09], VITAL [Csisinko 10]
and the heterogeneous modeling environment ModHel’X [Deshayes 12]. The

174
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

main strength of NiMMiT lies in the easy-to-learn and easy-to-read diagrams,
which provide an unambiguous description of the interaction and can be in-
terpreted by an application at runtime.

7.4 NiMMiT

In this section, we first formulate a set of requirements, based on the short-
comings and strengths we identified in the previous section. Next, we describe
how NiMMiT meets these requirements by briefly explaining the syntax and
semantics of our notation. We also show how NiMMiT diagrams can be cre-
ated and executed in the VR-DeMo framework.

7.4.1 Requirements for describing user interaction

In our opinion, based on the findings of our aforementioned experiments, a
notation to describe interaction techniques should meet the following require-
ments: it should be event-driven, state-driven, data-driven, and it should sup-
port encapsulation for hierarchical reuse. In the next subsections, we motivate
the importance of these requirements in the context of interaction techniques.

Event-driven

Interaction techniques are inherently driven by user-initiated actions, which
we define as events. Since human interaction is multimodal by nature, it can
be interpreted as a combination of unimodal events (e.g. pointer movement,
click, speech command). An event has the following properties:

• a source, indicating the modality and/or abstract device that caused it
(pointing device, speech, etc.),

• an identification, defining the event itself (button click, a particular
speech command, etc.),

• parameters, giving additional information about the event (e.g. the po-
sition of the pointer).

Events can be seen as “the initiators” of different parts of the interaction.

7.4 NiMMiT 175

State-driven

While interacting with it, the system not always has to respond to all available
events. Most of the time, specific events must have occurred before other
events are enabled. For instance, the user first needs to click the pointing
device’s button before being able to drag an object. Therefore, we perceive an
interaction technique as a finite state machine, in which each state defines to
which set of events the system will respond. The occurrence of an event also
initiates a state transition. In our example, the dragging technique consists
of two states. In a first state, the interaction technique awaits a click, before
moving to the second state. The second state responds to pointer movements.

Data-driven

Limiting our vision on interaction techniques to a finite state machine would
be too restrictive. After analysing several interaction techniques in 3D virtual
environments, it became clear that throughout the execution of an interaction
some indispensable data flow occurs. A common sequence of actions is first
selecting an object and afterwards moving that object around. Obviously,
certain data must be transferred between the different tasks of the interaction
technique. Therefore, a notation to describe interaction techniques should
support data flow.

Encapsulation for hierarchical reuse

Some subtasks of interaction techniques recur rather frequently. Selecting ob-
jects is an example of a very common component. When modeling a new
interaction technique, the designer or developer should be able to reuse de-
scriptions that were created earlier. That way, recurring components do not
have to be modelled repeatedly. In other words, the notation should support
encapsulation of entire diagrams. In this way, existing diagrams can be reused
as a subtask of a new description. Using such building blocks contributes
significantly to more efficient development.

7.4.2 NiMMiT’s basic primitives

In this section, we briefly describe the basic syntax and semantics of NiM-
MiT. We aimed for a high-level graphical notation that not only meets the
abovementioned requirements, but also allows:

176
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

• designers and developers to communicate about the functionality of an
interaction technique, using an easy-to-learn and easy-to-read notation,

• an application framework to interpret a diagram, so it can be executed
and evaluated without having to write additional programming code.

The notation must provide adequate low-level information for a software frame-
work to execute the diagrams automatically, but it also needs to be sufficiently
high-level and easily readable for people to reason about the interaction tech-
nique.

States and events

Figure 7.7: A NiMMiT diagram showing the basic building blocks.

The NiMMiT notation is state-driven and event-driven, so a diagram can
basically be considered a statechart. When activated, an interaction technique
goes to its initial state, the “start” state, and simply waits for events. Each
state responds to a limited set of events, such as a speech command, a pointer
movement, a button click, and so on. The recognition of an event causes a

7.4 NiMMiT 177

chain of tasks to be executed, as shown in Figure 7.7. The blue arrows indicate
the firing of a task chain, their labels are the triggering events.

Since the number of possible device setups is immense, the VR-DeMo
framework uses VRPN [Taylor 01] to make an abstraction of concrete devices.
NiMMiT provides a similar device abstraction: devices are grouped in “cate-
gories” according to the events they generate (e.g. pointing, navigation, speech,
gestures). Devices within a category generate interchangeable events. As a
result of this abstraction, switching between devices in the same category does
not affect the interaction, and hence the NiMMiT diagram does not require
any changes. However, when a pointing device is replaced by speech input, at
least a small change to the diagram (changing the event arrow) is necessary.

Events are always noted in the form of “provider.event”. The provider rep-
resents a device or modality, and can be a single component (e.g. “pointer1”)
or a group (e.g. “allpointers”). A group is expanded to its components by
an “or” relation (e.g. “allpointers” becomes “pointer1 or pointer2”). Different
NiMMiT events can also be combined with each other (e.g. two events in an
“and” relation), which is explained in detail in Section 7.7.1.

Task chain and tasks

A task chain is a strictly linear succession of tasks. Figure 7.7 shows a task
chain (big white rectangle with grey border) containing two tasks (smaller
yellow rectangles). The next task in the chain is executed if and only if the
previous task has been completed successfully. The execution of a task often
results in an adjustment of the application’s internal state. For instance, an
object is selected or deselected, its position or orientation is altered, and so
forth.

The main actions of an interaction technique are obviously situated in the
tasks. The set of tasks that are essential for modeling a variety of interaction
techniques largely depends on the application domain, and for each particular
domain, the most common tasks have to be predefined. The VR-DeMo frame-
work focuses on interaction in 3D environments, and therefore predefines tasks
such as selecting, moving and deleting objects, doing rudimentary collision de-
tection, and so on. Since it is impossible to predefine every conceivable task,
we provide the possibility to define application specific tasks, called custom
tasks, by means of the Lua scripting language [Lerusalimschy 96]. Another op-
tion is to model a task as a separate NiMMiT diagram, and assemble diagrams
hierarchically, as we will discuss shortly.

178
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

Data flow, data types and labels

In a task chain, tasks can produce output and pass it from one task to another.
Therefore, each task provides input and output ports. The port’s data type
is reflected by a color and a letter within the shape, and only ports of the
same type can be linked to each other. As one of our primary concerns is
to keep NiMMiT as accessible as possible, we prefer a limited set of data
types, as shown in Figure 7.8: booleans, numbers, strings, objects, and a few
domain specific types, such as 3D positions and rotations in case of 3D virtual
environments.

Figure 7.8: The data type of input and output ports is reflected by a color and a
letter within the shape.

An output port of a preceding task is typically connected to an input port
of a next task. These input ports are either required (depicted as a square) or
optional (a round shape). To share data between tasks in different task chains,
or to store data for later reuse, we provide high-level variables in the form of
labels. The content of a label remains available as long as the NiMMiT diagram
is operational, and its scope is the entire diagram. The tasks in Figure 7.7
each have one output port, and the output port of the first task is connected
to the required input port of the second task by a red arrow. The first task
also has an optional input port. The output of the second task is stored in a
label (two small parallel lines with text in between) for later reuse.

State transitions and pass-through states

After a task chain has been successfully executed, a state transition takes place.
The green arrow in Figure 7.7 represents a state transition. The interaction
technique moves either to a new state or back to the current state (in a loop).
In a new state, the interaction technique may respond to another set of events.
An interaction technique is terminated when it reaches the “end” state.

A task chain can also be associated with more than one state transition,
in which case the value of the chain’s conditional label is taken into account.
Figure 7.9 shows a task chain with a conditional label “var” at the bottom,
and two possible state transitions. If the value of the label is zero, for instance,
the transition on the left is executed. This construction allows the designer

7.4 NiMMiT 179

or developer to define state transitions that are dependent on the result of a
task, since the output of a task can be linked to the label of the task chain.

Figure 7.9: A pass-through state that splits a task chain in two separate branches
by using conditional state transitions.

Sometimes, it is useful to create a task chain that immediately activates
another task chain after its execution, especially in the case of conditional
state transitions: in one condition, a simple state transition takes place, but
in another condition, we first need to execute some additional tasks. Pass-
through states are states that are left immediately after they are reached.
It enables splitting a task chain in two separate branches, as illustrated in
Figure 7.9. After the execution of the first task chain, we either return to the
initial state, or we go to the pass-through state. In that case, the second task
chain is immediately executed.

Preconditions

In NiMMiT, preconditions can be associated with tasks, task chains, or entire
diagrams. Preconditions are functions, written in Lua scripting or C++, that
return true when the conditions are met, and false otherwise. When a precon-
dition is not met, the corresponding task, task chain or interaction technique
is not executed. Preconditions are a way of countering the state explosion
problem: if the execution of a task chain depends on a number of conditions,

180
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

often a lot of states need to be added to model all those conditions. By using
preconditions, these extra states can be avoided.

Figure 7.10: A task chain with preconditions, indicated by the square box on the
event arrow.

Preconditions of tasks and diagrams are currently not visualized in a NiM-
MiT diagram. Preconditions of task chains, however, are visualized to some
extent, as shown in Figure 7.10. A precondition of a task chain is connected to
an incoming event arrow. In our example, the event arrow on the left has no
precondition, while the one on the right does (indicated by the square box on
the arrow). If “event2” occurs and the function that evaluates the precondi-
tion returns true, the task chain is executed. Otherwise, the event is ignored.
Because preconditions may become quite complex, the condition itself is not
visualized in the diagram. It can only be seen in the CoGenIVE tool.

Error handling

If an error occurs during the execution of a task chain (e.g. a required input
value is missing, or a precondition is not met), the chain has to be aborted. In
an early version of NiMMiT, this involved rolling back the values of the labels
and returning to the previous state in the diagram. Using this approach, the
application may end up in an inconsistent state. Assume, for instance, that
a task chain selects an object and stores it in a label. If an error ensues in
a subsequent task of that chain, the label’s initial value is restored and the
chain is aborted. As a result, the system is in an inconsistent state: the object
is still selected in the underlying framework, but the NiMMiT label no longer
reflects this.

To solve this problem, NiMMiT supports “non-transactional” and “trans-

7.4 NiMMiT 181

Figure 7.11: Error handling in NiMMiT by means of a transactional task chain and
error arrow.

actional” task chains, which can be combined with “error arrows”, as seen in
Figure 7.11. If an error takes place in a transactional task chain, the labels
and the tasks performed so far are rolled back one after the other. This means
that each task must implement a procedure to undo its actions, if applicable.
A non-transactional task chain, on the other hand, simply aborts if an error
occurs, without rolling back the labels or tasks. In both cases, the system
returns to the previous state in the diagram, unless an error arrow is present.
Such an arrow takes the system to another state when an error happens. In
case the error takes place in a task chain that was activated by a pass-through
state, the task chain preceding that state is also aborted or rolled back.

Encapsulation for hierarchical use

Interaction techniques have an interface similar to the tasks of a task chain,
i.e. a diagram can have input and output ports. The diagram in Figure 7.7
has one output port, for instance. As a result, not only predefined and custom
tasks can be used to build a task chain, but it is also possible to include an
entire diagram as a task, resulting in a hierarchical structure. When such a
hierarchical task is activated, the execution of the current interaction tech-
nique is temporarily suspended and saved on a stack, waiting for the nested
interaction technique to finish. In the next section, we show an example that
makes use of this feature.

In addition to reusing a single task, entire task chains can also be “col-
lapsed” in NiMMiT. From time to time, a task chain becomes quite large,
containing more lower-level information than is desired in a high-level view of
an interaction technique. As one of our goals is to create diagrams that are
easy to understand and communicate about, the details of such a task chain

182
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

Figure 7.12: A collapsed task chain only shows the labels that are used as input
and output in the chain.

can be hidden. A collapsed task chain is given a descriptive name, and only
shows the labels that are used as input and output in the chain, as shown
in Figure 7.12. The composing tasks are omitted, and the details of the task
chain are modeled in a separate sub-diagram.

7.4.3 Creation and execution of a NiMMiT diagram

Figure 7.13: The CoGenIVE tool, being used to create a NiMMiT diagram.

Since we want to use the notation to prototype and evaluate interaction
techniques, easy creation and automatic execution of diagrams are essential

7.4 NiMMiT 183

requirements. CoGenIVE includes an editor to create NiMMiT diagrams, as
seen in Figure 7.13. The basic building blocks can simply be dragged onto
the diagram from the pane on the left. The properties of an element (e.g. the
name of a state, the events associated with a task chain activation) can be
changed in the top right pane, and all the available tasks can be selected from
a list in the bottom right pane. As NiMMiT diagrams can be hierarchically
reused, they also appear in the list of available tasks.

The NiMMiT editor ensures that created diagrams are syntactically cor-
rect. The editor checks, for instance, that each state transition arrow leads to
a new state, and that data input is of the correct type when a label or output
port is connected to an input port of a task. To allow a framework to execute
an interaction technique, the graphical notation must be transformed into a
format that can be parsed efficiently. Therefore, the CoGenIVE tool saves a
NiMMiT diagram in an XML-based file format. The file can be loaded by
the interpretation engine at runtime, as illustrated in Figure 7.14. An inter-
nal “manager” maintains the state, listens to events, executes task chains and
keeps track of labels.

Figure 7.14: The execution process of a NiMMiT diagram. The diagram is converted
to an XML file, which can be loaded and executed at runtime.

184
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

7.5 Case study: the Object-in-Hand metaphor

This section illustrates the use of NiMMiT by means of a practical example.
We model a two-handed interaction technique that is called the Object-in-
Hand metaphor [De Boeck 04]. After an object has been selected, the user can
grab it by bringing the non-dominant hand’s fist near the pointing device in the
dominant hand. This causes the selected object to move toward the center of
the screen, where it can be rotated by the non-dominant hand and manipulated
by the dominant hand (e.g. change the texture of one of the cube’s faces), as
depicted in Figure 7.15. Since the interaction metaphor requires the user to
utilize both hands, this example also illustrates a synchronization mechanism
between different NiMMiT diagrams. To keep the diagrams readable, we do
not include full error handling.

(a) Grabbed object. (b) Hand brought close. (c) Hand rotated.

(d) Selected object. (e) Object-in-Hand. (f) Rotated object.

Figure 7.15: The Object-in-Hand metaphor [De Boeck 04] allows the user to utilize
both hands to manipulate an object.

7.5.1 Selecting an object

As a first step, the user is required to select an object. We chose a virtual
hand metaphor: highlight the object by “touching” it with a virtual pointer

7.5 Case study: the Object-in-Hand metaphor 185

and confirm the selection by clicking a button. This interaction component
can easily be expressed in the NiMMiT notation, as depicted in Figure 7.16.

Figure 7.16: A NiMMiT diagram that models the interaction task of selecting an
object.

The interaction technique starts in the state “Select”, which responds to
pointer movements and clicks. Each time the pointer moves (and the button
is not clicked), the task chain on the right is executed. This chain contains
three predefined tasks:

• Unhighlight currently highlighted objects. The task can be given
a list of objects as an optional input. If not provided, the task simply
takes into account all objects in the environment. The output always
returns an empty list, which is used to clear the label “highlighted”.

• Check for collisions with the pointer. The task has two optional
input ports: the objects and the pointers that should be considered by
the collision detection. If not provided, collisions are calculated between

186
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

all pointers and all objects in the environment. The colliding objects, if
any, are obtainable through the output port.

• Highlight the colliding objects. The task is only executed when
all required input ports receive an appropriate value. If no collisions
were detected, this prerequisite is not satisfied and the chain is aborted.
Consequently, the system returns to the state “Select” and awaits new
events. If the task does receive a proper value, the colliding objects are
highlighted and stored in the label. Finally, a task transition returns the
system to the state “Select”.

While the system resides in the state “Select”, click events cause the task chain
on the left to be executed. It contains only one task:

• Select the highlighted objects. The task receives the highlighted
objects through the label “highlighted”, and stores the results in a new
label, “selected”, which is used as output of the entire diagram. In
case the label “highlighted” is empty (i.e. no object was highlighted),
the chain is aborted and the system returns to the state “Select”. If
the task chain finishes successfully, a final state transition occurs and
the system moves to the state “End”. At that moment, the interaction
technique is completed.

In the next section, we demonstrate how this entire diagram can be reused as
a single, hierarchical task. The probes included in the diagram are explained
in Section 7.6.1.

7.5.2 Non-dominant hand interaction

After an object has been selected using the aforementioned selection technique,
it can be “grabbed” with the non-dominant hand. By bringing a closed non-
dominant hand near the dominant hand, the object moves to the center of the
screen, where it can be rotated by the non-dominant hand and manipulated
by the dominant hand (e.g. change the object’s texture).

Running the diagram in Figure 7.17 triggers the state “Start”. As soon
as an “idle” event occurs, which happens continuously while no other events
are generated, the first task chain executes. The only task in this chain is our
previously defined selection technique. While this hierarchical task is active,
the execution of the current interaction technique is suspended. When the
selection task ends, the current interaction technique resumes, and the yielded

7.5 Case study: the Object-in-Hand metaphor 187

Figure 7.17: A NiMMiT diagram that models the interaction of the non-dominant
hand in the Object-in-Hand metaphor.

188
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

result is stored in the label “selected”. Next, a state transition to “Prepare”
takes place.

“Prepare” awaits an event that is defined as “a closed non-dominant hand
brought in the proximity of the dominant hand” and triggers the second task
chain. The first task, a custom task, calculates the offset between the virtual
position of the non-dominant hand and the center of the screen. The task
requires the selected object as an input and returns the object’s initial position
and new position. The next task moves the object to its new position. The
final task simply sets a label to “true”, which is needed for synchronization,
as we explain shortly.

Eventually, the system ends up in the state “OiH” (abbreviation of “Object-
in-Hand”), awaiting an appropriate event. If the closed non-dominant hand
is opened, a transition (without task chain) to “Suspend” occurs. When the
hand closes again, the “OiH” state is reactivated. These state transitions im-

Figure 7.18: A NiMMiT diagram that models the interaction of the dominant hand
in the Object-in-Hand metaphor.

7.6 Extensions to NiMMiT 189

plement clutching and declutching, allowing the rotation of an object beyond
the physical constraints of the user’s wrist. “OiH” also responds to movements
of the non-dominant hand. In the corresponding task chain, these movements
are mapped to the object’s orientation. Finally, both states respond to the
withdrawal of the non-dominant hand. The associated task chain restores the
objects initial position and resets the label “isRunning”.

7.5.3 Synchronization with the dominant hand

The interaction of the dominant hand, which is described in a new NiMMiT
diagram, depends on the state of the non-dominant hand: when the non-
dominant hand is not in the proximity of the dominant hand, the dominant
hand’s interaction is disabled. To this end, the label “isRunning” is updated
by the “non-dominant Object-in-Hand” diagram and connected to an input
port of the new diagram, as shown in Figure 7.18. Based on the value of
this label, the execution of both diagrams is synchronized, as the “dominant
Object-in-Hand” diagram takes this value into account in a precondition (not
visualized in the diagram). The diagram of the dominant hand’s interaction
is not discussed in detail, as it offers no new insights into NiMMiT.

7.6 Extensions to NiMMiT

In this section, we summarize the most significant extensions that have been
added to NiMMiT over the years. This includes support for evaluation, and
the integration of contextual and semantic knowledge.

7.6.1 Adding support for evaluation

In the previous sections, we have shown how an interaction technique can be
executed by feeding a NiMMiT diagram to an interpretation engine. This
approach can save time that would otherwise have gone to writing program-
ming code. To exploit this advantage even further, NiMMiT is extended to
support automated data gathering and processing. It is well known that user
tests often require ad-hoc adaptations to the application code, in order to
log data for statistical analysis. Consequently, adding some level of automa-
tion to the evaluation process has many potential benefits, such as time effi-
ciency and cost reduction [Ivory 01, Palanque 11]. In this section, we explain
how NiMMiT is extended with three primitives: probes, filters and listen-
ers [Coninx 06a, De Boeck 07].

190
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

Probes

A probe is a measurement tool, connected to a particular primitive in a NiM-
MiT diagram, much like an electrician placing a voltmeter on an electric cir-
cuit. Probes can be associated with either a state, a task chain, a task, or an
input/output port. A probe returns relevant data regarding the primitive it
is attached to:

• state probes return all events occurring while the state is active;

• task chain probes return the activation event(s) of the chain, its status
(executed, interrupted, failed), and the value of the conditional label;

• task probes indicate whether or not the execution of the task succeeded;

• port probes return the current value of the input/output port.

If a probe is connected to a primitive that is inactive during the current phase
of the interaction, it simply returns an empty value. The example given in
Figure 7.16 shows probes connected to the state “Select” and to the task
“SelectObjects”.

NiMMiT’s probes are a useful tool for debugging an interaction technique.
By attaching a probe to all states of a diagram, one can for instance evaluate
the correct order of execution or monitor the events that are being triggered.
In addition, output of tasks can be verified using port probes. This approach
leads to a significant reduction of the time necessary to discover logical errors
in a diagram. The raw output of a probe is, however, not sufficient to collect
information during an evaluation.

Filters and listeners

To “refine” the data coming from a probe, we define filters. Filters are meta-
probes collecting and processing the output of one or more probes, and can be
chained one after another. Filters can rearrange or summarize data, or wait
until data arrives for the first time, and then start, stop or pause a timer. The
latter technique is useful for measuring the time spent between two states of
the interaction. Although the data necessary for an evaluation can be very
divergent, often the same patterns return: counting the elapsed time, logging
success or failure, measuring a distance, and so forth. Therefore, NiMMiT pro-
vides a standard set of commonly used filters, including (conditional) counting
and distance or time measuring.

7.6 Extensions to NiMMiT 191

Filters and probes only collect and structure information. By connecting
listeners to a probe or filter, output can be redirected to any output medium.
The default listeners can write data to a file or console window, or even send
it over a network to an external computer or a database. The data can then
be used for the statistical analysis of the user experiment. If the need arises,
our approach can be extended so that custom filters and listeners can be
implemented using the Lua scripting language.

Example

The NiMMiT diagram in Figure 7.16 contains two probes: the state probe
“LoopProbe”, providing a list of recognized events, and the task probe “Se-
lectProbe”, returning an empty value while the right-hand task chain is being
executed. When the user clicks the button, this second probe indicates whether
or not the task “SelectObjects” has been successfully completed. The outputs
can be redirected using a listener, providing a useful debugging tool.

In order to collect data for an evaluation, the standard “Timer” filter
can be applied. Connected to both probes, this filter starts a timer as soon
as “LoopProbe” generates its first output, and stops counting when “Select-
Probe” outputs its first value. The filter calculates the time elapsed between
the first and second trigger. Using an appropriate listener, the outputs can
be redirected for statistical processing. Coninx et al. [Coninx 06a] provide a
more extensive example, as they describe a user experiment conducted using
probes and filters.

7.6.2 Integrating contextual and semantic knowledge

The incorporation of contextual information can be valuable when an applica-
tion is used in a variety of contexts. For instance, an interaction task may be
performed using a particular technique when the user is sitting, while the same
task must be accomplished using another technique when the user is standing.
Therefore, Lode Vanacken et al. [Vanacken 07b, Vanacken 08c, Vanacken 08d,
Octavia 09] extended NiMMiT to support contextual interaction.

The process of context detection and context switching can be seen as
an “event-condition-action” process: a certain event can signal a change in
context, and if certain conditions are met, an action executes the context
switch. For instance, while interacting with an application, the user may
suddenly stand up (event). Before executing the context switch, the system
must ensure that the tracking system is active (condition). If the condition

192
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

Figure 7.19: Modeling contextual interaction as an “event-condition-action” process
in NiMMiT [Vanacken 08c].

7.6 Extensions to NiMMiT 193

is met, we disable the keyboard and mouse interaction, and we enable a new
technique that relies on tracking the user’s hands (action).

To accomplish this in NiMMiT, the framework is extended with events
that represent changes in context. Figure 7.19 shows a NiMMiT diagram that
handles the detection of a context switch. The events activate task chains that
check the conditions and switch the context if these conditions are met. This
NiMMiT diagram can be complemented with a second diagram to handle all
the actions that need to be executed before a context switch occurs, such as
enabling or disabling particular devices or user interface elements.

Figure 7.20: The use of concepts in a selection technique to only highlight “se-
lectable” objects [Vanacken 09b].

A second NiMMiT extension of Lode Vanacken et al. [Vanacken 09b] in-
volves the use of semantic knowledge. A recurring issue with modeling interac-
tion is that part of the interaction depends on the application being developed.
When modeling a selection technique, for example, often some objects should
be selectable, while others should not. This usually results in the creation of

194
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

custom tasks, which are not reusable and increase the development time. As
described in Section 7.2, the VR-DeMo framework also includes a scene gen-
erator. NiMMiT diagrams could make use of the semantic information from
the scene generator to avoid the need for (some of) those custom tasks.

To take the semantic information into account, a “concept” data type was
introduced to NiMMiT. Such a NiMMiT concept maps directly to a concept
of the ontology that is used in the scene generator. In addition, two new
tasks were defined: “GetObjects” and “IsOfConcept”. Figure 7.20 shows an
example of a selection technique that makes use of concepts and the task
“GetObjects” to only allow highlighting of “selectable” objects. In contrast
with an approach that uses a custom task to filter objects, this diagram is
application independent and can therefore be reused as long as the semantic
information is available.

7.7 Considerations on multimodal, touch-based, and
multi-user interaction

NiMMiT was initially developed with multimodal interaction in 3D virtual en-
vironments in mind, but we are currently exploring other types of interaction.
In this section, we briefly discuss the use of NiMMiT to model multimodal in-
teraction, and next, we investigate some of the limitations and opportunities
with regard to modeling touch-based and multi-user interaction.

7.7.1 Modeling multimodality

Multimodal interfaces offer the user various “modalities” of input and out-
put. A multimodal interface can combine, for example, the traditional modal-
ities (e.g. input through keyboard and mouse, output through a display)
with a voice modality (e.g. input through speech recognition, output through
speech synthesis). This offers several advantages, as the weaknesses of one
modality can be compensated by the strengths of another [Lemmelä 08], and
a multimodal application can be more accessible to users with an impair-
ment [Kane 11].

Multimodal input

Since we support several “categories” of devices, as described in the first part of
Section 7.4.2, multimodal input is accomplished by combining events from dif-
ferent categories. Based on the notion that multimodal interaction is caused by

7.7 Considerations on multimodal, touch-based, and multi-user
interaction 195

(a) Sequential. (b) Simultaneous. (c) Equivalence.

Figure 7.21: Multimodal support within NiMMiT.

several unimodal events, NiMMiT supports sequential and simultaneous mul-
timodal interaction, as well as equivalence between the modalities [Nigay 93].

Sequential multimodality can be modeled by defining subsequent states
that respond to events coming from different modalities. In Figure 7.21a, an
object is first moved using a gesture and, in the next state, deselected using
a speech command. Simultaneous multimodality is supported by combining
events on one arrow. Figure 7.21b shows, for instance, how a user moves
an object by combining a pointer movement and a speech command. Finally,
equivalent modalities are supported by using two parallel arrows. Figure 7.21c
illustrates a movement action, achieved by either a speech command or a
gesture.

As events triggered by users never occur at exactly the same time, we
use Nigay’s melting pot principle [Nigay 95] as a fusion mechanism. It lets
us combine input specified through different modalities, based on time and
structural complementarity. Note that the various relations between events,
combined with the melting pot principle, allow designers to implement all
possible relationships expressed in the CARE properties [Coutaz 95], but it is
beyond the scope of this chapter to discuss those properties in detail.

Multimodal interaction may also require the parallel execution of different

196
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

aspects of an interaction technique. One NiMMiT diagram on itself does not
support concurrency. However, multiple diagrams may be executed at the
same time. In that case, synchronization issues are solved by exchanging
labels between the diagrams, as shown in Section 7.5.

Multimodal output

Although NiMMiT strongly supports multimodal input, the notation is some-
what lacking with regard to multimodal output. NiMMiT does not contain
standard primitives for multimodal output, for example. Furthermore, a lot
of output is generated automatically by the underlying framework, to main-
tain simplicity. Most visual feedback is, for instance, provided “by default”,
such as the virtual scene rendering. Unfortunately, multimodal output is not a
straightforward feature to add, as such output can be very diverse (e.g. various
forms of visual, tactile, and audio feedback).

Looking at the earlier example of a selection technique, presented in Fig-
ure 7.16, the diagram includes a predefined task to highlight objects. The goal
of this task is to provide feedback on collisions between the virtual pointer and
the objects in the environment. However, the task offers no control over the
output modalities, and always shows the same predefined form of visual feed-
back. Likewise, the diagram includes a “SelectObjects” task that not only
handles the actual selection, but also the visual feedback. As a result, design-
ers and developers currently have no control over the feedback in a NiMMiT
diagram, and by looking at a diagram, it is unclear which tasks offer output,
especially when different modalities are being used.

An easy solution is to offer a number of predefined tasks for visual effects
(e.g. highlighting objects), audio effects (e.g. confirmation sounds), tactile ef-
fects (e.g. vibrations), and so on. This is similar to the approach of HIT-
PROTO [Panëels 10], which uses “action blocks” to provide haptic effects. As
a fallback option, custom tasks can be written to achieve effects that are not
available through the predefined tasks. However, to accomplish NiMMiT’s
goals, it is important to strike a balance between having more control over
the output, and having easy-to-read diagrams that are not overburdened with
tasks to handle all the required output. Splitting up all the diversified tasks
such as “SelectObjects” in an execution and a feedback task might complicate
diagrams too much. Therefore, further research is needed on how to deal with
output, for example through the use of an additional “presentation model” on
top of the current interaction description model.

7.7 Considerations on multimodal, touch-based, and multi-user
interaction 197

7.7.2 Modeling touch-based and multi-user interaction

As stated in Section 7.4.2, we developed NiMMiT with two important require-
ments in mind: designers and developers should be able to communicate about
the functionality of an interaction technique, using an easy-to-learn and easy-
to-read notation, and an application framework should be able to interpret
a diagram, so it can be executed and evaluated without having to write ad-
ditional programming code. Since these two properties are very useful when
researching and developing touch-based and multi-user interfaces, we investi-
gate if NiMMiT can be used outside the boundaries of virtual environments.

NiMMiT uses an event system to handle input from the user and can easily
support basic touch-based interaction (e.g. tapping, drag-and-drop). The VR-
DeMo framework and CoGenIVE tool basically need to be extended with the
typical touch events: “touch down”, “touch move”, and “touch up”, which
represent respectively a new touch (finger placed on the surface), a change in
position of an existing touch (finger moved), and the end of an existing touch
(finger lifted). However, as we discuss throughout the next sections, there are
some issues when trying to model more complex interaction techniques, such
as multi-user techniques or gestures.

Events and multi-touch setups

As discussed in Section 7.4.2, events in NiMMiT diagrams are always of the
form “provider.event”. The provider represents a device or modality, and is
either a single component (e.g. “pointer1”) or a group (e.g. “allpointers”). As
a result, in case of multi-user interaction, actions of users can be distinguished
if they each use a different device or modality. If two users interact with an
application by using two mice, for instance, the NiMMiT diagram includes
events with providers “pointer1” and “pointer2”. The same holds true for
other examples, such as two-handed techniques in which each hand uses a
different device or modality, as in the Object-in-Hand example in Figure 7.15.

When considering touch-based interaction, often one or more users interact
with both hands on the same device (e.g. a multi-touch tabletop). In that case,
the event provider is just “touch”, and it is difficult to distinguish between
touches from different fingers, hands or users in a NiMMiT diagram. When
modeling multi-user interaction, however, it is important to know the origin
of an event, since we need to ensure, for instance, that events originating from
one user do not inadvertently trigger state transitions in an interaction that is
being performed by another user (unless, of course, the interaction technique
requires two users to cooperate). In other words, it should be possible to

198
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

indicate in a NiMMiT diagram that all events have to come from the same
user, or that some events have to come from a different user.

For single-user applications, this might seem less of an issue, because most
interaction techniques simply require a number of touches (e.g. a pinch-to-
zoom typically requires the use of two fingers), but the source of those touches
is irrelevant (e.g. a user can pinch with any two fingers from the same hand, or
one finger from each hand). Nonetheless, we need to be able to indicate in a
NiMMiT diagram which events have to come from the same finger, and which
have to come from another finger. Consider, for example, the three-finger
rotation technique of the 3D puzzle game described in Chapter 3. The first
two fingers that are put on a cube determine the axis of rotation, while the
third finger spins the cube around that axis. When the first two fingers are
moved, the axis changes accordingly. To model this behavior in a NiMMiT
diagram, we need to be able to determine whether an event comes from one
of those two fingers or not.

First, we should look at how this is handled when coding a touch-based
application, instead of modeling it in NiMMiT. On a “touch down” event,
each touch is normally assigned a unique identifier by the tracking software
of the interactive surface. Subsequent “touch move” events from the same
finger are assigned the same identifier, until a “touch up” event occurs. By
considering this identifier, a developer knows which subsequent events origi-
nate from the same finger. In addition, if the hardware setup is capable of
identifying the different users and hands, for example by means of the Car-
pus technique described in Chapter 6, a developer has access to even more
information about each event. This kind of information also needs to be made
available in NiMMiT.

A straightforward solution is to write custom tasks or provide more prede-
fined tasks that offer access the data associated with the event(s) that trigger
a task chain, such as “GetTouchID” or ‘GetUserID” tasks. We use a simi-
lar tactic in Figure 7.17, as we retrieve the information of a pointer with the
task “GetPointerOrientation” (the optional input port can be used to indicate
from which pointer the data should be retrieved; if not provided, it takes the
pointer associated with the event that activated the task chain). Although
this method brings a lot of flexibility with it, the readability of diagrams will
also decrease, because events are no longer limited to event arrows, but also
play an important role inside task chains. Furthermore, the overall complexity
of diagrams will increase, as additional states and task chains are needed to
process the extra information of the events.

Another possibility is to extend the description of events, by adding more

7.7 Considerations on multimodal, touch-based, and multi-user
interaction 199

Figure 7.22: A conceptual NiMMiT diagram that illustrates the possible use of
extended events to indicate that all events need to originate from the same user and
finger.

information to the event provider. A fully extended event could look some-
thing like “touch.userid.fingerid.event”. If we want to model a multi-user tech-
nique, we can listen to the events “touch.user1.move” and “touch.user2.move”,
for instance. The additional identifiers in these events do not represent spe-
cific individuals, but indicate that both “touch move” events should originate
from two different users. Such an identifier is also useful to accomplish the
exact opposite: we can reuse the same identifier at different places in a di-
agram to indicate that all those events need to come from the same user
or finger, as illustrated in Figure 7.22. This method is somewhat similar to
the identifiers suggested in the model-based approach for gesture interfaces
by Spano [Spano 11], in order to assign the same touch to different building
blocks.

Gestures as events or models

The example presented in Section 7.5 includes a number of gestures, such
as closing or opening a hand and moving two hands in close proximity of
each other. In this case, gestures are represented as atomic events in the
NiMMiT diagram (e.g. “gesture.handclose”), and the details of those high-level
gestures (e.g. the recognition, the visual feedback) are hidden in the VR-DeMo

200
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

framework. This very straightforward approach has a few advantages. First of
all, external software can easily be used to do the gesture recognition, such as
the “$1 recognizer” for user interface prototypes [Wobbrock 07]. Furthermore,
adding such gestures to a NiMMiT diagram is very simple, and the atomic
events provide an appropriate high-level view on the gestural interaction. Of
course, this approach also has a major shortcoming: designers and developers
have very little control over the gestures.

Representing a gesture as a single event provides a very narrow view on the
gesture. Although atomic events are sufficient for traditional point-and-click
interactions with a mouse, most gestures take a lot longer to execute than a
simple click. The “closing of the hand” gesture, for instance, only fires an
event when the hand is completely closed. As a result, a NiMMiT diagram
has no information on the gesture at the start of or during the closing of
the hand. This information can, however, be very useful, for example if we
want the application to provide some kind of intermediate feedback during the
performance of the gesture. An obvious example is the typical pinch-to-zoom
interaction: users expect the zooming to take place while they move their
fingers closer together or further apart, and not only at the moment that they
end the gesture.

To this end, the single event that is fired after the completion of a gesture
needs to be replaced by multiple events that represent the different stages of
the gesture. Typically, a “start-update-end” arrangement is used, so the “clos-
ing of the hand” gesture would involve three separate events: “close start”,
“close delta”, and “close end”. These events are very similar to the basic
touch events we discussed earlier: “touch down”, “touch move”, and “touch
up”. Using the “close delta” event, the application can provide continuous
feedback on the gesture, as illustrated in Figure 7.23. Of course, depending on
the circumstances, it might not always be necessary to make use of all three
events. As an added benefit, this approach also facilitates the evaluation of
gestures (e.g. speed of performance, error rate), since we can connect probes
to the different stages of a gesture, as shown in Figure 7.23 and explained in
Section 7.6.1.

Another solution is to model a gesture completely in a NiMMiT diagram,
with the use of the basic touch events and some additional predefined tasks,
such as tasks to calculate the distance or angle between points. This way,
designers and developers have full control over the gesture, and they can cre-
ate new gestures without new events having to be defined in the VR-DeMo
framework. To make gesture models reusable, a diagram should only define
how the gesture is executed, without already connecting an actual effect to

7.7 Considerations on multimodal, touch-based, and multi-user
interaction 201

Figure 7.23: A conceptual NiMMiT diagram that illustrates the possible use of
multiple events to represent the different stages of a gesture.

the gesture. Modeling that effect can be done in a separate diagram. This
approach offers the most flexibility, but compared to the use of events to repre-
sent gestures, more low-level information is introduced to NiMMiT diagrams,
which makes the notation less suitable for designers with a limited knowledge
of programming.

Besides modeling gestures by means of basic touch events and predefined
tasks, part of the gesture recognition can be done in a custom task. The
Lua scripting that is currently used to define custom tasks could be comple-
mented with a language that specifically targets gestures. GDL [Khandkar 10]
and Midas [Scholliers 11] are, for instance, domain-specific languages designed
to streamline the process of defining gestures, while GeForMT [Kammer 10]
is a gesture formalization for multi-touch that is rooted in semiotics. Pro-
ton [Kin 12b] and its successor, Proton++ [Kin 12a], are declarative frame-
works to describe multi-touch gestures as regular expressions of touch event
symbols. Although an accompanying user study shows that tablature is an
effective graphical representation to cope with the complexity of regular ex-

202
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

pressions to some degree, the trade-off between expressiveness and complexity
of NiMMiT diagrams remains an important concern.

As a side note, we briefly want to discuss the performance aspect of the
runtime interpretation of NiMMiT models, as explained in Section 7.4.3. In
touch-based interaction, quite some attention goes to the performance of both
the hardware, as well as the software. Since users interact with the virtual ob-
jects in a very direct manner, by using their fingers, any delay in the system’s
response is perceived to be a discomfort. The performance of NiMMiT’s inter-
pretation engine has never been of any concern in our virtual environments,
but it might turn into an issue when all the available gestures are modeled as
separate diagrams. This aspect must be kept in mind while exploring NiMMiT
for touch-based interaction.

Execution of diagrams for multiple users

As stated in Section 7.4.3, the interpretation engine maintains an interaction
technique’s state, listens to events, executes task chains and keeps track of
labels. Consider the case of a straightforward touch-based selection technique
that selects an object when a user touches it, and deselects the object when
the user lifts her finger. Suppose the technique is awaiting a “touch down”
event. If two users are interacting simultaneously with the application, the
user who touches the surface first will cause a state transition, and the other
user’s touch will be ignored. In most cases, this is not the result we want to
achieve, for instance when two users want to select two different objects. In
other words, we want two selection techniques to be executed in parallel, one
for each user.

In Section 7.2, we explained how the task and dialog model determine
which set of tasks can be performed at a certain moment in time. However,
if a single selection task is added to the task tree, only one instance of the
selection technique is allowed to run when this interaction task is enabled. To
let two users simultaneously select objects, two parallel selection tasks need
to be added to the task tree, so that the task ends up twice in the same
enabled task set. This approach solves the problem in our example: when the
first user touches the surface, the associated event is consumed by the first
selection technique that is enabled, and the event of the other user will end
up in the second enabled selection technique.

As a next step, we need to ensure that each of the two selection techniques
process the correct events: the first technique should only react to events
coming from the first user, and ignore the events of the second user, and vice

7.7 Considerations on multimodal, touch-based, and multi-user
interaction 203

versa. Suppose, for instance, that each user selected an object. If one user
lifts her finger, then her object should be deselected, and not the object of the
other user. To accomplish this behavior, we can make use of the identifiers we
proposed earlier (e.g. “touch.user1.down”). The interpretation engine has to
compare the identifier of each new event to the identifiers of preceding events,
to make sure that this event originates from the required source.

Although this approach works as expected, the overhead of having to du-
plicate all the interaction tasks at the task level for each user is bothersome.
To find a solution, we reconsider the various steps in the model-based pro-
cess. Since parallelism is possible at the task level, multiple diagrams can
be executed at the same time. However, at the interaction description level,
an interaction technique always has one active state, and does not support
concurrency within one diagram. Since it must be possible for each user’s
selection technique to be in a different state at one moment in time (e.g. one
user has already selected on object, while the other user has not), we cannot
model the parallel selection techniques by only relying on our current notation
(i.e. without making use of the parallelism at the task level).

One option to support this behavior at the interaction description level
is extending NiMMiT. Instead of always having one active state during the
execution of an interaction technique, we can adopt a token-based method:
each active user is represented by a token, which starts in the first state and
“travels” through the diagram based on the events that are triggered by that
user. The labels of a diagram would be bound to a user, so each user can have
different values stored in those labels. By applying this approach, each user
can be in a different state, thereby solving the abovementioned limitation.
However, the concept of tokens also entails new ways of synchronizing the
actions of multiple users, and would increase the complexity of the notation.
A more in-depth investigation is needed to ensure that such a method does
not undermine our initial goals of having an easy-to-learn and easy-to-read
notation.

Looking beyond the interaction description model, the ConcurTaskTrees of
the task model could be replaced with cooperative ConcurTaskTrees [Mori 02].
These consist of multiple task trees: one task tree for each user role and
one task tree that acts as a coordinator, specifying the collaboration and
global interaction. This approach has some important limitations, however,
as each user has to take on one particular role and multiple users cannot
simultaneously fulfill the same role. Further research is ongoing to investigate
to what extent a cooperative task model and an interaction description model
based on (an extended version of) NiMMiT are suitable solutions.

204
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

Synchronization of interactions

Another factor to take into account is the synchronization of the actions of
multiple users, for instance during collaborative interactions. The cooperative
puzzle game described in Chapter 3 contains a clear example of such an inter-
action: in order to enlarge a small puzzle piece, two users are each required to
select a specific type of puzzle piece, move those pieces close to each other, and
simultaneously press two confirmation buttons. When pressing the buttons,
the interactions of both users need to be synchronized, and we need to check
if all the requirements are met.

At the task level, a task tree can handle such synchronization by means of
the temporal relationships between the tasks. In the interaction description
model, on the other hand, synchronization is achieved by using labels and
exchanging the outputs of diagrams, as demonstrated in Section 7.5.3. The
benefit of synchronization at the task level is that the task tree offers a struc-
tured overview of all the interactions. At the interaction description level,
however, synchronization is not limited to temporal relationships, as NiMMiT
diagrams can exchange any data through the labels and input or output ports.

One concern with using labels and data ports is that it may become error-
prone when modeling complex multi-user interaction that involves a lot of
synchronization, as the designer or developer needs to keep track of numer-
ous synchronization values. An alternate approach that provides a clearer
overview, is creating NiMMiT diagrams that are dedicated to synchroniza-
tion, much like the aforementioned coordinator of the cooperative Concur-
TaskTrees. However, further research is needed to assess the impact of such
synchronization diagrams on the overall accessibility of the notation.

Concluding overview

Based on the Object-in-Hand example and our initial exploration of NiMMiT
in the context of touch-based and multi-user interaction, we conclude that
the notation in its current state can be used to model gestural interfaces to a
limited extent. A gesture can either be represented by a single event, multi-
ple events in a “start-update-end” arrangement, or a NiMMiT diagram that
models the gesture. To this end, the underlying VR-DeMo framework needs to
be extended with the required events and an adapted set of predefined tasks.
By using NiMMiT, designers and developers can easily communicate about
the touch-based technique, and the diagram can be executed and evaluated
without having to write additional programming code.

To model more advanced interaction, our approach has to be enhanced in

7.8 Conclusion 205

a number of ways. First of all, NiMMiT needs a means of indicating that
particular events have to come from the same source (e.g. when the same user
has to perform several consecutive actions), or that events have to come from
a different source (e.g. when two users have to collaborate). Additionally,
the underlying framework should be able to concurrently execute an interac-
tion technique for multiple users. When we model a selection technique, for
instance, multiple users need to be able to select objects in parallel. This
challenge can be approached from the task model, for instance by adding two
parallel selection tasks to the task tree, or from the interaction description
model, by adopting a token-based method that allows each user to be in a
different state of a NiMMiT diagram.

The major downside of adding extensions to NiMMiT is that they often
make it more complex, which goes against our desire of having an easy-to-
learn and easy-to-read notation. Therefore, further research is required to in-
vestigate the aforementioned extensions on the subject of expressiveness and
complexity. In this investigation, we also need to evaluate other modeling lan-
guages and tools that can be used to complement or enhance NiMMiT at the
interaction description level. Throughout this chapter, we already discussed
some interesting approaches that have been introduced since the VR-DeMo
project ended in 2008, such as the gesture formalizations for multi-touch.

Improving the tool support is also an important factor to consider, as it
can have a significant influence on the accessibility of a notation. A user eval-
uation of the Open Interface Development Environment [McGee-Lennon 09],
a rapid prototyping platform for multimodal interaction, revealed that a suit-
able tool can enhance communication and exploration of alternate possibilities
during the design phase. Furthermore, a tool can help its users to cope with
complexity. In Squidy [König 10], for instance, users are able to adjust the
complexity of the user interface through the concept of semantic zooming,
which enables access to more advanced functionality on demand.

7.8 Conclusion

This chapter presents NiMMiT, a graphical notation that facilitates the design
of multimodal interaction techniques with a minimum of coding effort. The
notation allows a designer or developer to quickly test alternative solutions
or easily adjust existing solutions according to the findings of an evaluation,
shortening the development cycle significantly.

NiMMiT, based on both state-driven and data-driven primitives, provides
device abstraction through the use of events and supports an hierarchical

206
NiMMiT: a graphical notation for modeling touch-based and

multi-user interaction techniques?

build-up. The unambiguous modeling of an interaction technique allows dia-
grams to be interpreted and executed by our NiMMiT framework, which cur-
rently focuses on interactive 3D environments. We illustrated the expressive-
ness of NiMMiT by modeling the two-handed Object-in-Hand metaphor, but
the interpretation engine has also been extensively tested on other well-known
interaction techniques. Furthermore, we extended the notation to support au-
tomated data gathering and processing, which provides useful information for
debugging and evaluation.

In the context of this dissertation, we explored the limitations of NiMMiT
with regard to modeling touch-based and multi-user interaction. Although
gestural interactions can already be modeled to some extent with the current
notation, as shown in our Object-in-Hand example, additional extensions are
needed to fully support this kind of interaction, for instance to enable interme-
diate feedback during the execution of a gesture, and to differentiate between
the events of different users. Further research is needed to handle multiple
users in both NiMMiT as well as the model-based VR-DeMo approach, as we
need an easy way to execute interaction techniques for multiple users simul-
taneously.

Part IV

Conclusions

Chapter 8

Reflections, contributions and future work

Contents

8.1 Reflection on the research challenges 209
8.2 Summary of overall contributions 212
8.3 Future work . 213

8.3.1 Refining (help for) touch-based interfaces 213
8.3.2 Group aspects and long-term effects of help 214
8.3.3 A storyboarding tool for multidisciplinary teams . . 215
8.3.4 The future of touch-based interaction and beyond . 215

8.4 Scientific contributions and publications 217

8.1 Reflection on the research challenges

In Chapter 1, we put forward several research challenges, which we addressed
throughout the different chapters of this dissertation. In this final chapter,
we summarize the main conclusions of our dissertation with regard to those
research challenges, we present our overall contributions and we discuss various
opportunities for future work.

Our first research challenge revolved around making touch-based interfaces
in walk-up-and-use environments self-explanatory, for both single-user and
multi-user settings. Walk-up-and-use environments impose specific require-
ments on the accessibility of touch-based interfaces. There are few conventions
regarding the use of gestures, and the limited interaction time and need for

210 Reflections, contributions and future work

immediate use of the system do not allow for much training or exploration.
Furthermore, traditional help systems fail to express multi-touch interactions
in a comprehensible and concise manner, because they often involve multiple
synchronized actions. Therefore, we explored the concept of a self-explanatory
interface in the first part of this dissertation.

With TouchGhosts, which we introduced in Chapter 2, we offer a system
that demonstrates interaction techniques to the user through embedded visual
“guides”. The graphical nature of our approach lowers the threshold to consult
the help system and allows a clear view on the synchronization of multiple in-
puts. We presented a number of strategies to invoke and visualize help and we
discussed our COMETs and Microsoft .NET architectures, which allow easy
integration of a self-explanatory TouchGhost interface in new or existing ap-
plications. In Chapter 3, we discussed the results of a few initial evaluations of
different visualization strategies. While investigating textual help, demonstra-
tion videos and animated virtual hands in a single-user setting, participants
did not express a distinct preference for one method or another. However,
our observations revealed some important limitations, which we took into ac-
count while developing a collaborative puzzle game to investigate textual and
animated help in a multi-user environment. The second study shows that
animated help allows users to quickly discover the available interaction pos-
sibilities, with a positive effect on collaboration, as users worked together to
learn the application.

In the second part of this dissertation, we delved deeper into the collabora-
tive aspects of multi-user environments. The second research challenge dealt
with providing interaction management and enhanced mutual awareness in a
multi-user environment without interrupting the dynamic work flow. Allowing
multiple people to interact simultaneously in a highly collaborative setting
gives rise to several types of conflicts and possible misconducts, especially if
the environment can include both co-located and remote participants. Col-
laborative systems are thus in need of floor control policies that resolve and
prevent conflicts and misconducts gracefully. Our Focus+Roles approach, de-
scribed in Chapter 4, employs the user’s roles and focus to extend existing
solutions. Roles define a user’s privileges during a particular activity, while
tracking the users’ focus provides a means of countering some of the typical
problems caused by a lack of mutual awareness. Furthermore, in combination
with meta-data such as a document’s content type and sensitivity, roles make
up an effective access control system. We applied the approach to a group of
users interacting simultaneously in a digital meeting system, iConnect, which
results in elegant conflict handling and access to shared data.

8.1 Reflection on the research challenges 211

Continuing our work on collaborative environments, our third research
challenge was about a storyboarding tool to support the various disciplines in
a multidisciplinary team and maintain equitable contributions, without impact-
ing the team’s creativity. To take advantage of the different viewpoints and
approaches that members of a multidisciplinary team bring to the table, it is
important that each member has the opportunity to contribute equally to the
decision making process and that a degree of mutual engagement is established.
In Chapter 5, we investigated how multidisciplinary teams create storyboards
through an observational study, because storyboards are well suited to attain
a common understanding in multidisciplinary teams involved in user-centered
software design and development. We presented the lessons learned from this
study regarding the storyboarding process, group interaction and design ra-
tionale. Based on these results, we formulated and concretized requirements
to inform the design of a tabletop tool for collaborative storyboarding.

Multi-touch tabletops are well suited to co-located collaboration because
of their ability to track multiple inputs simultaneously, but the majority of
those tabletops are unable to associate contact points with particular users,
a feature that can improve a multi-user interface in a number of ways. Ex-
isting approaches to user identification are intrusive, require users to stay in
a fixed position, or suffer from poor accuracy. Therefore, our fourth and fi-
nal research challenge dealt with non-intrusive identification of the different
users around a tabletop, independently of the hardware technology. In Chap-
ter 6, we presented a technique for mapping touches to their corresponding
user in a collaborative environment. By mounting a high-resolution camera
above the interactive surface, we are able to identify touches reliably with-
out any extra instrumentation, while users can move around the surface at
will. Our technique, which leverages the back of users’ hands as identifiers,
supports walk-up-and-use situations in which multiple people interact on a
shared surface.

To complement our research on touch-based and multi-user interaction,
we investigated the development of such interfaces in the third part of this
dissertation. In one of the overall fields of research in our lab, we studied how
model-based design can aid in the development process by designing environ-
ments through the use of high-level diagrams. In this context, we introduced
NiMMiT, a graphical notation for expressing and evaluating multimodal user
interaction. NiMMiT is focused on 3D virtual environments, with limited sup-
port for multiple users. In Chapter 7, we reflected on the current limitations
of NiMMiT with regard to touch-based and multi-user interaction, and we
explored various solutions to extend NiMMiT beyond these boundaries.

212 Reflections, contributions and future work

8.2 Summary of overall contributions

Based on our experiences reported throughout this dissertation, we can state
that interactive surfaces such as tabletops offer great potential in walk-up-
and-use and multi-user environments, but to fully exploit that potential, the
user interface needs to meet a number of requirements. Touch-based interfaces
have to be very accessible, for example, as users need to be able to quickly
explore and learn the interface, especially in walk-up-and-use environments.
Furthermore, in a multi-user setting, collaboration has to be explicitly sup-
ported in order to be effective, for instance by handling conflicts, facilitating
decision making processes, and identifying the different users.

To situate our contributions to these challenges in the overall area of touch-
based and multi-user interaction, we reconsider the various research fields
listed in Section 1.4. The main contributions of this dissertation lie in the
fields of enhancing the accessibility of touch-based user interfaces and improv-
ing the collaborative aspect of multi-user environments. In this context, we
presented a number of approaches toward making single-user and multi-user in-
terfaces self-explanatory in walk-up-and-use environments, and toward provid-
ing conflict-free multi-user environments, where we can non-intrusively identify
the user behind each action. Although we primarily focus on touch-based in-
terfaces in this dissertation, some of our approaches can also be adopted in
other domains, such as deformable user interfaces and augmented reality, as
discussed in the next section.

As we approached these topics from various angles, we also worked in some
of the other research fields, in support of our primary goals. In our research
on multi-user environments, we explored two application domains: a general
meeting environment and collaborative storyboarding in a multidisciplinary
team. In case of storyboarding, observational studies have shown to be very
helpful in determining more specific requirements to inform the design of a
digital tool. In addition, we encountered a need for non-intrusive user iden-
tification throughout our work on multi-user environments. With Carpus, we
aimed for an identification technique that functions with any multi-touch tech-
nology, and as a result, we touched upon the field of hardware developments
by extending typical tabletop setups with an overhead camera and recognition
software.

From a design and development perspective, we put forward a number of
useful insights into how users interact with a help system in single-user and
multi-user settings, and how we can design a collaborative tool in an informed
way. With regard to innovations in the field of development processes, we

8.3 Future work 213

reflected on the use of a graphical description language, NiMMiT, to model
touch-based and multi-user interaction techniques.

8.3 Future work

Throughout the different chapters of this dissertation, we already discussed
the main limitations of our work and possible directions for future research.
In this section, we present an overview of the numerous challenges that are still
ahead of us, and we elaborate on how our results can be used and extended
in various ways, as we and other researchers tackle these challenges.

8.3.1 Refining (help for) touch-based interfaces

In Chapter 2, we mentioned a number of common issues regarding current
touch-based interfaces. The user interface components are mostly hidden
within the smooth aesthetic design of the user interface, with little to no
perceived affordances. As a result, users have difficulties figuring out which
of, and how, the various components respond to touches. In addition, there
are very few conventions regarding the use of gestures, resulting in a lack of
consistency across different applications and a low memorability of the ges-
tures. We proposed a solution in the form of TouchGhosts, a help system that
shows users the available gestures and how interface components respond to
them.

One obvious line of future work is investigating other means of invoking
and visualizing help. Other types of visualizations are, for instance, iconic
representations or storyboards that show the different steps of an interaction
technique. Instead of choosing one specific visualization to accommodate ev-
eryone, we can apply Carpus, our identification technique from Chapter 6,
to customize the help on a per-user basis. When a particular user calls for
help, the system simply selects a visualization strategy based on that user’s
profile, which can include a user’s personal preferences, known languages, and
level of experience. This offers numerous opportunities, such as automati-
cally translating textual help or annotations into the user’s native language,
or showing animated help to beginners and iconic representations of gestures
to experienced users.

Regarding the invocation of help, the results of our second experiment in
Chapter 3 indicate that triggering help automatically during the puzzle game
was not very useful. However, if the system uses Carpus to keep track of the
interaction history of a user, this data can be analyzed to invoke help in a

214 Reflections, contributions and future work

“smarter” way. Analysis may reveal, for example, that a user repeatedly tried
to rotate a puzzle piece without first selecting it, and the help system is then
able to respond by pointing out that particular part of the interaction. Instead
of showing the entire help animation on rotation, the user only gets the part of
the animation that is related to the problem at hand, which in this case is the
fact that you first need to select the puzzle piece. Splitting up animations in
smaller segments will also improve their overall comprehensibility, as it allows
users to process an explanation step by step, at their own pace.

In the long term, we also anticipate improvements to the accessibility of
touch-based interfaces by working on the aforementioned problems of affor-
dances and consistency, for instance through an in-depth exploration of touch
affordances [Schöning 09] and the suitability of gesture sets [Wobbrock 09] in
the context of walk-up-and-use environments. The objective of those investi-
gations would be to provide a comprehensive set of design guidelines regarding
the discoverability of touch-based interactions.

8.3.2 Group aspects and long-term effects of help

Based on the second experiment described in Chapter 3, we concluded that
animated help has a positive effect on collaboration, as users work together
to learn the application. However, we only observed groups of two, and both
participants knew each other and had no experience with the application. As
the diversity and size of the groups increases, we may see different behaviors.
We expect, for example, groups splitting in smaller subgroups and users tak-
ing on particular roles, such as the role of a teacher, explaining the different
gestures to the others, or the role of a facilitator, controlling the work flow
to prevent conflicts. Furthermore, the characteristics of the environment in-
fluence certain behaviors, as people act differently in a work environment or
public place.

We primarily concentrated on touch-based interfaces in walk-up-and-use
scenarios, which implies that the time to learn an interaction technique is
more important than remembering that technique over longer periods of time.
In work environments, on the other hand, initial training may not always be
an issue, but retention over time most likely is a looked-for characteristic.
Some ways of providing help may allow users to remember instructions more
efficiently than others [Palmiter 93]. Therefore, one of the long-term research
challenges is to set up a number of longitudinal studies to investigate the
effects of various visualizations on memory retention.

8.3 Future work 215

8.3.3 A storyboarding tool for multidisciplinary teams

In Chapter 5, we put forward a number of initial recommendations on how a
digital storyboarding tool can effectively facilitate collaborative storyboarding
in multidisciplinary teams on an interactive tabletop. The scope of the obser-
vational study that served as a basis for these recommendations was limited to
a certain degree, as we assembled three teams that had to work on a particular
topic during one session. In order to confirm and refine our recommendations,
it is necessary to observe multidisciplinary teams in a real-life setting over an
extended period of time. This will lead to further insights into aspects such as
the individual preparation before a storyboarding session and the importance
of maintaining the design rationale.

One of our recommendations highlights the importance of maintaining the
design rationale. Once more, we can rely on Carpus to identify the different
users, so it is possible to keep track of each user’s interaction history and con-
tributions. The system is then able to link those contributions to the different
scenes in the storyboard. A user’s interaction history and contributions are
also valuable when pursuing equitable contributions to prevent reserved users
from being less involved, and to facilitate balanced decisions supported by the
entire team. After determining the activity rate of each individual, the system
can prioritize the actions of less assertive users, whose actions may otherwise
be suppressed by more prevailing users.

8.3.4 The future of touch-based interaction and beyond

So far, we mainly discussed future work that is immediately linked to the
research challenges presented in this dissertation. Now, we look further into
the future, as we speculate about how our research can interact and merge
with other emerging technologies and domains. The recent evolution of touch-
based interaction was driven by the very fast development and propagation
of multi-touch hardware, on both a small (e.g. mobile phones) as well as a
large scale (e.g. tabletops). Given the current competitiveness in the market
of mobile devices, the development of innovative hardware will not come to an
end anytime soon, and advancements will either create new opportunities to
apply the research presented in this dissertation, or they will necessitate new
approaches.

With regard to mobile devices, high-quality bendable displays are among
the possible advancements, for instance to create flexible mobile phones with a
deformable user interface. Several manufacturers have already demonstrated
a concept device: interaction is no longer limited to the multi-touch screen,

216 Reflections, contributions and future work

as users can navigate through the user interface by flexing or twisting the
whole body of the device in a particular direction. Again, novel interaction
techniques will be introduced that users are not familiar with, and suitable
ways of revealing and explaining these interactions will be required. This ties
in with our research on TouchGhosts, even though it is currently focused on 2D
gestures on flat surfaces and further studies are needed to assess the suitability
of, for instance, 3D animations.

While mobile devices are typically used as personal devices, large interac-
tive surfaces such as the Samsung SUR40 (the Microsoft PixelSense display,
which measures 40 inches or about 102 centimeters) are often found in multi-
user environments. Although we call it “large”, such a surface is actually quite
small to support effective collaboration, even for small groups of users. One
solution is to introduce much bigger surfaces, the size of large meeting tables.
Interactive surfaces of those proportions may invalidate some of the current
guidelines on tabletop interaction, and solicit a reinvestigation of group behav-
ior, for instance during collaborative storyboarding. Furthermore, as physical
distances increase, new challenges will arise with regard to the readability and
reachability of data, and thus also the mutual awareness and engagement of
users.

Increasing the size of shared surfaces is only one possibility to support
larger groups of users. Ideally, there would not always be a need for a specific
infrastructure (e.g. a large multi-touch surface) when people want to collabo-
rate. Ad-hoc collaboration can be achieved by using personal devices, such as
tablets and mobile phones, with or without the inclusion of a shared display.
An environment such as iConnect already combines PDAs with shared sur-
faces, but the omnipresence of feature-rich devices such as smartphones offers
more opportunities regarding collaboration at any time or place. As stated
in Chapter 5, however, the inclusion of a shared surface typically yields more
equitable participation and only relying on personal devices may cause some
people to be less engaged in the group activity.

When users collaborate by using personal devices, the size of the displays
is a restraining factor as to how people are able to work with shared data. To
counter this, a shared display can be created through a small mobile projec-
tor [Schöning 10], which is already integrated into some present-day mobile
devices. Furthermore, instead of only relying on the touch-sensitive screen of
the mobile device for input, any surface (e.g. a regular table or wall) could be
transformed into an interactive surface by means of free-hand gesture recogni-
tion. OmniTouch [Harrison 11a] is a nice example of a wearable depth-sensing
and projection system that enables interaction on everyday surfaces. Free-

8.4 Scientific contributions and publications 217

hand gestures bring about some of the same challenges as touch-based inter-
action and flexible devices, as users have to be able to quickly discover and
learn the interaction possibilities.

Although it is difficult to predict what kind of developments the future may
bring, we envision that gestural interaction will gradually become the foremost
interaction paradigm. However, it may not involve touch-sensitive displays,
as personal devices could be replaced by a non-intrusive wearable computer,
such as Google Glass1. This kind of head-mounted display can be used in
conjunction with free-hand gestures to create an interactive augmented reality,
somewhat similar to SixthSense [Mistry 09]. In addition to ensuring that such
interfaces are accessible to their users, it will be an interesting challenge to
explore them in the field of multi-user interaction.

8.4 Scientific contributions and publications

The research presented in this dissertation is published in several scientific
articles. The following overview lists the most significant publications that
contributed in a direct way to this dissertation:

• [Vanacken 08b] Davy Vanacken, Alexandre Demeure, Kris Luyten, and
Karin Coninx. Ghosts in the Interface: Meta-user Interface Visualiza-
tions as Guides for Multi-touch Interaction. In Proceedings of the third
IEEE international workshop on Horizontal interactive human computer
systems, TABLETOP ’08, pages 87-90, IEEE Computer Society, Octo-
ber 2008, Amsterdam, the Netherlands.

• [Vanacken 07a] Davy Vanacken, Chris Raymaekers, Kris Luyten, and
Karin Coninx. Focus+Roles: Socio-Organizational Conflict Resolution
in Collaborative User Interfaces. In Proceedings of the 12th international
conference on Human-computer interaction, HCII ’07, pages 788-796,
Springer, July 2007, Beijing, P.R. China.

• [Ramakers 12] Raf Ramakers, Davy Vanacken, Kris Luyten, Karin Con-
inx, and Johannes Schöning. Carpus: A Non-Intrusive User Identifi-
cation Technique for Interactive Surfaces. In Proceedings of the 25th
ACM symposium on User interface software and technology, UIST ’12,
pages 35-44, ACM, October 2012, Cambridge, MA, USA.

1http://plus.google.com/+projectglass

http://plus.google.com/+projectglass

218 Reflections, contributions and future work

• [Vanacken 06] Davy Vanacken, Joan De Boeck, Chris Raymaekers, and
Karin Coninx. NiMMiT: a Notation for Modeling Multimodal Interac-
tion Techniques. In Proceedings of the first international conference on
Computer graphics theory and applications, GRAPP ’06, pages 224-231,
INSTICC, February 2006, Setúbal, Portugal.

In addition to the abovementioned works, we published a few other articles
related to the work presented in this dissertation:

• [Vanacken 09a] Davy Vanacken, Kris Luyten, and Karin Coninx. Touch-
Ghosts: Guides for Improving Visibility of Multi-Touch Interaction. In
Multitouch and surface computing workshop at CHI ’09, April 2009,
Boston, MA, USA.

• [Vanacken 08a] Davy Vanacken. Interactive Workspaces: Multi-user,
Multi-touch, Multi-device. In Electronic proceedings of the 2008 ACM
conference on Computer supported cooperative work, CSCW ’08 (doc-
toral colloquium), ACM, November 2008, San Diego, CA, USA.

• [De Boeck 07] Joan De Boeck, Davy Vanacken, Chris Raymaekers, and
Karin Coninx. High-Level Modeling of Multimodal Interaction Tech-
niques Using NiMMiT. In Journal of Virtual Reality and Broadcasting,
JVRB ’07, volume 4, number 2, September 2007.

We also organized two workshops on multi-touch interfaces:

• [Luyten 10] Kris Luyten, Davy Vanacken, Malte Weiss, Jan Borchers,
Shahram Izadi, and Daniel Wigdor. Engineering patterns for multi-touch
interfaces. In Proceedings of the second ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’10, pages 365-366,
ACM, June 2010, Berlin, Germany.

• [Luyten 11] Kris Luyten, Davy Vanacken, Malte Weiss, Jan Borchers,
and Miguel Nacenta. Second workshop on engineering patterns for multi-
touch interfaces. In Proceedings of the third ACM SIGCHI symposium
on Engineering interactive computing systems, EICS ’11, pages 335-336,
ACM, June 2011, Pisa, Italy.

Appendices

Appendix A

Documents of the single-user and multi-user
evaluations of different TouchGhost strategies

This appendix contains the documents that were used during the evaluations
of various TouchGhost strategies, as described in Chapter 3.

A.1 Textual help of the single-user evaluation

This section contains the list of explanations we provided in the in-game tex-
tual help during the evaluation of different single-user TouchGhost strategies,
as reported in Section 3.2.

Move (common gesture)

1. Press with one finger on the element.

2. Move the finger to the desired position.

3. Release the finger.

Resize (common gesture)

1. Place two fingers in opposite corners of the element.

2. Move the two fingers to the inside or outside of the element.

3. Release the fingers.

222
Documents of the single-user and multi-user evaluations of

different TouchGhost strategies

Add to pile (picture)

1. Press with one finger on the element.

2. Move the element on top of a pile.

3. Release the finger.

Gray/color (picture)

1. Place two fingers next to each other on the element.

2. Place a third finger on the element.

3. Move the third finger diagonally (top left to bottom right or bottom
right to top left).

4. Release the fingers.

Color overlay (picture)

1. Place two fingers next to each other on the element.

2. Place a third finger on the element.

3. Move the third finger diagonally (top right to bottom left or bottom left
to top right).

4. Release the fingers.

Next/previous (picture pile)

1. Double tap with a finger on the right or left side of the element.

Expand (picture pile)

1. Place two fingers next to each other on the element.

2. Place a third finger on the element.

3. Move the third finger to the outside.

4. Release the third finger.

5. Press on another picture.

A.2 Questionnaires of the evaluations 223

Scatter (picture pile)

1. Place four fingers on the element.

2. Release the fingers.

Play/pause (video player)

1. Double tap with a finger on the element.

Playing speed (video player)

1. Place two fingers next to each other on the element.

2. Place a third finger on the element.

3. Move the third finger horizontally.

4. Release the fingers.

Volume (video player)

1. Place two fingers next to each other on the element.

2. Place a third finger on the element.

3. Move the third finger vertically.

4. Release the fingers.

A.2 Questionnaires of the evaluations

This section contains the questionnaires that were part of the evaluation of
the single-user TouchGhost strategies, as reported in Section 3.2, and of the
multi-user strategies, as reported in Section 3.3.

224
Documents of the single-user and multi-user evaluations of

different TouchGhost strategies

Questionnaire of the single-user evaluation.

Test person: Feedback Experiment

Sex: □ male □ female

Age: _____

How much experience do you have with multi-touch surfaces?

□ none □ very little □ some □ a lot

How much experience do you have with gesture-based interfaces?

□ none □ very little □ some □ a lot

Remarks:

This concludes the test. May we ask you not to give any information to others;
this could influence the results. Thank you for your cooperation!

A.2 Questionnaires of the evaluations 225

General questions

The help system was easy to activate

Strongly disagree 1 2 3 4 5 Strongly agree

Help system - text

I understood the help system without any explanation

Strongly disagree 1 2 3 4 5 Strongly agree

The help system explained the gesture clearly

Strongly disagree 1 2 3 4 5 Strongly agree

After consulting the help system, I could easily replicate the gesture

Strongly disagree 1 2 3 4 5 Strongly agree

The help system allowed me to discover the gesture quickly

Strongly disagree 1 2 3 4 5 Strongly agree

I did not find reading the text bothersome

Strongly disagree 1 2 3 4 5 Strongly agree

Overall, I found this technique effective

Strongly disagree 1 2 3 4 5 Strongly agree

226
Documents of the single-user and multi-user evaluations of

different TouchGhost strategies

Help system - video

I understood the help system without any explanation

Strongly disagree 1 2 3 4 5 Strongly agree

The help system explained the gesture clearly

Strongly disagree 1 2 3 4 5 Strongly agree

After consulting the help system, I could easily replicate the gesture

Strongly disagree 1 2 3 4 5 Strongly agree

The help system allowed me to discover the gesture quickly

Strongly disagree 1 2 3 4 5 Strongly agree

I would like to have more controls (pause, navigation bar, …)

Strongly disagree 1 2 3 4 5 Strongly agree

Overall, I found this technique effective

Strongly disagree 1 2 3 4 5 Strongly agree

A.2 Questionnaires of the evaluations 227

Help system – animated hands

I understood the help system without any explanation

Strongly disagree 1 2 3 4 5 Strongly agree

The help system explained the gesture clearly

Strongly disagree 1 2 3 4 5 Strongly agree

After consulting the help system, I could easily replicate the gesture

Strongly disagree 1 2 3 4 5 Strongly agree

The help system allowed me to discover the gesture quickly

Strongly disagree 1 2 3 4 5 Strongly agree

The graphical feedback (red dot to indicate a press) was clear

Strongly disagree 1 2 3 4 5 Strongly agree

I would like to have more controls (rewind, speed up, …)

Strongly disagree 1 2 3 4 5 Strongly agree

Overall, I found this technique effective

Strongly disagree 1 2 3 4 5 Strongly agree

228
Documents of the single-user and multi-user evaluations of

different TouchGhost strategies

Questionnaire of the multi-user evaluation.

TEST #________ PARTICIPANT #________

Gender: Male Female Age: _____

Please indicate your level of experience

with multiplayer video games

with multi-touch tabletop systems

Please mark with an ‘x’ the position on the line that corresponds the most to your gaming experience.
If you want to explain your answer, please use the blank space after each question.

1. I enjoyed the puzzle game.

Not at all Very much

2. Solving the puzzle collaboratively increased my enjoyment.

Not at all Very much

3. I contributed a lot individually.

Not at all Very much

4. I experienced a high level of collaboration.

Not at all Very much

Never
used

Using/used
a lot (almost
every day)

Using/used
often (at least
every week)

Using/used
occasionally (once
or twice a month)

Using/used
seldom (once or
twice a year)

Never
played

Playing/played
a lot (almost
every day)

Playing/played
often (at least
every week)

Playing/played
occasionally (once
or twice a month)

Playing/played
seldom (once or
twice a year)

A.2 Questionnaires of the evaluations 229

5. Everyone contributed equally to solving the task.

Not at all Very much

6. When a certain task could be performed both collaboratively and individually (e.g. the
manipulation of heavy blocks), it was mostly accomplished together with my partner.

Not at all Very much

7. The provided help contributed to the level of collaboration.

Not at all Very much

8. It was clear when it was necessary to collaborate.

Not at all Very much

9. I was always aware of my partner’s actions.

Not at all Very much

10. We had problems when performing collaborative tasks.

Not at all Very much

Specify what problems:

11. It was clear how to use the help without any explanation.

Not at all Very much

12. The help explained the required actions clearly.

Not at all Very much

230
Documents of the single-user and multi-user evaluations of

different TouchGhost strategies

13. After consulting the help, I could easily replicate the actions.

Not at all Very much

14. It was clear how to perform cooperative tasks.

Not at all Very much

15. The help allowed me to discover the required actions quickly.

Not at all Very much

16. I learned most of the actions through the help.

Not at all Very much

17. I learned a lot by talking to my partner.

Not at all Very much

18. I learned a lot by watching my partner’s actions.

Not at all Very much

19. I had to consult help multiple times for a particular action.

Not at all Very much

20. Help took me out of the game experience.

Not at all Very much

If you have any comments or remarks, please provide them below:

Appendix B

Documents of the observational study on
collaborative storyboarding in multidisciplinary

teams

This appendix contains the personas, scenario and questionnaire that were
part of the observational study on collaborative storyboarding in multidisci-
plinary teams, as reported in Section 5.3.

B.1 Personas

Figure B.1: Photograph of Bob.

Bob is 45 years old, works as a banker,
is married to Mary and is a father of
two children: Kate and Benjamin. His
working days are very long, and in the
evenings he often has to do some work
or has appointments with customers.
Together with his wife and children, he
lives in a nice house, which was con-
structed a few years ago. Bob likes gad-
gets and new technologies, and was the
first one in his circle of friends that was
using a smartphone. Since that moment, he can check his e-mails on any
location and he likes the fact that he has a browser, a route planner and a
camera in his pocket. Recently, he also uses his smartphone to control the
home automation system. At home, it is easy to control the heating, lighting

232
Documents of the observational study on collaborative

storyboarding in multidisciplinary teams

and music from any place. He loves playing with the settings when he is relax-
ing in the living room. He also uses the control application on his smartphone
at work. As a banker, he continuously checks how he can save money. Because
of economic and environmental reasons, he also tries to do savings in expenses
for energy and electricity. The home automation system helps him to follow
up possible energy savings.

Figure B.2: Photograph of Mary.

Mary is 43 years old, works as a
teacher, is married to Bob and is a
mother of two children: Kate and Ben-
jamin. She teaches the languages En-
glish and German to high school stu-
dents. She loves her job, and the fact
that she can spend long vacations to-
gether with the children. Since a few
years, they are living in a newly con-
structed house with a big garden, and
she loves cooking and gardening. Al-
though she has a laptop for teaching

activities, she is not very eager to learn new technologies and limits the use
of computers to the necessary computer tasks she has to do for teaching and
keeping in touch with a few friends. Every time the family buys new household
appliances like a coffee machine, or a washing machine, it takes her several
days to learn how to use the new system. Since a few months, a new home
automation system is installed in their house. Mary loves the idea that some
things can be controlled automatically, Bob installed the application on her
laptop and because of its ease of use, Mary can easily control settings using
her laptop. However, usually, she controls the settings at home, using the
central displays that are available on each floor of their house.

Figure B.3: Photograph of Benjamin.

Benjamin is 10 years old, he likes
playing outside. Soccer is his favorite
game, which he loves to play together
with his friends. Two days a week,
he practices soccer at the local soccer
team. Sometimes, he helps his mother
gardening and cooking. A few weeks
ago, he surprised his parents and his
sister with homemade desserts. He is
really proud that he can prepare these
recipes on his own. His sister is usu-

B.2 Scenario 233

ally teasing him, and is interested in the opposite things. However, lately she
showed him some cool computer games and configured the home automation
system so that he can easily select his favorite lighting settings and TV show,
by selecting only one profile. Benjamin is worried about the future of the
environment. The theme of a current project at school is the environment,
and Benjamin tries to contribute by applying some guidelines at home.

Figure B.4: Photo-
graph of Kate.

Kate is a 14 year old student. She is very in-
terested in mathematics and her hobbies are reading
and chess. Because her mother says it is important
to do some sports, she tries jogging a few times a
week, but she does not like that at all. She rather
likes to read a book or to play chess or computer
games. She is also interested in her father’s smart-
phone and the different applications that are avail-
able for this device. She would love to have one of
her own. Although she begged several times to have
her own smartphone, her parents do not allow her
to have one. Since her parents bought a home au-
tomation system, she likes to play with the settings
of it. She loves the way that the system adapts to
several user profiles and activities. For each activity
at home, she has programmed settings in her profile.

B.2 Scenario

Recently, Bob and Mary decided to install a home automation system. They
decided to do that in order to control heating and lighting easily and to save
some costs on energy consumption. This system allows them to control settings
and to adapt these settings according to their own profiles. In the past, it often
happened that the children left the house without turning off the lights, or
that the programmed heating system was heating the house, while no one was
at home. Using the two displays installed in the house, settings of the system
can be controlled. One display is available in the living room, and another
one in the hallway on the first floor.

Today, Kate wants to read a book, while her mother and her brother are
outside. In the living room, she loads her personal profile, and automatically

234
Documents of the observational study on collaborative

storyboarding in multidisciplinary teams

all lights are switched off, the light near the sofa is turned on and her favorite
pop music starts playing. Thirty minutes later, her mother and Benjamin
come in. Benjamin loads his personal profile using the home automation
display in the living room. The system recognizes two profiles now. Based on
the profiles Kate programmed before, the light above the sofa stays on, while
the pop music stops and the TV starts playing Benjamin’s favorite TV show.

Mary begins to prepare dinner. Five minutes later, the phone is ringing.
Mary picks up the phone. It is Bob, who wants to notify her that he is stuck
in traffic on his way home. Tonight he will have to work in the home office,
and he already programmed the heating for that room using his smartphone.
He also mentions that the family does not have to wait for him for dinner.
One hour later, Bob arrives at home. After his dinner, he explores the home
automation system together with Benjamin, using the central display in the
living room. He teaches Benjamin how to interpret the statistics regarding
the energy savings. Benjamin is impressed by the system’s ability to record
this kind of information and is already thinking about how the efficiency can
be improved.

Later that evening, when the children are in bed, Bob shuts down his
computer in the home office. He joins Mary, who is reading a book in the
living room. Bob’s smartphone reminds him that he left the home office, but
the heating in this room is still on. Bob accepts the system’s suggestion to
switch off the heating in the home office. Bob and Mary discuss their day, and
then they go to sleep. As programmed in the system, the heating is turned
off automatically, and the lights are switched off by one press on a button of
Bob’s smartphone, when he gets into bed.

B.3 Questionnaire

This section contains the questionnaire of the observational study on collabo-
rative storyboarding in multidisciplinary teams.

B.3 Questionnaire 235

Questionnaire
Team: ………

Role: ………

This questionnaire can be answered in English or in Dutch.

ABOUT YOU

1. Gender: female / male

2. Age: years

3. Education: ..

4. Current job: ..

5. What role matches best with your current job (you can select multiple answers)?

 HCI specialist

 Designer

 Systems analyst / Programmer

 Stakeholder (e.g. purchaser, application domain specialist)

 None of the above

6. How comfortable did you feel with the role that was assigned to you?

Not comfortable
at all

Not comfortable Neutral Comfortable Very comfortable

EXPERIENCE

7. Do you have any experience being part of a multi-disciplinary team?

 ⃝ Yes
 ⃝ No

If you answered yes, for how long did / do you work in a multi-disciplinary team?

⃝ A few months

⃝ More than 1 year

⃝ More than 5 years

8. Do you have any experience in creating this type of storyboards?

 ⃝ Yes
 ⃝ No

9. Do you have any experience in using this type of storyboards?

 ⃝ Yes
 ⃝ No

236
Documents of the observational study on collaborative

storyboarding in multidisciplinary teams

THE STORYBOARDING WORKSHOP

10. How easy was it to create the storyboard, starting from the scenario and personas?

Very difficult Difficult Neutral Easy Very easy

11. Did you understand what your immediate goals were and what you needed to do to achieve them?

⃝ Yes
⃝ No

12. How satisfied are you with the resulting storyboard?

Not satisfied at all Not satisfied Neutral Satisfied Very satisfied

Why?___

__

13. How would you estimate your influence on the storyboard?

……% of the storyboard is based on my ideas.

14. How would you estimate your direct contribution to the storyboard?

……% of the storyboard contains my sketches, artifacts, etc.

15. How satisfied are you with the extent to which you could contribute to the storyboard?

Not satisfied at all Not satisfied Neutral Satisfied Very satisfied

16. How satisfied are you with the extent to which the team used your contributions?

Not satisfied at all Not satisfied Neutral Satisfied Very satisfied

B.3 Questionnaire 237

17. Were there any missing tools during the storyboarding workshop?

If yes, what tools should be added?

⃝ Yes, __
 ⃝ No

18. Did you work on ideas in private (e.g. on an isolated piece of paper) before sharing them?

⃝ Yes
⃝ No

Why?___

__

19. Were you continually aware of what the others were doing throughout the workshop?

⃝ Yes
⃝ No

20. Did being part of a multi-disciplinary team influence the ideas contained by the storyboard?

⃝ Yes
⃝ No

Why?___

__

21. Did you understand the symbolism and sequence of the final storyboard and the related information

that was visible on the table?

⃝ Yes
⃝ No

22. Given the role you had during the workshop, what aspects of the storyboard would be useful for your

following tasks during the project?

__

__

238
Documents of the observational study on collaborative

storyboarding in multidisciplinary teams

MULTI-TOUCH STORYBOARDING

23. Do you think that a tool for a multi-touch table that supports storyboarding workshops can be helpful?

Explain your answer.

__

__

24. What kind of features would you expect to be part of this multi-touch tool?

__

__

__

25. Would you be interested in storyboarding on one shared, collaborative device, or on your personal

devices, or on a mix of both types of devices? Explain your answer.

__

__

IN GENERAL

26. Do you have any general remarks/comments regarding the user study or storyboarding workshop?

__

__

__

Thank you very much for participating in our user study!!!

Appendix C

Nederlandstalige samenvatting

Gebruikersinterfaces die aangestuurd worden door eenvoudige aanrakingen
met de vingers zijn steeds prominenter aanwezig in onze dagdagelijkse om-
geving. Zo zijn ze terug te vinden op allerlei hardware, gaande van mobiele
telefoons tot grote publieke schermen. Bovendien laten ze diverse applicaties
toe, van eenvoudige spelletjes voor één gebruiker tot meer zakelijke toepassin-
gen die ondersteuning bieden voor brainstormen in groep. Hoewel dit soort
interfaces verondersteld worden erg “natuurlijk” te zijn, moet er toch de nodige
aandacht besteed worden aan hun toegankelijkheid. De specifieke bewegingen
die dienen uitgevoerd te worden met de vingers kunnen immers moeilijk te ont-
dekken en leren zijn, mede door een gebrek aan algemeen aanvaarde conventies
hieromtrent. Doordat de meeste hardware vandaag niet enkel “single-touch”
maar ook “multi-touch” invoer ondersteunt, kunnen meerdere mensen boven-
dien gelijktijdig samenwerken op één gedeeld, interactief oppervlak. Ook dit
brengt nieuwe onderzoeksuitdagingen met zich mee, met name rond hoe dit
soort samenwerking op een effectieve manier ondersteund kan worden.

Vooral in “walk-up-and-use” omgevingen zoals publieke ruimten is de toe-
gankelijkheid van de interface van erg groot belang, gezien gebruikers het
systeem onmiddellijk moeten kunnen gebruiken en er heel weinig tijd is om
de interface te verkennen en leren. Daarom onderzoeken we manieren waarop
een interface snel en eenvoudig duidelijk kan maken hoe ermee om te gaan.
Met TouchGhosts stellen we een helpsysteem voor dat de mogelijke interacties
aan de gebruiker demonstreert binnen de interface zelf, bijvoorbeeld via gea-
nimeerde handen die de acties tonen. De visuele aard van onze aanpak geeft
een duidelijk beeld van de eventuele synchronisatie tussen meerdere vingers,

240 Nederlandstalige samenvatting

wat typisch is voor interacties zoals het inzoomen met twee vingers. Gebrui-
kersstudies geven aan dat geanimeerde hulp gebruikers toelaat de beschikbare
interactiemogelijkheden snel en makkelijk te ontdekken. Verder kunnen zulke
animaties binnen “multi-user” toepassingen een positief effect hebben op de
samenwerking, doordat ze de gebruikers de applicatie samen laten verkennen.

Wanneer meerdere gebruikers intensief samenwerken in een collaboratieve
omgeving geeft dit aanleiding tot een aantal bijkomende uitdagingen, zeker
indien de gebruikers zowel lokaal als vanop afstand kunnen deelnemen. Zulke
samenwerking kan onder andere conflicten en wangedrag met zich meebren-
gen, waardoor de collaboratieve omgevingen nood hebben aan “floor control”
mechanismen. Hiermee proberen we problemen op een elegante manier te
voorkomen of op te lossen, zonder de dynamiek van het samenwerken te door-
breken. Wij stellen een Focus+Roles aanpak voor, die we toepassen binnen
een digitaal vergadersysteem, iConnect. De rollen die de gebruikers uitoefenen
tijdens de samenwerking definiëren hierbij de privileges van een gebruiker tij-
dens bepaalde activiteiten. Tevens houden we rekening met waar de aandacht
van de gebruikers op gevestigd is, zodat we problemen kunnen vermijden die
geassocieerd zijn met een gebrek aan “mutual awareness”.

We zetten ons onderzoek rond collaboratieve systemen verder met een
analyse van hoe een digitale toepassing storyboarding in een multidisciplinair
team best kan ondersteunen. Storyboards zijn erg geschikt om een gemeen-
schappelijk begrip te verkrijgen tijdens “user-centered” software ontwerp en
ontwikkeling, ongeacht de achtergronden en expertises van de teamleden. Ze
laten elke teamlid toe deel te nemen aan het beslissingsproces, wat de we-
derzijdse betrokkenheid van de verschillende partijen bevordert. Om de ver-
scheidenheid aan inzichten en aanpakken die de leden van een multidisciplinair
team aanbrengen ten volle te kunnen benutten, gaan we met behulp van een
studie na hoe zulke teams storyboards creëren. Op basis van onze observaties
formuleren we een aantal richtlijnen om het ontwerp van een multi-touch tool
voor storyboarding te vergemakkelijken.

In ons onderzoek rond collaboratieve systemen werden we meermaals ge-
confronteerd met de noodzaak om de verschillende gebruikers van een multi-
touch opstelling te kunnen identificeren. Multi-touch hardware kan wel invoer
van meerdere vingers tegelijk verwerken, maar de meeste systemen kunnen
de contactpunten niet associëren met specifieke gebruikers. Daarom stellen
we Carpus voor, een identificatietechniek waarmee we aanrakingen op een be-
trouwbare manier kunnen identificeren door de bovenkant van de handen te
analyseren via een camera boven het interactief oppervlak. Dit laat toe een
multi-user interface op een aantal manieren te verbeteren, bijvoorbeeld door

241

hulp te personaliseren per gebruiker, of door de activiteiten van een bepaalde
gebruiker op te volgen om zo conflicten te voorkomen.

Een ander belangrijk aspect om in overweging te nemen is het ondersteu-
nen van het ontwerpen, ontwikkelen en evalueren van multi-touch en multi-
user interfaces. We onderzoeken daarom hoe model-gebaseerd ontwerp het
ontwikkelingsproces kan vergemakkelijken, door applicaties te modeleren via
“high-level” diagrammen in plaats van ze te implementeren via “low-level”
programmeercode. In deze context bespreken we NiMMiT, een grafische no-
tatie om multimodale interactietechnieken te modelleren en te evalueren. Om-
dat NiMMiT momenteel gericht is op virtuele omgevingen voor één gebruiker,
reflecteren we over de huidige beperkingen van NiMMiT met betrekking tot
multi-touch en multi-user interactie.

242 Nederlandstalige samenvatting

Bibliography

[Abate 07] Andrea F. Abate, Michele Nappi, Daniel Riccio &
Gabriele Sabatino. 2D and 3D face recognition: a sur-
vey. Pattern Recognition Letters, vol. 28, no. 14, pages
1885–1906, 2007.

[Ahonen 04] Timo Ahonen, Abdenour Hadid & Matti Pietikäinen.
Face recognition with local binary patterns. In Proceed-
ings of the 8th European conference on Computer vision,
ECCV ’04, pages 469–481. Springer, 2004.

[Ambler 04] Scott Ambler. Object primer, the agile model-driven de-
velopment with UML 2.0. Cambridge University Press,
2004.

[Annett 11] Michelle Annett, Tovi Grossman, Daniel Wigdor &
George Fitzmaurice. Medusa: a proximity-aware multi-
touch tabletop. In Proceedings of the 24th ACM sympo-
sium on User interface software and technology, UIST
’11, pages 337–346. ACM, 2011.

[Appert 09] Caroline Appert & Shumin Zhai. Using strokes as com-
mand shortcuts: cognitive benefits and toolkit support.
In Proceedings of the 27th international conference on
Human factors in computing systems, CHI ’09, pages
2289–2298. ACM, 2009.

[Atasoy 11] Berke Atasoy & Jean-Bernard Martens. STORIFY: a
tool to assist design teams in envisioning and discussing
user experience. In Proceedings of the 2011 conference
extended abstracts on Human factors in computing sys-
tems, CHI EA ’11, pages 2263–2268. ACM, 2011.

244 BIBLIOGRAPHY

[Augsten 10] Thomas Augsten, Konstantin Kaefer, René Meusel,
Caroline Fetzer, Dorian Kanitz, Thomas Stoff, Torsten
Becker, Christian Holz & Patrick Baudisch. Multi-
toe: high-precision interaction with back-projected floors
based on high-resolution multi-touch input. In Proceed-
ings of the 23rd ACM symposium on User interface soft-
ware and technology, UIST ’10, pages 209–218. ACM,
2010.

[Avila-Garcia 10] Maria Susana Avila-Garcia, Anne E. Trefethen, Mike
Brady & Fergus Gleeson. Using interactive and multi-
touch technology to support decision making in multi-
disciplinary team meetings. In Proceedings of the 2010
IEEE 23rd international symposium on Computer-based
medical systems, CBMS ’10, pages 98–103. IEEE Com-
puter Society, 2010.

[Baecker 90] Ron Baecker & Ian Small. Animation at the interface.
In The Art of Human-Computer Interface Design, pages
251–267. Addison-Wesley Longman Publishing, 1990.

[Bailey 01] Brian P. Bailey, Joseph A. Konstan & John V. Carlis.
DEMAIS: designing multimedia applications with inter-
active storyboards. In Proceedings of the ninth ACM in-
ternational conference on Multimedia, MULTIMEDIA
’01, pages 241–250. ACM, 2001.

[Bailly 08] Gilles Bailly, Alexandre Demeure, Eric Lecolinet & Lau-
rence Nigay. MultiTouch menu (MTM). In Proceedings
of the 20th international conference of the Association
Francophone d’Interaction Homme-Machine, IHM ’08,
pages 165–168. ACM, 2008.

[Balakrishnan 04] Ravin Balakrishnan. “Beating” Fitts’ law: virtual en-
hancements for pointing facilitation. International Jour-
nal of Human-Computer Studies, vol. 61, no. 6, pages
857–874, 2004.

[Barnkow 12] Lorenz Barnkow & Kai von Luck. Semiautomatic and
user-centered orientation of digital artifacts on multi-
touch tabletops. In Proceedings of the 11th interna-

BIBLIOGRAPHY 245

tional conference on Entertainment Computing, ICEC
’12, pages 381–388. Springer, 2012.

[Bartindale 12] Tom Bartindale, Alia Sheikh, Nick Taylor, Peter Wright
& Patrick Olivier. StoryCrate: tabletop storyboarding
for live film production. In Proceedings of the 2012
ACM conference on Human factors in computing sys-
tems, CHI ’12, pages 169–178. ACM, 2012.

[Bau 08] Olivier Bau & Wendy E. Mackay. OctoPocus: a dynamic
guide for learning gesture-based command sets. In Pro-
ceedings of the 21st ACM symposium on User interface
software and technology, UIST ’08, pages 37–46. ACM,
2008.

[Bau 10] Olivier Bau, Emilien Ghomi & Wendy Mackay. Arpege:
design and learning of multi-finger chord gestures. Rap-
port technique 1533, LRI, 2010.

[Bay 08] Herbert Bay, Andreas Ess, Tinne Tuytelaars & Luc
Van Gool. Speeded-up robust features (SURF). Com-
puter Vision and Image Understanding, vol. 110, no. 3,
pages 346–359, 2008.

[Bergqvist 99] Jens Bergqvist, Per Dahlberg, Fredrik Ljungberg &
Steinar Kristoffersen. Moving out of the meeting room:
exploring support for mobile meetings. In Proceedings
of the Sixth European Conference on Computer Sup-
ported Cooperative Work, ECSCW ’99, pages 81–98.
Kluwer Academic Publishers, 1999.

[Bertino 01] Elisa Bertino, Piero Andrea Bonatti & Elena Ferrari.
TRBAC: a temporal role-based access control model.
ACM Transactions on Information and System Security,
vol. 4, no. 3, pages 191–233, 2001.

[Bertino 05] Elisa Bertino, Barbara Catania, Maria Luisa Damiani &
Paolo Perlasca. GEO-RBAC: a spatially aware RBAC.
In Proceedings of the tenth ACM symposium on Access
control models and technologies, SACMAT ’05, pages
29–37. ACM, 2005.

246 BIBLIOGRAPHY

[Beznosyk 12] Anastasiia Beznosyk. An experimental perspective on
factors influencing collaborative user experience in vir-
tual environments and games. PhD thesis, Hasselt Uni-
versity, Diepenbeek, Belgium, November 2012.

[Biehl 08] Jacob T. Biehl, William T. Baker, Brian P. Bailey,
Desney S. Tan, Kori M. Inkpen & Mary Czerwinski. IM-
PROMPTU: a new interaction framework for support-
ing collaboration in multiple display environments and
its field evaluation for co-located software development.
In Proceedings of the twenty-sixth SIGCHI conference
on Human factors in computing systems, CHI ’08, pages
939–948. ACM, 2008.

[Blanch 06] Renaud Blanch & Michel Beaudouin-Lafon. Program-
ming rich interactions using the hierarchical state ma-
chine toolkit. In Proceedings of the working conference
on Advanced visual interfaces, AVI ’06, pages 51–58.
ACM, 2006.

[Blouin 10] Arnaud Blouin & Olivier Beaudoux. Improving mod-
ularity and usability of interactive systems with Malai.
In Proceedings of the 2nd ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’10,
pages 115–124. ACM, 2010.

[Boreki 05] Guilherme Boreki & Alessandro Zimmer. Hand geom-
etry: a new approach for feature extraction. In Pro-
ceedings of the 4th IEEE Workshop on Automatic Iden-
tification Advanced Technologies, AUTOID ’05, pages
149–154. IEEE Computer Society, 2005.

[Bowman 04] Doug A. Bowman, Ernst Kruijff, Joseph J. Laviola Jr. &
Ivan Poupyrev. 3d user interfaces: theory and practice.
Addison Wesley Longman Publishing Co., Inc., 2004.

[Bragdon 09] Andrew Bragdon, Robert Zeleznik, Brian Williamson,
Timothy Miller & Joseph J. Laviola Jr. GestureBar: im-
proving the approachability of gesture-based interfaces.
In Proceedings of the 27th international conference on
Human factors in computing systems, CHI ’09, pages
2269–2278. ACM, 2009.

BIBLIOGRAPHY 247

[Bragdon 10] Andrew Bragdon, Arman Uguray, Daniel Wigdor,
Stylianos Anagnostopoulos, Robert Zeleznik & Rutledge
Feman. Gesture play: motivating online gesture learning
with fun, positive reinforcement and physical metaphors.
In Proceedings of the ACM international conference on
Interactive Tabletops and Surfaces, ITS ’10, pages 39–
48. ACM, 2010.

[Brignull 03] Harry Brignull & Yvonne Rogers. Enticing people to in-
teract with large public displays in public spaces. In Pro-
ceedings of the IFIP TC13 international conference on
Human-computer interaction, INTERACT ’03, pages
17–24. IOS Press, 2003.

[Buxton 12] Bill Buxton. Multi-touch systems that I have known
and loved. http://www.billbuxton.com/multitouch
Overview.html, 2012.

[Cao 08] Xiang Cao, Andrew D. Wilson, Ravin Balakrishnan,
Ken Hinckley & Scott E. Hudson. ShapeTouch: lever-
aging contact shape on interactive surfaces. In Proceed-
ings of the 3rd IEEE international workshop on Horizon-
tal Interactive Human Computer Systems, TABLETOP
’08, pages 139–146. IEEE Computer Society, 2008.

[Cardinaels 06] Maarten Cardinaels, Geert Vanderhulst, Maarten Wij-
nants, Chris Raymaekers, Kris Luyten & Karin Coninx.
Seamless interaction between multiple devices and meet-
ing rooms. In Proceedings of the CHI ’06 workshop on
Information visualization and interaction techniques for
collaboration across multiple displays, CHI ’06. ACM,
2006.

[Carr 97] David A. Carr. Interaction Object Graphs: an executable
graphical notation for specifying user interfaces. In For-
mal methods for computer-human interaction, pages
141–156. Springer, 1997.

[Carroll 98] John M. Carroll. Minimalism beyond the nurnberg fun-
nel. MIT Press, 1998.

248 BIBLIOGRAPHY

[Choi 09] Junyeong Choi, Byung-Kuk Seo & Jong-Il Park. Ro-
bust hand detection for augmented reality interface. In
Proceedings of the 8th international conference on Vir-
tual Reality Continuum and its Applications in Indus-
try, VRCAI ’09, pages 319–321. ACM, 2009.

[Cilella 11] Sal Cilella. Did you ever know that you’re my hero?: the
power of storytelling. Interactions, vol. 18, pages 62–66,
2011.

[Clerckx 04] Tim Clerckx, Kris Luyten & Karin Coninx. DynaMo-
AID: A design process and a runtime architecture for
dynamic model-based user interface development. In
Proceedings of the 2004 international conference on En-
gineering human-computer interaction and interactieve
systems, EHCI-DSVIS ’04, pages 77–95. Springer, 2004.

[Cleveringa 09] Writser Cleveringa, Maarten van Veen, Arnout de Vries,
Arnoud de Jong & Tobias Isenberg. Assisting gesture
interaction on multi-touch screens. In Multitouch and
Surface Computing Workshop at the conference on Hu-
man factors in computing systems, CHI ’09, 2009.

[Coninx 97] Karin Coninx, Frank Van Reeth & Eddy Flerackers. A
hybrid 2D/3D user interface for immersive object model-
ing. In Proceedings of the 1997 conference on Computer
Graphics International, CGI ’97, pages 47–55. IEEE
Computer Society, 1997.

[Coninx 06a] Karin Coninx, Erwin Cuppens, Joan De Boeck & Chris
Raymaekers. Integrating support for usability evalua-
tion into high level interaction descriptions with NiM-
MiT. In Proceedings of 13th international workshop on
Design, Specification and Verification of Interactive Sys-
tems, DSVIS ’06, pages 95–108. Springer, 2006.

[Coninx 06b] Karin Coninx, Olga De Troyer, Chris Raymaekers &
Frederic Kleinermann. VR-DeMo: a tool-supported ap-
proach facilitating flexible development of virtual envi-
ronments using conceptual modelling. In Proceedings of
Virtual Concept 2006, pages 30–42. Springer, 2006.

BIBLIOGRAPHY 249

[Coutaz 95] Joëlle Coutaz, Laurence Nigay, Daniel Salber, Ann
Blandford, Jon May & Richard M. Young. Four easy
pieces for assessing the usability of multimodal inter-
action: the CARE properties. In Proceedings of the
fifth IFIP TC13 international conference on Human-
computer interaction, INTERACT ’95, pages 115–120.
Chapman and Hall, 1995.

[Csisinko 10] Mathis Csisinko & Hannes Kaufmann. VITAL the
Virtual Environment Interaction Technique Abstraction
Layer. In Proceedings of the IEEE Virtual Reality 2010
workshop: Software engineering and architectures for re-
altime interactive systems, pages 77–86. Shaker Verlag,
2010.

[Cui 07] Xiutao Cui, Yuliang Chen & Junzhong Gu. Ex-RBAC:
An extended role based access control model for location-
aware mobile collaboration system. In Proceedings of the
second international conference on Internet Monitoring
and Protection, ICIMP ’07, page 36. IEEE Computer
Society, 2007.

[Cullingford 82] Richard E. Cullingford, Myron W. Krueger, Mallory
Selfridge & Marie A. Bienkowski. Automated explana-
tions as a component of a computer-aided design system.
IEEE Transactions on System, Man and Cybernetics,
vol. 12, no. 2, pages 168–181, 1982.

[Cuppens 04] Erwin Cuppens, Chris Raymaekers & Karin Coninx.
VRIXML: a user interface description language for vir-
tual environments. In Proceedings of the Advanced Vi-
sual Interfaces workshop on Developing User Interfaces
with XML: Advances on User Interface Description Lan-
guages, pages 111–117, 2004.

[Cuppens 05] Erwin Cuppens, Chris Raymaekers & Karin Coninx. A
model-based design process for interactive virtual envi-
ronments. In Proceedings of 12th international work-
shop on Design, Specification and Verification of Interac-
tive Systems, DSVIS ’05, pages 225–236. Springer, 2005.

250 BIBLIOGRAPHY

[Cuypers 08] Tom Cuypers, Jan Schneider-Barnes, Johannes Tael-
man, Kris Luyten & Philippe Bekaert. Eunomia: to-
ward a framework for multi-touch information displays
in public spaces. In Proceedings of the 22nd British CHI
group conference on people and computers: culture, cre-
ativity, interaction, BCS-HCI ’08, pages 31–34. British
Computer Society, 2008.

[Da Silva 00] Paulo Da Silva. User interface declarative models and
development environments: a survey. In Proceedings
of the 7th international conference on Design, specifi-
cation, and verification of interactive systems, DSV-IS
’00, pages 207–226. Springer, 2000.

[De Boeck 04] Joan De Boeck, Erwin Cuppens, Tom De Weyer, Chris
Raymaekers & Karin Coninx. Multisensory interaction
metaphors with haptics and proprioception in virtual en-
vironments. In Proceedings of the third ACM Nordic
Conference on Human-Computer Interaction, NordiCHI
’04, pages 189–197. ACM, 2004.

[De Boeck 06a] Joan De Boeck, Juan Manuel Gonzalez Calleros, Karin
Coninx & Jean Vanderdonckt. Open issues for the de-
velopment of 3D multimodal applications from an MDE
perspective. In Proceedings of the 2nd international
workshop on Model Driven Development of Advanced
User Interfaces, MDDAUI ’06, pages 11–14, 2006.

[De Boeck 06b] Joan De Boeck, Chris Raymaekers & Karin Coninx.
Comparing NiMMiT and data-driven notations for de-
scribing multimodal interaction. In Proceedings of the
5th international conference on Task models and dia-
grams for users interface design, TAMODIA ’06, pages
217–229. Springer, 2006.

[De Boeck 07] Joan De Boeck, Davy Vanacken, Chris Raymaekers &
Karin Coninx. High-level modeling of multimodal in-
teraction techniques using NiMMiT. Journal of Virtual
Reality and Broadcasting (JVRB), vol. 4, no. 2, 2007.

[De Boeck 08] Joan De Boeck, Chris Raymaekers & Karin Coninx.
A tool supporting model based user interface design in

BIBLIOGRAPHY 251

3D virtual environments. In Proceedings of the inter-
national conference on Computer graphics theory and
applications, GRAPP ’08, pages 367–375, 2008.

[De Boeck 09] Joan De Boeck, Chris Raymaekers & Karin Coninx.
CoGenIVE: building 3D virtual environments using a
model based user interface design approach. In Com-
puter Vision and Computer Graphics, Theory and Ap-
plications, volume 24 of Communications in Computer
and Information Science, pages 83–96. Springer, 2009.

[de Haan 09] Gerwin de Haan & Frits H. Post. StateStream: a
developer-centric approach towards unifying interaction
models and architecture. In Proceedings of the 1st ACM
SIGCHI symposium on Engineering interactive comput-
ing systems, EICS ’09, pages 13–22. ACM, 2009.

[Demeure 08] Alexandre Demeure, Gaëlle Calvary & Karin Coninx.
COMET(s), a software architecture style and an inter-
actors toolkit for plastic user interfaces. In Proceedings
of DSVIS ’08, pages 225–237. Springer, 2008.

[Deshayes 11] Romuald Deshayes & Tom Mens. Statechart modelling
of interactive gesture-based applications. In Proceedings
of the INTERACT 2011 workshop on Combining design
and engineering of interactive systems through models
and tools, ComDeisMoto ’11, 2011.

[Deshayes 12] Romuald Deshayes, Christophe Jacquet, Cécile Harde-
bolle, Frédéric Boulanger & Tom Mens. Heterogeneous
modeling of gesture-based 3D applications. In Proceed-
ings of the MODELS 2012 workshop on Multi-paradigm
modeling, MPM ’12, 2012.

[Dietz 01] Paul Dietz & Darren Leigh. DiamondTouch: a multi-
user touch technology. In Proceedings of the 14th ACM
symposium on User interface software and technology,
UIST ’01, pages 219–226. ACM, 2001.

[Dohse 08] K.C. Dohse, Thomas Dohse, Jeremiah D. Still & Der-
rick J. Parkhurst. Enhancing multi-user interaction
with multi-touch tabletop displays using hand tracking.

252 BIBLIOGRAPHY

In Proceedings of the first international conference on
Advances in Computer-Human Interaction, ACHI ’08,
pages 297–302. IEEE Computer Society, 2008.

[Dommel 97] Hans-Peter Dommel & J.J. Garcia-Luna-Aceves. Floor
control for multimedia conferencing and collaboration.
Multimedia Systems, vol. 5, no. 1, pages 23–38, 1997.

[Döring 11] Tanja Döring, Dagmar Kern, Paul Marshall, Max
Pfeiffer, Johannes Schöning, Volker Gruhn & Albrecht
Schmidt. Gestural interaction on the steering wheel: re-
ducing the visual demand. In Proceedings of the 2011
conference on Human factors in computing systems,
CHI ’11, pages 483–492. ACM, 2011.

[Dourish 92] Paul Dourish & Victoria Bellotti. Awareness and co-
ordination in shared workspaces. In Proceedings of the
1992 ACM conference on Computer-supported cooper-
ative work, CSCW ’92, pages 107–114. ACM, 1992.

[Dragicevic 04] Pierre Dragicevic & Jean-Daniel Fekete. Support for in-
put adaptability in the ICON toolkit. In Proceedings of
the 6th international conference on Multimodal inter-
faces, ICMI ’04, pages 212–219. ACM, 2004.

[Duffy 93] Thomas M. Duffy, James E. Palmer & Brad Mehlen-
bacher. Online help: design and evaluation. Norwood:
Ablex Publishing Corp., 1993.

[Dumas 11] Signer Beat Dumas Bruno & Denis Lalanne. A graphical
UIDL editor for multimodal interaction design based on
SMUIML. In Proceedings of the workshop on Software
support for user interface description language, UIDL
’11, 2011.

[Dworman 04] Garett Dworman & Stephanie Rosenbaum. Helping
users to use help: improving interaction with help sys-
tems. In Extended abstracts on Human factors in com-
puting systems, CHI EA ’04, pages 1717–1718. ACM,
2004.

BIBLIOGRAPHY 253

[Edwards 96] Keith W. Edwards. Policies and roles in collaborative
applications. In Proceedings of the 1996 ACM confer-
ence on Computer supported cooperative work, CSCW
’96, pages 11–20. ACM, 1996.

[Everitt 06] Katherine Everitt, Chia Shen, Kathy Ryall & Clifton
Forlines. MultiSpace: enabling electronic document
micro-mobility in table-centric, multi-device environ-
ments. In Proceedings of the first IEEE international
workshop on Horizontal interactive human-computer
systems, TABLETOP ’06, pages 27–34. IEEE Computer
Society, 2006.

[Ferraiolo 01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila,
D. Richard Kuhn & Ramaswamy Chandramouli. Pro-
posed NIST standard for role-based access control. ACM
Transactions on Information and System Security, vol. 4,
no. 3, pages 224–274, 2001.

[Fetter 11] Mirko Fetter, Tom Gross & Maxi Hucke. Supporting so-
cial protocols in tabletop interaction through visual cues.
In Proceedings of the 13th IFIP TC13 international con-
ference on Human-computer interaction, INTERACT
’11, pages 435–442. Springer, 2011.

[Figueroa 02] Pablo Figueroa, Mark Green & James H. Hoover.
InTml: a description language for VR applications. In
Proceedings of the seventh international conference on
3D Web technology, Web3D ’02, pages 53–58. ACM,
2002.

[Forlines 06] Clifton Forlines, Alan Esenther, Chia Shen, Daniel Wig-
dor & Kathy Ryall. Multi-user, multi-display interaction
with a single-user, single-display geospatial application.
In Proceedings of the 19th ACM symposium on User
interface software and technology, UIST ’06, pages 273–
276. ACM, 2006.

[Freeman 98] William T. Freeman, David B. Anderson, Paul A.
Beardsley, Chris N. Dodge, Michal Roth, Craig D.
Weissman, William S. Yerazunis, Hiroshi Kage, Kazuo

254 BIBLIOGRAPHY

Kyuma, Yasunari Miyake & Ken-ichi Tanaka. Computer
vision for interactive computer graphics. IEEE Com-
puter Graphics and Applications, vol. 18, no. 3, pages
42–53, 1998.

[Freeman 09] Dustin Freeman, Hrvoje Benko, Meredith Ringel Mor-
ris & Daniel Wigdor. ShadowGuides: visualizations for
in-situ learning of multi-touch and whole-hand gestures.
In Proceedings of the ACM international conference on
Interactive Tabletops and Surfaces, ITS ’09, pages 183–
190. ACM, 2009.

[Galaczy 99] Patricia Galaczy. Electronic meeting systems: win-win
group decision making? IRC Press, 1999.

[Grayling 02] Trevor Grayling. If we build it, will they come? A
usability test of two browser-based embedded help sys-
tems. Journal of the Society of Technical Communica-
tion, vol. 49, no. 2, pages 193–209, 2002.

[Green 89] Thomas Green. Cognitive dimensions of notations. In
People and Computers, pages 443–460. Cambridge Uni-
versity Press, 1989.

[Greenberg 94] Saul Greenberg & David Marwood. Real time groupware
as a distributed system: concurrency control and its ef-
fect on the interface. In Proceedings of the 1994 ACM
conference on Computer supported cooperative work,
CSCW ’04, pages 207–217. ACM, 1994.

[Grossman 07] Tovi Grossman, Pierre Dragicevic & Ravin Balakr-
ishnan. Strategies for accelerating on-line learning of
hotkeys. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI ’07, pages
1591–1600. ACM, 2007.

[Grossman 09] Tovi Grossman, George Fitzmaurice & Ramtin Attar.
A survey of software learnability: metrics, methodolo-
gies and guidelines. In Proceedings of the 27th interna-
tional conference on Human factors in computing sys-
tems, CHI ’09, pages 649–658. ACM, 2009.

BIBLIOGRAPHY 255

[Grossman 10] Tovi Grossman & George Fitzmaurice. ToolClips: an
investigation of contextual video assistance for function-
ality understanding. In Proceedings of the 28th interna-
tional conference on Human factors in computing sys-
tems, CHI ’10, pages 1515–1524. ACM, 2010.

[Guiard 87] Yves Guiard. Asymmetric division of labor in human
skilled bimanual action: the kinematic chain as a model.
Journal of Motor Behavior, vol. 19, pages 486–517, 1987.

[Gutwin 99] Carl Gutwin & Saul Greenberg. A framework of aware-
ness for small groups in shared-workspace groupware.
Rapport technique 99-1, University of Saskatchewan,
1999.

[Gutwin 08] Carl Gutwin, Saul Greenberg, Roger Blum, Jeff Dyck,
Kimberly Tee & Gregor McEwan. Supporting informal
collaboration in shared-workspace groupware. Journal of
Universal Computer Science, vol. 14, no. 9, pages 1411–
1434, 2008.

[Guzdial 00] Mark Guzdial, Jochen Rick & Bolot Kerimbaev. Recog-
nizing and supporting roles in CSCW. In Proceedings of
the 2000 ACM conference on Computer supported co-
operative work, CSCW ’00, pages 261–268. ACM, 2000.

[Haesen 11a] Mieke Haesen. User-centered process framework and
techniques to support the realization of interactive sys-
tems by multi-disciplinary teams. PhD thesis, Hasselt
University, Diepenbeek, Belgium, December 2011.

[Haesen 11b] Mieke Haesen, Jan Van den Bergh, Jan Meskens, Kris
Luyten, Sylvain Degrandsart, Serge Demeyer & Karin
Coninx. Using storyboards to integrate models and infor-
mal design knowledge. In MDDAUI ’11, pages 87–106.
Springer, 2011.

[Haller 05] Michael Haller, Mark Billinghurst, Daniel Leithinger,
Jakob Leitner & Thomas Seifried. Coeno: enhancing
face-to-face collaboration. In Proceedings of the 2005
international conference on Augmented tele-existence,
ICAT ’05, pages 40–47. ACM, 2005.

256 BIBLIOGRAPHY

[Han 05] Jefferson Y. Han. Low-cost multi-touch sensing through
frustrated total internal reflection. In Proceedings of the
18th ACM symposium on User interface software and
technology, UIST ’05, pages 115–118. ACM, 2005.

[Harada 96] Komei Harada, Eiichiro Tanaka, Ryuichi Ogawa &
Yoshinori Hara. Anecdote: a multimedia storyboarding
system with seamless authoring support. In Proceedings
of the fourth ACM international conference on Multi-
media, MULTIMEDIA ’96, pages 341–351. ACM, 1996.

[Harel 87] David Harel. Statecharts: a visual formalism for com-
plex systems. Science of Computer Programming, vol. 8,
no. 3, pages 321–274, 1987.

[Harrison 95] Susan M. Harrison. A comparison of still, animated,
or nonillustrated on-line help with written or spoken in-
structions in a graphical user interface. In Proceedings
of the SIGCHI conference on Human factors in comput-
ing systems, CHI ’95, pages 82–89. ACM, 1995.

[Harrison 11a] Chris Harrison, Hrvoje Benko & Andrew D. Wilson.
OmniTouch: wearable multitouch interaction every-
where. In Proceedings of the 24th ACM symposium on
User interface software and technology, UIST ’11, pages
441–450. ACM, 2011.

[Harrison 11b] Chris Harrison, Julia Schwarz & Scott E. Hudson.
TapSense: enhancing finger interaction on touch sur-
faces. In Proceedings of the 24th ACM symposium on
User interface software and technology, UIST ’11, pages
627–636. ACM, 2011.

[Holz 10] Christian Holz & Patrick Baudisch. The generalized per-
ceived input point model and how to double touch accu-
racy by extracting fingerprints. In Proceedings of the
28th international conference on Human factors in com-
puting systems, CHI ’10, pages 581–590. ACM, 2010.

[Hornecker 08a] Eva Hornecker. “I dont understand it either, but it is
cool” - visitor interactions with a multi-touch table in a
museum. In Proceedings of the 3rd IEEE international

BIBLIOGRAPHY 257

workshop on Horizontal Interactive Human Computer
Systems, TABLETOP ’08, pages 113–120. IEEE Com-
puter Society, 2008.

[Hornecker 08b] Eva Hornecker, Paul Marshall, Nick S. Dalton & Yvonne
Rogers. Collaboration and interference: awareness with
mice or touch input. In Proceedings of the 2008 ACM
conference on Computer supported cooperative work,
CSCW ’08, pages 167–176. ACM, 2008.

[Huot 04] Stéphane Huot, Cédric Dumas, Pierre Dragicevic, Jean-
Daniel Fekete & Gérard Hégron. The MaggLite post-
WIMP toolkit: draw it, connect it and run it. In Pro-
ceedings of the 17th ACM Symposium on User inter-
face software and technologies, UIST ’04, pages 257–266.
ACM, 2004.

[Int 10] International Standards Organization. ISO 9241-210.
Ergonomics of human-system interaction - Part 210:
Human-centred design for interactive systems, 2010.

[Ivory 01] Melody Y. Ivory & Marti A. Hearst. The state of the
art in automating usability evaluation of user interfaces.
ACM Computing Surveys, vol. 33, pages 470–516, 2001.

[Izadi 03] Shahram Izadi, Harry Brignull, Tom Rodden, Yvonne
Rogers & Mia Underwood. Dynamo: a public interactive
surface supporting the cooperative sharing and exchange
of media. In Proceedings of the 16th ACM symposium
on User interface software and technology, UIST ’03,
pages 159–168. ACM, 2003.

[Jacucci 10] Giulio Jacucci, Ann Morrison, Gabriela T. Richard, Jari
Kleimola, Peter Peltonen, Lorenza Parisi & Toni Laiti-
nen. Worlds of information: designing for engagement
at a public multi-touch display. In Proceedings of the
28th international conference on Human factors in com-
puting systems, CHI ’10, pages 2267–2276. ACM, 2010.

[Jensen 94] Kurt Jensen. An introduction to the theoretical aspects
of coloured Petri Nets. In A decade of concurrency, re-
flection and perspectives, pages 230–272. Springer, 1994.

258 BIBLIOGRAPHY

[Jiang 08] Hao Jiang, Daniel Wigdor, Clifton Forlines & Chia
Shen. System design for the WeSpace: linking personal
devices to a table-centered multi-user, multi-surface en-
vironment. In Proceedings of the 3rd IEEE international
workshop on Horizontal Interactive Human Computer
Systems, TABLETOP ’08, pages 105–112. IEEE Com-
puter Society, 2008.

[Johanson 02] Brad Johanson, Armando Fox & Terry Winograd. The
Interactive Workspaces Project: experiences with ubiq-
uitous computing rooms. IEEE Pervasive Computing,
vol. 1, no. 2, pages 67–74, 2002.

[Johnson 65] E.A. Johnson. Touch display - a novel input/output de-
vice for computers. Electronics Letters, vol. 1, no. 8,
pages 219–220, 1965.

[Joshi 05] James B.D. Joshi, Elisa Bertino, Usman Latif & Arif
Ghafoor. A generalized temporal role-based access con-
trol model. IEEE Transactions on Knowledge and Data
Engineering, vol. 17, no. 1, pages 4–23, 2005.

[Kaltenbrunner 05] Martin Kaltenbrunner, Till Bovermann, Ross Bencina
& Enrico Costanza. TUIO - a protocol for table-top
tangible user interfaces. In Proceedings of the 6th inter-
national workshop on Gesture-based human-computer
interaction and simulation, GW ’05, 2005.

[Kammer 10] Dietrich Kammer, Jan Wojdziak, Mandy Keck, Rainer
Groh & Severin Taranko. Towards a formalization of
multi-touch gestures. In Proceedings of the ACM inter-
national conference on Interactive Tabletops and Sur-
faces, ITS ’10, pages 49–58. ACM, 2010.

[Kane 11] Shaun K. Kane, Meredith Ringel Morris, Annuska Z.
Perkins, Daniel Wigdor, Richard E. Ladner & Jacob O.
Wobbrock. Access overlays: improving non-visual access
to large touch screens for blind users. In Proceedings of
the 24th ACM symposium on User interface software
and technology, UIST ’11, pages 273–282. ACM, 2011.

BIBLIOGRAPHY 259

[Kang 03] Hyunmo Kang, Catherine Plaisant & Ben Shneiderman.
New approaches to help users get started with visual in-
terfaces: multi-layered interfaces and integrated initial
guidance. In Proceedings of the 2003 national confer-
ence on Digital government research, dg.o ’03, pages 1–
6. Digital Government Society of North America, 2003.

[Kaviani 09] Nima Kaviani, Matthias Finke & Rodger Lea. Encourag-
ing crowd interaction with large displays using handheld
devices. In Crowd computing interactions workshop at
the SIGCHI conference on Human factors in computing
systems, CHI ’09. ACM, 2009.

[Kelleher 05] Caitlin Kelleher & Randy Pausch. Stencils-based tu-
torials: design and evaluation. In Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems, CHI ’05, pages 541–550. ACM, 2005.

[Khandkar 10] Shahedul Huq Khandkar & Frank Maurer. A language
to define multi-touch interactions. In Proceedings of the
ACM international conference on Interactive Tabletops
and Surfaces, ITS ’10, pages 269–270. ACM, 2010.

[Kim 09] Kyung Tae Kim, Tejas Kulkarni & Niklas Elmqvist. In-
teraction workspaces: identity tracking for multi-user
collaboration on camera-based multi-touch tabletops. In
Proceedings of the workshop on Collaborative Visual-
ization on Interactive Surfaces, CoVIS ’09, 2009.

[Kin 12a] Kenrick Kin, Björn Hartmann, Tony DeRose & Maneesh
Agrawala. Proton++: a customizable declarative mul-
titouch framework. In Proceedings of the 25th ACM
symposium on User interface software and technology,
UIST ’12, pages 477–486. ACM, 2012.

[Kin 12b] Kenrick Kin, Björn Hartmann, Tony DeRose & Ma-
neesh Agrawala. Proton: multitouch gestures as regular
expressions. In Proceedings of the 2012 ACM confer-
ence on Human Factors in Computing Systems, CHI
’12, pages 2885–2894. ACM, 2012.

260 BIBLIOGRAPHY

[Knabe 95] Kevin Knabe. Apple guide: a case study in user-aided
design of online help. In Conference companion on Hu-
man factors in computing systems, CHI ’95, pages 286–
287. ACM, 1995.

[Koike 01] Hideki Koike, Yoichi Sato & Yoshinori Kobayashi. Inte-
grating paper and digital information on EnhancedDesk:
a method for realtime finger tracking on an augmented
desk system. ACM Transactions on Computer-Human
Interaction, vol. 8, no. 4, pages 307–322, 2001.

[König 10] Werner König, Roman Rädle & Harald Reiterer. Inter-
active design of multimodal user interfaces. Journal on
Multimodal User Interfaces, vol. 3, pages 197–213, 2010.

[Kruger 03] Russell Kruger, Sheelagh Carpendale, Stacey D. Scott
& Saul Greenberg. How people use orientation on ta-
bles: comprehension, coordination and communication.
In Proceedings of the 2003 international ACM SIG-
GROUP conference on Supporting group work, GROUP
’03, pages 369–378. ACM, 2003.

[Krull 01] Robert Krull, Janet Friauf, Johel Brown-Grant & An-
gela Eaton. Usability trends in an online help system:
user testing on three releases of help for a visual pro-
gramming language. In Proceedings of IEEE Interna-
tional Professional Communication Conference, IPCC
’01, pages 19–26. IEEE Computer Society, 2001.

[Kurtenbach 94] Gordon Kurtenbach, Thomas P. Moran & William Bux-
ton. Contextual animation of gestural commands. Com-
puter Graphics Forum, vol. 13, no. 5, pages 305–314,
1994.

[Landay 95] James A. Landay & Brad A. Myers. Interactive sketch-
ing for the early stages of user interface design. In
Proceedings of the SIGCHI conference on Human fac-
tors in computing systems, CHI ’95, pages 43–50.
ACM/Addison-Wesley Publishing Co., 1995.

[Landay 96] James A. Landay & Brad A. Myers. Sketching story-
boards to illustrate interface behaviors. In Conference

BIBLIOGRAPHY 261

companion on Human factors in computing systems,
CHI ’96, pages 193–194. ACM, 1996.

[Lawson 09] Jean-Yves Lionel Lawson, Ahmad-Amr Al-Akkad, Jean
Vanderdonckt & Benoit Macq. An open source work-
bench for prototyping multimodal interactions based on
off-the-shelf heterogeneous components. In Proceedings
of the 1st ACM SIGCHI symposium on Engineering in-
teractive computing systems, EICS ’09, pages 245–254.
ACM, 2009.

[Ledo 12] David Ledo, Miguel A. Nacenta, Nicolai Marquardt, Se-
bastian Boring & Saul Greenberg. The HapticTouch
toolkit: enabling exploration of haptic interactions. In
Proceedings of the 6th international conference on Tan-
gible, embedded and embodied interaction, TEI ’12,
pages 115–122. ACM, 2012.

[Leland 88] Mary D.P. Leland, Robert S. Fish & Robert E. Kraut.
Collaborative document production using quilt. In Pro-
ceedings of the 1988 ACM conference on Computer-
supported cooperative work, CSCW ’88, pages 206–215.
ACM, 1988.

[Lemmelä 08] Saija Lemmelä, Akos Vetek, Kaj Mäkelä & Dari
Trendafilov. Designing and evaluating multimodal inter-
action for mobile contexts. In Proceedings of the 10th
international conference on Multimodal interfaces, ICMI
’08, pages 265–272. ACM, 2008.

[Lerusalimschy 96] Robert Lerusalimschy, Luiz Henrique de Figueiredo &
Waldemar Celes Filho. Lua - an extensible extension
language. Software: Practice and Experience, vol. 26,
pages 635–652, 1996.

[Lin 00] James Lin, Mark W. Newman, Jason I. Hong &
James A. Landay. DENIM: finding a tighter fit between
tools and practice for Web site design. In Proceedings of
the SIGCHI conference on Human factors in computing
systems, CHI ’00, pages 510–517. ACM, 2000.

262 BIBLIOGRAPHY

[Lowe 99] David G. Lowe. Object recognition from local scale-
invariant features. In Proceedings of the 1999 interna-
tional conference on Computer vision, ICCV ’99, pages
1150–1157. IEEE Computer Society, 1999.

[Lucas 81] Bruce D. Lucas & Takeo Kanade. An iterative image
registration technique with an application to stereo vi-
sion. In Proceedings of the 7th international joint con-
ference on Artificial intelligence, IJCAI ’81, pages 674–
679. Morgan Kaufmann Publishers Inc., 1981.

[Lupu 97] Emil C. Lupu & Morris Sloman. Towards a role-based
framework for distributed systems management. Jour-
nal of Network and Systems Management, vol. 5, no. 1,
pages 5–30, 1997.

[Luyten 10] Kris Luyten, Davy Vanacken, Malte Weiss, Jan
Borchers, Shahram Izadi & Daniel Wigdor. Engineering
patterns for multi-touch interfaces. In Proceedings of
the 2nd ACM SIGCHI symposium on Engineering in-
teractive computing systems, EICS ’10, pages 365–366.
ACM, 2010.

[Luyten 11] Kris Luyten, Davy Vanacken, Malte Weiss, Jan Borchers
& Miguel Nacenta. Second workshop on engineering pat-
terns for multi-touch interfaces. In Proceedings of the
3rd ACM SIGCHI symposium on Engineering interac-
tive computing systems, EICS ’11, pages 335–336. ACM,
2011.

[Lynch 11] Sean Lynch, Miguel A. Nacenta & Sheelagh Carpen-
dale. ToCoPlay: graphical multi-touch interaction for
composing and playing music. In Proceedings of the
13th IFIP TC13 international conference on Human-
computer interaction, INTERACT ’11, pages 306–322.
Springer, 2011.

[Malik 04] Shahzad Malik & Joe Laszlo. Visual touchpad: a two-
handed gestural input device. In Proceedings of the 6th
international conference on Multimodal interfaces, ICMI
’04, pages 289–296. ACM, 2004.

BIBLIOGRAPHY 263

[Marquardt 09] Nicolai Marquardt, Miguel A. Nacenta, James E. Young,
Sheelagh Carpendale, Saul Greenberg & Ehud Sharlin.
The Haptic Tabletop Puck: tactile feedback for interac-
tive tabletops. In Proceedings of the ACM international
conference on Interactive Tabletops and Surfaces, ITS
’09, pages 85–92. ACM, 2009.

[Marquardt 11] Nicolai Marquardt, Johannes Kiemer, David Ledo, Se-
bastian Boring & Saul Greenberg. Designing user-,
hand-, and handpart-aware tabletop interactions with
the TouchID toolkit. In Proceedings of the 2011 ACM
international conference on Interactive Tabletops and
Surfaces, ITS ’11, pages 21–30. ACM, 2011.

[Marshall 11] Paul Marshall, Richard Morris, Yvonne Rogers, Stefan
Kreitmayer & Matt Davies. Rethinking ‘multi-user’: an
in-the-wild study of how groups approach a walk-up-and-
use tabletop interface. In Proceedings of the 2011 con-
ference on Human factors in computing systems, CHI
’11, pages 3033–3042. ACM, 2011.

[Martin 05] Andrew P. Martin, Melody Y. Ivory, Rodrick Megraw
& Beverly Slabosky. Exploring the persistent problem of
user assistance. Rapport technique IS-TR-2005-08-01,
Information School, University of Washington, 2005.

[Matejka 11] Justin Matejka, Tovi Grossman & George Fitzmaurice.
Ambient help. In Proceedings of the 2011 conference on
Human factors in computing systems, CHI ’11, pages
2751–2760. ACM, 2011.

[McGee-Lennon 09] Marilyn Rose McGee-Lennon, Andrew Ramsay, David
McGookin & Philip Gray. User evaluation of OIDE: a
rapid prototyping platform for multimodal interaction.
In Proceedings of the 1st ACM SIGCHI symposium on
Engineering interactive computing systems, EICS ’09,
pages 237–242. ACM, 2009.

[Meixner 11] Gerrit Meixner, Fabio Paternò & Jean Vanderdonckt.
Past, Present, and Future of Model-Based User Inter-
face Development. i-com, vol. 10, no. 3, pages 2–11,
2011.

264 BIBLIOGRAPHY

[Meyer 10] Tobias Meyer & Dominik Schmidt. IdWristbands: IR-
based user identification on multi-touch surfaces. In Pro-
ceedings of the 2010 ACM international conference on
Interactive Tabletops and Surfaces, ITS ’10, pages 277–
278. ACM, 2010.

[Mistry 09] Pranav Mistry & Pattie Maes. SixthSense: a wearable
gestural interface. In Proceedings of ACM SIGGRAPH
Asia 2009 sketches, pages 11:1–11:1. ACM, 2009.

[Möllers 11] Max Möllers & Jan Borchers. TaPS widgets: interacting
with tangible private spaces. In Proceedings of the ACM
international conference on Interactive Tabletops and
Surfaces, ITS ’11, pages 75–78. ACM, 2011.

[Mori 02] Giulio Mori, Fabio Paternò & Carmen Santoro. CTTE:
support for developing and analyzing task models for in-
teractive system design. IEEE Transactions on Software
Engineering, vol. 28, no. 8, pages 797–813, 2002.

[Morris 04] Meredith Ringel Morris, Kathy Ryall, Chia Shen,
Clifton Forlines & Frédéric D. Vernier. Beyond “so-
cial protocols”: multi-user coordination policies for co-
located groupware. In Proceedings of the 2004 ACM
conference on Computer supported cooperative work,
CSCW ’04, pages 262–265. ACM, 2004.

[Morris 06] Meredith Ringel Morris, Anqi Huang, Andreas Paepcke
& Terry Winograd. Cooperative gestures: multi-user
gestural interactions for co-located groupware. In Pro-
ceedings of the 24th SIGCHI conference on Human fac-
tors in computing systems, CHI ’06, pages 1201–1210.
ACM, 2006.

[Morris 08] Meredith Ringel Morris. A survey of collaborative web
search practices. In Proceedings of the 26th SIGCHI
conference on Human factors in computing systems,
CHI ’08, pages 1657–1660. ACM, 2008.

[Müller-Tomfelde 10] Christian Müller-Tomfelde. Tabletops - horizontal in-
teractive displays. Springer, 2010.

BIBLIOGRAPHY 265

[Müller 12] Jörg Müller, Robert Walter, Gilles Bailly, Michael Nis-
cht & Florian Alt. Looking glass: a field study on notic-
ing interactivity of a shop window. In Proceedings of
the SIGCHI conference on Human factors in computing
systems, CHI ’12, pages 297–306. ACM, 2012.

[Myers 06] Brad A. Myers, David A. Weitzman, Andrew J. Ko &
Duen Horng Chau. Answering why and why not ques-
tions in user interfaces. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
CHI ’06, pages 397–406. ACM, 2006.

[Nacenta 05] Miguel A. Nacenta, Dzmitry Aliakseyeu, Sriram Subra-
manian & Carl Gutwin. A comparison of techniques for
multi-display reaching. In Proceedings of the SIGCHI
conference on Human factors in computing systems,
CHI ’05, pages 371–380. ACM, 2005.

[Nacenta 07] Miguel A. Nacenta, David Pinelle, Dane Stuckel & Carl
Gutwin. The effects of interaction technique on coordi-
nation in tabletop groupware. In Proceedings of Graph-
ics Interface 2007, GI ’07, pages 191–198. ACM, 2007.

[Nacenta 09] Miguel A. Nacenta, Patrick Baudisch, Hrvoje Benko &
Andy Wilson. Separability of spatial manipulations in
multi-touch interfaces. In Proceedings of Graphics Inter-
face 2009, GI ’09, pages 175–182. Canadian Information
Processing Society, 2009.

[Nacenta 10] Miguel A. Nacenta, David Pinelle, Carl Gutwin & Regan
Mandryk. Individual and group support in tabletop in-
teraction techniques. In Proceedings of Tabletops - Hor-
izontal Interactive Displays, pages 303–333. Springer,
2010.

[Napier 93] John Napier & Russell H. Tuttle. Hands. Princeton
University Press, 1993.

[Navarre 09] David Navarre, Philippe Palanque, Jean-Francois Ladry
& Eric Barboni. ICOs: A model-based user interface
description technique dedicated to interactive systems
addressing usability, reliability and scalability. ACM

266 BIBLIOGRAPHY

Transactions on Computer-Human Interaction, vol. 16,
no. 4, pages 18:1–18:56, 2009.

[Nielsen 10] Jakob Nielsen. iPad usability: first findings from
user testing. http://www.useit.com/alertbox/ipad-1st-
study.html, 2010.

[Nielsen 11] Jakob Nielsen. iPad usability: year one.
http://www.useit.com/alertbox/ipad.html, 2011.

[Nigay 93] Laurence Nigay & Joëlle Coutaz. A design space for
multimodal systems: concurrent processing and data fu-
sion. In Proceedings of the SIGCHI conference on Hu-
man factors in computing systems, CHI ’93, pages 172–
178. ACM, 1993.

[Nigay 95] Laurence Nigay & Joëlle Coutaz. A generic platform for
addressing the multimodal challenge. In Proceedings of
the SIGCHI Conference on Human Factors in Comput-
ing Systems, CHI ’95, pages 98–105. ACM, 1995.

[Norman 88] Donald A. Norman. The design of everyday things. Dou-
bleday, 1988.

[Norman 10a] Donald A. Norman. Gestural interfaces: a step back-
wards in usability. Interactions, vol. 17, no. 5, pages
46–49, 2010.

[Norman 10b] Donald A. Norman. Natural user interfaces are not nat-
ural. Interactions, vol. 17, no. 3, pages 6–10, 2010.

[Novick 06] David G. Novick & Karen Ward. What users say they
want in documentation. In Proceedings of the 24th ACM
international conference on Design of communication,
SIGDOC ’06, pages 84–91. ACM, 2006.

[Octavia 09] Johanna Renny Octavia, Lode Vanacken, Chris Ray-
maekers, Karin Coninx & Eddy Flerackers. Facilitat-
ing adaptation in virtual environments using a context-
aware model-based design process. In Proceedings of the
8th international workshop on Task Models and Dia-
grams for User Interface Design, TAMODIA ’09, pages
58–71. Springer, 2009.

BIBLIOGRAPHY 267

[Ojala 96] Timo Ojala, Matti Pietikäinen & David Harwood. A
comparative study of texture measures with classifica-
tion based on featured distributions. Pattern Recogni-
tion, vol. 29, no. l, pages 51–59, 1996.

[Ojala 02] Timo Ojala, Matti Pietikäinen & Topi Mäenpää. Mul-
tiresolution gray-scale and rotation invariant texture
classification with local binary patterns. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 24, no. 7, pages 971–987, 2002.

[Orr 68] N.W. Orr & V.D. Hopkins. The role of touch display
in air traffic control. The Controller, vol. 7, pages 7–9,
1968.

[Orr 00] Robert J. Orr & Gregory D. Abowd. The Smart Floor:
a mechanism for natural user identification and track-
ing. In CHI ’00 extended abstracts on Human factors in
computing systems, pages 275–276. ACM, 2000.

[Osborn 00] Sylvia Osborn, Ravi Sandhu & Qamar Munawer. Con-
figuring role-based access control to enforce mandatory
and discretionary access control policies. ACM Transac-
tions on Information and System Security, vol. 3, no. 2,
pages 85–106, 2000.

[Palanque 94] Philippe Palanque & Remi Bastide. Petri net based de-
sign of user-driven interfaces using the Interactive Co-
operative Objects formalism. In Proceedings of Inter-
active Systems: Design, Specification, and Verification,
pages 383–400. Springer, 1994.

[Palanque 11] Philippe Palanque, Eric Barboni, Célia Martinie, David
Navarre & Marco Winckler. A model-based approach for
supporting engineering usability evaluation of interac-
tion techniques. In Proceedings of the 3rd ACM SIGCHI
symposium on Engineering interactive computing sys-
tems, EICS ’11, pages 21–30. ACM, 2011.

[Palmiter 93] Susan Palmiter & Jay Elkerton. Animated demon-
strations for learning procedural computer-based tasks.

268 BIBLIOGRAPHY

Human-Computer Interaction, vol. 8, no. 3, pages 193–
216, 1993.

[Panëels 10] Sabrina A. Panëels, Jonathan C. Roberts & Peter J.
Rodgers. HITPROTO: a tool for the rapid prototyp-
ing of haptic interactions for haptic data visualization.
In Proceedings of the 2010 IEEE Haptics Symposium,
HAPTIC ’10, pages 261–268. IEEE Computer Society,
2010.

[Park 01] Joon S. Park, Ravi Sandhu & Gail-Joon Ahn. Role-
based access control on the Web. ACM Transactions on
Information and System Security, vol. 4, no. 1, pages
37–71, 2001.

[Paternò 00] Fabio Paternò. Model-based design and evaluation of
interactive applications. Springer, 2000.

[Paternò 09] Fabio Paternò, Carmen Santoro & Lucio Davide Spano.
MARIA: a universal, declarative, multiple abstraction-
level language for service-oriented applications in ubiq-
uitous environments. ACM Transactions on Computer-
Human Interaction, vol. 16, no. 4, pages 19:1–19:30,
2009.

[Peltonen 08] Peter Peltonen, Esko Kurvinen, Antti Salovaara, Giulio
Jacucci, Tommi Ilmonen, John Evans, Antti Oulasvirta
& Petri Saarikko. It’s mine, don’t touch!: interactions at
a large multi-touch display in a city centre. In Proceed-
ings of the 26th SIGCHI conference on Human factors
in computing systems, CHI ’08, pages 1285–1294. ACM,
2008.

[Pering 10] Trevor Pering, Kent Lyons, Roy Want, Mary Murphy-
Hoye, Mark Baloga, Paul Noll, Joe Branc & Nicolas
De Benoist. What do you bring to the table?: investi-
gations of a collaborative workspace. In Proceedings of
the 12th ACM international conference on Ubiquitous
computing, Ubicomp ’10, pages 183–192. ACM, 2010.

[Petri 62] Carl A. Petri. Fundamentals of a theory of asynchronous

BIBLIOGRAPHY 269

information flow. In IFIP Congress, pages 386–390,
1962.

[Phung 02] Son Lam Phung, Abdesselam Bouzerdoum & Douglas
Chai. A novel skin color model in YCbCr color space
and its application to human face detection. In Pro-
ceedings of the 2002 IEEE international conference on
Image processing, ICIP ’02, pages 289–292. IEEE Com-
puter Society, 2002.

[Phung 05] Son Lam Phung, Abdesselam Bouzerdoum & Douglas
Chai. Skin segmentation using color pixel classification:
analysis and comparison. IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 27, no. 1, pages
148–154, 2005.

[Pinelle 06] David Pinelle, Carl Gutwin & Sriram Subramanian.
Designing digital tables for highly integrated collabora-
tion. Rapport technique HCI-TR-06-02, University of
Saskatchewan, 2006.

[Pinelle 08] David Pinelle, Miguel Nacenta, Carl Gutwin & Tadeusz
Stach. The effects of co-present embodiments on aware-
ness and collaboration in tabletop groupware. In Pro-
ceedings of graphics interface 2008, GI ’08, pages 1–8.
Canadian Information Processing Society, 2008.

[Pinelle 09] David Pinelle, Mutasem Barjawi, Miguel Nacenta & Re-
gan Mandryk. An evaluation of coordination techniques
for protecting objects and territories in tabletop group-
ware. In Proceedings of the 27th international confer-
ence on Human factors in computing systems, CHI ’09,
pages 2129–2138. ACM, 2009.

[Piper 06] Anne Marie Piper, Eileen O’Brien, Meredith Ringel
Morris & Terry Winograd. SIDES: a cooperative table-
top computer game for social skills development. In Pro-
ceedings of the 2006 ACM conference on Computer sup-
ported cooperative work, CSCW ’06, pages 1–10. ACM,
2006.

270 BIBLIOGRAPHY

[Ramakers 12] Raf Ramakers, Davy Vanacken, Kris Luyten, Karin
Coninx & Johannes Schöning. Carpus: a non-intrusive
user identification technique for interactive surfaces. In
Proceedings of the 25th ACM symposium on User in-
terface software and technology, UIST ’12, pages 35–44.
ACM, 2012.

[Raymaekers 01] Chris Raymaekers & Karin Coninx. Menu interactions
in a desktop haptic environment. In Proceedings of Eu-
rohaptics 2001, pages 49–53, 2001.

[Reetz 06] Adrian Reetz, Carl Gutwin, Tadeusz Stach, Miguel Na-
centa & Sriram Subramanian. Superflick: a natural and
efficient technique for long-distance object placement on
digital tables. In Proceedings of Graphics Interface 2006,
GI ’06, pages 163–170. Canadian Information Process-
ing Society, 2006.

[Rekimoto 98] Jun Rekimoto. A multiple device approach for support-
ing whiteboard-based interactions. In Proceedings of the
SIGCHI Conference on Human factors in computing
systems, CHI ’98, pages 344–351. ACM Press/Addison-
Wesley Publishing Co., 1998.

[Remy 10] Christian Remy, Malte Weiss, Martina Ziefle & Jan
Borchers. A pattern language for interactive tabletops
in collaborative workspaces. In Proceedings of the 15th
European conference on Pattern languages of programs,
EuroPLoP ’10. ACM, 2010.

[Richter 12] Stephan Richter, Christian Holz & Patrick Baudisch.
Bootstrapper: recognizing tabletop users by their shoes.
In Proceedings of the 30th conference on Human factors
in computing systems, CHI ’12, pages 1249–1252. ACM,
2012.

[Ringel 04] Meredith Ringel, Kathy Ryall, Chia Shen, Clifton For-
lines & Frédéric D. Vernier. Release, relocate, reorient,
resize: fluid techniques for document sharing on multi-
user interactive tables. In CHI ’04 extended abstracts on
Human factors in computing systems, pages 1441–1444.
ACM, 2004.

BIBLIOGRAPHY 271

[Rogers 04a] Yvonne Rogers, William Hazlewood, Eli Blevis & Youn-
Kyung Lim. Finger talk: collaborative decision-making
using talk and fingertip interaction around a tabletop
display. In CHI ’04 extended abstracts on Human factors
in computing systems, pages 1271–1274. ACM, 2004.

[Rogers 04b] Yvonne Rogers & Siân Lindley. Collaborating around
vertical and horizontal displays: which way is best? In-
teracting With Computers, vol. 16, no. 6, pages 1133–
1152, 2004.

[Rogers 09] Yvonne Rogers, Youn-Kyung Lim, William R. Hazle-
wood & Paul Marshall. Equal opportunities: do share-
able interfaces promote more group participation than
single user displays? Human-Computer Interaction,
vol. 24, no. 1-2, pages 79–116, 2009.

[Roth 10] Volker Roth, Philipp Schmidt & Benjamin Güldenring.
The IR ring: authenticating users’ touches on a multi-
touch display. In Proceedings of the 23nd ACM sympo-
sium on User interface software and technology, UIST
’10, pages 259–262. ACM, 2010.

[Ryall 04] Kathy Ryall, Clifton Forlines, Chia Shen & Mered-
ith Ringel Morris. Exploring the effects of group size and
table size on interactions with tabletop shared-display
groupware. In Proceedings of the 2004 ACM conference
on Computer supported cooperative work, CSCW ’04,
pages 284–293. ACM, 2004.

[Ryall 05] Kathy Ryall, Alan Esenther, Katherine Everitt, Clifton
Forlines, Meredith Ringel Morris, Chia Shen, Sam Ship-
man & Frédéric D. Vernier. iDwidgets: parameterizing
widgets by user identity. In Proceedings of the 10th IFIP
TC13 international conference on Human-Computer In-
teraction, 2005.

[Ryall 06a] Kathy Ryall, Alan Esenther, Clifton Forlines, Chia
Shen, Sam Shipman, Meredith Ringel Morris, Katherine
Everitt & Frédéric D. Vernier. Identity-differentiating

272 BIBLIOGRAPHY

widgets for multiuser interactive surfaces. IEEE Com-
puter Graphics and Applications, vol. 26, no. 5, pages
56–64, 2006.

[Ryall 06b] Kathy Ryall, Meredith Ringel Morris, Katherine
Everitt, Clifton Forlines & Chia Shen. Experiences with
and observations of direct-touch tabletops. In Proceed-
ings of IEEE international workshop on Horizontal In-
teractive Human Computer Systems, TABLETOP ’06,
pages 89–96. IEEE Computer Society, 2006.

[Sanders 10] Elizabeth B.-N. Sanders, Eva Brandt & Thomas Binder.
A framework for organizing the tools and techniques of
participatory design. In Proceedings of the 11th Par-
ticipatory design conference, PDC ’10, pages 195–198.
ACM, 2010.

[Sandhu 96] Ravi S. Sandhu, Edward J. Coyne, Hal L. Feinstein &
Charles E. Youman. Role-based access control models.
IEEE Computer, vol. 29, no. 2, pages 38–47, 1996.

[Sandhu 99] Ravi S. Sandhu, Venkata Bhamidipati & Qamar Mu-
nawer. The ARBAC97 model for role-based administra-
tion of roles. ACM Transactions on Information and
System Security, vol. 2, no. 1, pages 105–135, 1999.

[Schmidt 10a] Dominik Schmidt, Ming Ki Chong & Hans Gellersen.
HandsDown: hand-contour-based user identification for
interactive surfaces. In Proceedings of the 6th Nordic
conference on Human-Computer Interaction, NordiCHI
’10, pages 432–441. ACM, 2010.

[Schmidt 10b] Dominik Schmidt, Ming Ki Chong & Hans Gellersen.
IdLenses: dynamic personal areas on shared surfaces. In
Proceedings of the 2010 ACM international conference
on Interactive Tabletops and Surfaces, ITS ’10, pages
131–134. ACM, 2010.

[Schmidt 10c] Sebastian Schmidt, Miguel A. Nacenta, Raimund
Dachselt & Sheelagh Carpendale. A set of multi-touch
graph interaction techniques. In Proceedings of the ACM

BIBLIOGRAPHY 273

international conference on Interactive Tabletops and
Surfaces, ITS ’10, pages 113–116. ACM, 2010.

[Schneider 10] Jan Schneider, Jan Derboven, Kris Luyten, Chris
Vleugels, Stijn Bannier, Dries De Roeck & Mathijs Ver-
straete. Multi-user multi-touch setups for collaborative
learning in an educational setting. In Proceedings of the
7th international conference on Cooperative design, vi-
sualization, and engineering, CDVE’10, pages 181–188.
Springer, 2010.

[Scholliers 11] Christophe Scholliers, Lode Hoste, Beat Signer & Wolf-
gang De Meuter. Midas: a declarative multi-touch in-
teraction framework. In Proceedings of the 5th interna-
tional conference on Tangible, embedded, and embodied
interaction, TEI ’11, pages 49–56. ACM, 2011.

[Schöning 08] Johannes Schöning, Michael Rohs & Antonio Krüger.
Using mobile phones to spontaneously authenticate and
interact with multi-touch surfaces. PPD ’08 workshop on
designing multi-touch interaction techniques for coupled
public and private displays, 2008.

[Schöning 09] Johannes Schöning. Do we need further multi-touch af-
fordances? In Touch affordances workshop at the IFIP
international conference on Human-computer interac-
tion, INTERACT ’09, 2009.

[Schöning 10] Johannes Schöning, Markus Löchtefeld, Michael Rohs
& Antonio Krüger. Projector phones: a new class of
interfaces for augmented reality. International Journal
of Mobile Human Computer Interaction, vol. 2, no. 3,
pages 1–14, 2010.

[Schwan 04] Stephan Schwan & Roland Riempp. The cognitive ben-
efits of interactive videos: learning to tie nautical knots.
Learning and Instruction, vol. 14, no. 3, pages 293–305,
2004.

[Scott 03] Stacey D. Scott, Karen D. Grant & Regan L. Mandryk.
System guidelines for co-located collaborative work on a
tabletop display. In Proceedings of the 2003 European

274 BIBLIOGRAPHY

conference on Computer-supported cooperative work,
ECSCW ’03, pages 159–178. Springer, 2003.

[Scott 04] Stacey D. Scott, Sheelagh Carpendale & Kori M.
Inkpen. Territoriality in collaborative tabletop
workspaces. In Proceedings of the 2004 ACM confer-
ence on Computer supported cooperative work, CSCW
’04, pages 294–303. ACM, 2004.

[Segen 98] Jakub Segen & Senthil Kumar. Gesture VR: vision-
based 3D hand interace for spatial interaction. In Pro-
ceedings of the 6th ACM international conference on
Multimedia, MULTIMEDIA ’98, pages 455–464. ACM,
1998.

[Shen 03] Chia Shen, Katherine Everitt & Kathleen Ryall.
UbiTable: impromptu face-to-face collaboration on hor-
izontal interactive surfaces. In Proceedings of the 5th
international conference on Ubiquitous computing, Ubi-
Comp ’03, pages 281–288. Springer, 2003.

[Shen 04] Chia Shen, Frédéric D. Vernier, Clifton Forlines &
Meredith Ringel. DiamondSpin: an extensible toolkit
for around-the-table interaction. In Proceedings of the
SIGCHI conference on Human factors in computing sys-
tems, CHI ’04, pages 167–174. ACM, 2004.

[Shen 06] Chia Shen, Kathy Ryall, Clifton Forlines, Alan Esen-
ther, Frédéric D. Vernier, Katherine Everitt, Mike Wu,
Daniel Wigdor, Meredith Ringel Morris, Mark Hancock
& Edward Tse. Informing the design of direct-touch
tabletops. IEEE Computer Graphics and Applications,
vol. 26, no. 5, pages 36–46, 2006.

[Shneiderman 91] Ben Shneiderman. Touch screens now offer compelling
uses. IEEE Software, vol. 8, no. 2, pages 93–94, 1991.

[Shoemaker 01] Garth B.D. Shoemaker & Kori M. Inkpen. Single display
privacyware: augmenting public displays with private in-
formation. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI ’01, pages
522–529. ACM, 2001.

BIBLIOGRAPHY 275

[Simone 95] Carla Simone, Monica Divitini & Kjeld Schmidt. A
notation for malleable and interoperable coordination
mechanisms for CSCW systems. In Proceedings of con-
ference on Organizational computing systems, COCS
’95, pages 44–54. ACM, 1995.

[Smith 98] Hixon Ranald Smith Randall B. & Bernard Horan. Sup-
porting flexible roles in a shared workspace. In Proceed-
ings of the 1998 ACM conference on Computer sup-
ported cooperative work, CSCW ’98, pages 197–206.
ACM, 1998.

[Spano 11] Lucio Davide Spano. A model-based approach for ges-
ture interfaces. In Proceedings of the 3rd ACM SIGCHI
symposium on Engineering interactive computing sys-
tems, EICS ’11, pages 327–330. ACM, 2011.

[Spano 12] Lucio Spano, Antonio Cisternino & Fabio Paternò. A
compositional model for gesture definition. In Proceed-
ings of the 4th international conference on Human-
Centered Software Engineering, HCSE ’12, pages 34–52.
Springer, 2012.

[Streitz 94] Norbert A. Streitz, Jörg Geißler, Jörg M. Haake &
Jeroen Hol. DOLPHIN: integrated meeting support
across local and remote desktop environments and live-
boards. In Proceedings of the 1994 ACM conference
on Computer supported cooperative work, CSCW ’94,
pages 345–358. ACM, 1994.

[Streitz 99] Norbert A. Streitz, Jörg Geißler, Torsten Holmer,
Shin’ichi Konomi, Christian Müller-Tomfelde, Wolfgang
Reischl, Petra Rexroth, Peter Seitz & Ralf Steinmetz.
i-LAND: an interactive landscape for creativity and in-
novation. In Proceedings of the SIGCHI conference on
Human factors in computing systems, CHI ’99, pages
120–127. ACM, 1999.

[Sukaviriya 90] Piyawadee Sukaviriya & James D. Foley. Coupling
a UI framework with automatic generation of context-
sensitive animated help. In Proceedings of the 3rd ACM

276 BIBLIOGRAPHY

symposium on User interface software and technology,
UIST ’90, pages 152–166. ACM, 1990.

[Swain 91] Michael J. Swain & Dana H. Ballard. Color indexing.
International Journal of Computer Vision, vol. 7, no. 1,
pages 11–32, 1991.

[Tang 06] Anthony Tang, Melanie Tory, Barry Po, Petra Neumann
& Sheelagh Carpendale. Collaborative coupling over
tabletop displays. In Proceedings of the SIGCHI con-
ference on Human factors in computing systems, CHI
’06, pages 1181–1190. ACM, 2006.

[Taylor 01] Russell M. Taylor II, Thomas C. Hudson, Adam Seeger,
Hans Weber, Jeffrey Juliano & Aron T. Helser. VRPN:
a device-independent, network-transparent VR periph-
eral system. In Proceedings of the ACM symposium
on Virtual reality software and technology, VRST ’01,
pages 55–61. ACM, 2001.

[Thelen 12] Sebastian Thelen, Matthias Deller, Johannes Eichner &
Achim Ebert. Enhancing large display interaction with
user tracking data. In Proceedings of the international
conference on Computer Graphics and Virtual Reality,
CGVR ’12, 2012.

[Truong 06] Khai N. Truong, Gillian R. Hayes & Gregory D. Abowd.
Storyboarding: an empirical determination of best prac-
tices and effective guidelines. In Proceedings of the 6th
ACM conference on Designing Interactive Systems, DIS
’06, pages 12–21. ACM, 2006.

[Tse 11] Edward Tse, Johannes Schöning, Jochen Huber, Lynn
Marentette, Richard Beckwith, Yvonne Rogers & Max
Mühlhäuser. Child computer interaction: workshop on
UI technologies and educational pedagogy. In Proceed-
ings of the 2011 conference extended abstracts on Hu-
man factors in computing systems, CHI EA ’11, pages
2445–2448. ACM, 2011.

[Tuck 90] Robin Tuck & Dan R. Olsen. Help by guided tasks: uti-
lizing UIMS knowledge. In Proceedings of the SIGCHI

BIBLIOGRAPHY 277

conference on Human factors in computing systems,
CHI ’90, pages 71–78. ACM, 1990.

[Turoff 91] Murray Turoff. Computer-mediated communication re-
quirements for group support. Journal of Organizational
Computing, vol. 1, no. 1, pages 85–113, 1991.

[Tversky 02] Barbara Tversky, Julie B. Morrison & Mireille
Bétrancourt. Animation: can it facilitate? Inter-
national Journal of HumanComputer Studies, vol. 57,
no. 4, pages 247–262, 2002.

[Valk 98] Rudiger Valk. Petri Nets as token objects: an introduc-
tion to elementary object nets. In Proceedings of the
19th international conference on Application and The-
ory of Petri Nets, ICATPN ’98. Springer, 1998.

[Van Laerhoven 06] Tom Van Laerhoven, Geert Vanderhulst, Kris Luyten
& Frank Van Reeth. Device federations for a creative
process in distributed interaction environments. Rap-
port technique TR-UH-EDM-0606, Hasselt University –
Expertise Centre for Digital Media, 2006.

[Vanacken 06] Davy Vanacken, Joan De Boeck, Chris Raymaekers &
Karin Coninx. NiMMiT: a notation for modelling mul-
timodal interaction techniques. In Proceedings of the
first international conference on Computer graphics the-
ory and applications, GRAPP ’06, pages 224–231. IN-
STICC, 2006.

[Vanacken 07a] Davy Vanacken, Chris Raymaekers, Kris Luyten &
Karin Coninx. Focus+Roles: socio-organizational con-
flict resolution in collaborative user interfaces. In
Proceedings of the 12th international conference on
Human-computer interaction, HCII ’07, pages 788–796.
Springer, 2007.

[Vanacken 07b] Lode Vanacken, Erwin Cuppens, Tim Clerckx & Karin
Coninx. Extending a dialog model with contextual knowl-
edge. In Proceedings of the 6th international workshop
on Task Models and Diagrams for User Interface Design,
TAMODIA ’07, pages 28–41. Springer, 2007.

278 BIBLIOGRAPHY

[Vanacken 08a] Davy Vanacken. Interactive workspaces: multi-user,
multi-touch, multi-device. In Electronic proceedings of
the 2008 ACM conference on Computer supported coop-
erative work (doctoral colloquium), CSCW ’08. ACM,
2008.

[Vanacken 08b] Davy Vanacken, Alexandre Demeure, Kris Luyten &
Karin Coninx. Ghosts in the interface: meta-user inter-
face visualizations as guides for multi-touch interaction.
In Proceedings of the 3rd IEEE international workshop
on Horizontal Interactive Human Computer Systems,
TABLETOP ’08, pages 81–84. IEEE Computer Society,
2008.

[Vanacken 08c] Lode Vanacken, Joan De Boeck, Chris Raymaekers &
Karin Coninx. Designing context-aware multimodal vir-
tual environments. In Proceedings of the 10th interna-
tional conference on Multimodal Interfaces, ICMI ’08,
pages 129–136. ACM, 2008.

[Vanacken 08d] Lode Vanacken, Joan De Boeck, Chris Raymaekers
& Karin Coninx. An event-condition-action approach
for contextual interaction in virtual environments. In
Proceedings of the 2nd conference on Human-Centered
Software Engineering and 7th international workshop
on Task Models and Diagrams, HCSE-TAMODIA ’08,
pages 126–133. Springer, 2008.

[Vanacken 09a] Davy Vanacken, Kris Luyten & Karin Coninx.
TouchGhosts: guides for improving visibility of multi-
touch interaction. In Multitouch and Surface Comput-
ing workshop at CHI ’09, the 27th international confer-
ence on Human factors in computing systems, 2009.

[Vanacken 09b] Lode Vanacken. Multimodal selection in virtual environ-
ments: enhancing the user experience and facilitating
development. PhD thesis, Hasselt University, Diepen-
beek, Belgium, June 2009.

[Voelker 11] Simon Voelker, Malte Weiss, Chat Wacharamanotham
& Jan Borchers. Dynamic portals: a lightweight

BIBLIOGRAPHY 279

metaphor for fast object transfer on interactive surfaces.
In Proceedings of the ACM international conference on
Interactive Tabletops and Surfaces, ITS ’11, pages 158–
161. ACM, 2011.

[Vogel 04] Daniel Vogel & Ravin Balakrishnan. Interactive public
ambient displays: transitioning from implicit to explicit,
public to personal, interaction with multiple users. In
Proceedings of the 17th ACM symposium on User inter-
face software and technology, UIST ’04, pages 137–146.
ACM, 2004.

[von Zadow 10] Ulrich von Zadow, Florian Daiber, Johannes Schöning
& Antonio Krüger. GlobalData: multi-user interaction
with geographic information systems on interactive sur-
faces. In Proceedings of the ACM international con-
ference on Interactive Tabletops and Surfaces, ITS ’10,
pages 318–318. ACM, 2010.

[Wacharamanotham 11] Chat Wacharamanotham, Jan Hurtmanns, Alexan-
der Mertens, Martin Kronenbuerger, Christopher
Schlick & Jan Borchers. Evaluating swabbing: a touch-
screen input method for elderly users with tremor. In
Proceedings of the 2011 conference on Human factors
in computing systems, CHI ’11, pages 623–626. ACM,
2011.

[Wahid 10] Shahtab Wahid, Stacy M. Branham, D. Scott Mc-
Crickard & Steve Harrison. Investigating the relation-
ship between imagery and rationale in design. In Pro-
ceedings of the 8th ACM conference on Designing Inter-
active Systems, DIS ’10, pages 75–84. ACM, 2010.

[Wang 09] Feng Wang, Xiang Cao, Xiangshi Ren & Pourang Irani.
Detecting and leveraging finger orientation for interac-
tion with direct-touch surfaces. In Proceedings of the
22nd ACM symposium on User interface software and
technology, UIST ’09, pages 23–32. ACM, 2009.

[Weiss 09] Malte Weiss, Julie Wagner, Yvonne Jansen, Roger Jen-
nings, Ramsin Khoshabeh, James D. Hollan & Jan

280 BIBLIOGRAPHY

Borchers. SLAP widgets: bridging the gap between vir-
tual and physical controls on tabletops. In Proceedings
of the 27th international conference on Human factors
in computing systems, CHI ’09, pages 481–490. ACM,
2009.

[Weiss 10] Malte Weiss, Florian Schwarz, Simon Jakubowski & Jan
Borchers. Madgets: actuating widgets on interactive
tabletops. In Proceedings of the 23nd ACM symposium
on User interface software and technology, UIST ’10,
pages 293–302. ACM, 2010.

[Weiss 11] Malte Weiss, Chat Wacharamanotham, Simon Voelker
& Jan Borchers. FingerFlux: near-surface haptic feed-
back on tabletops. In Proceedings of the 24th ACM sym-
posium on User interface software and technology, UIST
’11, pages 615–620. ACM, 2011.

[White 07] Sean White, Levi Lister & Steven Feiner. Visual hints
for tangible gestures in augmented reality. In Proceed-
ings of the 2007 6th IEEE and ACM international sym-
posium on Mixed and augmented reality, ISMAR ’07,
pages 1–4. IEEE Computer Society, 2007.

[Wigdor 06] Daniel Wigdor, Chia Shen, Clifton Forlines & Ravin
Balakrishnan. Table-centric interactive spaces for real-
time collaboration. In Proceedings of the working con-
ference on Advanced visual interfaces, AVI ’06, pages
103–107. ACM, 2006.

[Wigdor 09] Daniel Wigdor, Hao Jiang, Clifton Forlines, Michelle
Borkin & Chia Shen. WeSpace: the design development
and deployment of a walk-up and share multi-surface
visual collaboration system. In Proceedings of the 27th
international conference on Human factors in computing
systems, CHI ’09, pages 1237–1246. ACM, 2009.

[Wingrave 09] Chadwick A. Wingrave, Joseph J. Laviola Jr. & Doug A.
Bowman. A natural, tiered and executable UIDL for 3D
user interfaces based on concept-oriented design. ACM
Transactions on Computer-Human Interaction, vol. 16,
no. 4, pages 21:1–21:36, 2009.

BIBLIOGRAPHY 281

[Wobbrock 07] Jacob O. Wobbrock, Andrew D. Wilson & Yang Li. Ges-
tures without libraries, toolkits or training: a $1 recog-
nizer for user interface prototypes. In Proceedings of
the 20th ACM symposium on User interface software
and technology, UIST ’07, pages 159–168. ACM, 2007.

[Wobbrock 09] Jacob O. Wobbrock, Meredith Ringel Morris & An-
drew D. Wilson. User-defined gestures for surface com-
puting. In Proceedings of the 27th international confer-
ence on Human factors in computing systems, CHI ’09,
pages 1083–1092. ACM, 2009.

[Wu 03] Mike Wu & Ravin Balakrishnan. Multi-finger and whole
hand gestural interaction techniques for multi-user table-
top displays. In Proceedings of the 16th ACM sympo-
sium on User interface software and technology, UIST
’03, pages 193–202. ACM, 2003.

[Xia 04] Steven Xia, David Sun, Chengzheng Sun, David Chen
& Haifeng Shen. Leveraging single-user applications for
multi-user collaboration: the CoWord approach. In Pro-
ceedings of the 2004 ACM conference on Computer sup-
ported cooperative work, CSCW ’04, pages 162–171.
ACM, 2004.

[Yeh 11] Tom Yeh, Tsung-Hsiang Chang, Bo Xie, Greg Walsh,
Ivan Watkins, Krist Wongsuphasawat, Man Huang,
Larry S. Davis & Benjamin B. Bederson. Creating con-
textual help for GUIs using screenshots. In Proceedings
of the 24th ACM symposium on User interface software
and technology, UIST ’11, pages 145–154. ACM, 2011.

[Zhang 06] Dongsong Zhang, Lina Zhou, Robert O. Briggs & Jay F.
Nunamaker Jr. Instructional video in e-learning: assess-
ing the impact of interactive video on learning effective-
ness. Information & Management, vol. 43, no. 1, pages
15–27, 2006.

[Zhu 06] Haibin Zhu. Role mechanisms in collaborative systems.
International Journal of Production Research, vol. 44,
no. 1, pages 181–193, 2006.

	Acknowledgments
	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	A brief history of touch-based interaction
	Challenges in the field at large
	Hands-on experiences and research challenges
	Walk-up-and-use environments
	Co-located and remote collaboration
	Storyboarding in a multidisciplinary team

	Summary of research challenges, scope delineation and overview of chapters

	I Self-explanatory interfaces for touch-based interaction
	TouchGhosts: visual guides for multi-touch interaction
	Introduction
	Related work
	Self-explanatory TouchGhost interfaces
	Visualizations
	Invocations

	TouchGhost architectures
	COMETs toolkit
	Microsoft .NET framework
	Required meta-data in TouchGhost objects
	Manipulating the actual user interface

	Illustrative TouchGhost implementations
	Invocations
	Visualizations
	Multi-user strategies

	Conclusion

	Evaluation of different TouchGhost strategies
	Introduction
	Evaluation of single-user strategies
	Participants and apparatus
	Tasks
	Experimental design
	Procedure
	Results
	Other observations and discussion

	Evaluation of multi-user strategies
	Participants and apparatus
	Tasks
	Experimental design
	Procedure
	Results
	Other observations and discussion

	Conclusion

	II Enhancing collaboration in multi-user environments
	Focus0.2ex+Roles: socio-organizational conflict resolution and access control in collaborative user interfaces
	Introduction
	Related work
	Focus0.2ex+Roles
	Roles in an organizational and meeting context
	Passive and active focus
	Access control
	Overview of the Focus0.2ex+Roles process

	The iConnect environment
	Personal and shared workspaces
	Embedding native applications in containers
	User representation and data sharing
	Integrating personal devices
	A collaborative tabletop

	Illustrative Focus0.2ex+Roles implementation
	Roles as a set of privileges
	Focus as an amount of attention
	Access control, content type and sensitivity
	Limitations and possible extensions

	Conclusion

	An observational study on collaborative storyboarding in multidisciplinary teams
	Introduction
	Related work
	Observational study
	Participants and apparatus
	Tasks and experimental design
	Procedure
	Observations and results

	Lessons learned
	Allow for differences, support agreements
	Facilitate different approaches in structuring
	Maintain the design rationale
	Favor shared over personal space
	Support visible and direct physical interaction

	Conclusion

	Carpus: a non-intrusive user identification technique for interactive surfaces
	Introduction
	Related work
	Carpus
	Benefits and limitations
	Skin region and identity extraction
	Step 1: Extraction of the dorsal hand region
	Step 2: Feature extraction
	Step 3: Feature matching
	Step 4: Relating touches to identified regions

	System specifications and performance
	Evaluation of Carpus
	Uniqueness of the dorsal hand region
	Robustness against posture variations

	Extending Carpus with tracking
	Usage scenario
	Discussion
	Conclusion

	III An engineering perspective
	NiMMiT: a graphical notation for modeling touch-based and multi-user interaction techniques?
	Introduction
	VR-DeMo and CoGenIVE
	Related work and early experiments
	NiMMiT
	Requirements for describing user interaction
	NiMMiT's basic primitives
	Creation and execution of a NiMMiT diagram

	Case study: the Object-in-Hand metaphor
	Selecting an object
	Non-dominant hand interaction
	Synchronization with the dominant hand

	Extensions to NiMMiT
	Adding support for evaluation
	Integrating contextual and semantic knowledge

	Considerations on multimodal, touch-based, and multi-user interaction
	Modeling multimodality
	Modeling touch-based and multi-user interaction

	Conclusion

	IV Conclusions
	Reflections, contributions and future work
	Reflection on the research challenges
	Summary of overall contributions
	Future work
	Refining (help for) touch-based interfaces
	Group aspects and long-term effects of help
	A storyboarding tool for multidisciplinary teams
	The future of touch-based interaction and beyond

	Scientific contributions and publications

	Appendices
	Documents of the single-user and multi-user evaluations of different TouchGhost strategies
	Textual help of the single-user evaluation
	Questionnaires of the evaluations

	Documents of the observational study on collaborative storyboarding in multidisciplinary teams
	Personas
	Scenario
	Questionnaire

	Nederlandstalige samenvatting
	Bibliography

