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Abstract

Multivariate longitudinal or clustered data are commonly encountered in clinical trials and
toxicological studies. Typically there is no single standard endpoint to assess the toxicity or
efficacy of the compound of interest, but co-primary endpoints are available to assess the toxic
effects or the working of the compound. Modeling the responses jointly is thus appealing to
draw overall inferences using all responses and to capture the association among the responses.
Non-Gaussian outcomes are often modeled univariately using exponential family models. To
accommodate both the overdispersion and hierarchical structure in the data, Molenberghs et

al. (2010) proposed using two separate sets of random effects. This paper considers a further
extension to a multivariate setting with hierarchically clustered and overdispersed non-Gaussian
outcomes. Gamma random effect for the over-dispersion and normal random effects for the
clustering in the data are being used. The two outcomes are jointly analyzed by assuming that
the normal random effects for both endpoints are correlated. The association structure between
the response is analytically derived. The fit of the joint model to data from a so-called comet
assay are compared with the univariate analysis of the two outcomes.

Some Keywords: Comet Assay; Gamma random effect; Hierarchical model; Joint model;
Normal random effect.

1 Introduction

Multivariate longitudinal or clustered data are commonly encountered in clinical trials and toxico-

logical studies. Typically, there is no single standard endpoint to assess the toxicity or efficacy of

the compound of interest, but multiple endpoints, the so-called co-primary endpoints, are available

to assess the toxic effects or the activity of the compound. In a comet assay, for instance, different
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outcomes/co-primary endpoints (Lovell and Omori 2008, Wiklund and Agurell 2003) are used to

assess the DNA damage of a cell as a result of an exposure: the tail length, tail intensity, and tail

moment; these outcomes will formally be introduced in the next section. Most often, the tail length

and tail intensity are used. Typically, univariate analyses are conducted to asses the treatment effect

on each endpoint separately, leading to as many conclusions as there are endpoints regarding the

same treatment effect. In particular, for the comet assay, one tends to focus primarily on tail intensity

because of its discriminative power. Ideally though, one would prefer to reach a conclusion on the

overall effect using all outcomes simultaneously, necessitating joint modeling. An added value of

joint modeling is that inferences can be drawn about the association between outcomes as well.

Various modeling approaches for specifying a joint distribution are possible (Fitzmaurice et al., 2009,

Ch. 14; Fieuws and Verbeke, 2004). First, this can be effectuated by specifying the full multivariate

distribution of the outcomes. This allows for drawing marginal inferences regarding the characteristics

of the individual outcomes, but it requires many parameters and while the multivariate Gaussian

distribution is well-known, there are many distributions for which no commonly accepted multivariate

distribution is available. Second, by the use of conditional models where the joint distribution is

expressed as the product of the conditional distribution of the first outcome conditional on the

second outcome and the marginal distribution of the second outcome. However, factorization can be

done in many ways, leading to different results, and it requires the specification of many parameters.

Third, shared-parameter models can be entertained, where a pair of outcomes are associated by

using a common latent variable, e.g., a common random effect. This is a simple but very strong

assumption about the association between outcomes. Fourth, one can relax the latter assumption

by using multivariate random effects, in which the two outcomes are associated via separate but

correlated random effects. This is more flexible than shared-parameter models, but might still fail to

fully capture the association structure and/or the variance function. Fifth, dimension reduction using

principal component can be used, upon which the principal components are subjected to univariate

analysis. While simple, the resulting inferences may not be about the parameters of direct scientific

interest. In this manuscript, we focus on a flexible multivariate random effects approach.

The paper is organized as follows. In Section 2, the comet data are introduced. The joint model for
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two hierarchical, overdispersed non-Gaussian outcomes is outlined in Section 3, and characteristics

of the models are derived. It is then applied to comet data in Section 4.

2 Data Description

A comet assay, regularly encountered in pre-clinical research (Ejchart and Sadlej-Sosnowska 2003,

Lovell and Omori 2008), is a sensitive method to assess DNA damage. During the last decade the

assay gained widespread use in various areas and has emerged as a standard tool in the pharmaceutical

for the assessment of the safety of potential new drugs. Typically, a comet assay is a single cell

microgel electrophoresis method detecting DNA damage in any target tissue or organ of which a

single cell suspension can be prepared. Cells are embedded in agarose, membranes are lysed and

proteins extracted. Exposure to high alkali (pH>13.0) allows expression of single strand breaks

and subsequent alkaline electrophoresis ensures migration of DNA fragments out of the nucleus.

Visualization of this DNA migration (typical comet-like structures) is performed by a fluorescent dye.

An image analysis system coupled to a microscope permits quantification of DNA damage at the

single cell level. Three measures are commonly used: the tail migration (i.e., tail length), percentage

tail intensity, and tail moment. Tail length is the distance from the perimeter of the comet head to

the last visible point in the tail; percentage tail intensity is the percentage of DNA fragments present

in the tail, while tail moment is the product of the amount of DNA in the tail and the mean distance

of migration in the tail. In many experiments, the cells from a single animal are placed on a number

of slides. Although there is no consensus among the experts as to the most appropriate statistical

method and design (the number of slides and the replicates), some studies (Wiklund and Agurell

2003, Smith et al. 2008) indicate 3 slides and about 50 replicates/cells would be appropriate.

The statistical analysis of such a comet assay is complicated because of several issues in the data.

The comet assay represents a hierarchical design with animals nested within doses, a number of slides

per animals and several cells measured per slide. Comet measures from an animal are oftentimes not

normally distributed but are rather asymmetric, skewed, bi- or multi-modal, a mixture of different

distributions, etc. The complications that arise from the various non-normal distributions of comet

endpoints are avoided in most standard analyses through the use of the central limit theorem. While
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the original data at the cell level may not be normally distributed, mean (or median) summaries at

slide or animal level will be approximately normally distributed (given the typically large sample sizes)

and are thus amenable to standard statistical analyses. Hierarchical or multilevel models make use of

information on the various levels of variability but may be quite complex in terms of the distribution

between cells of the same animals and difficult to interpret and explain. Their advantage, however,

is that they provide estimates of the variability at each level and make use of the information at the

cell level thus increasing the power of the study especially if the between-animal variability is not too

large. Variability is expected between slides because of the variability in the handling of the different

slides, and also variability between animals is expected, because of the individual-specific differences.

Previous (univariate) analyses on the same data indicate the importance of slide variability in contrast

to the smaller rat variability (Ghebretinsae et al. 2011).

Here the data correspond to 24 male rats that received a daily oral dose of a compound. Rats were

randomized to either one of the three dose levels (low, medium, and high) or the vehicle (control).

On the day of necropsy, an extra group of three animals received a single dose of a positive control

(Pos. C.). The animals were sacrificed 3 hours after the last dose administration, their livers were

removed and processed for the comet assay. For each animal, a cell suspension is prepared. From

each cell suspension, three replicate samples were prepared for scoring. Fifty randomly selected,

non-overlapping cells per sample were then scored for DNA damage using a semi-automated scoring

system. Thus, a total of 150 liver cells were scored per animal, on three slides. Data for tail intensity

and tail length are represented in Figure 1. Previous work on the same data indicate dispersion is

more pronounced for tail length, due in part to the occurrence of zeroes.

3 Joint Model for Two Hierarchical, Overdispersed Positive Outcomes

In this section, a joint model for hierarchical, overdispersed positive outcomes is proposed. First, the

setting of a single hierarchical, overdispersed outcome is introduced, which is then extended to the

multivariate setting.
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Figure 1: Scatter plot and box plots of the tail length versus tail intensity

3.1 Univariate Analysis

Because the primary outcomes, tail intensity and tail length, are skewed, non-negative and continuous,

which is similar to many time-to-event data (Duchateau and Janssen 2007), an exponential or Weibull

distribution is a natural choice. To start, we account for one level in the hierarchy of the data, namely

the variability between slides. As proposed by Ghebretinsae et al (2011), we use a combined Weibull

model with normal random effects to handle the hierarchy in the data and a gamma conjugate

random effect to account for overdispersion in the response. This model falls into the model family

as proposed by Molenberghs et al. (2010).

Let Yij be the jth cell of subject i measured for tail length or tail intensity, grouped in to Y i. The

model can be expressed as:

f(yi|θi, bi) =
ni
∏

j=1

λρθijy
ρ−1
ij eηij e

−λyρ
ij

θijeηij

,

ηij = x′

ijξ + z′

ijbi,

f(θi) =
ni
∏

j=1

1

β
αj

j Γ(αj)
θ
αj−1
ij e−θij /βj ,
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f(bi) =
1

(2π)q/2|D|1/2
e−

1

2
bi

′

D−1bi.

with bi the zero-mean normally-distributed slide-specific random effects, with variance-covariance D,

to account for the clustering of observations and θij the gamma-distributed measurement-specific

random effects to accommodate for overdispersion. Further, λ and ρ are Weibull parameters, and

αj and βj are gamma parameters. Here, ηij is a linear predictor, with fixed-effects parameter ξ and

design vectors xij and zij for the fixed effects and random effects, respectively. This model is called

the Weibull-Gamma-Normal model.

3.2 Joint Analysis

The proposed joint model for tail length and tail intensity assumes a Weibull-Gamma-Normal model

for both endpoints. The endpoints are associated by the use of bivariate normal random effects for

the two endpoints, instead of the use of two separate (univariate) random effects, which we will call

the Weibull-Gamma-Multivariate Normal model.

Let Y1ij and Y2ij be the jth measurements of subject i for the two outcomes, tail length and tail

intensity. With notation similar to the above, the linear part for the two responses are assumed to

be:

η1ij = x′

1ijξ1 + b1i,

η2ij = x′

2ijξ2 + b2i,

with x1ij and x2ij design matrices, ξ1 and ξ2 vectors of unknown fixed-effect parameters, and b1i

and b2i the cluster-specific random intercepts for the first and second outcomes, respectively. These

two random effects are assumed bivariate normally distributed:











b1i

b2i











∼ N





















0

0











,











d2
1 rd1d2

rd1d2 d2
2





















,

with d2
1 and d2

2 the variances of the random intercepts and r the correlation between them. The

association between the two endpoints is induced via the parameter r. More details on this are

given in the next section. Conditionally on the normally distributed random effects (b1i and b2i),
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it is assumed that the two outcomes are independent. Testing for treatment effect based on both

endpoints simultaneously is conveniently done by way of a likelihood ratio test for the treatment

effect parameters in both endpoints combined.

In terms of estimation, we opt for maximum likelihood using partial marginalization. This implies

that the gamma random effects are analytically integrated out from the likelihood, while numerical

integration, as implemented in the SAS procedure MIXED, is invoked to marginalize over the normally

distributed random effects. The code is given in the Appendix.

3.3 Correlation Between Both Responses

The association between both outcomes is captured via the bivariate normal random effects. However,

the correlation between the two random effects is not necessarily equal to the correlation between

the two responses. Furthermore, a significant correlation at the cluster level does not necessarily

imply a significant correlation between the two responses taken from the same cell. In this section,

it is established how the correlation between the outcomes is related with the correlation between

the random effects.

The correlation between two measurements from the same subject for a single response, also called

the intraclass correlation (ICC), is equal to:

Corr(Y`ij , Y`ik) =

[

e
d2

`
ρ2 − 1

]/









2ρB(α − 2
ρ , 2

ρ)e
d2

`
ρ2

B(α − 1
ρ , 1

ρ)2
− 1









with ` = 1, 2, ρ the shape parameter of the Weibull distribution, d2
` the random-effects variance (equal

to d2
1 or d2

2 for tail length and tail intensity, respectively), and α the shape parameter of the Gamma

random effects distribution. B(·, ·) is the beta function. A large value for the shape parameter (α)

indicates a small amount of overdispersion, which in the limit reduces to the Weibull-Normal model

for a univariate outcome. In this case, the intraclass correlation reduces to:

Corr(Y`ij , Y`ik) =

[

e
d2

`
ρ2 − 1

]/


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2ρΓ( 2
ρ)e
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`
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





,

with Γ(·) the gamma function.
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On the other hand, the correlation between the two outcomes (tail length and tail intensity) of the

same cell is given by the following expression

Corr(y1ij, y2ij) =

(

e
rd1d2

ρ1ρ2 − 1

)

×
B

(
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, 1
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)
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where ICC1 and ICC2 are the intracluster/class correlation for responses 1 and 2, respectively. The

correlation between the two endpoints is proportional to the correlation between the two random

effects, with the same sign. So, when two random effects are positively or negatively correlated, the

correlation between endpoints follows accordingly and when the correlation between the two random

effects is zero, then the correlation between the two endpoints is zero as well. In other words, the

correlation is induced entirely by the correlation between the two random effects. This correlation

also depends on the Weibull shape parameters ρ1 and ρ2.

For a joint model based on two linear mixed model, the bivariate correlation between the two end-

points is given by Corr(Y1ij, Y2ij) = r
√

ICC1

√
ICC2 (Fitzmaurice et al., 2009, Ch. 14). It is by

definition smaller than or equal to the correlation between the two random intercepts. Only when

both intra-class correlations are 1, equality holds. However, it is not straightforward in this case.

Details on the calculations are given in Appendix B.

3.4 Simulation Study

A set of simulations was conducted to evaluate the performance of the different models in terms of

the type I and II error rates, as well as bias of the parameter estimates. Two batches of simulation
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were done for two levels of overdispersion. We considered two treatment groups: active and vehicle

control. In the first set of simulations, we assume there are 3 animals, hence 9 slides, and a total

of 450 cells in each treatment group. In contrast, in the second batch, 6 animals and 18 slides

each with 10 cells, are considered. Two responses were generated, one with and the other without

overdispersion. The first response Y1ij ∼ Weibull(ρ1, θije
η1ij) follows a Weibull-gamma-normal,

while Y2ij ∼ Weibull(ρ2, e
η2ij) follows a Weibull-normal, with further

ηkij = βk0 + βk1Tij + bki, (k = 1, 2)

θij ∼ Gamma

(

α,
1

α

)

.

Tij is the indicator for the treatment group. Random effects are correlated and follow:
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Different correlation levels between the random effects as well as different overdispersion level were

considered to gauge the impact of these characteristics. We set the random-effects standard devia-

tions to d1 = d2 = 0.2 and the Weibull shape parameters to ρ1 = ρ2 = 0.4. The correlation r ranges

over 0.9, 0.6, and 0.3 in both sets of simulations. Because interest lies in assessing the type I and II

error rates, the data are generated under the null (β10 = β11 = −1 and β21 = β21 = −1) for the type

I error rate, and under the alternative (β10 = −1, β11 = −1.3 , β20 = −1, and β21 = −1.3) to assess

the type II error rate. An overdispersion level of α = 0.8 is used for the first set of simulation and

α = 1.5 for the second one. A total of 200 such datasets is generated per run. The two responses are

analyzed separately using: (1) a traditional model, i.e., analysis of variance on the summary measure

(mean) of the log-transformed response; (2) a classical Weibull model; (3) a Weibull-normal model;

(4) a Weibull-gamma-normal model; and finally (5) Joint modeling.

4 Application to the Comet Data

4.1 Univariate Analyses

Univariate analyses for tail intensity and tail length are performed separately for the comet assay

data. The endpoints are analyzed both with and without overdispersion, using the Weibull-Gamma-
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Table 1: Analysis for Tail Length

Weibull-Gamma-Normal Weibull-Normal

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value

Veh. β0 -30.9295(0.7264) 0.0001 -15.6378(0.2517) 0.0001

Low vs. veh. β1 -11.9378(0.4445) 0.0001 -4.4965(0.2243) 0.0001

Med.vs. veh. β2 -12.1552(0.4472) 0.0001 -4.5998(0.2245) 0.0001

High vs. veh. β3 -12.6026(0.4525) 0.0001 -4.8290(0.2251) 0.0001

Pos. C.vs. veh. β4 -9.6419(0.4762) 0.0001 -3.4808(0.2718) 0.0001

Low vs. Med. β5 -0.2174(0.3398) 0.5241 -0.1033(0.2206) 0.6410

Low vs. High β6 -0.6648(0.3403) 0.0543 -0.3325(0.2206) 0.1358

Med. vs. High β7 -0.4474(0.3402) 0.1923 -0.2292(0.2206) 0.3019

Weibull Par. ρ 10.7072(0.2474) 0.0001 4.9585(0.0580) 0.0001

s.d. of RE
√

d 0.9881(0.08592) 0.0001 0.6464(0.0543) 0.0001

OD par. α 0.8932(0.0463) 0.0001 − −

-2 loglik. 28069 29793

Normal and Weibull-Normal models, respectively. Summary results are presented in Tables 1 and 2.

For tail intensity, inclusion of the overdispersion random effect neither improved the likelihood, nor

affected the estimates and precision of the estimate. On the other hand, for tail length, inclusion

of the overdispersion random effect greatly improved the likelihood and also affected the parameter

estimation and precision. If we consider the contrast between the low and high dose group for tail

length, for instance, the p-value was 0.1358 based on the model without overdispersion and 0.0543

with overdispersion. For both endpoints, there is a major effect of the compound as compared to

the vehicle group. However, the conclusion for the contrasts between the three dose level is different

based on both responses. Based on tail intensity, there was a significant difference among the dose

levels.

A conventional significance test for α would test the null hypothesis H0 : α = 0. However, this does
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Table 2: Analysis for Tail Intensity

Weibull-Gamma-Normal Weibull-Normal

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value

Veh. β0 -2.4628(0.0774) 0.0001 -2.4628(0.0774) 0.0001

Low vs. veh. β1 -2.8125(0.0911) 0.0001 -2.8126(0.0911) 0.0001

Med.vs. veh. β2 -3.0565(0.0920) 0.0001 -3.0566(0.0920) 0.0001

High vs. veh. β3 -3.2777(0.0929) 0.0001 -3.2778(0.0929) 0.0001

Pos. C. vs. veh. β4 -1.7941(0.1079) 0.0001 -1.7941(0.1078) 0.0001

Low vs. Med. β5 -0.2440(0.0874) 0.0065 -0.2440(0.0874) 0.0065

Low vs. High β6 -0.4652(0.0875) 0.0001 -0.4652(0.0875) 0.0001

Med. vs. High β7 -0.2212(0.0874) 0.0133 -0.2212(0.0874) 0.0133

Weibull Par. ρ 1.4158(0.0189) 0.0001 1.4158(0.0189) 0.0001

s.d. of RE
√

d 0.2201(0.0248) 0.0001 0.2201(0.0248) 0.0001

log OD par. log(α) 13.9715(2.0370) 0.0001 − −

-2 loglik. 33769 33769

not correspond to the absence of overdispersion. Rather, overdispersion vanishes as α approaches

infinity.

4.2 Analysis Based on a Combined Endpoint

It is often desirable to opt for a summary analysis of both endpoints, at least to avoid multiple and

perhaps conflicting inferences from the univariate analyses. To this end, define tail moment as the

product of both the mean distance of migration in the tail and amount of DNA in the tail (intensity).

Although not directly the product of the two responses, it indirectly combines information from both

endpoints. Also here, inclusion of overdispersion improved the fit and had impact on the parameter

estimates as well as on the standard errors; see Table 3. Remember that the contrasts between low,

medium and high doses was significant based on the univariate analysis using tail intensity, but not
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Table 3: Analysis for Tail Moment

Weibull-Gamma-Normal Weibull-Normal

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value

Veh. β0 1.0946(0.1023) 0.0001 0.8294(0.0781) 0.0001

Low vs. veh. β1 -3.8954(0.1515) 0.0001 -3.4995(0.1159) 0.0001

Med.vs. veh. β2 -4.2326(0.1558) 0.0001 -3.8116(0.1171) 0.0001

High vs. veh. β3 -4.5767(0.1599) 0.0001 -4.1341(0.1186) 0.0001

Pos. C. vs. veh. β4 -2.2365(0.1594) 0.0001 -1.9365(0.1360) 0.0001

Low vs. Med. β5 -0.3372(0.1174) 0.0052 -0.3121(0.1104) 0.0059

Low vs. High β6 -0.6813(0.1180) 0.0001 -0.6346(0.1106) 0.0001

Med. vs. High β7 -0.3441(0.1174) 0.0044 -0.3224(0.1104) 0.0046

Weibull Par. ρ 1.3199(0.0237) 0.0001 1.2429(0.0159) 0.0001

s.d. of RE
√

d 0.3174(0.0316) 0.0001 0.2990(0.0291) 0.0001

log OD par. log(α) 10.9408(2.6443) 0.0001 − −

-2 loglik. 19980 20004

using the endpoint tail length. Using tail moment, none of the contrasts are significant. This shows

that some effects might be lost by summarizing two endpoints by a single endpoint.

4.3 Joint Analysis

The univariate analyses on the two endpoints (Section 4.1) lead to multiple inferences. The univariate

analysis on the combined endpoint (Section 4.2) uses a summary endpoint, but which may not always

be interpretable. It also renders impossible assessment of the association between the endpoints.

As a third and appealing alternative, a joint analysis models both endpoints simultaneously and

accommodates association between them. Conveniently, a test for the overall treatment effect based

on both endpoints can be done using likelihood ratio tests.
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The two preferred models in the univariate analyses, Weibull-Normal for tail intensity and Weibull-

Gamma-Normal for tail length are now combined into a joint model by assuming that the normal

random effects are correlated. Table 4 presents the results. The contrasts of interest based on

each endpoints separately as well as on the overall effect based on both endpoints is provided.

The estimates are slightly different from the univariate analyses. The three contrasts (low versus

medium, low versus high, and medium versus high) have p-values of (0.5242,0.0556,0.1959) and

(0.0055,0.0001,0.0119) based on the first and second endpoints and (0.0302,0.0001,0.0302) based

on the two endpoints combined. The correlation between the two random intercepts was highly

significant, and estimated as 0.6049 (s.e. 0.098). The intraclass correlations were estimated as

0.1991 (s.e. 0.02704) and 0.04180 (s.e. 0.0089) for tail length and tail intensity, respectively. As a

result, the pairwise correlation is estimated as 0.05499 (s.e. 0.0129).

4.4 Simulation Results

The first simulation run is summarized in Table 5, with the rest deferred to the Appendix C. Generally,

the type I error rate for all models was approximately the nominal one, except for the classical Weibull

model. This could be ascribed to the independence assumption between the outcomes in this model.

Indeed, ignoring the correlation may underestimate the standard errors (see Table 5). This has an

adverse impact on the assessment of treatment effect, in the sense that a compound can easily

erroneously be declared toxic. The error rate is higher for the first response where the hierarchical

structure and overdispersion are omitted, in contrast to the second response.

We now turn to the power of the test. Analyzing the two responses using the various appropriate

models has higher power when compared to the traditional model. The discrepancy between the

proper and traditional models increases with decreasing variance of the random effects (results not

presented here). This is not surprising because, when the variability between clusters is high, then

the measurements within a cluster are similar. In that case, summarizing the observations has little

impact. The shape parameter has an impact as well. When it gets smaller, the density becomes

more skewed and the traditional approach, relying on normality and hence symmetry, drifts apart.

On the other hand, the underestimated standard error when the simple classical model was employed
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Table 4: Joint Model, Weibull-Normal Model for Tail Intensity and Weibull-Gamma-Normal for Tail

Length

Tail Length Tail Intensity Overall

Effect Par. Estimate(s.e.) p-value Estimate(s.e.) p-value G2 p-value

Veh. β0 -29.0574(0.6537) 0.0001 -2.4620(0.0763) 0.0001 − −

Low vs. veh. β1 -11.1543(0.4083) 0.0001 -2.8064(0.0893) 0.0001 248 0.0001

Med.vs. veh. β2 -11.3575(0.4107) 0.0001 -3.0502(0.0902) 0.0001 256 0.0001

High vs. veh. β3 -11.7724(0.4154) 0.0001 -3.2701(0.0912) 0.0001 264 0.0001

Pos. C.vs. veh. β4 -8.9600(0.4400) 0.0001 -1.7826(0.1056) 0.0001 171 0.0001

Low vs. Med. β5 -0.2032(0.3177) 0.5242 -0.2438(0.0854) 0.0055 7 0.0302

Low vs. High β6 -0.6181(0.3181) 0.0556 -0.4637(0.0856) 0.0001 25 0.0001

Med. vs. High β7 -0.4149(0.3181) 0.1959 -0.2199(0.0854) 0.0119 7 0.0302

log of Weib.P ρ 10.0336(0.2210) 0.0001 1.4152(0.0189) 0.0001 − −

s.d. of RE
√

d 0.9227(0.0797) 0.0001 0.2133(0.0239) 0.0001 − −

log of OD par. α 1.0052(0.0517) 0.0001 − − − −

Correlation r 0.6049(0.0979) 0.0001

-2 loglik 61824

not only inflated the type I error rate, it also exaggerates the power of the test.

The parameter estimates are also biased and the bias was higher for the estimates of the first response

with overdispersion. When the first response is analyzed with the Weibull-normal model that does

not account for overdispersion, the power of the test was lower and the parameter estimates still

biased, though they were slightly better than under the classical Weibull model. In fact, the power

of the test for the traditional model was even better. On the other hand, analyzing the data coming

from the Weibull-normal model by using the Weibull-gamma-normal, leads to the same results in

terms of the type I error rate, the power of the test as well as the parameter estimates, underscoring
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Table 5: Type I error rate, power of the test and parameter estimate. Correlation between r = 0.3

and α = 0.8. W: Weibull; G: gamma; N: normal; J: joint.

Response Par. Trad. W WN WGN JWGN

Power 1 0.38 0.57 0.26 0.435 0.448

2 0.565 0.895 0.655 0.655 0.642

Combined 0.743

Est.(s.e.) 1 β10 -0.9635(0.0575) -0.9977(0.0901) -1.0049(0.1129) -1.006(0.1171)

β11 -1.1066(0.0596) -1.1443(0.09171) -1.2977(0.1133) -1.3073(0.1176)

β11 − β10 -0.1430(0.0671) -0.1466(0.1173) -0.2929(0.1528) -0.3000(0.1586)

2 β20 -0.9965(0.0598) -1.0085(0.0854) -1.0085(0.0854) -1.0079(0.0865)

β21 -1.2765(0.0646) -1.2934(0.0890) -1.2934(0.0890) -1.3007(0.0892)

β21 − β20 -0.2801(0.0671) -0.2849(0.1087) -0.2849(0.1087) -0.2918(0.1087)

Type I 1 0.05 0.335 0.065 0.06 0.065

2 0.045 0.26 0.05 0.05 0.0365

Combined 0.048

Est.(s.e.) 1 β10 -0.9580(0.0574) -0.9917(0.0894) -0.9929(0.1116) -0.9985(0.1145)

β11 -0.9728(0.0578) -1.0050(0.0897) -0.9941(0.1116) -0.9911(0.1140)

β11 − β10 -0.0148(0.0670) -0.0134(0.1162) -0.0012(0.1499) 0.0101(0.1565)

2 β20 -0.9783(0.0595) -0.9911(0.0859) -0.9911(0.0859) -0.9901(0.0856)

β21 -0.9927(0.0598) -1.0039(0.0861) -1.0039(0.0861) -1.0053(0.0869)

β21 − β20 -0.0143(0.0667) -0.0128(0.1096) -0.0128(0.1096) -0.0148(0.1120)

the importance of accommodating overdispersion. Given the elaborate nature of the joint analysis,

it is not surprising that some convergence problems emerge. Its power is higher than that from the

univariate analyses. The rise in power increases with decreasing correlation between the random

effects. This is to be expected because lower correlation implies that a pair of outcomes is more

informative. Finally, we also noted that as the cluster size grows larger, the power of the test is

higher for all models (details not given).
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5 Concluding Remarks

Co-primary endpoints are commonly used to assess the toxic effect of a certain compound in toxi-

cological studies. Univariate analyses are often done on each endpoint separately; but this leads to

multiple inferences. Joint modeling of the endpoints is appealing to make overall inferences as well

as to capture the association among the outcomes. In this paper, joint model using a random-effect

was presented in a bivariate setting with hierarchically clustered and overdispersed non-Gaussian

continuous outcomes. Thus, the model accounts for: (1) overdispersion; (2) repeated measures over

time; (3) and the multivariate nature of the outcomes.

Two Weibull-gamma-normal models were combined using bivariate normally distributed random

effects. This is a simple and relatively less restrictive approach compared to a shared parameter

model and it can be easily implemented in standard software like in the SAS procedure MIXED.

It was applied to the comet assay data which exhibit two outcomes namely tail length and tail

intensity. Univariate analyses indicate that a model with overdisperion (Weibull-Gamma-Normal) is

necessary for tail length and a model without overdispersion (Weibull-Normal) is sufficient for the

tail intensity. The contrast between low, medium, and high dose level using the two endpoints leads

to different conclusion.
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Appendix

A Software Code

proc nlmixed data=comet2r maxiter=5000 qpoints=30;

/*specification of initial values*/

parms int0=-28 int125=-40 int25=-40.2 int5=-41 int200=-36 in0=-2.9

in125=-5.5 in25=-6.2 in5=-6.5 in200=-4.9

logrho1=1.4 logrho2=2 logalpha1=1 sigma1=0.6 sigma2=0.117 r=0.2;

/*specification of the linear part of the model for the first response*/

if (dose=0) then eta1=int0+b;

else if (dose=1.25) then eta1=int125+b;

else if (dose=2.5) then eta1=int25+b;

else if (dose=5) then eta1=int5+b;

else if (dose=200) then eta1=int200+b;

/*specification of the linear part of the model for the second response*/

if (dose=0) then eta2=in0+c;

else if (dose=1.25) then eta2=in125+c;

else if (dose=2.5) then eta2=in25+c;

else if (dose=5) then eta2=in5+c;

else if (dose=200) then eta2=in200+c;

/*use appropriate link functions*/

k1=exp(eta1);

k2=exp(eta2);

rho1=exp(logrho1);

rho2=exp(logrho2);

18



alpha1=exp(logalpha1);

/*likelihood specification */

if res=1 then

loglik=logrho1+log(response)*(rho1-1)+(alpha1+1)*logalpha1+eta1-

(alpha1+1)*log(alpha1+(response**(rho1))*k1);

else if

res=2 then loglik=logrho2+log(response)*(rho2-1)+eta2-((response**rho2)*k2);

model response~ general(loglik);

/*normal random effect specification*/

random b c ~normal([0,0],[sigma1**2,r*sigma1*sigma2,sigma2**2]) subject=slide_id;

/*some estimate statements of interest for first response*/

estimate ’Veh vs Low’ int125 - int0;

estimate ’Veh vs Med’ int25 - int0;

estimate ’Veh vs High’ int5 - int0;

estimate ’Veh vs P. Control’ int200-int0;

estimate ’low vs Med’ int25 - int125;

estimate ’low vs High’ int5- int125;

estimate ’Med vs high’ int5-int25;

/*some estimate statements of interest for second response*/

estimate ’Veh vs Low’ in125 - in0;

estimate ’Veh vs Med’ in25 - in0;

estimate ’Veh vs High’ in5 - in0;

estimate ’Veh vs P. Control’ in200-in0;

estimate ’low vs Med’ in25 - in125;

estimate ’low vs High’ in5- in125;

estimate ’Med vs high’ in5-in25;
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/*Intraclass correlation and correlation between two responses estimate statements*/

betta1=beta(alpha1-(2/rho1),(2/rho1));

betta2=beta(alpha1-(1/rho1),(1/rho1));

ex1=exp((sigma1/rho1)**2);

estimate ’ICC1’ (ex1-1)/((2*rho1*betta1*ex1/(betta2**2))-1);

gamma1=gamma(2/rho2);

gamma2=gamma(1/rho2);

ex2=exp((sigma2/rho2)**2);

estimate ’ICC2’ (ex2-1)/((2*rho2*gamma1*ex2/(gamma2**2))-1);

ex3=exp((r*sigma1*sigma2)/(rho1*rho2));

estimate ’Corr’ (ex3-1)/sqrt(((2*rho1*betta1*ex1/(betta2**2))-1)*

((2*rho2*gamma1*ex2/(gamma2**2))-1));

run;

B Derivation of the Correlation Between Both Endpoints

Let Y1ij and Y2ij be the jth measurements of subject i for outcome 1 and 2 respectively. The linear

part for the two responses are:

η1ij = x′

1ijξ1 + b1i,

η2ij = x′

2ijξ2 + b2i,

with










b1i

b2i


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
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∼ N
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
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




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0

0




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,











d2
1 rd1d2

rd1d2 d2
2





















.

The correlation between the two endpoints is, by definition:

Corr(Y1ij, Y2ij) =
Cov(Y1ij, Y2ij)

√

Var(Y1ij)
√

Var(Y2ij)
. (2)
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We will re-write this as

Corr(Yij, Yik) =
T1√

T2
√

T3
. (3)

It is also known that

Cov(Yij , Yik) = E (Cov(Yij, Yik|b1i, b2i)) + Cov [E(Yij |b1i, b2i), E(Yik|b1i, b2i)] , (4)

which we denote as T1 = L1 + L2.

Given the random effect, the two measurements are independent. Therefore

Cov(Yij, Yik|b1i, b2i) = 0.

By integrating the gamma random effect, we have:

f(y1ij|b1i) =
λ1ρ1y

ρ1−1
1ij e

x′

1ijξ1
+b1iαα1+1

1

(α1 + λ1y
ρ1

1ije
x′

1ijξ1
+b1i)α1+1

, (5)

with similar formula for f(y2ij|b2i).

Further, we have,

f(y1ij|b1i, b2i) = f(y1ij|b1i), (6)

f(y2ij|b1i, b2i) = f(y2ij|b2i). (7)

Therefore, the conditional expectation is given by

E(Y1ij|b1i) =

∫

y1ijf(y1ij)dy1ij =
α

1

ρ1

1 B(α1 − 1
ρ1

, 1
ρ1

)

ρ1(λ1e
x′

1ij
ξ

1
+b1i)

1

ρ1

, (8)

with a similar formula for E(Y2ij|b2i).

The covariance between E(Y1ij|b1i) and E(Y2ij|b2i) is

Cov[E(Y1ij|b1i), E(Y2ij|b2i)] =
α

1

ρ1

1 α
1

ρ2

2 B(α1 − 1
ρ1

, 1
ρ1

)B(α2 − 1
ρ2

, 1
ρ2

)

ρ1(λ1e
x′

1ijξ1)
1

ρ1 ρ2(λ2e
x′

2ijξ2)
1

ρ2

Cov(e
−

b1i
ρ1 , e

−
b2i
ρ2 ). (9)

As a result:

T1 = L2 =
α

1

ρ1

1 α
1

ρ2

2 B(α1 − 1
ρ1

, 1
ρ1

)B(α2 − 1
ρ2

, 1
ρ2

)

ρ1(λ1e
x′

1ij
ξ

1)
1

ρ1 ρ2(λ2e
x′

2ij
ξ

2)
1

ρ2

e
1

2
(

d2

1

ρ2

1

+
d2

2

ρ2

2

)
[e

rd1d2

ρ1ρ2 − 1], (10)
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T2 = Var(Y1ij) =

α
2

ρ1

1 e

d2

1

ρ2

1



B
(

α1 − 2
ρ1

, 2
ρ1

)

e

d2

1

ρ2

1 − B
(

α1 − 1
ρ1

, 1
ρ1

)2





ρ1

(

λ1e
x′

1ij
ξ

1

) 1

ρ1

, (11)

and

T3 = Var(Y2ij) =

α
2

ρ2

2 e

d2

2

ρ2

2



B
(

α2 − 2
ρ2

, 2
ρ2

)

e

d2

2

ρ2

2 − B
(

α2 − 1
ρ2

, 1
ρ2

)2





ρ2

(

λ2e
x′

2ijξ2

) 1

ρ2

. (12)

Substituting T1, T2 and T3 in (3) gives a formula for the correlation between the two endpoints in

(1).

Derivation of the Intraclass Correlation

The correlation between the jth and kth measurements of subject i for outcome 1, Y1ij and Y1ik is

Corr(Y1ij, Y1ik) =
Cov(Y1ij, Y1ik)

√

Var(Y1ij)
√

Var(Y1ik)
(13)

with

Cov(Yij , Yik) = E(Cov(Y1ij, Y1ik|b1i)) + CovE(Y1ij|b1i), E(Y1ik|b1i) (14)

Given that the random effect between the measurements are independent, E(Cov(Y1ij, Y1ik|b1i)) = 0

and

Cov(Yij, Yik) =
α

2

ρ1

1 B(α1 − 1
ρ1

, 1
ρ1

)2

ρ1
2

(

λ
2

ρ1

1 e
x′

1ij
ξ

1
+x′

1ik
ξ

1

)

1

ρ1

e

d2

1

ρ2

1



e

d2

1

ρ2

1 − 1



 (15)

Var(Y1ij) is just the variance given in (12). Solving this leads to the intraclass correlation

Corr(Y1ij, Y1ik) =

[

e
d

ρ2

1 − 1

]





2ρ1B(α1−
2

ρ1
, 2

ρ1
)e

d

ρ1
2

B(α1−
1

ρ1
, 1

ρ1
)2

− 1





(16)

C Simulation Results
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Table 6: Type I error rate, power of the test and parameter estimate. Correlation between r = 0.9 and α = 0.8. W: Weibull; G: gamma; N:

normal; J: joint.

Response Parameter Traditional W WN WGN JWGN

Power 1 0.445 0.595 0.255 0.505 0.4305

2 0.565 0.915 0.675 0.675 0.6619

Combined 0.6056

Estimate(s.e.) 1 β10 -0.9616(0.0574) -0.9959(0.0897) -1.0016(0.1126) -1.011(0.1185)

β11 -1.1117(0.0596) -1.1486(0.0913) -1.3082(0.1131) -1.302(0.1171)

β11 − β10 -0.1501(0.0671) -0.1527(0.1166) -0.3066(0.1525) -0.2997(0.1600)

2 β20 -0.9902(0.0597) -1.0029(0.0861) -1.0029(0.0861) -1.0105(0.0883)

β21 -1.2838(0.0647) -1.3016(0.0899) -1.3016(0.0899) -1.2990(0.0905)

β21 − β20 -0.2936(0.0672) -0.2988(0.1099) -0.2988(0.1099) -0.2860(0.1125)

Type I 1 0.08 0.33 0.08 0.085 0.0909

2 0.06 0.245 0.08 0.08 0.0666

Combined 0.0512

Estimate(s.e.) 1 β10 -0.9593(0.0574) -0.9936(0.0896) -0.997(0.1117) -1.0019(0.1095)

β11 -0.977(0.0579) -1.0101(0.0899) -1.005(0.1116) -1.0064(0.1083)

β11 − β10 -0.0180(0.0670) -0.0164(0.1166) -0.0081(0.1501) -0.0083(0.1555)

2 β20 -0.9867(0.05965) -0.99948(0.0859) -0.9995(0.0859) -1.013(0.0853)

β21 -0.9889(0.05976) -1.0011(0.08598) -1.0011(0.08598) -0.9902(0.0825)

β21 − β20 -0.00214(0.0667) -0.00164(0.1094) -0.00165(0.1094) 0.0139(0.1093)

2
3



Table 7: Type I error rate, power of the test and parameter estimate. Correlation between r = 0.6 and α = 0.8. W: Weibull; G: gamma; N:

normal; J: joint.

Response Parameter Traditional W WN WGN JWGN

Power 1 0.465 0.58 0.25 0.48 0.424

2 0.555(111/200) 0.915 0.69 0.69 0.633

Combined 0.696

Estimate(s.e.) 1 β10 -0.9595(0.0574) -0.9940(0.0901) -0.9978( 0.1116) -1.002(0.1136)

β11 -1.108(0.0596) -1.1462(0.0917) -1.3035( 0.11203) -1.2979(0.1132)

β11 − β10 -0.1485(0.0671) -0.1522(0.1173) -0.3057( 0.1510) -0.2945(0.1533)

2 β20 -0.9903(0.05969) -1.0028(0.0835) -1.0028(0.0835) -1.011(0.08384)

β21 -1.2823(0.0647) -1.2970(0.0874) -1.2970(0.0874) -1.2967(0.0885)

β21 − β20 -0.2920(0.06719) -0.2942(0.1060) -0.2942(0.1060) -0.2811(0.1073)

Type I 1 0.04 0.295 0.05 0.07 0.0666

2 0.045 0.265 0.07 0.07 0.0588

Combined 0.0504

Estimate(s.e.) 1 β10 -0.9594(0.0574) -0.9933(0.0898) -0.9950(0.1106) -0.994(0.1122)

β11 -0.9775(0.0578) -1.0114(0.0901) -1.0075(0.1105) -1.002(0.1110)

β11 − β10 -0.0180(0.0670) -0.0181(0.1168) -0.0125(0.1485) -0.0073(0.1537)

2 β20 -0.9855(0.0596) -0.9980(0.0856) -0.9980(0.0856) -0.998(0.0848)

β21 -0.9920(0.0598) -1.0037(0.0858) -1.0037(0.0858) -0.999(0.0851)

β21 − β20 -0.0065(0.0667) -0.0057(0.1090) -0.0065(0.1089) -0.0005(0.1080)
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Table 8: Type I error rate, power of the test and parameter estimate. Correlation between r = 0.9 and α = 1.5. W: Weibull; G: gamma; N:

normal; J: joint.

Response Parameter Traditional W WN WGN JWGN

Power 1 0.34 0.43 0.23 0.33 0.262

2 0.44 0.725 0.61 0.61 0.651

Combined 0.648

Estimate(s.e.) 1 β10 -1.0258(0.0939) -1.076(0.1185) -1.0182(0.1367) -1.0216(0.1296)

β11 -1.2015(0.0977) -1.2649(0.1229) -1.3044(0.1395) -1.2946(0.1312)

β11 − β10 -0.1757(0.1061) -0.1889(0.1436) -0.2862(0.1774) -0.2654(0.1794)

2 β20 -0.9892(0.0943) -1.0027(0.1049) -1.0027(0.1049) -1.0049(0.1008)

β21 -1.2850(0.1026) -1.3014(0.1127) -1.3014(0.1127) -1.3080(0.1065)

β21 − β20 -0.2958(0.1063) -0.2987(0.1236) -0.2987(0.1236) -0.3120(0.1236)

Type I 1 0.06 0.17 0.045 0.04 0.0394

2 0.06 0.125 0.07 0.07 0.054

Combined 0.0259

Estimate(s.e.) 1 β10 -1.0235(0.0939) -1.0731(0.1184) -1.0141(0.1367) -1.022(0.1341)

β11 -1.0106(0.0933) -1.0609(0.1181) -1.0052(0.1359) -1.0138(0.1333)

β11 − β10 0.0129(0.1059) 0.0121(0.1432) 0.0089(0.1757) 0.0047(0.1771)

2 β20 -0.9886(0.0943) -1.0024(0.1054) -1.0024(0.1054) -1.0096(0.1052)

β21 -0.9883(0.0946) -0.9997(0.1055) -0.9997(0.1055) -1.0146(0.1034)

β21 − β20 0.00039(0.1056) 0.00276(0.1238) 0.00276(0.1238) -0.0035(0.1227)
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Table 9: Type I error rate, power of the test and parameter estimate. Correlation between r = 0.6 and α = 1.5. W: Weibull; G: gamma; N:

normal; J: joint.

Response Parameter Traditional W WN WGN JWGN

Power 1 0.305 0.435 0.23 0.335 0.276

2 0.46 0.73 0.64 0.64 0.6

Combined 0.612

Estimate(s.e.) 1 β10 -1.0248(0.0939) -1.0754(0.1186) -1.0170(0.1366) -1.0359(0.1368)

β11 -1.2044(0.0979) -1.2667(0.1230) -1.3052(0.1393) -1.3176(0.1387)

β11 − β10 -0.1795(0.1061) -0.1913(0.1437) -0.2882(0.1773) -0.2746(0.1829)

2 β20 -0.9983(0.0946) -1.0099(0.10417) -1.0099(0.10417) -1.0024(0.1022)

β21 -1.2803(0.10238) -1.2961(0.1118) -1.2961(0.1118) -1.2923(0.1111)

β21 − β20 -0.2820(0.1063) -0.2862(0.1220) -0.2862(0.1220) -0.2857(0.1280)

Type I 1 0.04 0.165 0.035 0.035 0.041

2 0.06 0.095 0.07 0.07 0.062

Combined 0.0396

Estimate(s.e.) 1 β20 -1.0241(0.0938) -1.0726(0.1181) -1.0133(0.1368) -1.0194(0.1282)

β11 -1.008(0.0933) -1.0572(0.1177) -0.9988(0.1361) -0.9893(0.1266)

β11 − β10 0.0161(0.1059) 0.0154(0.1427) 0.0144(0.1759) 0.0307(0.1777)

2 β20 -0.9835(0.0942) -0.9961(0.1045) -0.9961(0.1045) -1.0072(0.1031)

β21 -0.9823(0.0945) -0.9929(0.1046) -0.9929(0.1046) -1.0011(0.0989)

β21 − β20 0.0012(0.1056) 0.0032(0.1225) 0.0032(0.1225) 0.0115(0.1223)
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Table 10: Type I error rate, power of the test and parameter estimate. Correlation between r = 0.3 and α = 1.5. W: Weibull; G: gamma;

N: normal; J: joint.

Response Parameter Traditional W WN WGN JWGN

Power 1 0.305 0.405 0.24 0.305 0.290

2 0.445 0.75 0.65 0.65 0.667

Combined 0.642

Estimate(s.e.) 1 β20 -1.0314(0.0941) -1.0789(0.1177) -1.0223(0.1360) -1.0124(0.1340)

β11 -1.2070(0.0979) -1.2675(0.122) -1.3077(0.1386) -1.3005(0.1373)

β11 − β10 -0.1756(0.1061) -0.1886(0.1422) -0.2853(0.1761) -0.2818(0.1775)

2 β20 -0.9955(0.0945) -1.008(0.1048) -1.008(0.1048) -1.0132(0.1041)

β21 -1.2866(0.1026) -1.303(0.1126) -1.303(0.1126) -1.3084(0.1095)

β21 − β20 -0.2911(0.1063) -0.2954(0.1232) -0.2954(0.1232) -0.3063(0.1215)

Type I 1 0.03 0.16 0.04 0.03 0.055

2 0.07 0.095 0.055 0.055 0.077

Combined 0.070

Estimate(s.e.) 1 β20 -1.0257(0.0939) -1.0758(0.1183) -1.0178(0.13647) -1.0296(0.1342)

β11 -1.0107(0.09337) -1.0611(0.1179) -1.0040(0.13568) -1.0127(0.1321)

β11 − β10 0.0150(0.1059) 0.1179(0.1429) 0.0138(0.1754) 0.0169(0.1719)

2 β20 -0.9983(0.0946) -1.0102(0.1046) -1.0102(0.1046) -1.0152(0.1031)

β21 -0.9888(0.0946) -0.999(0.1045) -0.999(0.1045) -1.0107(0.1031)

β21 − β20 0.0095(0.1056) 0.0103(0.1221) 0.0103(0.1221) 0.0020(0.1220)
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