
Performance Evaluation of Scalable Distribution of
Omni-Directional Video Sequences using H.264

Peter Quax Panagiotis Issaris Jori Liesenborgs Wim Lamotte
Hasselt University / tUL / IBBT

Expertise Center for Digital Media
Wetenschapspark 2, 3590 Diepenbeek, Belgium
{peter.quax, takis.issaris, wim.lamotte}@uhasselt.be

ABSTRACT
In this paper, we present a scalable solution for distributing
omni-directional video sequences to multiple viewers using
advanced facilities provided by the H.264 codec. In contrast
to traditional broadcast scenarios, in the context of omni-
directional video, it is the consumer who defines the camera
view direction and viewport size. This hints to the fact that
a single generic stream will generally not suffice as input for
the client viewer application or device, but that a customized
stream is required for each user. Transcoding such content
on the fly is widely regarded as a non-scalable solution, as
will also be demonstrated in this paper. The proposed solu-
tion to the scalability problem consists of viewport selection
in the compressed domain, reducing the complexity to the
selection of specific parts in an existing bit stream. Experi-
mental results are provided that demonstrate the feasibility
of the solution and quantify the performance gain over a
transcoding system.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Performance evaluation

1. INTRODUCTION AND RELATED WORK
In traditional broadcast scenarios, the director or operator

determines the position, orientation and field-of-view of the
cameras located within the scene to be captured. Although
such a setup clearly works for specific genres (e.g. feature
films and television series), there are times it would be ben-
eficial to provide content viewers with the ability to adjust
some of these parameters themselves. A prime example is
found in sports events, where an omni-directional video cam-
era can be placed in the center of a scene and captures the
action in a 360-degree view. Although there is no control
over the location of the camera, dynamic viewport selection
in terms of vrtual camera orientation and field-of-view is
clearly feasible in such a setup. The main advantage of this
setup over the fixed camera alternative is that no part of the
action will be missed, as there is no way for the camera to be

Technical Report EDM UHasselt
.

pointing away from the action. Omni-directional video pro-
vides both directors (in post-production) and content con-
sumers with the ability to determine the virtual camera di-
rection and field-of-view. Similar examples can be envisaged
for various usage scenarios, including game shows (like trea-
sure hunt) and documentaries (e.g. exploration of cultural
heritage sites).

Omni-directional camera systems typically produce six or
more streams that need to be recorded and (possibly in post-
production) stitched together to form a single 360-degree
view on the action. In case of HD cameras, it should be
obvious that the data rates are extremely high and the re-
sulting video will be a sequence that far exceeds the band-
width requirements for current HD distribution. However,
this is not really an issue as long as the information is only
used by the content producers, as dedicated hardware and
networks are available to store and transmit the content.
Neither are these issues the focus of this paper. Rather,
the ways in which the end-user application can actively in-
struct the source to send only relevant information will be
tackled. This will facilitate transmission over existing access
networks using reasonable amounts of bandwidth. Findings
are supported by experimental results using real implemen-
tations of the techniques proposed. Some more context on
one of the optimizations presented below (H.264 slice re-
moval) is presented in our earlier work[6]. In this paper, a
more elaborate explanation on the technique of slice replace-
ment is provided, along with a comparison of the findings
against a baseline solution (using transcoding).

The distribution of omni-directional video sequences for
entertainment purposes is currently a hot topic, shown by
the fact that the European Commission is funding research
in its 7th Framework Programme on ICT on precisely these
issues, e.g. through the FascinatE project (no relationship
to the ideas and results presented here). Traditionally, the
technology has been used for the generation of user con-
trollable still image panoramas. Prime examples of this are
QuickTime VR [2] and MotionVR[5]. However, the fact that
only still images are supported in low resolutions and their
non-optimized way of transmitting data (they essentially
transport the entire 360 degree panorama to each user, re-
gardless of viewing angle) put them into a category of their
own.

The authors of [1] present pre-processing optimizations
to make H.264 codecs better at handling omni-directional
video sequences. By performing image warping and resam-
pling, the images are aligned in such a way that intra/inter
prediction becomes more viable. There is however no at-



tention paid to the actual transmission of these streams to
end-users, therefore putting the paper outside of the focus
of the discussion. In [7], a system is presented that is able
to select viewports from a panoramic video stream, called
the Region of Interest (RoI) by the authors. The system
focuses on the efficient detection of the whereabouts of the
main actors in a video sequence (e.g. a speaker during a
lecture) in both the compressed (using p-frame analysis)
and uncompressed domain (through feature tracking). How-
ever, the tracking is not under direct control of the end-user,
but is controlled automatically through the system, thereby
enabling the transmission of the same video stream to all
viewers. This is an essential difference to the system pro-
posed in this paper. No codec-specific advanced feature op-
timizations are used, as the system is limited to the use of
MPEG-1 and MPEG-2 codecs. The authors of [3] propose
to use MPEG-7 to more efficiently compress and distribute
panoramic videos. However, the solution proposed does not
take into account real-time video streams, but rather im-
age sequences that are updated from time to time. Besides
this, the entire panoramic sequence (including all still im-
ages) is transmitted as a JPEG(2000) still, making it non-
suitable for distribution to large groups of viewers. Auto-
mated stitching of images is also included in the solution,
but is out of scope for this discussion.

2. APPROACH

2.1 Transcoding content for each viewer
Using the traditional (transcoding) approach, the bit stream

required for each viewer is to be generated at run-time. For
optimization purposes, one may consider the original content
to be stored in a non-compressed format. Because there are
a number of factors to consider (i.e. camera direction and
viewport size), a separate coder instance is needed for each
content consumer. It is up to the encoding process to se-
lect the part of the video sequence relevant for each user
(in the uncompressed domain). Re-use of already encoded
parts of the sequence (caching) would be beneficial, as this
may help in lowering the processing load. While it should
be intuitively clear that transcoding is not a very scalable
solution, it provides a useful baseline to compare optimiza-
tions against. As a summary, the main drawbacks of this
approach are described below.

In case of parallel runs of the encoding process, each codec
instance requires its own memory space and poses require-
ments on the CPU. Even if dedicated hardware is used, the
number of simultaneously active codecs is practically limited
by the number of acceleration boards supported on the bus
or power limitations. Also, users may be interested in dy-
namically changing the size of the viewport (virtual camera
field-of-view). As this change has an impact on the funda-
mental properties of the coding context, it requires a full
reset of the codec environment, leading to a disruption in
the user experience. Caching of generated bit streams is
unfortunately not easily accomplished due to the variety of
factors that can be changed by individual viewers. Combi-
nations of different time indexes, viewport sizes and camera
directions would quickly lead to a cache explosion. Also, the
resulting compressed video stream can only be manipulated
as a single entity. An entirely new and custom video stream
needs to be encoded for each viewport size/camera direction
combination that is requested. In section 3.2, experimental

Figure 1: Viewport selection using rectangular grid
pattern

results are presented that quantify the scalability of such a
solution under optimal conditions.

2.2 Using H.264 slices
In this section, two alternative techniques are discussed

that make use of H.264 features: slice removal and slice
replacement. Although a more detailed discussion of the
former is presented in our earlier work[6], a short summary
is included to introduce the basic concepts to the reader.
The latter (slice replacement) has been optimized when com-
pared to our previous work and is described in more detail
in this paper, as it is also the subject of the experiments in
section 3.

Typically, a video frame is segmented into macroblocks,
which are the fundamental units used in the compression
and decompression stages. Similarities between these mac-
roblocks are exploited to reduce the amount of informa-
tion that needs to be retained when considering subsequent
frames within a sequence. One of the features of the H.264
specification[4] (also known as MPEG4/AVC) that is es-
sential to this work are the so-called ‘slices’, which allow
macroblocks to be grouped into independently decodable
units. Without them, the entire frame is the minimal encod-
able or decodable unit. Using slices, frames are subdivided
into smaller regions that are under individual control of the
codec. This is a useful feature on several levels: on the
one hand, it enables the parallel decoding of several parts
of the video frame; on the other hand, it enables decoding
of parts of the video frame even when bit stream errors are
appearing.

A rectangular grid is superimposed on the frames, con-
sisting of several slices. In the solution described here, each
slice is limited to a horizontal sequence of macro blocks (rea-
son discussed below). The composition of this grid structure
does not vary over time (compared to a generically encoded
H.264 stream, in which this is possible). To be able to ‘cut’
a specific section out of the video sequence, a selection of
multiple slices is required, based on the grid structure. Be-
cause the bits corresponding to this viewport region can be
traced back to distinct slices (thanks to the regularity of
the grid), manipulations can take place entirely within the
compressed domain and are composed of cheap operations
in terms of computing resources. H.264 includes a feature
called FMO (Flexible Macroblock Ordering), which enables
non-consecutive macroblocks to be allocated to an indepen-
dently decodable slice group. This would allow the grid
to be completely arbitrarily defined and not limited to the
height of a single macroblock. Although this would be an
ideal solution for the case presented here, there are no provi-
sions for this feature in currently available real-time capable



decoders (needed for visualization). The workaround pre-
sented clearly introduces additional overhead (e.g. because
of the large number of slices being defined), but is deploy-
able in practice due to the fact that there is support for all
required techniques in freely available codecs.

To visualize the concepts, figure 1 shows a panoramic
video stream of which several clients request an individual
view. Slices are represented by the rectangular areas. Note
that both viewport size and location may be different for
each client.

2.2.1 Slice removal
Using the approach described above, one might be tempted

to just remove information about all unnecessary slices for
each client and compose a new bit stream using the remain-
ing information. However, such a solution does not work in
practice, as decoders are unable to deal with such a degraded
bit stream - additional control information is required to
generate a valid stream for each client. Even when combin-
ing the remaining slices into a bit stream that is valid ac-
cording to the specifications, many issues remain that make
this solution very cumbersome to implement. For a more de-
tailed discussion, the reader is referred to [6], which provides
a detailed description.

2.2.2 Slice replacement
A different solution, which alleviates the aforementioned

issues, uses replacement rather than removal of slices. Slices
that would have been removed in the previous solution are
instead replaced by an artificially generated slice of minimal
size. This replacement slice consists of the same amount
of macroblocks as the original slice it replaces, thereby fill-
ing in the gap that the removed slice would create. As the
actual visual content of these replacement macroblocks is
irrelevant, the goal is to try and find the smallest possible
sequence of bits which represents a sequence of macroblocks
while adhering to the H.264 specification. Note that the vi-
sual appearance is irrelevant as these macroblocks will not
be shown in the client’s viewport.

By analyzing the H.264 specifications bit stream syntax,
it can be determined that for instantaneous decoder refresh
(IDR) frames the smallest possible representation of one or
more macroblock results in a corresponding number of plain
gray macroblocks. As can be seen in table 1, the small-
est possible representation of an intra-coded slice containing
only the first macroblock of a frame, requires 22 bits. Due
to the NAL unit header and startcode, 32 bits are added. As
NAL units are byte-sized, two more bits need to be added
resulting in 56 bits, or 7 bytes.

This is the smallest possible intra-coded slice, actual re-
placement slices will be larger as the first mb in slice field
value will be larger for every slice not located at the begin-
ning of the frame. Furthermore, the frame num value will
be larger due to the chosen group of picture (GOP) size.
A more realistic example of a typical empty IDR-slice, for
a GOP size of 16, containing 32 macroblocks starting from
macroblock 200, would still occupy only 40 bytes (36 bytes
of actual slice content).

Similarly, the smallest possible representation of one or
more macroblocks for inter-coded slices needs to be deter-
mined. Again, the visual result of decoding these bits is
irrelevant, so there is an open choice as to which sequence
of bits are legal according to the specification. The skip-bit

name length (bits)

startcode 24
NAL unit header 8

first mb in slice 1
slice type 7
pic parameter set id 1
frame num 1
idr pic id 1
no output of prior pics flag 1
long term reference flag 1
slice qp delta 1
mb type 5
intra chrome pred mode 1
mb qp delta 1
lum16DC 1

total 54

Table 1: Intra-coded slice representation

(a) non-grouped (b) grouped

Figure 2: Slice replacement concept

feature of H.264 inter-coded slices requires only one bit per
macroblock and is essentially a signal to the decoder that
the currently to be decoded macroblock bit stream data can
be skipped as it is identical to the corresponding macroblock
in the previous frame. This is also illustrated in Figure 2(a).

As can be seen in table 2, the smallest possible repre-
sentation of an inter coded slice containing only the first
macroblock of a frame, requires 17 bits. Due to the NAL
unit header and startcode, 32 bits are added, and as NAL
units are byte-sized, seven bits will be added resulting in 56
bits, or 7 bytes. As with intra-coded slices, this is the small-
est possible inter-coded slice; actual replacement slices will
be larger as the first mb in slice field value will be larger for
every slice not located at the beginning of the frame. Fi-
nally, the macroblocks field will be longer depending on the
number of macroblocks that need to be skipped. A more
realistic example of a typical empty P-slice, for a GOP size
of 16, containing 32 macroblocks starting from macroblock
200, would still occupy only 10 bytes (6 bytes of actual slice
content).

Nevertheless, replacing each individual unneeded slice with
a generated slice is still suboptimal and results in high over-
head of headers. Especially if each slice would be sent indi-
vidually, which would add more overhead due to RTP, UDP,
IP and data link layer headers. To this end, the bit stream
is restructured by generating slices containing spans of mac-
roblocks from one unaltered slice to the next unaltered slice
(see figure 2(b)). This technique can be applied to both IDR
and P-frames.

name length (bits)

startcode 24
NAL unit header 8

first mb in slice 1
slice type 7
pic parameter set id 1
frame num 1
num ref idx active override flag 1
num ref idx l0 active minus1 1
ref pic list modification flag l0 1
adaptive ref pic marking mode flag l0 1
slice qp delta 1
macroblocks 5
stop bit 1

total 49

Table 2: Inter-coded slice representation



As slices are replaced instead of removing them, the struc-
ture and size of the frames remain constant, as do the po-
sitions of the slices and macroblocks. As the positions of
the slices are unaltered, the first field in the slice header
first mb in slice needs no modification, implying that no bits
need to be shifted and the entire slice can be sent unaltered,
reducing CPU load and improving scalability. In contrast
with the removal technique, the PPS and SPS header now
require no modification, although the infrequency of their
occurrence makes this advantage rather insignificant.

Instead of always generating the replacement slices on the
fly, under certain circumstances, a caching mechanism can
be used. The size of the cache is determined by the gener-
ated slice size (which has been shown to be rather small) and
the number of entries in the cache. The number of entries
in the cache depends on the cache cleanup strategy and the
number of different slices that can be generated. The gen-
eration of slices depends on a limited number of parameters
of which frame num and first mb in slice are the most rele-
vant. The number of different frame num values depends on
the GOP size, and the number of different first mb in slice
values depends on the slice structure. As an example, for a
GOP size of 16 and a regular grid-structured slice allocation
of 8 by 32 slices, 16 ∗ 8 ∗ 32 = 4096 different slices could be
generated (if the slice regrouping feature would have been
disabled). Combined with the knowledge that the generated
slices are small, caching the generated slices is certainly fea-
sible.

It can be concluded that this approach is very close to
the space-efficiency-optimal case (when using the slice re-
moval technique), but without the computational overhead
and issues regarding the renumbering of slices and blocks.
An additional advantage of this approach is that there is no
longer a restriction to sending rectangular areas, which can
be useful when the full frame contains an unwrapped cube
map out of which one wants to cut the visible areas. In this
case, a more or less circular or elliptical viewport might be
better suited.

An issue that is still apparent with both approaches is
the fact that the macroblocks to which motion vectors point
may be either unavailable (with the first approach) or con-
tain incorrect data (with the replacement approach). The
problem occurs when the viewport moves when the client
is receiving inter-coded pictures. The newly received inter-
coded picture might refer to macroblocks in regions which
have been replaced by flat gray macroblocks, resulting in in-
correct motion compensation. A workaround for this issue
consists of using a larger than strictly needed cropping area,
combined with a limit on the viewport movement speed.
This workaround is implemented in the test results detailed
below in section 3.3. Also, to enable motion estimation in a
reasonable part of the video sequence, the vertical resolution
of the part of the image transmitted is higher than the actual
viewport size. This enables the codec to search vertically for
matching blocks (motion estimation) in a meaningful way,
thereby reducing the need for extensive motion compensa-
tion. The same is true for the horizontal direction, allowing
movements without immediate need for new reference in-
formation as indicated above. Two other disadvantages of
this approach are the larger decoded picture buffer size at
the decoder side and the need for the decoder to be able to
handle a larger number of slices. However, tests have shown
that most available decoders are capable of handling these

conditions.

3. TEST RESULTS
It was already mentioned in section 2 that two viable ap-

proaches are envisaged that can be used in real-life scenarios:
either transcode the content for each viewer or use the slice
replacement technique. It was also already mentioned that
the former is intuitively non-scalable, a fact that will be sup-
ported by figures in this section. An important remark to
be made before looking at the charts is that the absolute
numbers are not of primary importance. Rather, the trends
that emerge are. This is due to the fact that performance of
codecs is dependent on the available CPU resources, which
may vary widely between hardware setups.

3.1 Test setup description
Instead of relying on mathematical models or extrapola-

tions of small scale tests, the experiments use real codec
implementations and are an accurate depiction of what is
feasible under real-life conditions. The overall system setup
is a cluster of low-end hardware, interconnected through a
dedicated gigabit Ethernet LAN. Each node in the clus-
ter is a Core2Duo E4600 system, running at 2.4GHz. As
already indicated in the introduction, the pre-processing
steps, where the camera images are warped and stitched
together into a single panorama are integrated in exter-
nal software. For practical reasons (preliminary visualiza-
tion is based on a cylindrical projection), the sample data
consists of a panoramic sequence instead of a truly omni-
directional stream. For the experiments, two input streams
are used: one that is uncompressed and consists of raw
YUV420 data (total resolution: 1536 by 1024, length 500
frames) and a compressed sequence (for the slice replace-
ment technique). Although in practice resolutions would be
significantly higher, the computing power of the hardware
used would not yield representative information for the real-
time transcoding benchmark under those conditions. It is
important to note that the relative performance gain be-
tween the two approaches is the most important. The com-
pressed sequence is constructed using an altered version of
the H.264 JM Reference Codec, as it is the only (freely avail-
able and adaptable) one capable of generating streams that
make use of the advanced features needed. Although JM
does not encode in real-time, this is not a major issue as the
streams can be generated in a pre-processing stage.

3.2 Transcoding approach
It was explained in section 2.1 that a transcoding server

implementation would need to crop out the requested area
for each client, encode it in a custom bit stream according
to the specs and transfer it to that specific client. In this
test setup, a simplified setup of the overall system is used,
to ensure that the results are not skewed due to external
factors (e.g. hardware/software interrupt overload by send-
ing lots of traffic using the OS network stack and internal
NIC) and to provide a best-case scenario to compare against.
This way, the server is dedicated only to the generation of
appropriate bit streams.

It should be noted that in this approach, the system could
in essence choose from a variety of codecs to generate the
compressed streams. However, as H.264 is currently the
video codec with the broadest support for a wide range of
resolutions, it is an obvious choice (also for comparative



Figure 3: Performance of transcoding approach

reasons). The encoder of the popular x264 project is used
(without alterations) for its performance and free availabil-
ity. Video is stored on the server in uncompressed YUV420
format, so the encoding stage is the most important con-
tributor to overall CPU resource usage. To get the high-
est performance out of the codec (in terms of frame encod-
ing speed), the ‘ultrafast’ preset is used. This preset dis-
ables most advanced video coding features, including but
not limited to: CABAC, B-frames, subpixel motion estima-
tion, weighted prediction, macroblock partitioning, multiple
reference frames and the in-loop deblocking filter. Although
one could argue that the size of the generated bit streams
is a factor larger than optimal, this is not really relevant as
network transmission is not considered part of the test setup.
On the server, several instances of x264 are concurrently ac-
tively cropping and encoding a number of streams. This
parallelization can be exploited on multi-core systems, be-
cause each instance is running independently of the others.
During the test runs, the encoding speed of each instance
was recorded. Tests were repeated using an increasing num-
ber of parallel encoders, which facilitates the comparison of
this transcoding approach to the slice replacement technique
afterwards (using an identical number of clients). The tests
were repeated for several commonly used resolutions (output
video streams in CIF, QCIF and 4CIF) to provide appropri-
ate estimates on the number of parallel encodings possible
when targeting a specific device/resolution combination.

The encoders are using a file containing raw YUV420 pixel
data as input (entire frames), out of which the requested
viewport is cropped for each client (at different time in-
dexes). This process involves a lot of disk seeking, but the
only alternative – keeping the data in main memory –, is
not feasible for raw video. Solid state disks might alleviate
some of the overhead associated with disk seeking, although
they suffer from a high economical cost. Another alterna-
tive solution to the disk seeking issues might be to use a
compressed bit stream as the source video. However, this
approach is non-scalable in itself, as an equal ratio of de-
coders to encoders would be required, due to the fact that
clients are looking at the video sequence on distinct time
indexes. Combining the decoding with the encoding steps
would lead to even worse results than those presented here
(in terms of CPU load) and would outweigh any possible
advantages over the uncompressed storage scenario with re-

gards to disk seek times. Overall, it should be noted that
due to the large size of the raw input source video, scaling
the number of clients leads to massive seeking overhead.

One could argue that a true integrated implementation of
the above would improve the results, because of the possi-
bility of reusing resources and sharing knowledge. On the
other hand, on modern operating systems and hard drives,
hard disk caches (in hardware) are already available. As
streaming video clients access frames in a consecutive or-
der, a custom cache implementation would not be able to
take better decisions. Also, these hardware caches are small
compared to the bit stream sizes. The chance for an effec-
tive cache hit is significantly lowered, as clients access the
video at different time indexes. Regarding the CPU inten-
sive parts, motion estimation data cannot be shared, as the
individual encodings use different viewports.

Results of the tests are presented in figure 3. As can be
seen, even for small output resolutions, scalability is very
poor. This is even more apparent when considering larger
viewport sizes. Although this approach is well-suited for
parallelization, there is always a practical limit to the num-
ber of processing cores that any single machine may contain.
For smooth video handling, a frame rate of 25 frames per
second is required. This value will be used in benchmarking
the optimization against the transcoding approach. Using
the hardware described above, the setup is able to support a
disappointing 6 clients at QCIF resolution or 4 clients using
4CIF, not taking into account any overhead induced by the
network transmission (left out as explained before to create
a best-case scenario for that approach).

3.3 Slice replacement approach
For the benchmark of this approach, a cluster of thirteen

identical nodes is used. One node was used for running
the server implementation, the others for the clients. The
system is set up in such a way that the server selects the
appropriate viewports from the (pre-computed) compressed
bit stream. While the overall video sequence is the same
for all clients, they each start requesting the video sequence
on a distinct time index due to the delay in starting up the
required number of processes on twelve machines. There is
a communication channel (out of band) between the clients
and the server, over which the information about the view-
port location and dimension is exchanged. To make the
test setup more realistic, the clients continuously move their
viewport in a horizontal pattern, forcing the server to make
separate selections for each connected client. Network over-
head is now included in the frame rate calculations. The lat-
ter puts the slice replacement approach in a disadvantaged
position, but helps to perform a best/worst case scenario
comparison.

The test scenario is repeated using an increasing number
of clients, evenly spread over the twelve cluster nodes. Dur-
ing each run, several factors are recorded. These include the
frame rate at which the server is able to generate bit streams
and the required bit rate for each client. The videos used
to benchmark the approach were encoded using a modified
version of the reference H.264 encoder. The video was en-
coded off-line with a grid-structured slice layout of 8 by 64
slices.

We repeated the tests using several resolutions, all the
while measuring the performance. For the test cases pre-
sented here, the vertical resolution is always set to 512 (re-



Figure 4: Slice replacement performance

Figure 5: Performance comparison

call that the entire video sequence is composed of 1536 by
1024 pixels). This is of course just a ballpark figure (chosen
rather large in this case, again as a worst-case scenario), and
may be tweaked as required. In the horizontal direction, the
values chosen are 192, 384 and 512. This enables the client
software to visualize a viewport that is smaller than these
dimensions (e.g. QCIF or CIF), while at the same time
enabling (small) movements of the viewport without requir-
ing additional slices from the server (both horizontally and
vertically, although the latter is not exploited in these test
runs).

Results are shown in figure 4. This time, the system can
support about 130 simultaneous clients at 192x512 or about
80 at 768x512 resolution (enabling visualization crops to
QCIF or CIF) using the same hardware setup as in the pre-
vious test. This results in a factor 15 to 20 increase over the
transcoding approach (which did not include network over-
head). As the system can easily be load-balanced (clearly
needed for network transmission) and optimized in terms of
multi-threading code, this shows that the setup is truly scal-
able towards practical user numbers. A more detailed chart
is provided in figure 5, showing the drop-off point (below
25fps) for the most important resolutions. The transcoding
approach is denoted by the x264 prefix, while the slice re-
placement approach is indicated by the ‘custom’ tags in the
chart legend.

4. CONCLUSIONS AND FUTURE WORK
In this paper, an experimental validation was conducted

on a novel way to distribute high quality omni-directional
video streams to large numbers of users. By introducing
a regular grid structure – superimposed on the video se-
quence – reference points are available that enable relatively
low-cost cut/paste operations on the bit stream in the com-
pressed domain. To regenerate a valid stream, non-required
slices are replaced by gray values, which can be encoded in
an efficient way and reduce the problems associated with
the complete removal of this information. Tests were per-
formed using implementations of both the transcoding and
slice replacement techniques, which lead to the conclusion
that a performance increase of at least a factor 15 is easily
obtained.

When used for real-time events, the encoding part of the
workflow is currently a stumbling block. However, alter-
ations in the x264 codec (e.g. limiting the motion estima-
tion to specific regions) are being investigated that would
enable the use of this implementation on the encoding side
(enabling near real-time processing). The goal of the xTV
project is to deliver omni-directional streams to end-users
through IP set top boxes. It is essential that the generated
bit streams are standards compliant, to make sure that they
can be decoded using hardware acceleration. Keeping to the
standard and adapting to the quirkiness of these hardware
decoders is an important challenge that weighs on every de-
cision to be made for the practical implementation.

5. ACKNOWLEDGMENTS
Part of this work is funded by the IBBT xTV and IBBT

ISBO Immersive Projects.

6. REFERENCES
[1] I. Bauermann, M. Mielke, and E. Steinbach. H.264

based coding of omni-directional video. In Computer
Vision and Graphics, volume 32 of Computational
Imaging and Vision, pages 209–215. Springer, 2006.

[2] S. E. Chen. Quicktime vr: an image-based approach to
virtual environment navigation. In Proceedings of
SIGGRAPH’95, pages 29–38, New York, NY, USA,
1995. ACM.

[3] A. Glowacz, M. Grega, P. Romaniak, M. Leszczuk,
Z. Papir, and I. Pardyka. Compression and distribution
of panoramic videos utilising mpeg-7-based image
registration. Multimedia Tools and Applications,
40:321–339, 2008.

[4] H.264 : Advanced video coding for generic audiovisual
services. World Wide Web,
http://www.itu.int/rec/T-REC-H.264, 2009.

[5] MotionVR Technology Corporation. World Wide Web,
http://www.motionvrworldwide.com/.

[6] P. Quax, F. Di Fiore, P. Issaris, W. Lamotte, and
F. Van Reeth. Practical and scalable transmission of
segmented video sequences to multiple players using
h.264. In Motion in Games 2009 (MIG09), LNCS series
5884, pages 256–267, 2009.

[7] X. Sun, J. Foote, D. Kimber, and B. S. Manjunath.
Panoramic video capturing and compressed domain
virtual camera control. In Proceedings of ACM
Multimedia 2001, pages 329–347. ACM.


