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ABSTRACT 
Intelligent User Interfaces can benefit from having 
knowledge on the user’s emotion. However, current 
implementations to detect affective states, are often 
constraining the user’s freedom of movement by 
instrumenting her with sensors. This prevents affective 
computing from being deployed in naturalistic and 
ubiquitous computing contexts. In this paper, we present a 
novel system called mASqUE, which uses a set of 
association rules to infer someone’s affective state from 
their body postures. This is done without any user 
instrumentation and using off-the-shelf and non-expensive 
commodity hardware: a depth camera tracks the body 
posture of the users and their postures are also used as an 
indicator of their openness. By combining the posture 
information with physiological sensors measurements we 
were able to mine a set of association rules relating postures 
to affective states. We demonstrate the possibility of 
inferring affective states from body postures in ubiquitous 
computing environments and our study also provides 
insights how this opens up new possibilities for IUI to 
access the affective states of users from body postures in a 
nonintrusive way. 
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Affective Computing; Posture Tracking / Detection; Social 
Behavior; Emotion Recognition; Ubicomp; Intelligent User 
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ACM Classification Keywords 
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MOTIVATION 
Weiser’s vision of ubiquitous computing [35] is not longer 
a vision as pointed out by Abowd [1] and Rogers [28]. With 
the increase of computational power that is available in our 
environments and the quality of sensors, ubiquitous systems 
that are embedded in our environment can take better 
decisions on how to support our daily routines and 
activities. This is exactly the context-awareness that has 
been most prominently advocated by Dey et al. [12] to 
frame interaction within the situation of the user. Although 
the context of use in general has been widely explored to 
improve usability of Ubicomp systems, we argue further 
improvements can be accomplished by taking into account 
the context of the user, more specifically the affective state 
of a user. For interaction in an Ubicomp environment, a 
system, that detects the affective states of the users, should 
maintain the freedom of movement of the users by not 
instrumenting them with additional sensors. 

Researchers have demonstrated the huge potential of 
including the affective states of users to inform UIs by 
approaches such as multimodal fusion [14] and data-centric 
modeling [21]. However, affective computing has not been 
deployed in ubiquitous computing environments yet. A 
leading question for this challenge is: How does one detect 
and represent the emotions that affective systems should 
implement in ubiquitous computing environments? This 
question in turn leads us to determine whether current 
sensors are able to deliver the advantages of affective 
computing in our research domain. Recently Aviezer et al. 
[36] highlighted the role of body postures in expressing and 
perceiving emotions. They showed in their Science article 
that body posture is as expressive as facial expression for 
distinguishing positive and negative emotions.  
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We identify three practical limitations emerging from 
current sensor implementations and use them to guide our 
system design mainly relying on body posture. (1) Bound to 
the desktop: the detection range of the aforementioned input 
modalities restricts users’ mobility. As an example, systems 
that use facial expressions or voice intonation analysis 
compel users to situate themselves directly in front of a 
camera or microphone, usually mounted on top of a 
computer screen. For that reason, we decided to use cheap 
commodity hardware and designed our system to work in 
ubiquitous computing environments. (2) Not always “on”: 
certain emotional cues of the users are undetected due to the 
device’s functionality. Similar to the above example, 
systems that detect and track lip movement or voice 
intonations depend on the users’ speech formation. Body 
postures constantly cover many communicative functions. 
They may replace speech during dialogue, or when speech 
is not used at all. Similar to body postures, ubiquitous 
computing systems are also always available to provide 
their computation functionalities and are constantly 
engaging with their users. Hence, using ubiquitous 
computing systems to detect postures ensures the 
continuous access to user’s emotions cues. (3) Heavy user 
instrumentation: users are also affected by a device’s 
presence (e.g. wireless sensors) throughout their normal 
activities. Systems based on physiological information 
require users to wear specialized instruments such as 
sensors that can detect galvanic skin response or heart rate, 
which burden their natural behavioral and mental response. 
Automatic visual detection of body movements and 
postures does not distract users, as no wearable instruments 
are required and also does not require user to constantly 
focus on a computer screen.  

INTRODUCTION  
As outlined above, we present mASqUE (Affective State 
detection in Ubiquitous Computing Environments), which 
is aimed to overcome these problems. It is a novel system 
that addresses the key limitations imposed by typical 
Ubicomp environments. mASqUE merely examines users’ 

body postures so that their dominant affective states can be 
inferred. We present a 3D body-modeling technique 
tailored for tracking even subtle body postures with an off-
the-shelf depth camera. Our system is designed to passively 
and unobtrusively detect affective states when the whole 
body is detected and tracked, which usually means the user 
is standing. Although this can also be considered as a 
limitation of our system, there are other solutions that work 
for non-standing positions [18, 23]. mASqUE works on the 
principle of using a set of association rules that allow 
inference of someone’s affective state from their body 
postures (as illustrated in Figure 1). We found several 
affective states that are expressed through body postures in 
a naturalistic manner. 

We used a mining process involving a series of experiments 
to obtain the set of association rules. We first looked for 
clear associations to dominant affective states and postures 
people take. To find these, we compared posture 
information with physiological sensor data from the users, 
which were captured at the same time. In this stage, we 
used the traditional input data: the user’s arousal and 
valence, as defined by [29], which have proven to be useful 
and reliable, together with the openness values. We then 
transformed this information to affective states and 
correlated them with the detected postures. Openness is 
derived from posture information as well. The 
characterization of openness levels enables us to gain 
insights of the attitude of the users. Attitudes commonly 
refer to the general evaluations people hold regarding 
various objects, issues, and people [25]. With that, we 
derive a set of association rules to cover ten affective states, 
consistent with the ones described by Breazeal and 
Scassellati [6]. The set of ten affective states comprises of 
five basic affective states: content, excitement, frustration, 
calm, and boredom, which are also described by Russell’s 
Affect Grid [29]; and another five affective states (overjoy, 
accepting, stern, disgust, anger) as described by [6]. Our 
system, mASqUE, uses the association rules to decide what 
the most likely dominant affective state is, merely based on 
body postures. By including “openness” as an additional 

 
Figure 1: mASqUE affective state detection: By fusing the postural information with physiological sensors measurement (dotted 
lines) we are able to mine a set of association rules. The three main parts are highlighted with grey filled boxes. This set then can be 
used to detect affective states with posture detection only (solid lines) and inform UIs. 



categorization of affective states, we are able to use a fine-
grained definition of affective states. In contrast to 
physiological measurements, which are based on distinctive 
patterns of the autonomic nervous system inside the body, 
openness is observed through bodily movements, such as 
postures, to determine for the varying degrees of emotions. 
A low openness level can indicate an emotion that shows 
greater intensity of animosity. For example, frustration in a 
neutral openness level can be intensified to become anger. 
When the openness level drops, this indicates that the user 
is being aggressive, introvert or unapproachable. 

With these components in place, we have a system that 
captures the context of the user and provides information on 
the dominant affective state of the user.  

RELATED WORK 
Affective systems, equipped with different sensory 
modalities, are able to detect and recognize emotions of the 
users. Their applications range from troubleshooting for 
interactive systems [4] to enhancing game experience with 
play technology [19]. Different modalities and affective 
models are being used, such as voice intonation analysis 
with a corresponding Pleasure-Arousal-Dominance model 
[14] or physiological instrumentation being used with 
arousal and valence in addition to a third affective 
dimension (engagement [23]). For a comprehensive 
overview on emotion recognition using different modalities 
and affective models, we refer readers to the survey of 
Gunes et al. [15]. 

Interactive systems with affective computing capabilities 
have been previously studied. Ball and Breese [4] 
developed an affective system, which utilize a four-
dimensional affective model to develop a character-based 
interface for software troubleshooting. Their affective 
model includes dominance and friendliness alongside with 
arousal and valence to model the traits that appear to be 
most critical to interpersonal relationships. AffectAura, 
developed by McDuff et al. [23], utilizes a combination of 
video, speech, physiological, and activity information to 
provide visualization of the user’s affective states in 
desktop work-related context. They used valence, arousal, 
and engagement to model user states, where engagement in 
this case refers to the user’s level of work-related 
commitment. However, both systems are highly dependent 
on the speech characteristics (and also physiological 
instrumentation [23]) to determine the classification of 
emotionally communicative behaviors. This dependency 
creates practical limitations (mentioned in previous section) 
for the users in ubiquitous computing environments.  

Gilroy et al. [14] used a multimodal fusion approach for 
video and speech to interpret the dimensional 
representations of emotion. Their work focuses on the EMG 
electrode placements to establish the pleasure dimension 
using Pleasure-Arousal-Dominance model during 
physiological measurement. Lance and Marsella [20] used 

motion capture to collect data of the head, eye, and body 
movement of actors performing emotionally different gaze 
shifts. They also used a Pleasure-Arousal-Dominance 
model. Their work involves gaze behaviors and emotional 
expressiveness in animation of virtual characters. Wagner et 
al. also explored fusion methods for multimodal emotion 
recognition with a special focus on missing data for real-
time applications [34]. 

Bolls et al. [5] used facial electromyography (EMG) and 
physiological measurements to determine the valence of 
user and explore the effects of user’s arousal on attention 
and memory. They used arousal, valence and dominance to 
measure and determine the relationship between valence 
from radio messages and cognitive functions. These studies, 
however, mainly focused on improving sensor 
measurements or performance accuracy and did not strive 
for incorporating their work in ubiquitous computing 
environments. 

Probably the work most similar to ours is that by 
Kleinsmith et al. [19], who used posture information to 
determine a set of affective states in an interactive play 
context. However, they used potency and avoidance to 
indicate the level of control to influence emotionally 
significant people, events, or situations, which is grounded 
in the work of Mehrabian [24]. Our affective model, which 
differs from theirs, uses openness to indicate how 
approachable the users are by the expansiveness or 
contractiveness of their body postures. Our use of openness 
is inspired by Ekman and Davidson [11]. We describe 
openness as one’s behavioral closeness to another person in 
interpersonal space. Furthermore, our approach does not 
rely on additional instrumentation – body markers in 
Kleinsmith’s case – to acquire visual information. Markers 
can also be problematic outside of a laboratory context, 
which is not a problem for mASqUE. Additional benefit of 
our work is the use of affordable and highly accessible 
hardware (Microsoft Kinect). 

SYSTEM OVERVIEW OF MASQUE 
Our system, mASqUE, consists of three main parts as can 
be seen in Figure 1 (grey filled boxes). The first part of 
mASqUE is the 3-dimensional body model (for kinematic 
analysis of the whole body using vision processing 
techniques) that also discriminate the openness level of the 
users. The second part is the posture classifier (for body 
posture classifications using 3-dimensional body modeling) 
that maps the kinematical and semantical features to an 
extended range of postures commonly observed in 
naturalistic, conversational settings. The third part is an 
association rule matcher, which is used to deduce the 
affective states from the detected postures. The association 
rules are derived from a mining process that we will 
describe later in this section. 

mASqUE's approach for converting (sets of) postures into 
affective state is based on the stages in affective signal 



processing defined by Picard [26]. First, the low level 
information (postures) is captured by a sensing device (a 
MS Kinect). Next, we detect patterns in these postures that 
indicate a specific prominent affective state. The affective 
states we are able to classify are deduced from Russell’s 
Affect Grid [29]. Finally, we convert these states into high-
level representations of goals and preferences for emotion 
synthesis. This final stage gives us symbolic data that can 
be used by affective systems to reason about their 
situations. In the following we discuss the three main parts 
of the mASqUE system is detail. 

Vision-based approach for 3D Body Modeling 
We delineate a set of postures typically identified in 
psychology literature [30]. The postures can be described 
with a combination of primitives in the body lean, arms, 
head, and legs [3]. The eleven postures we use are Hand-
on-chin, Hand-near-hip, Hand-behind-neck, Arm Crossed, 
Limbs Restrained, Limbs Relaxed, Legs Crossed, Foot 
Forward (Left), Foot Forward (Right), Lean Forward, and 
Lean Sideward. We developed a 3D body model for 
identifying body kinematics that can be used to correlate 
the abovementioned postures with different types of limbs. 

The skeletonization method to detect the body structure 
from the human silhouette [13] is the basis for our 
approach. In contrast to Fujiyoshi and Lipton [13] we used 
a 17-links model compared to their simpler “star” skeleton 
to represent the human body. However, for capturing more 
subtle posture cues (e.g. to enable posture tracking during 
human conversations) we extract additional features related 
to the quality of body movement. Based on this 
information, we introduce a model-based kinematic 
framework that is able to characterize body language in a 
conversational setting. Our 3D body model is represented 

with a link model that is made from a set of limbs that are 
segments being connected together by means of joints. Our 
17-links model comprises of fourteen body joints and 
seventeen limbs (as can be seen in Figure 2). We measure 
rotations and transitions of fourteen monitored body joints 
using the kinematic framework. Details on posture 
classification are provided in the next subsection, which is 
based on the measurements of body articulations (i.e. joint 
angle) and quality of body movement (i.e. Region of 
Interest movement). 

Classification based on Postures 
As an input for the posture classifier we use depth images 
from the Microsoft Kinect depth camera system. Basic 
skeletonization and tracking is provided by the OpenNI 
SDK from PrimeSense. The OpenNI SDK also allows us to 
detect significant body parts for our 3D body modeling 
including the head, tips of the feet, and tips of the hands, 
hips, knees, elbows, and the torso. We build a tracking 
algorithm on top of OpenNI that is tailored for detecting 
postures. The algorithm includes a combination of temporal 
scaling and spatial transformation parameters for tracking 
the significant body parts.  

To increase the precision of our 3D body model, when 
subtle changes in postures occur, we implemented the 2D 
image tracking algorithms of Comaniciu [9] (i.e.  kernel-
based object tracking to monitor movement of the joints 
that are being tracked at per-pixel level) and color 
histogram model matching to measure the background 
noise caused by the transitioning of body postures. With our 
3D body model, we can extract the angles of fourteen 
monitored body joints and track the following kinematic 
and semantical features: the body articulation measurement 
(i.e. flexion and pivot angles of each monitored body joint) 
and quality of body movement (i.e. quantification 
assessment of the tracked Region of Interest (ROI) that is 
superimposed on each joint).  

Flexion refers to the rotation in the direction of the limb and 
pivot refers to the rotation laterally across the limb. The 
quantification assessment for quality of body movement 
uses a kernel-based object tracking to determine the number 
of Meanshift iterations for the ROI movement from the 
previous position at per-pixel level. Color histogram model 
matching is also included in the quantification assessment 
to measure the Mahalanobis distance, which is used to 
detect outliers (background noise) in data association of the 
color histogram patterns along image sequences. All of 
these features are combined to create a 44-element feature 
vector that is updated every 200 milliseconds. A feed-
forward neural network with a backpropagation learning 
algorithm executes the posture recognition algorithms (one 
for each defined posture). 

Association rule matching to infer affective state 
Statistical analyses are used by the association rule matcher 
to make inferences about the affective state in real-time. We 

 

Figure 2. Link model with joints represented by 
hierarchical nodes. The 14 joints (shown as colored nodes) 
are connected to the 17 numerated body parts. 



accumulate the posture information every 200 milliseconds 
over a moving window of 2 seconds and rank the postures 
according to their posterior probabilities. The three postures 
with highest posterior probability are then selected to 
determine a corresponding match with the association rules.  

PROCESS FOR MINING ASSOCATION RULES  
The association rules are derived by a mining process that 
took the results we obtained from a study on postures as 
input. This study was conducted primarily to observe the 
postures during different emotionally-led conversations. 

We developed an affective state classifier, which uses fuzzy 
logic to combine posture information and physiological 
measurements to identify an extended range of affective 
states.  

Classification for an extended range of Affective States  
Our affective state classifier is based on the combination of 
two classification approaches: vision-based openness 
categorization and physiological-based arousal-valence 
classification. The affective state classification uses the 
continuous values of arousal, valence and openness to 
mathematically model a set of emotions (see Figure 1).  

Openness categorization based on Postures 
We use the posture information from our vision-based 
posture recognition approach to provide the openness 
categorization in the detected postures. The transformations 
from posture to openness value, which provide a symbolic 
representation of an individual’s behavior, is derived from 
Burgoon [7] and Clore [8]. They have evaluated different 
body behaviors to identify those that can distinguish a 

positive attitude from a negative one. We then relate these 
body behaviors (such as expansive arm and body 
movement, postural relaxation, direct body orientation and 
forward lean of the upper body) to our posture descriptions. 
This openness categorization can also potentially be 
implemented in game systems to provide appropriate 
empathic feedback for the players to improve their game 
experience. For example, the game feedback can adapt to 
the openness level (such as players are showing negative 
signs of approachable attitude) and it provides the relevant 
support to the players with encouraging comments after a 
game when they are slouching their shoulders instead of 
making harsh cynical comments. 

To confirm the level of openness conveyed by each of the 
postures suitable for naturalistic and ubiquitous computing 
contexts, we asked human observers to appraise their 
emotional content. We created hypothetical scenarios using 
guidelines from Scherer et al. [31] to capture non-acted 
postures from 10 pre-test participants. We then manually 
selected a total of 57 variations of the user postures and 
annotated them as test patterns. A total of 60 observers have 
been recruited from Amazons Mechanical Turk services to 
rate each test pattern on its level of openness from 1 (not 
approachable at all) to 7 (very approachable). The faces in 
the test patterns were pixelated to prevent observers from 
interpreting emotion from facial expression. The between-
groups multivariate ANOVA results show that the postures 
can be grouped into three distinct levels. Postures with high 
levels of openness (M = 4.43, SD = 1.54) were indeed rated 
significantly higher than postures with mid level of 
openness (M = 3.85, SD = 1.57), F(59) = 0.476, p < .001; r 
= 0.002. Similarly, postures with low level of openness (M 

 
Figure 3: Representation of levels of emotions in arousal-valence space. (middle row) The results with openness being neutral are 
same as the results by Mandryk [19]. (top and bottom rows) Using the same set of representation of levels of emotions, we defined 
additional emotions with different openness levels (i.e. open and closed). 



= 3.36, SD = 1.49) were rated significantly lower than 
postures with mid level of openness, F(59) = 0.467, p < 
.001; r = -0.113. We then related the three levels of 
openness (high, mid, and low) to the respective labels: 
open, neutral, and closed. 

Fuzzy logic implementation for Affective State Classifier 
The affective state classifier uses a fuzzy logic 
implementation for determining the affective patterns that 
can be used to differentiate a set of emotions. Fuzzy logic 
provides the advantages of modeling uncertainty and also 
resembling the way humans think, reason and perceive 
about its situational information [2]. A typical fuzzy logic 
system uses a collection of fuzzy membership functions and 
rules to handle inexact, uncertain and vague concepts in an 
appropriate manner to reason about data. 

Our classifier combines both physiological-based arousal-
valence classification and vision-based openness 
categorization. This approach is similar to Mandryk’s [22] 
which also utilized two fuzzy logic models for determining 
user emotions: the first model transforms physiological 
signals as a direct indication of user experience into arousal 
and valence, and the second model transforms the changes 
in arousal and valence according to the openness (category) 
level into a set of ten affective states. 

To capture the physiological information, we used Thought 
Technology’s ProComp Infiniti hardware and Biograph 
software. Arousal and valence values were then derived 
from these four physiological signals: Galvanic Skin 
Response (GSR), Heart Rate (HR), Electromyography of 
the corrugator supercilii muscle for frowning (EMGfrown), 
and Electromyography of the zygomaticus major muscle for 
smiling (EMGsmile). Similar to [22], we also faced the issue 
that there are no established guidelines for transforming 
arousal and valence according to the openness 
categorization into a set of emotions. We defined the 
membership functions and the rules to translate arousal, 
valence, and openness using the basis of the circumplex 
model of emotion [29], related works from Mandryk [22] 
and Breazeal [6]. For the transformation involving arousal-
valence space at different levels of openness, fifteen 
trapezoidal membership functions that are evenly 
distributed are used for the inputs of arousal, valence and 
openness. Arousal and valence are each represented in six 
levels: veryLow, low, midLow, midHigh, high, and 
veryHigh. Openness is represented in three levels: closed, 
neutral, and open. For each of the three openness levels (see 
section above), the physiological information is mapped on 
the two-dimensional arousal-valence space, forming a set of 
2D points that can be used as input to a fuzzy logic model. 

There are 156 fuzzy logic rules to transform the input 
values from arousal, valence and openness into the ten 
affective states. The ten affective states comprise of five 
new affective states in addition to the set of basic affective 
states. The set of basic affective states can be derived from 

the transformation of arousal and valence, when openness is 
neutral, based on a set of 71 fuzzy logic rules. We assumed 
the default for the openness level is neutral for these 71 
fuzzy logic rules as they can be described and depicted on 
an arousal-valence plane. The fuzzy logic rules were 
generated to map the levels of arousal and valence to the 
five basic affective states: content, excitement, frustration, 
calm, and boredom. The details for this representation of 
the levels of emotion are shown in Figure 3 (middle row, 
b), which is based on our data and replicate the results of 
Mandryk. Note that we replace the emotional category of 
Challenge from [22] with Calm, as Challenge is derived 
from Csikszentmihalyi’s [10] and Mandryk’s [22] 
application domain of gaming whereas Calm is more suited 
for general contexts. 

The details for the representation of levels of the new set of 
emotion are shown in Figure 3 (top and bottom rows, a and 
c). The five additional affective states are: overjoy, 
accepting, stern, disgust, and anger. As such, we reused the 
71 fuzzy logic rules, which are described earlier for the set 
of five basic affective states. The additional 85 rules are 
derived from the first set of 71 fuzzy logic rules by 

 

Table 1. This table shows the association rules 
representative of correlation between postures and 
affective states. We assumed that the interaction partner is 
located at the direction where the foot forward is pointing 
to the right side i.e. Foot Forward (right).  



factoring two other openness levels (i.e. open and closed). 
For example, stern (when openness is closed) has the same 
representation of levels of emotion as calm (when openness 
is neutral).  

Association rules mining in a naturalistic and 
ubiquitous computing context 
The procedure of this study consisted of pairs of users 
engaging in a series of unrehearsed, minimally structured 
conversations that invoked emotions, both negative and 
positive. Eighteen participants were recruited within our 
research facility and subdivided in nine pairs. All 
participants participated out of free will, were in good 
health and were informed on the goals and procedure of the 
tests, as well as on the data being captured. The participants 
included 8 postgraduate students and 10 researchers, all of 
who had worked together in projects. Participants were 
paired in a fashion that maximized the frequency of daily 
interaction within each pair. In each pair, one participant 
was monitored (physiological measurement and posture 
tracking). Nine participants were monitored (six male and 
three female, ages ranged from 25 to 39). Before each trial, 
we explained to the participants that there would be two 
conversational sessions with a brief intermission. Both 
participants were encouraged to maneuver freely and 
express themselves physically with no restrictions on bodily 
movements or postures. Each conversational session took 
15 minutes. The participants were debriefed at the end of 
the experiment and informed on the details of the 
experiment. We collected over 9 hours of video recordings 
for synchronizing the results from both the physiological 
measuring equipment and stereoscopic camera system. This 

resulted in over 3600 samples where postures were 
identified with the corresponding physiological 
measurements captured during that posture. 

RESULTS AND ANALYSIS 
From the association rules mining process, we extracted a 
set of association rules using rule-induction. The 
association rules mining process is illustrated by the dotted 
lines in Figure 1. The body postures were first synthesized 
with expressions of emotions in the time-based 
synchronization. Of the 3606 samples collected from our 
experiment, only 2974 instances were able to be validated 
for the completeness of data. The resulting affective states 
were then used to facilitate a response directly from the 
posture input. Next, we implemented a first-order 
unsupervised learning technique, which employs the Tertius 
and Predictive Apriori algorithms in the open source 
WEKA machine learning software package [16]. The result 
of the association rules is as shown in Table 1. 

A standard 10-fold cross-validation approach was used for 
testing. We used the J48 implementation of the C4.5 
decision tree [27] to construct a pruned decision tree based 
on the data from our experiment. Our pruned tree consists 
of 50 nodes and 45 leaves. The decision tree outputs a set of 
temporal decision rules, which we used to supplement our 
classification of affective states. We then generated a 
hierarchy of general to specific categories that is useful for 
inferring the affective states from postures. Table 2 presents 
the confusion matrix of the decision tree, which shows the 
results of the fuzzy logic-based affective state classification 
and the results inferred from the mASqUE system. The 

 

Table 2. The confusion matrix shows the performance of prediction of the affective states we derived from participants using 
postures only. The numbers indicate the frequency of the different detected affective states.  



match instance rate is 98.32%. As can be seen in Table 2, 
mASqUE returns similar results as using the fuzzy logic-
based affective state classifier. It is interesting to see, that 
e.g. for “excitement” similar affective states were inferred 
such as “calm” or “overjoy”. Note that there is no generally 
accepted baseline for comparing system that detects 
affective states. We showed that our system can reproduce 
the same results as using physiological measurements for 
each openness levels. 

MASQUE EVALUATION 
We conducted a user evaluation to determine the 
performance of mASqUE, involving 10 participants (3 
female, 7 male); aged are between 23 and 31. The 
participants are a mix of 5 undergraduate students, 2 
graduate students, and 3 research staff members. The 
participants were asked to evaluate mASqUE for 30 
minutes by acting out the postures in a simulated 
conversation with a research assistant. The purpose was for 
the participants to provide their postures as input to the 
mASqUE system and observe the inferred affective states. 
After the evaluation we conducted a semi-structured 
interview. 

The quantitative responses of the users about their affective 
states from the semi-structured interviews were averaged.  
The means are presented in Figure 4 (bottom). We 
performed comparisons using ANOVA on the affective 
states inferred from mASqUE. Comparing the frequency of 
occurrence with the Likert scale ratings of the users 
(comparing top with bottom results in Figure 4), we found 
the results to be consistent for seven affective states 
(overjoy, excitement, content, boredom, frustration, disgust, 
anger); however, we found out that accepting, calm, and 
stern are being significantly different (p < .05) from the 
seven affective states mentioned above, F(1,20) = 6.163, p 
= .006. 

The consolidated qualitative responses from the interviews 
show that the appropriate mapping of postures to the 
intended affective states can be clearly inferred based on 
the association rules (which in our case map the affective 
states from a limited combination of postures as shown in 
Table 1). Our result is very much in line with the notion 
that emotion spaces are multi-dimensional and can reliably 
distinguish basic emotions. Although the emotions that we 
have represented in Figure 3 occupy distinct points in the 
arousal-valence emotion space, this is still not an 
exhaustive description. For a more definitive model for 
mapping postures to affective states, we posit that a 
comprehensive study on body postures in different social 
domains will be needed to obtain a set of more generalized, 
reliable association rules. Regarding the performance of 
mASqUE, three participants were skeptical and considered 
the selection of the ten emotions in Table 1 as still too 
narrow. The other seven participants expressed general 
satisfaction with the degree of correctness for 
characterizing the multi-facet emotions in their overall user 

experience. One of these seven participants made the 
following comments “Personally, I do not have a (mental) 
set of postures for specific emotion. Knowing the affective 
states that I am having, will allow me to discriminate my 
self-expression.” Another participant stated: “The extensive 
range of emotions allows me to try out different 
possibilities of body movement and understanding their 
impact on my perceived emotion”. 

DISCUSSION 
An analysis of the user evaluation showed that mASqUE is 
suitable for deployment in ubiquitous computing 
environments as its rich, extensive range of emotion 
representations (i.e. affective states) is able to inform 
intelligent user interfaces about the user’s emotion. This is 
especially important for evaluating user experience in 
ubiquitous computing environments because the 
spontaneous affective response of the user can be 
determined during the process of interaction in real-time, 
not the outcome of verbal conversation. We have shown 
that our system can reproduce the same results as using 
physiological measurements for each openness level. 

 

 

Figure 4. Mean values of affective states inferred from 
mASqUE (top) and emotions from self-reporting (bottom). 
The error bar show one standard deviation across the 9 
monitored participants. (Bottom) Error bar for Accepting, 
Calm and Stern are not displayed. Their error rates are 
0.03, 0.03, 0.01 and 0.15, 0.03, 0.01 respectively for conflict- 
and enjoyable oriented conversations. Notice that the mean 
values are only significantly different for Accepting, Calm, 
and Stern comparing the mASqUE system to the self-
reports as indicated with the dotted box.  



Besides that, the following two subsections also discuss the 
potential impacts of affective states detection in ubiquitous 
computing environments within the area of IUI. 

Benefits of extending the emotion space 
By adding the openness categorization to complement the 
arousal-valence emotion space, we are able to extend the 
arousal-valence emotion space from five basic affective 
states to ten affective states. We notice in our study that the 
complexity in making choices increases when allowing 
participants to choose from the ten emotional categories for 
qualitative evaluation in their self-report. We can refer to 
[33] for the explanation that people tend to simplify their 
decision-making processes using some form of heuristics, 
which in turn introduces judgmental errors and makes the 
assessment of own behaviors erroneous. This underlies an 
important role that body posture has for informing the IUI 
with five more affective states using the openness 
categorization. 

Our system takes a global approach for emotion scaling, so 
a user’s affective state is given as a percentage of the 
maximum value (i.e. Excitement). As seen in Figure 4, 
frustration and anger are significantly lower as measured by 
the frequency count for affective states compared to overjoy 
and excitement, which are only moderately lower. Although 
self-reporting from post evaluation interview had deviated 
from our mASqUE system, we can use the subjective self-
reports to provide an explanation for our observation. 
Subjects taking part in the experiments were feeling excited 
in general with our expectation of certain exotic and novel 
experiences during the experiment. Although a user may be 
angry, and may rate anger as fairly high on a 5-point scale, 
this rating will be relatively low compared to the feeling of 
overjoy throughout the experiment. 

Enriching the affective evaluation  
In addition, mASqUE is able to characterize valuable 
information about affective states that cannot be extracted 
from the subjective self-reporting approach. In other words, 
mASqUE is able to detect affective states that are 
negligibly rated by the self-report. As shown in Figure 4, 
mASqUE shows a significantly higher distribution of 
accepting, calm and stern, whereas in self-reporting these 
emotions are negligibly rated.  

From a biological perspective, these three emotions 
(accepting, calm and stern), which we describe with calm 
descriptions in the emotion representation (Figure 3), result 
in a delay of emotional response as they take a longer time 
to process cognitively. These emotions could be overtaken 
by other emotions with shorter response time (e.g. anger, 
frustration, excitement, and overjoy), which are linked to 
the biological emotion stimuli. However, it is important to 
detect these calm-related emotions as they have a positive 
and beneficial effect on a variety of decision-making 
processes [17]. 

Future research is necessary to be carried out in order to 
define how powerful the influence of a posture in the 
recognition of an emotion actually is in ubiquitous 
computing environments. An application of mASqUE, is 
Bro-Cam [32]. With Bro-Cam we explored the possibility 
to provide empathic feedback for videogame players. The 
body posture of a player at the end of a game round was 
mapped (this mapping was simply done using a MT survey) 
to humoristic statement to improve the players game 
experience. Results from a user study [32] also validate the 
positive effects that this empathic feedback (with a very 
simple mapping) had on the player’s game experience. To 
underline the potential of mASqUE we describe two 
scenarios where our system can exploit its full potential in 
the area of IUI in the following section.  

INTERACTION SCENARIOS 
With this work we provide additional information to the 
users that need to communicate with each other. Especially 
when users collaborate over a distance, the information we 
get from each other’s body language can get lost. For tasks 
that require a tight collaboration between users, being 
aware of each other’s affective state can make a huge 
difference. Even when co-located, users might not be 
familiar with each other and thus have difficulties in 
recognizing each other’s affective states. In this section we 
illustrate how our approach can improve collaborations by 
means of two example scenarios that apply mASqUE for 
improving collaboration. The first example covers the 
support for information-sensitive conversations, while the 
second provides an example for intense remote 
collaboration. 

1) During information-sensitive conversations, such as 
during doctor-patient conversations, ensuring sufficient 
empathy makes a huge difference. Trained professionals 
can do this during co-located conversations, but when doing 
them remotely using e.g. video conferencing, this is often 
problematic. mASqUE provides clues on the affective states 
and openness of conversation partners thus are able to guide 
a doctor when and how to reveal sensitive information and 
follow-up on the effects of her message. mASqUE tells us, 
besides the basic affective states, when someone is open for 
new information and ideas. During a video conferencing 
session, mASqUE presents to the doctor its readings using a 
straight-forward interface: it tells the doctor what the most 
dominant emotion is being deduced and what the level of 
openness is presented as a number ranging from 1 (not 
approachable) to 7 (very approachable). The doctor can 
subsequently steer a conversation in such a way the patient 
will be most comfortable in receiving new information. 

2) Similar to the previous example, when people 
collaborate during intense tasks, mASqUE helps to make 
this collaboration more efficient and reliable. When a lab 
technician has to perform a critical task for example in a 
nuclear lab and is being guided by an expert remotely (since 
experts are sparse in this area), providing the most complete 



view of the lab technician will make guidance fit better to 
the personal needs and individual state of mind. In this case 
mASqUE will notify the expert when the lab technician will 
be insecure or anxious when performing a certain activity. 
This will ensure that the expert pays extra attention at those 
stages since these require more help. In the opposite case, 
mASqUE can reveal when the lab technician becomes too 
relaxed and can intervene (anticipate) on activities that 
require the full attention of the lab technician.  

These two short examples described above present possible 
application domains with the field of IUI for which we 
envision mASqUE to play a crucial role. The subtle 
information emitted by our body language can be used by 
mASqUE to determine affective states in various Ubicomp 
environments.  

CONCLUSION 
With mASqUE we demonstrated a new way to infer 
affective states from body postures in a ubiquitous 
computing environment. Using an unobtrusive technique, 
such as posture tracking with a depth camera, mASqUE 
opens up a huge design space for further IUI applications. 
By freeing the users from the desktop, having the system 
“always on” and with no user instrumentation we overcome 
the main limitations as described in the introduction. As 
also described later, one can imagine various scenarios, 
such as remote lab training, human-to-human 
conversations, point-of-sales interactions, or games, where 
this system is applicable. By adding vision-based posture 
recognition, we enable a new affective categorization (i.e. 
openness) to determine the degree of user’s behavioral 
closeness to another person or object in the interpersonal 
space. Our fuzzy logic-based affective state classifier for 
combining both physiological-based arousal-valence and 
vision-based openness values is able to scale beyond the 
limited range of basic emotions. The analysis also shows 
mASqUE is able to detect affective states (accepting, calm, 
and stern) – with positive and beneficial effect on decision-
making processes – that are negligibly rated in the 
subjective self-reports. mASqUE opens up new possibilities 
for informing IUI about the affective states of users from 
their body postures in a nonintrusive way.  
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