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Chapter 1

Introduction and problem

statement

1.1 Introduction

Ever since the introduction of containers about fifty years ago, containerization of

freight transport has been rising. Advantages of transporting freight by containers

include the standardization of shipments and handling equipment, faster loading and

unloading operations and reduced security and damage issues. Driven by these advan-

tages, productivity gains within the sector and the increasing international division

of labor, container trade grew at an average annual rate of 8.2% between 1990 and

2010. Total container trade volume in 2010 was estimated at 140 million twenty-foot

equivalent units (TEU). (UNCTAD, 2011)

Due to the ease of loading and unloading containers onto vessels, trains and trucks,

containerization has also contributed considerably to the emergence of intermodal

transport (Dejax and Crainic, 1987). Intermodal transport is defined as the transport

of freight by a combination of at least two modes of transport, without handling the

goods during transfers. The largest part of the transport, the main-haulage, is carried

out by one or more sustainable modes of transport like barge, train or ocean-going

vessel. The initial and final part are generally performed by truck and are denoted as

pre- and end-haulage or drayage operations. (Macharis and Bontekoning, 2004)

As a consequence of the containerization process, shipping lines and transportation

companies are facing a number of complex planning problems such as container fleet

sizing, decisions about container ownership and leasing and empty container reposi-

1



2 Chapter 1

tioning (Dejax and Crainic, 1987). Especially the latter problem, empty container

repositioning, is considered as highly challenging. Due to the natural imbalance of

trade, over time certain areas develop a surplus of containers while other areas face

a deficit. On a global level, these imbalances require the repositioning of empty con-

tainers between seaports. Drewry Shipping Consultants estimated that 20% of all

maritime container movements are empty container movements (Boile et al., 2006).

Song and Carter (2009) note that recently trade imbalances are becoming still more

prominent. Total costs of maritime empty container repositioning in 2009 were esti-

mated at 20 billion USD (UNCTAD, 2011).

Empty container repositioning takes place in the hinterland of seaports as well.

Inbound loaded containers are transported from seaports to their final consignees by

barge, train, truck or a combination of these modes. Vice versa, outbound loaded

containers are transported from shippers to the port. Due to imbalances in container

flows on an individual customer level, empty containers have to be repositioned be-

tween consignees, shippers, intermodal container terminals, inland container depots

and the port. (Boile et al., 2008) For these continental empty container flows esti-

mates are even higher than for maritime empty container flows, ranging from 40 up

to 50% of all continental container movements (Crainic et al., 1993b; Konings and

Thijs, 2001; Branch, 2006).

As opposed to loaded container transports, empty container movements do not

generate revenues. Although empty container movements cannot be avoided com-

pletely, minimizing these costly activities would considerably reduce operating costs

of shipping lines and transportation companies. Empty container repositioning is

therefore one of the longstanding and ongoing issues in containerized transport. Fur-

thermore, minimizing empty container movements would reduce external effects of

transport such as congestion and air pollution, which makes the empty container

repositioning problem relevant from a social point of view as well.

Throughout the years there has been a concentration of container shipping activ-

ities through mergers, acquisitions and alliances as well as a trend towards the use

of larger and more economical vessels. This has lowered costs for shipping containers

between seaports. At the same time, the inland part of an intermodal (maritime)

transport accounts for an increasing portion of the total cost. Estimates range be-

tween 40 and 80% (Notteboom, 2004). A similar trend may be observed for the empty

container repositioning problem itself. According to Le (2003) and Lopez (2003) ship-

ping lines have mainly focused on minimizing costs of empty container repositioning

on a global level. Certain levels of success in optimizing empty container movements

in the maritime transit segment are attained by using surplus ship slots for empty con-
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tainer repositioning. In the past, less attention has been paid to the inland transport

segment or empty container management on a regional level. Recently, attention for

the inland transport segment has been increasing. Notteboom and Rodrigue (2005)

define a new phase in port development, port regionalization, which indicates the

ports’ growing acknowledgement of the importance to increase their integration with

inland freight distribution systems. Due to the large share of the inland transport

segment in total costs, many shipping lines currently consider this segment as the

most vital area to reduce costs (Notteboom and Rodrigue, 2005). As a result, inland

container transportation and especially the optimization of costly and non-revenue

generating empty container repositioning movements, constitutes an important and

highly relevant field of research.

1.2 Problem statement

This thesis focuses on the empty container repositioning problem in the hinterland of

a major seaport. The problem situation may be described as follows. When a ship

arrives at the port, loaded containers have to be delivered to their final consignees at

different inland locations. These transports are performed by a combination of barge

or rail transport with road transport or directly by road transport. Following their

delivery at a consignee’s site, containers are unloaded and become available to be

picked up and moved away. These empty container transports are often performed by

another vehicle (Crainic et al., 1993b; Veenstra, 2005). Vice versa, empty containers

have to be delivered to shippers in the hinterland. After they have been loaded, these

containers are picked up by another vehicle and transported either directly to the

port or to an inland intermodal terminal from which they are transported to the port

by rail or barge.

Several options regarding empty container repositioning are available. When

empty containers become available at a consignee, they may either be returned to the

port for global empty repositioning, they may be transported to a container depot at

the port or at an inland location in expectation of future requests for empty contain-

ers in the hinterland, or they may be moved directly to shippers which are located in

the same region and demand empty containers. This last option is known as a street

turn (Jula et al., 2006). Consequently, empty containers demanded by shippers come

from a container depot at the port or at an inland location or they come directly from

a consignee. Besides, empty containers may need to be repositioned among container

depots, intermodal terminals and the port in order to overcome regional imbalances
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and to achieve cost reductions through mass transportation of containers by barge or

rail (Crainic et al., 1993b).

In practice, empty container depots are often located nearby ports and most empty

containers that become available at a consignee’s site are directly transported back

to the port. When a demand for empty containers arises in the hinterland, containers

are subsequently transported back and forth again. (Crainic et al., 1993b) This leads

to situations like in the Los Angeles/Long Beach region as described by Jula et al.

(2003). In 2000, 1.130.000 empty containers became available in the hinterland at

local consignees’ sites, of which 94% were moved back empty to container terminals at

one of the two ports. Meanwhile 550.000 empty containers were transported from the

two ports to local shippers. Clearly, an opportunity for optimizing empty container

flows exists in preventing some empty containers to be transported back to the port

immediately. The objective of empty container management on a regional level is

therefore to reposition empty containers efficiently in order to minimize costs, while

fulfilling empty container demands.

1.3 Thesis outline

In this thesis, the optimization of empty container movements in intermodal transport

is studied. The focus is on a regional level i.e. the repositioning of empty containers

in the hinterland of a major seaport. Since loaded and empty containers are generally

transported on the same network and using the same equipment, special attention

is paid to methods which integrate empty container repositioning movements with

loaded container movements. Regarding these loaded container movements, only full

truckload transports of a single container type are considered. The outline of the

thesis is shown schematically in Figure 1.1.

Since twenty years, an overwhelming growth in the number of papers published

on empty container repositioning is observed. The majority of these papers studies

the repositioning problem on a global level from different perspectives. In the last

ten years, empty container repositioning on a regional level has received increased

research attention as well. Unfortunately no detailed overview of this recent work is

available. Chapter 2 remedies this shortcoming. Decisions related to empty container

repositioning to be taken at the strategic, tactical and operational planning level

are discussed. Existing literature is situated in a framework and described in detail.

Although the main focus lies on empty container repositioning on a regional level,

literature concerning repositioning on a global level is discussed as well. Research gaps
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Figure 1.1: Outline of the thesis

and opportunities for further research are identified. In the following chapters, two

of these research opportunities are studied in detail. The first is related to a tactical

planning problem in barge transportation while the second is related to an operational

planning problem in drayage operations. At both planning levels, opportunities for

the integration of loaded and empty container movements are analyzed.

In Chapter 3, the transport of containers by barge between a seaport and a number

of hinterland ports is investigated. Research on service network design for such inter-

modal barge transportation networks is scarce. Empty container repositioning in this

context has received even less attention. A tactical planning model is proposed. This
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model may be used as a decision support tool to determine shipping routes, vessel ca-

pacity and service frequency when designing regular roundtrip barge services between

a seaport and the hinterland. The versatility and flexibility of the model is demon-

strated by applying it from the perspective of barge operators as well as from the

perspective of shipping lines which arrange door-to-door transport activities. While

barge operators are generally not concerned with empty container repositioning deci-

sions, shipping lines are. A method to take these repositioning decisions into account

when designing barge services is proposed.

While Chapter 3 is related to container transportation by barge between a seaport

and a number of hinterland ports, Chapters 4 to 7 are concerned with the planning of

container transports between hinterland ports or other (inland) container terminals

and final customers. These transports are performed by truck and are called drayage

operations. The focus lies on the operational planning of these activities.

Chapter 4 serves as an introductory chapter. The operational planning of drayage

operations is discussed in detail. First, a traditional sequential solution approach

is presented. An empty container allocation model determines the empty container

transports that need to be performed in the service area of intermodal terminals. A

vehicle routing problem is then solved to find efficient vehicle routes performing all

loaded and empty container transports in the region during a single day. Second, an

integrated planning approach is considered. Empty container allocation decisions are

no longer made beforehand. Instead they are made simultaneously with vehicle rout-

ing decisions. Mathematical formulations for both solution approaches are presented.

The primary objective is to minimize the number of vehicles used. The secondary

objective is to minimize total distance traveled.

A deterministic annealing meta-heuristic is proposed in Chapter 5 to solve the

sequential and integrated drayage problems. Four variants of this meta-heuristic

are proposed and compared with each other. An experimental design is set up to

demonstrate the advantage of an integrated approach over a sequential one. For the

first time, this advantage is quantified and shown to be significant. Finally, the effect

of implementing street turns is analyzed i.e. the effect of allowing direct transportation

of empty containers between consignees and shippers, without an intermediate stop

at a container terminal/depot. Results indicate that empty container repositioning

costs may be reduced considerably by allowing street turns.

Chapter 6 considers alternative objective functions for the (integrated) drayage

problem. Adaptations to the deterministic annealing meta-heuristic to take these

alternative objective functions into account are discussed. Besides, the proposed

meta-heuristic is compared with a recent solution method on a similar problem.
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The assumption that travel times between two locations only depend on distance,

is relaxed in Chapter 7. Instead it is assumed that travel times are a deterministic

function of distance and time of day. In this way, hourly variations in travel times

due to congestion may be taken into account. A time-dependent version of the de-

terministic annealing algorithm is presented to solve the problem. To the author’s

knowledge, no time-dependent version of the integrated drayage problem has been

studied before.

Finally, general conclusions and opportunities for further research are presented

in Chapter 8.
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Chapter 2

Challenges in managing

empty container movements

at multiple planning levels

2.1 Introduction

Research on empty container management is mainly concentrated in the last twenty

years. Especially during the last ten years, the amount of research has increased

rapidly. Although numerous papers have addressed empty container repositioning

from different perspectives, to our knowledge no detailed literature review describ-

ing all aspects of the problem is available. This chapter1 provides an overview of

the existing research on the topic (Figure 2.1). The main focus lies on empty con-

tainer repositioning on a regional level, namely the hinterland of a seaport, although

literature concerning repositioning on a global level is discussed as well.

Section 2.2 discusses several practical strategies which may reduce the need for

empty container repositioning. Issues related to the modeling of the problem are

described in Section 2.3. In the remainder of the chapter, the different planning models

that are proposed in literature are reviewed. The scope from these models ranges from

the strategic and tactical to the operational planning level. A classification according

to these three planning levels is used. In Section 2.4 the decisions to be taken at

each planning level are presented and an overview of the related planning models is

1This chapter is based on Braekers et al. (2011b).

9
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Figure 2.1: Outline of the thesis

given. In the following Sections (2.5 to 2.9) the planning models are discussed in

detail. Models comprising elements of more than one planning level are discussed

as well. Only models explicitly taking into account empty container repositioning

are mentioned. For an overview of other planning models for (intermodal) freight

transportation, the reader is referred to Crainic and Laporte (1997), Crainic (2002),

Macharis and Bontekoning (2004), Crainic and Kim (2007) and Caris et al. (2008).

Finally, research gaps and opportunities for further research are identified in Section

2.10.
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2.2 Proposed solutions

Several practical strategies to address the empty container repositioning problem

on a regional level are discussed in literature. Most authors assume transport of

empty containers is carried out by trucks (Jula et al., 2003; Chang et al., 2006; Di

Francesco et al., 2006). Especially strategies to reduce the number and length of empty

movements are proposed. Examples are the use of inland container depots, street

turns, container substitution, container leasing, foldable containers and internet-based

systems. These strategies are described in following sections.

2.2.1 Inland depots

Container interchange can be defined as the transfer of a container from the respon-

sibility of one party to that of another party (The Tioga Group, 2002). Chang et al.

(2006) state that a system that facilitates container interchanges outside ports, called

empty container reuse, is not only desirable but necessary. Jula et al. (2003) propose

two approaches for empty container reuse, depot direct and street turn. The former

is discussed in this section while the latter is discussed in Section 2.2.2.

The depot direct approach is similar to the system of Inland Depots for Empty

Containers (IDEC) described by Boile et al. (2008). The idea is that empty containers

could be temporarily stored at inland container depots instead of being moved back to

the port immediately. When a demand for empty containers occurs, empty containers

can be transported to the shipper and subsequently, when loaded, to the port. As a

consequence, empty vehicle kilometers are reduced and costs of repositioning empty

containers decrease significantly, as shown in Figure 2.2. (Boile et al., 2008)

Inland container depots offer additional benefits. They establish a neutral supply

point for empty containers, facilitate the drop off and pickup of empty containers

when terminals at ports are congested or closed and add buffer capacity to terminals

at ports. (Jula et al., 2003)

Le (2003) states that currently empty containers are immediately shipped back to

the port because shipping lines have their own container yard at the sea terminal and

opening an inland depot would duplicate operating costs. According to Crainic et al.

(1993b) and The Tioga Group (2002) this is not necessarily true. Container terminals

at a port are operated by terminal operators on behalf of shipping lines but inland

container depots are usually owned and operated by separate private firms. Only

extra storage costs would be incurred but rising costs of land parcels and container

operations at ports may offset these extra costs. (Le, 2003; Boile et al., 2008)
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Figure 2.2: A system of inland depots (Boile et al., 2008)

2.2.2 Street turns

The second approach proposed by Jula et al. (2003) is the street turn approach (or

triangulation (Le, 2003)). When using street turns, empty containers are moved

directly from consignees to shippers, without an intermediate stop at a port or inland

depot. This way, the number of empty container movements can be reduced, as is

shown in Figure 2.3. Whereas for the import and subsequent export (situation a),

two empty movements to and from terminals at ports are needed, for the street turn

approach (situation b) only a single off-port empty movement is required. Street

turns thus enable transportation companies to maximize their profits generated by

trucking transportation requests (Deidda et al., 2008).

The approach offers several other benefits. External costs are reduced due to a

reduction in empty movements. For each street turn two movements to and from

terminals situated in the often highly congested port area are avoided, reducing ex-

ternal costs of congestion even further. Less container interchanges take place, saving

shipping lines paperwork. Finally, empty container demands from export customers

may be fulfilled sooner, decreasing container waiting times and increasing container

utilization rates. (Jula et al., 2003; Dong and Song, 2009)
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Figure 2.3: The street turn approach (Jula et al., 2003)

Although street turns are considered as highly desirable by all parties involved,

they are hard to achieve. Due to the size of most problems, the existence of time

windows and the need to model multiple resources, simply identifying options for

street turns is a challenging task (Smilowitz, 2006).

Practical limitations for implementing street turns are: mismatches of time, lo-

cation, container ownership or container type. Institutional barriers include: limited

free time, managing repair charges, inspection and paperwork issues and a lack of a

common or consistent procedure for interchange. Finally, commercial, insurance and

liability issues, especially the responsibility for damages, play an important role in

preventing street turns to be implemented on a large scale. (The Tioga Group, 2002;

Jula et al., 2003).

2.2.3 Container substitution

A third approach to reduce empty container movements is container substitution

(Chang et al., 2008). Containers come in several types and sizes. When substitution

is allowed, empty container demands of one type may be fulfilled by the supply of

empty containers of another type. For example, an empty container demand of two

twenty-foot containers may be fulfilled by the supply of a single forty-foot container.

This increases the flexibility of an empty container repositioning system and offers

an opportunity to reduce costs. Certain rules concerning the substitution of each
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possible pair of container types have to be defined. These substitution rules may be

symmetric or asymmetric. For example, a request of two containers of type a may be

fulfilled by a single container of type b but not vice versa. According to Chang et al.

(2008), a lack of well defined substitution rules prevents container substitution to be

common practice.

2.2.4 Internet-based systems

Internet-based support systems offer detailed container status information to ship-

ping lines, truckers and terminals. This allows better scheduling and coordination of

container movements which may reduce congestion at port terminals (Le, 2003). A

neutral Internet-based information exchange platform may facilitate empty container

reuse and container sharing among shipping lines by using it as a ’virtual container

yard’. Shipping lines may share information about their inventories of excess empty

containers and their upcoming export loads. In this way empty containers and export

loads may be matched. The required paperwork may be completed electronically

and containers may be interchanged without being moved to a port or depot first.

Although several efforts were made to set up such information exchange platforms,

they have not been very successful in practice. A major issue is the willingness of

shipping lines to share private business information. (The Tioga Group, 2002; Le,

2003; Theofanis and Boile, 2009)

2.2.5 Container leasing

Shipping lines have two possibilities to obtain containers, either ownership or leasing.

Container leasing may reduce the need for globally repositioning empty containers by

allowing shipping lines to hire containers at places where they have a shortage and to

off-hire containers at points where they currently have a surplus. Furthermore, the

opportunity to lease (and off-hire) empty containers may help to optimize regional

repositioning decisions by facilitating containers to be introduced to or removed from

the regional system in cases of respectively shortage and abundance.

The opportunity to save costs by container leasing is however greatly reduced by

the terms and conditions of leasing arrangements. Leasing companies face deficits and

surpluses on the same locations as shipping lines. They try to avoid this by imposing

pickup and drop off charges which depend on the location. Leasing companies may

also limit the number of containers that can be off-hired by a shipping line at a specific

location each month. (Le, 2003; Di Francesco, 2007)
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2.2.6 Foldable containers

Most literature on empty container management deals with reducing empty container

movements. However, to some extent empty container movements are unavoidable

(Konings and Thijs, 2001). Instead of avoiding movements, the concept of foldable

containers focuses on reducing the cost of empty container movements. Folded con-

tainers need less transport capacity which reduces transport cost per container. They

also provide opportunities for reducing storage and handling costs. Additional costs

are incurred too. The folding and unfolding of containers requires extra time, man-

power and equipment. Additional movements to places for folding and unfolding may

be required. (Konings and Thijs, 2001; de Brito and Konings, 2006) Regardless of the

extra costs, Konings (2005) and Shintani et al. (2010) show that foldable containers

may substantially reduce costs in the total transport chain.

Although several types of foldable containers have been introduced in the past,

neither one has been very successful. One of the main problems is skepticism about

the technical performance and durability of these containers. Besides, the folding and

unfolding is too complex and requires too much time, the purchase price is perceived as

too high and the tare weight is much higher than for traditional containers. (Konings

and Thijs, 2001; de Brito and Konings, 2006, 2008)

2.3 Modeling issues

In this section, several issues that complicate the modeling of the empty container

repositioning problem are discussed. A first issue is the presence of uncertainty. Many

sources of uncertainty exist. The number of empty containers available depends on

uncertain parameters concerning demand for empty containers at ports for global

repositioning, returning time of containers from consignees and results of container

inspection on damages. (Olivo et al., 2005; Di Francesco et al., 2009) The demand for

empty containers may be an uncertain parameter as well. Unexpected transportation

requests may be made at the last moment by important customers. Finally, uncer-

tainty may arise from network performance measures, such as transportation times

and equipment failures (Dejax and Crainic, 1987; Cheung and Chen, 1998; Olivo et al.,

2005; Crainic et al., 2007).

Another issue when modeling the empty container repositioning problem is to

determine an appropriate planning horizon length. The operations of a company

are expected to continue until far in the future or even infinity. Lam et al. (2007)

propose to use average cost formulations in an infinite horizon framework. According
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to Crainic et al. (1993b), most models cover only a finite planning horizon consisting

of several periods. A disadvantage of using a finite planning horizon to represent an

infinite-horizon reality is that it creates distortions or end effects because of unrealistic

ending inventories at the end of the planning period. These distortions should be

minimized or even be excluded since they can affect the values of decision variables

up to the first planning period. The use of models with a rolling planning horizon

helps to reduce, but not eliminate, these distortions. (Hughes and Powell, 1988;

Crainic et al., 1993b)

When deciding upon the length of the planning horizon, several factors have to

be taken into account. First, the length of the planning horizon should be limited to

a reasonable value to ensure computational tractability. Second, the availability of

information concerning the supply and demand of empty containers should be consid-

ered. A longer planning horizon leads to more uncertain information, resulting in less

reliable results. (Crainic et al., 1993b) Also the length of the longest transportation

time in the system affects the choice of a proper planning horizon. The planning

horizon should be at least as long as this transportation time. (Holmberg et al., 1998;

Choong et al., 2002; Nilsson, 2002) Finally, Choong et al. (2002) empirically show that

the length of the planning horizon may affect mode choice and repositioning costs in

a multimodal network, as will be discussed in Section 2.7.

Finally, a characteristic of the empty container repositioning problem is that in

all planning models decisions variables about container flows between two locations

should be restricted to integer values. This requirement increases modeling com-

plexity and augments computation times. Therefore, in some cases these integrality

constraints are relaxed (Moon et al., 2010).

2.4 Overview of the planning levels

In addressing the empty container repositioning problem, several decisions have to be

made. These decisions belong to different planning levels, namely a strategic, tactical

and operational level, as shown in Figure 2.4. For each planning level, the main prob-

lem(s) to be solved is/are presented in the second column while the decisions related

to these problems are indicated in the third column. A hierarchical relationship exists

between the planning levels as indicated by the arrows. General policies are deter-

mined at the strategic level. These policies form the guidelines for decisions at the

tactical level, while tactical decisions set the framework for operational and real-time

decisions. The hierarchical relationship highlights differences in complexity and data
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requirements between decisions to be taken and prevents decisions to be represented

by a single planning model. (Crainic et al., 1993b; Crainic, 2002) Principal decisions

that have to be made at each planning level are discussed in the following paragraphs.

Figure 2.4: Overview of decisions for empty container repositioning (Crainic et al.,

1993b; Lam et al., 2007)

Strategic planning typically involves long-term planning decisions such as large

capital investments. Decisions at this level include designing the physical network

by choosing locations of container depots and other facilities, depot and fleet sizing,

acquiring resources, determining customer zones and defining broad service policies.

(Crainic and Laporte, 1997; Nilsson, 2002; Lam et al., 2007)

Tactical planning aims to ensure an efficient and rational allocation of existing

resources over a medium horizon (Crainic and Laporte, 1997). Most decisions at

this level concern the problem of service network design. According to Crainic and

Laporte (1997), Crainic (2000) and Wieberneit (2008), decisions at a tactical level

include:

� service selection: the selection of routes on which services are offered and the

frequency of these services;

� traffic distribution: specification of routes for the traffic of each origin-destination

pair: services used, terminals passed through and operations performed at the

terminals;

� terminal policies: consolidation activities that have to be performed at each

terminal;
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� empty balancing strategies: how empty vehicles, trailers and containers have to

be repositioned in order to satisfy future requests;

� vehicle and crew planning: especially for less-than-truckload transportation in

Europe, when vehicles and drivers are regarded as a single resource and vehicle

tours have to be determined taking legal and social requirements into account.

Furthermore, customer zones have to be assigned to terminals. This assignment

may be specified by container type and direction of movement. Empty container

balancing flows between container terminals and depots should be indicated in the

same way. However, the results should not be interpreted as decisions to be carried out

in actual operations. They only give an indication of the magnitude of the balancing

flows required over the following periods. Finally, to avoid the risk of empty container

shortages, containers can be added to the system via long-term lease arrangements.

(Crainic et al., 1993b; Nilsson, 2002; Lam et al., 2007)

The operational planning level is characterized by a highly dynamic environment.

Firstly, the time factor plays an important role at this level. Secondly, the stochas-

ticity inherent to the system, as discussed in Section 2.3, further compounds the

dynamic aspect. Main issues of operational planning are the scheduling of services

and the routing and dispatching of resources such as containers, vehicles and crews.

Furthermore, the allocation of resources and the conclusion of short-term lease con-

tracts belong to this planning level. (Crainic and Laporte, 1997; Lam et al., 2007)

Optimization of regional empty container repositioning at the operational level

means making sure that demand for empty containers is satisfied at all locations and

that the most efficient routes and transport modes are chosen. To account for the in-

teractions between the different decisions to be made, Crainic et al. (1993b) note that

ideally a single mathematical model should be developed. However, the authors state

that, considering the available Operations Research techniques at that time, develop-

ing such a model is not feasible due to the complexity of the problem. Therefore, the

operational planning problem is traditionally divided into two separate optimization

problems, namely a container allocation and a vehicle routing model. The objective

of the container allocation model is to determine the best distribution of empty con-

tainers among consignees, shippers, container terminals and container depots, while

satisfying both known and forecasted demand. The vehicle routing model aims to min-

imize overall transportation costs of both loaded and empty containers and results in

a list of movement orders which completely describe loaded and empty movements to

be executed during the next period. (Crainic et al., 1993b)

As opposed to regional repositioning, operational decisions for globally reposition-
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ing empty containers generally do not include routing decisions. Empty containers

are repositioned by using idle capacity on ships carrying loaded containers. There-

fore, the remaining capacities for repositioning empty containers are introduced as

constraints for each link in the container allocation model.

An overview of literature per planning level is given in Table 2.1. Papers dealing

with decisions of several planning levels are mentioned as well. For the operational

planning level, a distinction is made between regional container allocation models,

global container allocation models and recent models that integrate container alloca-

tion and routing decisions. A difference is made between papers that propose a de-

terministic, stochastic and simulation model, although several papers may be placed

in more than one category. Some papers continue work of a previous paper. In these

situations, only the original paper is included in the table for clarity purposes but all

papers are discussed in the following sections.

2.5 Planning models integrating strategic and tac-

tical decisions

Crainic et al. (1993b) state that an integrated multilevel methodology may be de-

signed to answer most questions of the strategic and tactical planning levels together.

In order to do so, Crainic et al. (1989) introduce a class of problems called multi-

mode multicommodity location(-allocation) problems with interdepot balancing re-

quirements. Crainic et al. (1993a) define the general problem as follows: ”to locate

the empty container depots in order to collect the supply of empty containers avail-

able at customers’ sites and to satisfy the customer demands for empty containers,

while minimizing the total operation cost: the cost of opening and operating the

depots, plus the transportation costs between customers and depots, and the costs

generated by moving empty containers among depots to ‘balance’ the network.” The

authors state that this problem may be solved repeatedly because container shipping

companies rather use available facilities than building their own depots. It is assumed

that interdepot empty container movements are more efficient than empty container

movements between depots and customers because transport can be consolidated for

long distance movements, resulting in lower costs. Therefore, the very existence of

interdepot movements is justified and the problem is differentiated from a classical

location-allocation problem. (Crainic et al., 1989, 1993a)

A mathematical model for the multimode multicommodity location problem with

interdepot balancing requirements has been described by Crainic et al. (1989). The
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Table 2.1: Overview of planning models

Deterministic Stochastic Simulation

Strategic Boile et al. (2008) Imai and Rivera (2001)

Tactical Shintani et al. (2007)

Maras (2008)

Song and Carter (2009)

Choong et al. (2002)

Operational Regional Wang and Wang (2007) Crainic et al. (1993b)

Container Olivo et al. (2005) Chu (1995)

Allocation Jula et al. (2003) Chang et al. (2006)

Le-Griffin and Griffin

(2010)

Jansen et al. (2004)

Global Shen and Khoong (1995) Cheung and Chen (1998) Lai et al. (1995)

Container Moon et al. (2010) Li et al. (2004) Lam et al. (2007)

Allocation Feng and Chang (2008) Song (2007)

Di Francesco et al. (2009) Song and Dong (2011)

Erera et al. (2009) Yun et al. (2011)

Chou et al. (2010)

Integrated Erera et al. (2005) Huth and Mattfeld (2011)

Container Baldacci et al. (2006)

Allocation Deidda et al. (2008)

& Routing Bandeira et al. (2009)

Huth and Mattfeld (2009)

Smilowitz (2006)

Ileri et al. (2006)

Zhang et al. (2009)

Strategic & Tactical Crainic et al. (1989) Gao (1997)

Strategic & Operational Beaujon and Turnquist

(1991)

Kochel et al. (2003)

Du and Hall (1997) Dong and Song (2009)

Song and Earl (2008)
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model is a mixed integer program, combining binary location variables and a mul-

ticommodity network flow structure. Street turns are not considered in the model.

Capacity constraints on depots and transport modes are not taken into account.

Transportation and depot operating costs are assumed to be linear and demands are

assumed to be deterministic.

Several solution procedures for the model are proposed in literature. Crainic et al.

(1993a) note that although the proposed model has some characteristics of classical

location models, the balancing requirements unveil a network structure that is favor-

able to efficient algorithmic developments. Crainic and Delorme (1993) discuss two

dual-ascent procedures for solving the model which yield good solutions for random

test cases. A tabu search heuristic is developed by Crainic et al. (1993c). The heuris-

tic finds excellent, if not optimal, solutions in a reasonable amount of time and is

favorable compared to the dual procedures of Crainic and Delorme (1993). Crainic

et al. (1993a) propose a branch-and-bound procedure which takes advantage of the

particular network structure of the problem, for example via special branching rules.

Gendron and Crainic (1993) improve this branch-and-bound procedure by implement-

ing it on a parallel computer. Two sources of parallelism are discovered, namely the

exploration of the search tree and the decomposition of the problem by commodity.

A branch-and-bound algorithm in which bounds are computed by a dual-ascent pro-

cedure is proposed by Gendron and Crainic (1995). The dual-ascent procedure is

based on the one by Crainic and Delorme (1993). Results show that the algorithm

outperforms all previous algorithms. Another parallel branch-and-bound procedure

is described by Gendron and Crainic (1997). The authors propose a multiple-list

implementation in which each process has its own local pool of subproblems. Fi-

nally, Bourbeau et al. (2000) further improve the existing parallelization strategies

for branch-and-bound algorithms on the problem.

A capacitated version of the multicommodity location problem with interdepot

balancing requirements is studied by Gendron et al. (2003a,b). Each possible depot

location is characterized by a fixed and finite capacity. These capacities represent

estimations for the number of empty containers that can be shipped through the

corresponding depot within the planning horizon. Gendron et al. (2003b) use a se-

quential algorithm to solve the problem. A tabu search heuristic is proposed, for

which an initial solution is generated by slope scaling. Gendron et al. (2003a) pro-

pose a parallel hybrid heuristic using variable neighborhood descent and slope scaling.

Numerical experiments are performed in both papers. It is shown that the parallel

solution approach yields better solutions than the sequential approach.

Another model concerned with both the strategic and tactical planning level is
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described by Gao (1997). The author proposes a multi-period mixed integer pro-

gramming model for selecting the optimal set of inland intermodal container depots

from a set of possible locations, while taking into account empty container reposition-

ing needs. The considered network consists of a set of potential depot locations and

supply and demand customers. Some depots and customers have the opportunity to

bring empty containers in from outside the system or returning the excess of empty

containers to the outside. A difference between the model of Gao (1997) and the

class of models proposed by Crainic et al. (1989) is that the former is a multi-period

model, while the latter is a single-period model. Gao (1997) notes that: ”In essence,

balancing requirements imply repositioning empty containers from one location to an-

other in preparation for expected demand in the latter depot in the subsequent time

periods. A crucial pre-condition for permitting the modeling of balancing activities is

a multiple-period modeling framework, because in a single-period model one cannot

express the sequential behavior of the reallocation of container from an origin depot

to a destination depot and then the use of the containers in the destination depot.”

Therefore Gao (1997) states that, although Crainic et al. (1989) claim to do so, they

do not take into account the balancing requirements, which are essential to the inland

depot selection problem. The problem is formulated as a deterministic model without

container substitution and street turns. Two decomposition algorithms are described.

The model is applied to a real-life problem for a North American shipping company.

Finally, a selected artificial depot procedure is formulated to include street turns and a

simulation model is developed to account for uncertainty in empty container demand

and supply.

2.6 Strategic planning models

While earlier papers integrate strategic and tactical decisions, recent research focuses

on specific decisions of either the strategic or the tactical planning level. Strategic

planning models are discussed in this section; tactical models in Section 2.7.

Boile et al. (2008) propose a system of inland depots for rationalizing empty con-

tainer management on a regional level. The authors take a public-benefit perspective

by considering transportation needs of multiple shipping lines. A strategic planning

model is presented for determining optimal depot locations from an identified set of

potential sites. No empty balancing flows between depots are considered due to the

costs involved with these movements and due to agreements that may exist between

terminal operators and depot owners for storing their empty containers. The problem
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is formulated as an inventory-based capacitated depot location problem with a long

term (10 years) planning horizon. Empty containers are only transported by truck

and street turns are not allowed. The model is applied on the Port of New York/New

Jersey region in the United States. Results show that by implementing a system of

inland depots a reduction of 49% in empty container kilometers may be achieved.

Imai and Rivera (2001) focus on the container fleet sizing problem for refrigerated

maritime containers. First, the authors propose a mathematical model for the dry

container fleet sizing problem with a relatively balanced demand between ports. Next,

the model is extended for the case of refrigerated containers which have an extremely

unbalanced demand. Finally, a simulation model is developed and used to find the

best composition of owned and leased refrigerated containers. Scenarios with various

trends of cargo demand are analyzed.

2.7 Tactical planning models

Service network design for a liner shipping company explicitly taking into account

empty container repositioning is addressed by Shintani et al. (2007). Although ser-

vice network design has received much attention in literature, service network design

models taking into account empty container flows are rather scarce. Most authors

deal with loaded and empty container flows separately, mainly due to the complexity

of the problem. According to Shintani et al. (2007), this is only appropriate if all

cargo demand is satisfied. If it is possible to forgo profitable cargo demand, because

the revenue it generates is offset by the associated costs of empty container reposi-

tioning, separately dealing with both flows will lead to sub-optimization. The model

of Shintani et al. (2007) determines a single shipping route by choosing an optimal

set of calling ports and an associated calling sequence. Loaded and empty container

flows are optimized together. The problem is formulated as a Knapsack problem and

solved with a genetic algorithm-based heuristic. Results show that by taking into

account empty container repositioning needs when determining a shipping route, less

empty containers have to repositioned. As a result, vessel (un)loading times and op-

erating costs are reduced. Therefore, ships can cruise at lower speeds which yields

considerable fuel cost savings.

Maras (2008) investigates empty container repositioning in the context of service

network design for barge transportation. The author adapts the model of Shintani

et al. (2007) for service network design in maritime shipping. Maras (2008) considers

the viewpoint of a logistic service provider or shipping company that wants to charter
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a single vessel to offer a roundtrip barge service between a fixed start and end port with

eight intermediate ports. The objective is to find the profit maximizing route while

taking both loaded container transports and empty container repositioning movements

into account. Maras (2008) is able to find optimal solutions by using commercial

software. The author finds the profit maximizing routes for five types of vessels for a

single transport demand situation.

Song and Carter (2009) study general empty container balancing strategies for

global repositioning like route coordination and container sharing. Route coordi-

nation refers to a single shipping line balancing its container flows across different

service routes. Container sharing refers to pooling container fleets among different

shipping lines. Results show that route coordination offers more opportunities to re-

duce repositioning costs than container sharing which may explain the reluctance of

large shipping lines to join container sharing practices.

The effect of the planning horizon length on empty container management for

an intermodal container-on-barge transportation network is studied by Choong et al.

(2002). According to the authors, barge transportation offers the advantage that

empty containers can be ‘piggy-backed’ onto loaded containers at a very low cost.

There is however a trade-off with the relatively low speed of barge transport. Choong

et al. (2002) adapt the deterministic single commodity model of Crainic et al. (1993b)

which is discussed in Section 2.8.1. Storage capacities and multiple capacitated trans-

port modes are included in the model. The authors consider two lengths for the

planning horizon, namely 15 and 30 days. When comparing the results of the first

15 days of their 30-day model with the 15-day model, it appears that the length of

the planning horizon has an effect on the results of these days. Total transport costs

and holding costs are lowest for the 30-day model. Also the choice of transportation

mode is affected. Truck usage is lower and barge usage is higher than with the 15-day

model. The authors conclude that the use of a longer planning horizon on a rolling

basis can produce better results for the empty container repositioning costs since it

encourages the use of slower and cheaper modes.

2.8 Operational planning models

In Section 2.4 it is mentioned that the operational planning of empty container reposi-

tioning on a regional level may be divided into two subproblems, namely a container

allocation problem and a vehicle routing problem, while generally only an empty

container allocation model is used for planning global empty container repositioning
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movements.

The earliest models considering empty container allocation date from several de-

cennia ago (Potts, 1970; White, 1972; Ermol’ev et al., 1976). However, the problem

did not get much attention until the beginning of the nineties. In this thesis, a distinc-

tion is made between models for container allocation on a regional level and on a global

level because some differences between these problems exist. On a regional level gen-

erally a large amount of allocation options are available to the decision maker: many

shippers and consignees respectively demand and supply empty containers, contain-

ers are mostly transported individually (or per two) by truck and directly traveling

between all pairs of locations is possible. On a global level fewer options are available:

empty containers can only be repositioned when empty slots are available on ships,

not all ports are connected directly to each other by a shipping route and shipping

times are often determined by a fixed schedule. Regional container allocation models

are discussed in the following section while global container allocation models are

discussed in Section 2.8.2.

The vehicle routing subproblem for empty container repositioning on a regional

level can be formulated as a full truckload Pickup and Delivery Problem with Time

Windows (FT-PDPTW) as is shown in Chapter 4. No distinction has to be made

between transporting loaded and empty containers when solving this problem. Re-

lated literature on this topic will be discussed in that chapter. In Section 2.8.3 of this

chapter, recently proposed efforts to integrate empty container allocation decisions

with empty and/or loaded container routing decisions are described.

2.8.1 Regional container allocation models

When modeling the empty container allocation problem on a regional level, several

decisions or assumptions about the model have to be made:

� is the model deterministic or stochastic,

� is the model static or dynamic,

� is it a single commodity or a multicommodity model,

� are container substitution, container leasing and/or street turns allowed?

These decisions affect the model complexity and determine whether the model

can be solved exactly or only approximately. The most realistic model would be

a stochastic, dynamic, multicommodity model including opportunities for container

substitution, container leasing and street turns. Formulating and solving such a model
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seems not feasible. To our knowledge no such model is described in literature. Several

models, comprising some but not all elements, have been proposed. An overview of

literature concerning models for regionally allocating empty containers is given in

Table 2.2. For each reference it is shown which elements are taken into account and

whether an exact, approximating or no solution method is proposed.

Table 2.2: Overview of regional container allocation models

Author(s) St
oc
ha
st
ic

M
ul
ti
co
m
.

Su
bs
ti
tu
ti
on

D
yn
am

ic
St
re
et
tu
rn
s

Le
as
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g

Solution

Crainic et al. (1993b) • • • • none

Crainic et al. (1993b) • none

Wang and Wang (2007) • • exact

Chu (1995) • • • approx.

Olivo et al. (2005) • • exact

Di Francesco et al. (2006) • • • approx.

Di Francesco (2007) • • • • exact

Jula et al. (2003) • • exact

Chang et al. (2008) • • • approx.

Chang et al. (2006) • approx.

Le-Griffin and Griffin (2010) exact

Jansen et al. (2004) • exact

Crainic et al. (1993b) offer a general framework for the allocation of empty contain-

ers. The authors describe a dynamic deterministic mathematical model for the single

and multicommodity case. Space and time dependency of events, container substitu-

tion and relationships with partner companies are taken into account. Time steps of

one day are proposed, with a planning horizon of 10 to 20 days. Street turns are not

considered. Next, a stochastic model, dealing with uncertainties concerning demand

and supply is described for the single commodity case. Since a multi-stage stochastic

program with full network recourse would be intractable, Crainic et al. (1993b) for-

mulate a two-stage restricted recourse model in which all decisions are made by the
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first-stage model at the beginning of the planning period. The second-stage model

tracks down how the stocks of containers at the following periods fluctuate as a con-

sequence of the random supplies and demands, but decisions are not re-optimized.

Finally, Crainic et al. (1993b) propose to use a decomposition approach to solve the

deterministic multicommodity model and a stochastic quasi-gradient method to solve

their stochastic model, but no such methods are described. In a subsequent work,

Abrache et al. (1999) develop a decomposition algorithm for the deterministic multi-

commodity problem. First, substitution links are excluded and all subproblems, one

for each commodity, are solved. Next, subproblems are fused together and substi-

tution links between them are made feasible. Several fusion strategies are proposed.

Experimental results show that both global and progressive fusion methods are at

least three times more efficient regarding computation time than general minimum

cost flow algorithms.

A dynamic deterministic single commodity model, closely related to the one pro-

posed by Crainic et al. (1993b), is described by Wang and Wang (2007). Three

transport modes, road, rail and barge, are considered and for each of them lower and

upper transport limits are imposed. Lower and upper storage limits at inland depots

and ports are also included in the model. A small numerical experiment is performed.

Other mathematical models for empty container allocation are proposed by Chu

(1995). First, a single and a multicommodity dynamic deterministic model are de-

scribed. Interdepot movements and container leasing are accounted for. Street turns

and container substitution are not considered. According to the author, the single

commodity model can be solved by the network simplex method, while the multicom-

modity model can be solved by a decomposition method. Next, Chu (1995) formulates

a two-stage and a multi-stage single commodity dynamic stochastic model. For solv-

ing these stochastic models, respectively a stochastic quasi-gradient approach and a

network recourse decomposition method are proposed. Finally, by means of numerical

experiments, it is shown that the multi-stage stochastic model offers better results

than the dynamic deterministic model.

Olivo et al. (2005) develop a two-commodity deterministic model for empty con-

tainer management on a continental or interregional level by formulating it as a min-

imum cost flow problem. Container substitution is not accounted for. The authors

consider a dynamic multimodal network that consists of nodes for depots and macron-

odes which accumulate supply and demand for a regional zone. A distinctive charac-

teristic of the proposed model is that hourly time steps are considered during a weekly,

rolling horizon planning period. Most other models use time steps of one day. Olivo

et al. (2005) claim that such small time steps are to be preferred in order for a model
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to be applicable in the real world. Hourly time steps offer the possibility for promptly

adjusting decisions when unexpected new information, for example about equipment

failures or traffic accidents, becomes available. The authors show that using hourly

time steps does not lead to a computationally intractable model by applying their

model as a real-world application in the Mediterranean basin.

Di Francesco et al. (2006) use a similar approach as Olivo et al. (2005) for the

empty container allocation problem on a regional level. Time steps are one day with

a rolling planning horizon of 15 days. Only company-owned containers are taken

into account. Based on the work of Crainic et al. (1993b), the authors include the

possibility of container substitution. First, the model is solved without substitution,

balancing the network for each container type. In a second phase, better solutions

are obtained by allowing substitution. Di Francesco (2007) continues the work by

introducing the opportunity of short-term leasing containers into the dynamic deter-

ministic model of Di Francesco et al. (2006).

Jula et al. (2003) describe several methods for modeling the depot direct and

street turn approaches discussed in Section 2.2. Static as well as dynamic models are

discussed. For both methods, four scenarios are modeled, namely a base scenario, a

street turn scenario, a scenario involving street turns and inland depots and a multi-

commodity scenario. All proposed models are deterministic. Interdepot movements

are excluded and the multicommodity models do not consider container substitu-

tion. The planning horizon is one eight-hour day, consisting of eight periods of one

hour. The models are applied on the Los Angeles and Long Beach port area. Results

show that costs from empty movements drop significantly when allowing street turns

and using inland depots. (Jula et al., 2003) More simulations of the dynamic model

including street turns and inland depots are performed by Jula et al. (2006).

Chang et al. (2006, 2008) and Ioannou et al. (2006) continue the work of Jula et al.

(2003, 2006). The authors propose mathematical models for the static deterministic

two-commodity and multicommodity allocation problem with container substitution.

A branch-and-bound based algorithm is considered. To reduce computation times,

Ioannou et al. (2006) and Chang et al. (2008) propose an approximation method which

forces fractional variables to become integers. Comparing simulation results with

those from Jula et al. (2003) shows that allowing for container substitution may result

in a reduction of costs from empty container movements. Next, Chang et al. (2006)

and Ioannou et al. (2006) propose a model for the static stochastic single commodity

problem, without container substitution. First, the problem with stochastic demand

is modeled as a two-stage stochastic program. Then, the problem with both stochastic

demand and supply is modeled as a one-stage stochastic program. Finally, a Monte
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Carlo simulation method is proposed to optimize the two-stage stochastic program.

Le-Griffin and Griffin (2010) study the use of short sea shipping within a regional

port system along the west coast of the United States for repositioning empty con-

tainers. A regional port system is a network consisting of a major seaport and some

secondary ports. The authors conclude that using short sea shipping in such a system

could be an option to reduce repositioning costs and landside congestion.

A real-life application of the container allocation problem is described by Jansen

et al. (2004). The authors describe an operational planning system taking reposi-

tioning aspects into account for the German company Danzas Euronet. However, the

planning and repositioning problems are solved separately due to the large size of the

problem. Repositioning of empty containers is modeled on a rail-road network as a

minimum cost flow problem.

2.8.2 Global container allocation models

Two research directions can be distinguished concerning global container allocation

models. One direction makes use of mathematical programming. According to Song

and Dong (2011) these mathematical models often successfully capture the stochastic

and dynamic nature of the problem, but they may give rise to some issues such as de-

termining an appropriate planning horizon, ensuring computational tractability and

ensuring robustness of the policy to uncertainties. An overview of literature on models

using mathematical programming is presented in Table 2.3. All models consider mul-

tiple ports and multiple periods, while none considers container substitution. Table

2.3 shows for each model which modeling or solution approach is used and whether

the model is stochastic, considers multiple commodities and/or considers container

leasing.

A second research direction makes use of inventory theory to determine (near-)

optimal empty container repositioning policies for shipping networks with a specific

topological structure. These threshold policies have the advantage of being easy-to-

operate and easy-to-understand. (Song and Dong, 2011) Table 2.4 gives an overview

of literature on models using inventory theory. For each paper, it is shown which type

of network is studied and whether stochastic demand, multiple commodities and/or

container leasing are considered.

A more detailed description of the models in Tables 2.3 and 2.4 is presented in

Sections 2.8.2.1 and 2.8.2.2. A paper by Chou et al. (2010) which combines inventory

theory and mathematical programming is discussed as well.
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Table 2.3: Overview of global container allocation models using mathematical pro-

gramming

Author(s) St
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ha
st
ic

M
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Modeling/solution approach

Shen and Khoong (1995) • Network optimization

Cheang and Lim (2005) • • Network optimization

Moon et al. (2010) • • Genetic algorithms

Feng and Chang (2008) • Integer programming

Feng and Chang (2010) • Integer programming

Lai et al. (1995) • • • Simulation, two-step heuristic

Cheung and Chen (1998) • • Quasi-gradient, hybrid approximation

Lam et al. (2007) • • Dynamic programming

Di Francesco et al. (2009) • Multi-scenario model

Erera et al. (2009) Robust optimization

Table 2.4: Overview of global container allocation models using inventory theory

Author(s) St
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ic
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Network

Li et al. (2004) • • Single port

Li et al. (2007) • • Multiple ports

Song (2007) • • Two ports

Song and Carter (2008) • • Hub-and-spoke

Song and Dong (2008) • Cyclic routes

Song et al. (2010) • Two ports

Song and Zhang (2010) • • Single port

Song and Dong (2011) • Multiple ports

Yun et al. (2011) • • Single port
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2.8.2.1 Mathematical programming

A decision support system based on network optimization is proposed by Shen and

Khoong (1995). Leasing decisions are taken into account and a single container type is

assumed. The decision support system is implemented on a rolling horizon basis. Two

algorithms to minimize the impact of changes in the demand and supply of empty

containers on decisions taken in previous periods are suggested. Cheang and Lim

(2005) present a similar decision support system for the multicommodity problem.

Another deterministic multicommodity model for empty container repositioning

between ports is described by Moon et al. (2010). Container purchasing and short

term leasing options are included. A LP-based genetic algorithm and a hybrid genetic

algorithm are proposed to solve the model.

To avoid capacity being lost on long-distance high-revenue links, Feng and Chang

(2008) propose to partition the shipping network of a shipping line into smaller ge-

ographical regions and to reposition empty containers only within these regions. A

deterministic multicommodity model for empty container repositioning within small

geographical regions is proposed. Feng and Chang (2010) study a similar problem to

maximize the profit of a specific shipping route using revenue management.

Other mathematical models explicitly take into account uncertainty concerning

empty container demand and supply. Lai et al. (1995) use simulation and a two-step

heuristic to minimize operational costs of repositioning empty containers between

a single supply point in the Middle East and 11 demand points (ports) in the Far

East. The situation where total demand exceeds total supply of empty containers is

studied. The model accounts for both dynamic and stochastic issues. Two container

sizes are considered but container substitution is not allowed. Short-term leasing is

used to avoid shortages. Simulation results show a reduction in annual operating

costs compared with current practice due to the introduction of safety stocks and a

revised allocation priority.

A dynamic single commodity two-stage stochastic network is formulated by Che-

ung and Chen (1998). In the first stage, all parameters are assumed to be deter-

ministic, while in the second stage empty container supplies and demands and ship

capacities are stochastic variables. Decisions in stage one aim to minimize the costs

of that stage and the expected costs of the second stage. A stochastic quasi-gradient

method and a stochastic hybrid approximation procedure are proposed to solve the

model.

Lam et al. (2007) formulate the container allocation problem for maritime trans-

portation as a dynamic, stochastic programming model for obtaining an optimal av-
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erage cost over an infinite planning horizon. A two-ports two-voyages and a multiple-

ports multiple-voyages model are described. By using an average cost formulation

over an infinite planning horizon, distortions from approximating an infinite horizon

by a finite horizon are avoided. To solve the models, a simulation based approximate

policy iteration algorithm is proposed.

Di Francesco et al. (2009) note that, in order to use stochastic models, a good

knowledge of the random variable distributions is needed to avoid low quality solu-

tions. To avoid using a stochastic model, the authors propose to use a set of scenarios

representing different levels of the uncertain parameters. Weights attributed to these

scenarios might represent probabilities but also subjective opinions.

Another way to account for uncertainty, proposed by Erera et al. (2009), is to

use a robust optimization approach. An interval of possible values is determined

for each uncertain parameter. The objective is to find a minimum cost recoverable

solution for the repositioning problem while it is assumed that only a limited number

of parameters take on their worst value. A recoverable solution is defined as a solution

for which the repositioning plan may be transformed to a feasible solution for every

joint realization of uncertain parameters by changing a limited set of decisions.

2.8.2.2 Inventory theory

Li et al. (2004) look at a single port with the objective of fulfilling empty container

demand for export while minimizing the number of redundant empty containers.

The empty container allocation problem is considered as a non-standard inventory

problem with simultaneous positive and negative demand under a general holding

cost function. Demand has to be satisfied, if necessary by leasing. An optimal policy

(U,D) is derived for both the finite- and infinite-horizon problem. Empty containers

should be imported when there are less than U , empty containers should be exported

when there are more than D and no action should be taken when there are between

U and D empty containers. Li et al. (2007) extend the work of Li et al. (2004) to

the multi-port case. A heuristic algorithm is developed to reduce average costs when

allocating empty containers between ports.

Song (2007) study a periodic review system with vessels performing shuttle ser-

vices between two ports. Finite repositioning capacity is assumed. The objective is to

minimize the total cost of container leasing, storage and repositioning. Optimal repo-

sitioning policies minimizing the expected discount cost or the long-run average costs

are determined. Song and Carter (2008) extend this work to a hub-and-spoke trans-

portation system using a dynamic decomposition procedure, while Song and Dong
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(2008) study a threshold control policy for empty container management in cyclic

shipping routes. The optimal control policy for a two-port service system without

short term container leasing is determined by Song et al. (2010). Song and Zhang

(2010) use a fluid flow model to determine the closed-form solutions for a threshold

policy for a single port with stochastic demand.

A repositioning model with flexible destinations is described by Song and Dong

(2011). The destination of empty containers being repositioned is chosen after they

are loaded onto a ship. A threshold-type policy is presented. Simulation results

show that the model with flexible destinations outperforms a traditional model with

determined destinations in situations with unbalanced trade and medium container

fleet sizes.

Yun et al. (2011) propose an (s, S) inventory policy to control the number of empty

containers in a shortage region. Container demand is stochastic with a high and low

demand season. When it is expected that less than s containers will be available,

empty containers are repositioned from other regions up to an inventory level S. In

case of shortages, empty containers are leased. Simulation is used to find the average

cost rate which is to be minimized. An optimization tool is used to determine the

near optimal policy.

Finally, a combination of inventory theory and mathematical programming is used

by Chou et al. (2010). The authors present a mixed fuzzy decision making and

mathematical programming model. In the first stage, the optimal quantity of empty

containers at port is determined by a fuzzy backorder quantity inventory model.

Container imports and exports are stochastic. In stage two, the optimal number

of empty containers to be repositioned between ports is found by a mathematical

programming model.

2.8.3 Integration of container allocation and routing decisions

Dejax and Crainic (1987) suggested that the independent consideration of container

allocation and routing neglects possible synergies arising from an integrated view on

these problems. As was already mentioned in Section 2.4, Crainic et al. (1993b) state

that a single mathematical model comprising container allocation and routing deci-

sions would be computationally intractable. Due to the continuous improvement of

Operations Research techniques and computer capabilities, this opinion has changed.

Recently, a number of attempts to integrate container allocation and vehicle routing

decisions have been made. Erera et al. (2005) develop a mathematical model integrat-

ing the routing and repositioning decisions for tank container operators on a global
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level. The proposed model is formulated as a deterministic multicommodity network

flow problem over a time-expanded network. A rolling planning horizon approach is

used. A computational study has been conducted to show that the model can be

solved by commercially available optimization software for real-life cases.

Other efforts to integrate container (or trailer) allocation and routing decisions

focus on the empty container repositioning problem on a regional level. Baldacci et al.

(2006) study the Multiple disposal facilities and multiple inventory locations Rollon-

Rolloff Vehicle Routing Problem (M-RRVRP). The problem arises in the sanitation

industry where tractors move trailers between customer locations, disposal facilities

and inventory locations. Five types of trips are identified. For some trip types,

the origin or destination of an empty trailer is not predefined. A set partitioning

formulation is used and an exact solution method is proposed.

Deidda et al. (2008) propose a static, deterministic optimization model for im-

plementing the street turn approach discussed in Section 2.2.2. They simultaneously

address the allocation of empty containers between shippers, consignees and a port

and the design of vehicle routes for transporting empty containers. Loaded container

transports are not considered and vehicles, located at the port, have a capacity of two

containers. Only distances traveled by vehicles that transport at least a single empty

container are minimized, while distances traveled without a container are ignored.

A decision support system that simultaneously models the routing of loaded con-

tainers and the allocation and routing of empty containers is proposed by Bandeira

et al. (2009). The routing problem is formulated as a Multiple Depot Vehicle Schedul-

ing Problem. Street turns are not considered. The decision support system is decom-

posed into two interconnected models: a static model, responsible for the allocation

and movement of containers, and a dynamic model which updates the future demands

and supplies of loaded and empty containers.

Huth and Mattfeld (2009) describe mathematical models for the sequential and

integrated planning of container allocation and vehicle routing for the swap container

problem. Again a capacity of two containers is assumed. Containers are transported

between hubs in a hub-and-spoke network in a dynamic, deterministic environment.

No time windows are considered. The allocation problem is modeled as a multi-stage

transportation problem while the routing problem is modeled as a generalization of the

pickup and delivery problem. The authors propose two approaches to integrate both

models: functional integration, which leads to hierarchical decision making between

both models, and deep integration, which leads to a single new model. A Large

Neighborhood Search (LNS) is used to solve the models. Results show the advantage

of an integrated approach for this type of problem. Recently, a stochastic version of
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the problem is described by Huth and Mattfeld (2011).

Some integrated approaches for container allocation and vehicle routing taking

time windows into account have been proposed as well. All these approaches as-

sume a vehicle capacity of a single container. Smilowitz (2006) studies the routing

and scheduling of loaded and empty trailers (or containers) between rail terminals,

shippers, consignees and equipment depots. Trailer allocation decisions are made si-

multaneously with vehicle routing decisions by introducing flexible tasks for empty

trailers demanded and supplied (origins resp. destinations are not predefined). Only

allocations with a distance smaller than a threshold are considered as possible execu-

tions for a flexible task. The objective of the model is to both minimize fleet size and

travel time. The model is solved by a branch-and-bound heuristic using column gen-

eration. This solution method is improved in subsequent work (Francis et al., 2007).

Recently, dynamic versions of this problem are studied by Escudero et al. (2011) and

Zhang et al. (2011a).

Another column generation approach embedded in a branch-and-bound framework

for the integrated allocation and routing of trailers in drayage operations is proposed

by Ileri et al. (2006). A heterogeneous fleet of drivers with different start and end

locations is assumed. The objective is to minimize costs with company drivers having

a different cost structure than third party drivers. When traveling between certain

types of tasks, intermediate stops at empty trailer storage and supply locations are in-

troduced to ensure that vehicles arrive at the starting location of a task appropriately

(empty or with an empty trailer).

A similar problem, in the context of container transportation, is investigated by

Zhang et al. (2009). Empty container allocations are integrated with routing decisions

for vehicles with a single container capacity. A single container terminal and several

vehicle depots with an empty container stock are considered. Vehicles are not required

to return to their starting depot. The objective is to minimize total travel time. It is

shown that the problem can be formulated as a multiple vehicle Traveling Salesman

Problem with Time Windows (m-TSPTW) and multiple depots. A Reactive Tabu

Search (RTS) algorithm is proposed to solve the problem. Zhang et al. (2010) extend

this problem to a multiple depot, multiple terminal problem and solve it by a time

window partitioning method. Finally, Zhang et al. (2011b) look at the single depot,

single terminal problem for which the number of empty containers available at the

depot is limited. Again an RTS algorithm is proposed. It seems that solving this

problem is much more complex than solving the problems in Zhang et al. (2009) and

Zhang et al. (2010) without a limit on the number of empty container available at the

depots.
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2.9 Planning models integrating strategic and op-

erational decisions

Although the container fleet sizing (strategic) and the container allocation (opera-

tional) problem belong to different planning levels, they are closely related. A reduc-

tion of container fleet size saves capital investment and inventory costs, but increases

the need for empty container repositioning, container leasing costs in case of short-

ages and even the risk of customer loss due to container unavailability. (Imai and

Rivera, 2001; Dong and Song, 2009) Despite this relationship, Imai and Rivera (2001)

state that it is more convenient to deal with both problems separately. In general,

owned containers are kept in use for more than ten years. Taking into account future

empty movements when determining the container fleet size is both practically im-

possible and useless according to the authors. This may be a reason for the fact that

although for both problems a rich literature exists, the simultaneous consideration of

both problems is only investigated by a few papers. (Kochel et al., 2003)

Beaujon and Turnquist (1991) present a first paper that investigates the combined

consideration of both problems. The authors propose a non-linear optimization model

to optimize vehicle fleet size and vehicle utilization decisions simultaneously. Du

and Hall (1997) look at the fleet sizing and empty resource repositioning problem

by building on inventory theory. The authors propose a decentralized repositioning

policy and apply it to hub-and-spoke networks. The objective of the policy is to

minimize the fleet size, while meeting a given allowed long-run stock-out probability.

Kochel et al. (2003) propose a simulation optimization approach, based on genetic

algorithms and evolutionary strategies, for the combined fleet sizing and allocation

problem. Numerical experiments are presented to show the applicability of their

approach. The problem of determining optimal control policies for empty container

repositioning and fleet-sizing in a two-depot service system is considered by Song

and Earl (2008). Short-term leasing options and uncertainties in travel and storage

times are accounted for. It is shown that the optimal repositioning policy is of the

threshold type (a lower and upper bound on inventory) and that the optimal fleet

size and threshold values can be derived analytically.

While the previous papers focus on vehicle or container fleet management in inland

transportation systems, Dong and Song (2009) consider the combined container fleet

sizing and empty repositioning problem for a liner shipping system. As Kochel et al.

(2003) do for the land transportation case, Dong and Song (2009) propose a simulation

optimization tool, using genetic algorithms and an evolutionary strategy, that finds

the optimal fleet size and optimal threshold parameters simultaneously.
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2.10 Research gaps and opportunities for further

research

Empty container management constitutes a broad domain of research, ranging from

long-term strategic issues to day-to-day operational decisions. The last twenty years

attention for the problem has grown, which has resulted in a large amount of recent

publications, especially concerning operational issues. This chapter gives a detailed

overview of the work done so far and creates a framework wherein the existing liter-

ature is situated.

Several opportunities for further research are identified in Table 2.5. Research on

strategic and tactical aspects of the repositioning problem is rather scarce, especially

for the global problem. An interesting research direction is the introduction of reposi-

tioning needs in service network design for maritime shipping, on which Shintani et al.

(2007) already presented a first effort. Future research could also focus on container

fleet sizing which is addressed by only a few papers. At the operational level of the

global problem, most research has focused on optimizing operations of a single ship-

ping line. Future research could identify cost saving opportunities from cooperation

among shipping lines. Furthermore, global repositioning decisions obviously have an

impact on the decisions to be taken on a regional level (e.g. the number of empty

containers available at a port). However, to the author’s knowledge no research has

studied the interdependence between both problems.

Table 2.5: Opportunities for further research

Global problem Regional problem

Strategic/tactical level Service network design with

empty container repositioning

Multimodal (service) network

design with empty container

repositioning

Container fleet sizing

Operational level Cooperation between shipping

lines

Integration of allocation and

routing

Effect of decisions on regional

decisions

For the empty container repositioning problem on a regional level, several opportu-

nities for further research exist as well. Transportation on a regional level takes place
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on a multimodal (road, rail, barge) network. However, most research has focused

on a single transportation mode (road transport). Especially at the strategic and

tactical decision level, designing physical and service networks which consider empty

container repositioning decisions in a multimodal context could be further explored.

At the operational level, recently promising efforts are made to integrate container

allocation and vehicle routing decisions in drayage operations. Since these problems

are often very complex, they can only be solved exactly for very small instances. Fu-

ture work should focus on designing efficient heuristics and meta-heuristics for these

problems.

Technological developments (Internet-based platforms, foldable containers, ...)

seem interesting options to facilitate and/or reduce the costs of empty container man-

agement. However, so far there has been little research on the potential savings of

these technologies. Finally, most research takes the perspective of a single shipping

line or transportation company. It could be worthwhile to investigate empty container

management from a public-benefit perspective, for example by introducing external

costs of transport in cost calculations or by showing the benefits of cooperation among

shipping lines.

This thesis deals with empty container repositioning on a regional level. The

focus is on two of the research opportunities described above. In Chapter 3, a tac-

tical planning model for service network design in intermodal barge transportation

is introduced. It is demonstrated how empty container repositioning decisions may

be taken into account by this model. In Chapters 4 to 7, integration of container

allocation and vehicle routing decisions in drayage operations is studied. A sequen-

tial and integrated planning approach are proposed and compared with each other.

A deterministic annealing meta-heuristic is presented to solve both problems. This

meta-heuristic is applied in several problem contexts: different objective functions

and time-independent as well as time-dependent travel times are considered.
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Service network design in

intermodal barge transport

with empty container

repositioning

3.1 Introduction

Loaded containers which arrive by maritime vessel at a seaport are distributed to

their final customers in the hinterland of the port. Vice versa, loaded containers are

transported from shippers’ locations to the seaport prior to being exported. Both

types of transport may be performed directly by road transport or by a combination

of road transport with rail or barge transport. In the latter case, a transhipment at

an inland intermodal container terminal is required.

This chapter1 focuses on the transportation of containers by barge between a

seaport and container terminals at a number of hinterland ports. During the last

two decades intermodal barge transport has gained market share in Northwestern

Europe, with annual growth figures up to 15% (Konings, 2003). Currently, barge

transport plays an important role in the hinterland access of major seaports in this

region. For the port of Antwerp in Belgium, the share of barge transport in the

modal split rose from 22.5% to 34.8% between 1999 and 2009 (Port of Antwerp,

1This chapter is based on Braekers et al. (2012c).
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2009). Although many interesting contributions to literature have been made, Caris

et al. (2008) indicate several intermodal planning problems that need further research

attention, like service network design for intermodal barge transportation.

Crainic and Laporte (1997) state that service network design is an important issue

at the tactical decision level for intermodal transportation. It is involved with the

selection of routes on which services are offered and the determination of characteris-

tics of each service, particularly its frequency. State-of-the-art reviews on service net-

work design in freight transportation are presented by Crainic (2000) and Wieberneit

(2008). An overview of models for service network design in intermodal transporta-

tion may be found in Crainic and Kim (2007). Research on service network design

specifically for intermodal barge transportation is scarce. Main decisions in the con-

text of barge transportation include decisions on shipping routes, vessel capacity and

service frequency. Additionally, it may be analyzed how and when empty container

repositioning needs could be taken into account (Crainic, 2000).

Woxenius (2007) presents six different types of network design for intermodal

transport. For geographical reasons, barge transportation is mainly based on a cor-

ridor network or line bundling design: a high-density flow along a artery with short

capillary services to nodes off the corridor. Caris et al. (2012) consider service network

design for such corridor networks in barge transport. The authors study advantages of

cooperation between hinterland terminals and different bundling strategies for barge

transportation in the hinterland of the port of Antwerp. The feasibility of hub-and-

spoke networks in intermodal barge transportation is analyzed by Konings (2006).

Groothedde et al. (2005) study the design of such a hub-and-spoke network for trans-

porting palletized fast moving consumer goods by barge and road transport. Finally,

empty container repositioning in the context of service network design for intermodal

barge transportation is only studied by Maras (2008) (see Section 2.7).

In this chapter, a tactical planning model for service network design in the context

of containerized barge transportation is proposed (Figure 3.1). A corridor network

design is assumed. This means that vessels bundle freight of several ports located

along a single waterway. The model may be used as a decision support tool for barge

operators, logistic service providers or shipping lines that want to charter a vessel

to offer regular roundtrip barge services between a number of ports located along

a waterway. When considering a roundtrip service, vessel capacity and frequency

of roundtrips have to be defined. For each service type (capacity and frequency)

the model determines the optimal shipping routes (the ports to be visited) and the

number of containers to be transported. The decision maker may use this information,

together with information on other factors like customer preferences, to evaluate all
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Figure 3.1: Outline of the thesis

possible types of service and choose the best among them. An application on the

hinterland network of the port of Antwerp in Belgium is presented. The versatility

and flexibility of the model is demonstrated by applying it in two different problem

contexts.

First, the model is applied from the perspective of inland barge operators. Assum-

ing transport demand is known and may be foregone, the objective of inland barge

operators is to determine roundtrip barge services which maximize profits. Inland

barge operators generally do not operate an own fleet of containers and are therefore

not concerned with empty container repositioning needs. Second, the model is ap-
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plied from the perspective of shipping lines which operate a fleet of containers. When

containers are transported under the carrier haulage principle, door-to-door services

are provided by shipping lines. Shipping lines arrange both the maritime and inland

transport part. In that case, shipping lines are responsible for both the design of barge

services and for empty container repositioning. In barge transportation, these repo-

sitioning movements are made by using excess capacity of container vessels (Choong

et al., 2002; Maras, 2008). Hence, empty container repositioning needs may be taken

into account when determining shipping routes.

The outline of the chapter is as follows. Section 3.2 describes the general frame-

work of the model and how it is applied to the hinterland network of the port of

Antwerp. In the following two sections (Sections 3.3 and 3.4), the application of the

model for the two problem contexts described above is presented. Finally, conclusions

and ideas for further research are discussed in Section 3.5.

3.2 Model framework and application

The tactical planning model is applied to the situation of the Albert Canal in Belgium.

The Albert Canal connects the port of Antwerp with hinterland ports in Deurne,

Meerhout, Genk and Liege. Vessels start their roundtrips at a port in the hinterland,

travel to the port of Antwerp and finally return to the same hinterland port. In

between, several other hinterland ports may be visited. In the port area of Antwerp,

two clusters of sea terminals may be identified, one on the right river bank (RRB) and

one on the left river bank (LRB). Both clusters are separated by three lock systems.

The Albert Canal flows into the river Scheldt in the port area on the right river bank.

This means that vessels coming from the Albert Canal have to pass a lock in the

port area twice when visiting the cluster on the left river bank. Because traveling

between both clusters may take two and a half hours, they are considered as separate

nodes in the network. It is assumed that there is a central hub terminal at each

river bank which the vessels may visit. This resembles the concepts proposed by

Konings (2007) and Caris et al. (2011) to split barge services in a hinterland service

and a collection/distribution service in the port area to avoid barges having to call at

multiple terminals in the port area. If both hub terminals in the port of Antwerp are

visited, the order of visiting should be free to choose since this may have an impact on

the outcome of the model. In order to preserve the linear representation of the ports,

a duplicate node is created for the terminal at the right river bank. All hinterland

ports are duplicated as well to facilitate the formulation of the problem. The final
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Figure 3.2: Network representation

network representation is shown in Figure 3.2. The port of Liege is represented by

nodes 1 and 11, Genk by nodes 2 and 10, Meerhout by nodes 3 and 9, Deurne by

nodes 4 and 8, Antwerp right river bank by nodes 5 and 7 and finally Antwerp left

river bank by node 6.

A vessel starts its roundtrip at one of the hinterland ports and can only travel

from a node to another node with a higher number. The end port should be the same

as the start port and at least one of the river banks in Antwerp is visited during a

roundtrip. Since distances on the Albert Canal are rather small, vessels may perform

several roundtrips per week. Therefore, in this thesis, a service type is defined by the

capacity of the vessel(s) and its/their weekly number of roundtrips.

A six day working week is assumed and transport demand is modeled as follows.

Each day at each hinterland port a number of clients may request (loaded) containers

to be transported from the hinterland port to one of the river banks in Antwerp.

Similarly, each day other clients may request containers to be transported from one

of the river banks of the port of Antwerp to a hinterland port. Transport demand

between two hinterland ports is not assumed. When a service type is considered, the

model determines in a preprocessing step which transport demand may be satisfied

by which roundtrip(s). Finally, only a single container type is considered.

The fact that the model is formulated on a single line greatly facilitates the com-

putational tractability of the model. Due to the use of a line network, the routing

component of the problem reduces to the problem of selecting the ports to be visited

since the order of visiting a given set of nodes is predefined. Hence, the number of

possible shipping routes in a network of n nodes is equal to
∑n

k=1

(
n
k

)
. In contrast,

when a full network would be used, i.e. each node may be visited from each other

node, the number of possible routes visiting a given set of nodes would increase dra-

matically since multiple visiting orders may be determined. The number of possible

shipping routes in a network of n nodes then becomes
∑n

k=1 k!
(
n
k

)
. Especially when

the number of nodes in the network increases, the number of possible shipping routes

in a line network is only a small fraction of those possible in a full network. For exam-

ple, for a line network with four nodes 15 shipping routes are possible instead of 64 in

a full network while for a line network of ten nodes only 1023 possible shipping routes
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exist instead of 9864100. This analysis shows that it might not be straightforward to

use the proposed modeling approach on a more general network in which the nodes

are not all located along a single line.

Two other problem characteristics which influence the model formulation and

solution complexity may be identified. The proposed model is able to deal with all

combinations of both problem characteristics although the formulation and solution

complexity will differ.

First, it could be assumed that each client has the same transport demand every

week or it could be assumed that weekly transport demand is variable. The latter may

occur when some clients have a weekly transport demand while others only demand

containers to be transported every two or three weeks. When considering a constant

weekly demand, roundtrips will be the same every week (since it is assumed that when

the transport demand of a client is fulfilled in one week, it has to be fulfilled in all

weeks). Therefore, it suffices to model only a single week. On the other hand, when

demand varies over the weeks, the planning period has to be extended to take this into

account. The planning period will be equal to a single demand cycle (each demand

occurs at least once). Differences with the single week model are that roundtrips do

not have to be the same each week. However, for customers with a weekly demand,

the constraint that the demand of all weeks needs to be met if any, is still valid.

Although the formulation of the model is very similar as for the constant weekly

demand, solution complexity will be larger.

Second, the model formulation and solution complexity depend on whether only

a single vessel is used to provide services or whether multiple vessels are employed.

In all cases, it is assumed that transport demand may be fulfilled by only a single

roundtrip of each vessel (the first after the demand was raised) which means transport

demand cannot be transferred to a later roundtrip of the same vessel. When a single

vessel is used, it is possible to establish a many-to-one relationship between transport

demands and roundtrips, i.e. each transport demand can only be performed by a

single roundtrip. When multiple vessels are used, this is not the case and solution

complexity increases.

3.3 Perspective of barge operators

This section describes how the proposed model may be used by a barge operator.

First, the model formulation is presented (Section 3.3.1). Next, random instances are

generated and numerical experiments are presented in Section 3.3.2.
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3.3.1 Model formulation

Based on forecasted transport demand for loaded and empty containers, barge oper-

ators provide roundtrips between a number of hinterland ports and the seaport on a

fixed schedule. Roundtrips are planned with the objective to maximize profit. Barge

operators do not manage an owned or leased fleet of containers. As a consequence,

they are generally not concerned with empty container repositioning decisions. Empty

containers are only transported when this is demanded by shippers or shipping lines.

Since the model takes the viewpoint of a single company and the objective is to

maximize profit, unprofitable transport demand may be turned down.

Revenues are generated by transporting loaded and empty containers. Freight

rates for loaded containers are generally higher than for transporting empty contain-

ers. For each pair of ports, transport demand consists of the sum of the demand of

several clients. Either all transport demand of a particular client is satisfied (during

the total planning period) or all transport demand is turned down. Costs included

in the model are daily charter and crew costs, distance-related fuel and maintenance

costs, port entry costs and container handling costs at the ports. No costs for turning

demand down are assumed. The major constraints are related to vessel capacity and

maximum roundtrip duration. Maximum roundtrip duration of a vessel is determined

by dividing the number of days per week (six) by the weekly number of roundtrips of

the vessel.

First, the formulation of the model for the case with a single vessel and constant

weekly demand is presented. Each transport demand may be fulfilled by only a single

roundtrip and the length of the planning period is a single week. Next, it is discussed

how the model may be adapted to situations with varying weekly demand or multiple

vessels. The following notation is used:

N = {1, ..., 11} = set of nodes (indices i, j, k)

cei = entry cost at node i (e)

chi = handling cost at node i (e/TEU)

tmi = sum of mooring and unmooring time at node i (h)

thi = handling time at node i (h/TEU)

L = {(i, j)|i, j ∈ N, i < j, i ̸= 5 ∨ j ̸= 7}

dij = distance between nodes i and j (km)

tij = travel time between nodes i and j (h)

f l
ij = freight rate for loaded containers between nodes i and j (e/TEU)
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fe
ij = freight rate for empty containers between nodes i and j (e/TEU)

R = {1, ..., r} = set of roundtrips

Capr = capacity of the vessel performing roundtrip r (TEU)

crchar = charter and crew costs of the vessel performing roundtrip r (e/day)

crfuel = fuel and maintenance costs of the vessel performing roundtrip r (e/km)

trmax = maximum duration of roundtrip r (days)

B = {1, ..., b} = set of clients

dembl
ij = loaded container transport demand of client b on link (i, j) (TEU)

dembe
ij = empty container transport demand of client b on link (i, j) (TEU)

wrb
ij =


1 if transport demand of client b on link (i, j) may be performed

by roundtrip r

0 else

WNR = weekly number of roundtrips of the vessel

TNR = total number of roundtrips of the vessel over the planning period

M = a large number

The following binary decision variables are introduced:

arbij =


1 if transport demand (loaded + empty containers) of client b

on link (i, j) is fulfilled during roundtrip r

0 else

zri =

 1 if node i is visited during roundtrip r

0 else

preri =

 1 if a node is visited before node i during roundtrip r

0 else

sucri =

 1 if a node is visited after node i during roundtrip r

0 else

To simplify the formulation, additional variables are introduced:

Dr = distance traveled during roundtrip r (h)

T r
hour = number of hours the vessel is used during roundtrip r (h)
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T r
day = number of days the vessel is used during roundtrip r (days)

xr
ij = number of loaded containers transported on link (i, j) during roundtrip r

(TEU)

yrij = number of empty containers transported on link (i, j) during roundtrip r

(TEU)

The problem (P3.1) is formulated as follows:

(P3.1)max
∑
r∈R

∑
(i,j)∈L

(f l
ijx

r
ij + fe

ijy
r
ij)−

∑
r∈R

crcharT
r
day −

∑
r∈R

crfuelD
r

−
∑
r∈R

∑
i∈N

cei z
r
i −

∑
r∈R

∑
(i,j)∈L

(chi + chj )(x
r
ij + yrij) (3.1)

Subject to

xr
ij =

∑
b∈B

dembl
ija

rb
ij ∀r ∈ R, ∀(i, j) ∈ L (3.2)

yrij =
∑
b∈B

dembe
ij a

rb
ij ∀r ∈ R, ∀(i, j) ∈ L (3.3)

Dr =
∑

i∈{2,3,4,5}

di−1,ipre
r
i + (d5,6 + d6,7)z

r
6

+
∑

i∈{7,8,9,10}

di,i+1suc
r
i ∀r ∈ R (3.4)

T r
hour =

∑
i∈{2,3,4,5}

ti−1,ipre
r
i + (t5,6 + t6,7)z

r
6

+
∑

i∈{7,8,9,10}

ti,i+1suc
r
i

+
∑
i∈N

tmi zri +
∑

(i,h)∈L

(xr
ij + yrij)(t

h
i + thj ) ∀r ∈ R (3.5)

24× T r
day ≥ T r

hour ∀r ∈ R (3.6)

T r
day ≤ trmax ∀r ∈ R (3.7)

2× arbij ≤ (zri + zrj )w
rb
ij ∀r ∈ R, ∀b ∈ B,∀(i, j) ∈ L (3.8)∑

(i,k)∈L
i≤j
k>j

(xr
ik + yrik) ≤ Capr + (1− zrj )M ∀r ∈ R, ∀j ∈ N (3.9)

prer1 = 0 ∀r ∈ R (3.10)
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sucr11 = 0 ∀r ∈ R (3.11)

2× preri ≥ preri−1 + zri−1 ∀r ∈ R, ∀i ∈ {2, 3, 4, 5} (3.12)

2× sucri ≥ sucri+1 + zri+1 ∀r ∈ R, ∀i ∈ {7, 8, 9, 10} (3.13)

zr5 + zr7 ≤ 1 ∀r ∈ R (3.14)

prer2 = sucr10 ∀r ∈ R (3.15)

prer3 = sucr9 ∀r ∈ R (3.16)

prer4 = sucr8 ∀r ∈ R (3.17)

prer5 = sucr7 ∀r ∈ R (3.18)

arbij = {0, 1} ∀r ∈ R, ∀(i, j) ∈ L,∀b ∈ B (3.19)

zri = {0, 1} ∀r ∈ R, ∀i ∈ N (3.20)

preri = {0, 1} ∀r ∈ R, ∀i ∈ N (3.21)

sucri = {0, 1} ∀r ∈ R, ∀i ∈ N (3.22)

The objective is to maximize profit (3.1). Revenues are generated by transporting

loaded and empty containers. Four types of costs are considered. Charter and crew

costs depend on the number of days a vessel is used. Fuel and maintenance costs are

proportional to the total distance traveled. The number of nodes visited determines

port entry costs while the number of loaded and empty containers transported de-

termines handling costs. The number of loaded containers and the number of empty

containers transported between two nodes are calculated by respectively constraints

(3.2) and (3.3). Each roundtrip consists of three parts: a downstream part from the

hinterland to the right river bank of the port of Antwerp, a possible visit of the left

river bank and an upstream part back to the hinterland. Total roundtrip distances

are calculated by constraint (3.4) while total roundtrip durations are calculated by

constraints (3.5) and (3.6). Maximum roundtrip duration is imposed by constraint

(3.7) and depends on the number of weekly roundtrips. Transport demand of a client

can only be fulfilled by a specific roundtrip and containers can only be transported if

both the origin and destination nodes are visited (3.8). Constraint (3.9) ensures that

vessel capacity is respected. Constraints (3.10) to (3.13) make sure that variables preri
and sucri take on the appropriate values. The cluster on the right river bank of the

port of Antwerp can only be visited once during each roundtrip (3.14) and the start

and end port of a roundtrip should be the same (3.15 to 3.18). Finally, constraints

(3.19) to (3.22) define the domain of the decision variables.

For problems with varying weekly demand, R represents the set of roundtrips

performed by the vessel over the total planning period. Three extra constraints (3.23
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to 3.25) are added to the model to ensure that the transport demand of a client is

either fulfilled every week or never. In all three constraints q = r − WNR i.e. q

represents the roundtrip scheduled one week before roundtrip r.

arbij = aqbij ∀r ∈ R, r > WNR, ∀(i, j) ∈ L,

i ̸∈ {5, 7}, j ̸∈ {5, 7},∀b ∈ B (3.23)

arb5j + arb7j = aqb5j + aqb7j ∀r ∈ R, r > WNR, ∀(7, j) ∈ L,∀b ∈ B (3.24)

arbi5 + arbi7 = aqbi5 + aqbi7 ∀r ∈ R, r > WNR, ∀(i, 5) ∈ L,∀b ∈ B (3.25)

When considering a problem in which multiple vessels will be used to offer roundtrip

services, R represents the set of roundtrips performed by all vessels. A transport de-

mand dembl
ij may now be fulfilled by multiple roundtrips i.e. ∀(i, j) ∈ L,∀b ∈ B :

∃r, r′ ∈ R : wrb
ij = wr′b

ij = 1. Constraints (3.26), (3.27) and (3.28) are added to the

model to ensure that each transport demand is satisfied by at most one roundtrip.∑
r∈R

arbij ≤ 1 ∀(i, j) ∈ L,∀b ∈ B (3.26)∑
r∈R

(arb5j + arb7j) ≤ 1 ∀(7, j) ∈ L,∀b ∈ B (3.27)∑
r∈R

(arbi5 + arbi7) ≤ 1 ∀(i, 5) ∈ L,∀b ∈ B (3.28)

3.3.2 Numerical experiments

In this section illustrative numerical experiments are presented. No real-life decisions

or conclusions may be based on the results of these experiments. Numerical exper-

iments are set up to show how the model may be used in practice to support the

decision making process related to service network design in barge transportation. In

order to use the model in practice, accurate cost and demand information is required.

Furthermore, other factors like customer preferences on service frequency, may impact

final decisions.

Three types of vessels with capacities of 100 TEU, 150 TEU and 300 TEU are

considered. It is assumed that the first two types can make two or three roundtrips

per week, while the largest vessel can make one or two roundtrips per week. Cost data

are mainly based on a recent report commissioned by the Dutch government agency

’Rijkswaterstaat’ of the Ministry of Infrastructure and the Environment (NEA, 2009).

Other sources for time and cost data include Vacca et al. (2007), Promotie Binnenvaart

Vlaanderen (2008), Konings (2009), Caris (2011) and personal communication. An
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overview of these data may be found in Appendix A. Ten instances of transport

demand are generated randomly according to the following intervals:

� total weekly downstream demand for container transports: 300-600 TEU,

� total weekly upstream demand for container transports: 50-150% of downstream

demand,

� percentage loaded containers of total transport demand: 70-80%,

� number of days per week with transport demand to/from a hinterland port: 2-6,

� daily number of clients with demand at a hinterland port: 0-3.

For all instances, transport demand is equally distributed over the two clusters in the

port of Antwerp. The model is implemented in AIMMS and solved using CPLEX

12.0. Three scenarios are tested: (1) a single vessel and constant weekly demand,

(2) a single vessel and varying weekly demand and (3) multiple vessels and constant

weekly demand.

Results for the first scenario are shown in Table 3.1. Six different service types are

considered as shown in the first row. They are indicated by the vessel capacity and the

weekly number of roundtrips. For example, column 300/1 represents a vessel of 300

TEU sailing in a single roundtrip per week. The second row shows the average weekly

profit over all instances. The third row indicates the percentage of possible roundtrips

that are actually performed. In some situations, performing a roundtrip may not be

profitable. This is especially the case when vessel capacity is large and the number

of weekly roundtrips is high (and thus maximum roundtrip time is small). In such

cases, there might not be enough time for loading and unloading sufficient containers

in order to yield enough revenues to offset the costs. No roundtrip will be performed

and the corresponding profit is zero. The following rows in Table 3.1 present average

results over all instances for the roundtrips that are actually performed. The average

percentage of the maximum roundtrip time that is used by a vessel during a roundtrip

is shown in the fourth row. The fifth row presents the average capacity usage of the

vessel when it enters and leaves the port area in Antwerp. Finally, the last two rows

indicate the percentage of empty container transports and average computation time.

A first observation that can be made from Table 3.1 is that for each type of

vessel the best results are obtained when the number of weekly roundtrips is low. A

reason is that when the number of roundtrips is high, a lot of time is spent on sailing

between ports which causes time available for loading and unloading containers to

be limited as explained above. Offering more weekly roundtrips also involves higher
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Table 3.1: Results for scenario one

Service types 300/1 300/2 150/2 150/3 100/2 100/3

Weekly profit (e) 15825 10485 12212 7990 10151 9595

Roundtrip services performed (%) 100.0 70.0 95.0 66.7 95.0 86.7

Available time used (%) 55.1 86.7 74.5 92.7 65.4 89.0

Vessel capacity used (%) 86.2 60.3 77.7 58.5 80.6 70.8

Weekly container transports (TEU) 517 506 443 351 306 368

Empty container transports (%) 4.3 9.5 6.3 10.5 2.9 10.5

Average computation time (s) 1.0 1.0 1.0 1.0 1.0 1.0

fuel and maintenance costs. For example, average profit is much higher for service

type 300/1 than for 300/2. For service type 300/2 only 70.0 percent of the roundtrips

are profitable, mainly due to limited time. For the roundtrips that are performed,

average time used is high (86.7%) while the capacity of the vessel is not fully utilized

at all (60.3%). In contrast, vessel capacity is used much more efficiently for service

type 300/1. A second observation is that using a larger vessel seems to offer better

results. This can clearly be seen when comparing service types 300/1, 150/2 and

100/3 which all have a weekly capacity of 300 TEU. The reasons are similar to those

for the first observation. Finally, the portion of empty container transports in total

container transport (2.9 to 10.5%) is much lower than the portion of empty container

transport demand in total transport demand (20 to 30%). This may be explained by

the fact that freight rates for empty containers are lower than for loaded containers.

Although the results favor using larger vessels and making less roundtrips, it should

be taken into account that besides profit other factors will influence the final decision

of a barge operator on the services to offer. Clients may prefer a larger frequency

of roundtrips, so offering more roundtrips by smaller vessels may lead to a rise in

transport demand or may justify higher freight rates.

Table 3.2 shows the results of the second scenario in a similar way as Table 3.1.

The same transport demand instances as for scenario one are used but it is assumed

that 30% of the clients request containers to be transported only every two weeks.

The planning period is fixed at two weeks. Average weekly profits are much lower for

this scenario. A reason is that total transport demand is lower since some clients only

have a two-weekly demand and therefore some roundtrips might not be profitable

anymore. As a result, the average number of roundtrips performed is much lower as
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can be seen from the third row in Table 3.2. When comparing results of the different

service types, similar observations as for the first scenario may be made.

Table 3.2: Results for scenario two

Service types 300/1 300/2 150/2 150/3 100/2 100/3

Weekly profit (e) 19141 10627 13305 10008 11457 10825

Roundtrip services performed (%) 95.0 52.5 77.5 55.0 85.0 56.7

Available time used (%) 48.0 73.4 65.5 81.2 60.5 86.7

Vessel capacity used (%) 66.0 46.3 62.1 46.6 63.6 61.7

Weekly container transports (TEU) 410 316 322 257 238 232

Empty container transports (%) 8.7 8.9 12.1 11.3 11.5 10.8

Average computation time (s) 1.0 1.0 1.0 1.0 1.0 1.0

Table 3.3: Results for scenario three

Service types 300/1 300/1 300/1 300/1 300/1 150/2

300/1 300/2 150/2 150/3 100/2 100/3

Weekly profit (e) 18003 17120 18115 17912 18713 18319

Roundtrip services performed (%) 75.0 36.7 60.0 45.0 83.3 62.5

Available time used (%) 43.3 61.7 56.3 58.1 47.5 59.2

Vessel capacity used (%) 66.9 82.7 74.9 68.2 69.7 68.2

Weekly container transports (TEU) 413 523 351 350 254 260

Empty container transports (%) 3.3 3.9 3.0 4.3 5.1 5.4

Average computation time (s) 1.0 1.0 1.0 1.0 1.0 1.0

In the third scenario multiple vessels are employed to offer roundtrips while trans-

port demand is assumed to be constant over the weeks. Numerous types of service

may be considered in this case. In total twenty-one service types with two vessels

are analyzed. Table 3.3 gives an overview of the six service types which offered the

best results in terms of profit (e.g. the first column represents a service type in which

two vessels with a capacity of 300 TEU sail in a single roundtrip per week). On

average, a vessel of 300 TEU with one weekly roundtrip and a vessel of 100 TEU with

two weekly roundtrips offers the best results. However, the appropriate service type



Service network design in intermodal barge transport 53

highly depends on the expected transport demand. For example, the abovementioned

service type is only the best in four out of the ten instances.

3.4 Perspective of shipping lines

The tactical planning model may be applied from the perspective of shipping lines

as well. When containers are transported under the carrier haulage principle, door-

to-door services are provided by shipping lines. Currently the percentage of carrier

haulage is on average about thirty percent of all maritime container transports. Ac-

cording to Notteboom (2004), shipping lines seek to increase the portion of carrier

haulage on the European continent. They want to increase organizational control over

hinterland transport since it is an important strategy to control the logistic chain and

to generate cost reductions and additional revenues (Notteboom, 2007). Shipping

lines that are successful in achieving cost reductions through better managing inland

container logistics may have a competitive advantage. According to van den Berg

and Langen (2011) shipping lines should be involved in the organization of barge and

rail services in the hinterland, although they do not have to operate these services

themselves. Instead, strategic partnerships with barge and terminal operators may be

established (Notteboom, 2004; van den Berg and Langen, 2011). The tactical plan-

ning model, which is proposed in this chapter, may be applied by shipping lines or

their strategic partners to develop regular roundtrip barge services.

Two main differences between the problem from the perspective of barge operators

and the problem from the perspective of shipping lines are identified. A first difference

is related to transport demand. Since it is assumed that the shipping line is responsible

for the inland transportation part, they have to make sure that all loaded containers

are transported from the seaport to their final destinations and from the shippers’

locations to the seaport. Hence, all transport demand for loaded containers should

be fulfilled by the shipping line. In case capacity of the chartered vessel(s) is not

sufficient, alternatives have to be considered. Containers may be transported between

hinterland ports and the port of Antwerp by barges of independent barge operators

or they may be transported by truck. In this thesis, it is assumed that no capacity

restrictions on these alternative transport options exist and that these transports are

at least as fast as transporting containers by the chartered vessel(s). Finally, the

cost of an alternative transport is assumed to be high compared with the cost of

transporting a container by a chartered vessel. For clarity purposes, only alternative

transportation of containers by truck is considered in the remainder of this chapter.



54 Chapter 3

A second difference is related to container management. Shipping lines operate

their own fleet of containers or have some long term leasing arrangements. They are

responsible for efficiently managing this container fleet. To avoid empty container

shortages at certain ports and empty container excesses at others, empty containers

will have to be repositioned between ports. In barge transportation, these reposition-

ing movements are generally made by using excess capacity of container vessels which

transport loaded containers (Choong et al., 2002; Maras, 2008). Two options to plan

empty container repositioning movements may be identified. The first option consists

of planning barge services based on loaded container transport demand in a first step.

The model described in Section 3.3 may be used for this purpose. Only the truck

transportation option and the constraint that all transport demand has to be satis-

fied, should be added to the model. In a second step, empty container repositioning

needs are determined. Based on information on excess capacity of the vessel(s), the

same model may be used to find the most efficient way to perform these reposition-

ing movements. Shipping routes and loaded container transports are assumed to be

fixed during this step. A second option is to take empty container repositioning needs

directly into account when planning barge services and loaded container transports.

In the following paragraphs the model for this second option is described in detail.

Both options are compared in Section 3.4.2.

Empty container repositioning needs may be included in the model by imposing

balancing constraints at each port. These balancing constraints impose total container

inflow to equal total container outflow for each port over the planning period. Besides,

at any time sufficient empty containers should be available at each port for export

purposes. This is accounted for by maintaining an inventory of containers at each

port. Costs for storing containers at a port are taken into account. Each port has an

initial inventory of containers at the beginning of the planning period. This initial

inventory is modeled as a variable (i.e. the model decides the best value), although

it may also be fixed to a certain value in advance. During the planning period, the

stock of available containers at each port will fluctuate. At the end of the planning

period, the inventory level should be equal to the initial inventory level. A distinction

is made between regular ports and ports also acting as an empty container hub.

The former have a rather limited storage space for containers which is modeled by

imposing a maximum inventory level. The latter have no such restriction. Unless

stated otherwise, only both terminals in the port of Antwerp are assumed to act as

an empty container hub in this thesis. Finally, it is assumed that a loaded container

arriving at a port is unavailable for three days. This ensures that there is enough time

to transport the loaded container to its final customer, unload it and return it to the
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port empty. Similarly, three days before a loaded container transport takes place, an

empty container should be available at the port of origin.

3.4.1 Model formulation

The formulation of the model is similar as in Section 3.3.1, although some adaptations

are required. Only transport demand for loaded containers is considered. All demands

should be satisfied, either by the chartered vessel(s) or by truck. Variable arbij is no

longer a binary decision variable. Instead arbij is a continuous decision variable which

indicates the fraction of transport demand of client b on link (i, j) that is fulfilled

by roundtrip r. Similarly, the new continuous decision variable ârbij indicates the

fraction of transport demand of client b on link (i, j) which is fulfilled by truck at

the same moment of roundtrip r. Auxiliary variable xr
ij still indicates the number of

loaded containers transported by the chartered vessel on link (i, j) during roundtrip r.

Auxiliary variable x̂r
ij represents the number of loaded containers transported by truck

on link (i, j) (at the same moment of roundtrip r). The number of empty containers

to be transported is a decision. As a result, dembe
ij is no longer used. Integer decision

variables yrij and ŷrij represent the number of empty containers transported on link

(i, j) during roundtrip r respectively by the chartered vessel and by truck. The cost

of a transport by truck on link (i, j) is indicated by ĉij and is expressed in e/TEU.

Finally, the time that a container is unavailable before and after a loaded container

transport is expressed in the number roundtrips and indicated by u (since three days

of unavailability are assumed u = 2 if WNR = 3 and u = 1 otherwise).

To take empty container repositioning into account, the inventory of containers at

each of the six ports (Liege, Genk, Meerhout, Deurne, Antwerp RRB, Antwerp LRB)

should be maintained. The following notation is used:

P = {1, ..., 6} = set of ports (index p)

δ−(p) = index for the downstream node of port p (e.g. δ−(1) = 1, δ−(2) = 2)

δ+(p) = index for the upstream node of port p (e.g. δ+(1) = 11, δ+(2) = 10)

csp = daily storage cost at port p (e/(TEU × day))

invmax
p = maximum container inventory level at port p

invrp = number of containers in inventory at port p before roundtrip r (TEU)

The formulation of the problem (P3.2) with a single vessel and constant transport



56 Chapter 3

demand is as follows:

(P3.2)min
∑
r∈R

crcharT
r
day +

∑
r∈R

crfuelD
r +

∑
r∈R

∑
i∈N

cei z
r
i

+
∑
r∈R

∑
(i,j)∈L

(chi + chj )(x
r
ij + yrij)

+
∑
r∈R

∑
(i,j)∈L

ĉij(x̂
r
ij + ŷrij)

+
∑
r∈R

∑
p∈P

6× cspinv
r
p/WNR (3.29)

Subject to

(3.4) to (3.18)

(3.20) to (3.22)∑
r∈R

(arbij + ârbij ) = 1 ∀(i, j) ∈ L,∀b ∈ B (3.30)

xr
ij =

∑
b∈B

dembl
ija

rb
ij ∀r ∈ R, ∀(i, j) ∈ L (3.31)

x̂r
ij =

∑
b∈B

dembl
ij â

rb
ij ∀r ∈ R, ∀(i, j) ∈ L (3.32)

yrij ≤ Caprzri ∀r ∈ R, ∀(i, j) ∈ L (3.33)

yrij ≤ Caprzrj ∀r ∈ R, ∀(i, j) ∈ L (3.34)

∑
r∈R



∑
(j,δ−(p))∈L

 xr
j,δ−(p) + yrj,δ−(p)

+x̂r
j,δ−(p) + ŷrj,δ−(p)


+
∑

(j,δ+(p))∈L

 xr
j,δ+(p) + yrj,δ+(p)

+x̂r
j,δ+(p) + ŷrj,δ+(p)


−
∑

(δ−(p),j)∈L

 xr
δ−(p),j + yrδ−(p),j

+x̂r
δ−(p),j + ŷrδ−(p),j


−
∑

(δ+(p),j)∈L

 xr
δ+(p),j + yrδ+(p),j

+x̂r
δ+(p),j + ŷrδ+(p),j





= 0 ∀p ∈ P (3.35)
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invrp +
∑

(j,δ−(p))∈L

(xv
j,δ−(p) + yrj,δ−(p) + x̂v

j,δ−(p) + ŷrj,δ−(p))

+
∑

(j,δ+(p))∈L

(xv
j,δ+(p) + yrj,δ+(p) + x̂v

j,δ+(p)ŷ
r
j,δ+(p))

−
∑

(δ−(p),j)∈L

(xw
δ−(p),j + yrδ−(p),j + x̂w

δ−(p),j + ŷrδ−(p),j)

−
∑

(δ+(p),j)∈L

(xw
δ+(p),j + yrδ+(p),j + x̂w

δ+(p),j + ŷrδ+(p),j)

= invr+1
p

with invTNR+1
p = inv1p,

v =

 r − u if r > u

r − u+ TNR else
and

w =

 r + u if r ≤ TNR− u

r + u− TNR else
∀r ∈ R, ∀p ∈ P (3.36)

invrp ≤ invmax
p ∀r ∈ R, ∀p ∈ P (3.37)

arbij ≥ 0 ∀r ∈ R,∀(i, j) ∈ L,

∀b ∈ B (3.38)

ârbij ≥ 0 ∀r ∈ R,∀(i, j) ∈ L,

∀b ∈ B (3.39)

yrij ≥ 0 and integer ∀r ∈ R, ∀(i, j) ∈ L (3.40)

ŷrij ≥ 0 and integer ∀r ∈ R, ∀(i, j) ∈ L (3.41)

invrp ≥ 0 and integer ∀r ∈ R, ∀p ∈ P (3.42)

The objective of the model is to minimize total costs of fulfilling all transport demand

for loaded containers and balancing the network by repositioning empty containers.

The first four terms in objective function (3.29) indicate respectively charter and crew

costs, fuel and maintenance costs, port entry costs and container handling costs, sim-

ilar as in problem P3.1. The fifth term represents the cost of transporting loaded

and empty containers by other means than the chartered vessel. The last cost term

represents storage costs for containers at each port. These costs depend on container

inventory levels and the time between two roundtrips which is indicated by 6/WNR

i.e. the number of days per week divided by the number of roundtrips per week.
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Revenues from transporting loaded containers are no longer considered since it is

assumed that all transport demand should be fulfilled and hence revenues are con-

stant. Revenues from transporting empty containers are not considered either since

repositioning movements happen at the responsibility and expense of the shipping

line itself. Constraints (3.4) to (3.18) and (3.20) to (3.22) are identical to those in

the model in problem P3.1. Constraint (3.30) ensures that all transport demand is

satisfied, either by the chartered vessel or by truck. The number of loaded containers

transported on each link during a roundtrip is calculated by constraints (3.31) and

(3.32). Constraints (3.33) and (3.34) indicate that empty containers may only be

transported by barge between two nodes if both nodes are visited. Constraint (3.35)

imposes container balancing at each port over the planning period while container

inventories during the planning period are controlled by constraints (3.36) and (3.37).

Finally, constraints (3.38) to (3.42) restrict the domain of the decision variables.

For problems with varying weekly demand, no changes have to be made to the

formulation. When considering a problem in which multiple vessels will be used to

offer roundtrip services, a small modification to the formulation is required. Since

different vessels may arrive at ports at different moments during the day and week, it

is no longer possible to take daily inventories into account. Hence all inventory-related

parameters (csp, inv
max
p ), variables (invrp) and constraints (3.36), (3.37) and (3.42) as

well as the last term of objective function (3.29) are removed from the formulation.

Constraint (3.35) still ensures container balancing over the total planning period.

3.4.2 Numerical experiments

Shipping lines have two options to plan empty container repositioning movements

when organizing their own barge services. One option is to plan barge services based

on loaded container transport demand in a first step and empty container movements

separately in a second step. The second option is to plan barge services and empty

container movements simultaneously by solving the model described in Section 3.4.1.

In this section, numerical experiments are presented for both options. The same ten

random problem instances as in Section 3.3.2 are used. All transport demands are

assumed to be loaded container transport demands. Again three scenarios are tested:

(1) a single vessel and constant weekly demand, (2) a single vessel and varying weekly

demand and (3) multiple vessels and constant weekly demand.

Results for the first scenario are presented in Tables 3.4 and 3.5 for respectively

separately and simultaneously planning barge services and empty container reposi-

tioning. Six service types are considered as shown in the first row. For each of them,
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the second row indicates average weekly costs. The third row shows the percentage of

total transport demand which is satisfied by barge. The remainder is satisfied by road

transport. Row four presents the percentage of available time used by the vessel on

average. The capacity usage by loaded containers when entering and leaving the port

area of Antwerp is shown in row five. The percentage of empty container transports

in total transports is indicated in row six. Since for some instances computation times

are much higher than for most other instances (especially for simultaneous planning),

average computation times are not reported. Instead the median and maximum of

computation times are shown in rows seven and eight. Finally, average cost reductions

as a result of simultaneously planning barge services and empty container reposition-

ing movements are indicated in the last row of Table 3.5.

Table 3.4: Results for scenario one: separate planning

Service types 300/1 300/2 150/2 150/3 100/2 100/3

Weekly cost (e) 109926 121358 121138 155636 145527 155019

Transports by barge (%) 63.6 64.4 57.2 39.4 38.3 37.3

Available time used by vessel (%) 72.3 98.1 94.0 93.0 76.3 95.9

Capacity used (loaded) (%) 97.1 59.4 90.1 55.7 95.2 75.6

Empty container transports (%) 30.9 32.7 33.6 31.4 33.8 32.7

Median of computation times (s) 1.0 1.0 1.0 1.0 1.0 1.0

Maximum computation time (s) 1.0 1.0 2.0 1.0 1.0 1.0

Table 3.5: Results for scenario one: simultaneous planning

Service types 300/1 300/2 150/2 150/3 100/2 100/3

Weekly cost (e) 108065 114590 118494 142900 138900 146784

Transports by barge (%) 66.9 66.7 58.5 49.4 44.6 43.4

Available time used by vessel (%) 74.1 98.6 93.8 99.7 83.8 98.7

Capacity used (loaded) (%) 92.7 52.3 85.2 46.3 88.9 62.7

Empty container transports (%) 29.4 31.3 32.7 30.6 32.1 31.2

Median of computation times (s) 1.0 1.0 1.0 1.5 2.0 2.0

Maximum computation time (s) 1.0 1.0 3.0 2.0 3.0 4.0

Average cost reduction (%) 1.7 5.6 2.2 8.2 4.6 5.3



60 Chapter 3

Similar observations as for the problem from the perspective of barge operators

may be made from Tables 3.4 and 3.5. For each vessel type, the service type with the

lowest number of weekly roundtrips leads to the best use of available vessel capacity

and lowest costs. A high number of weekly roundtrips generally results in situations

with inefficient capacity usage due to time constraints. Average time and capacity

usage are higher than in Section 3.3.2 since in this section fractions of transport

demand of a client may be satisfied by barge transport while the remainder of the

transport demand is satisfied by road transport. The portion of empty container

transports in total transports ranges around 30% which is considerably higher than

in Section 3.3.2. This is a result of the container balancing constraints that are

imposed. Besides, in Section 3.3.2 empty container transports were less interesting

than loaded container transports, due to their lower freight rate. The fraction of

transports performed by barge ranges on average between 43 to 67% of all transports.

Finally, simultaneously planning barge services and empty container repositioning

movements results in cost reductions of one to eight percent, mainly due to the fact

that different shipping routes are chosen for both options.

A more detailed comparison of the solutions obtained from the perspective of

barge operators (Section 3.3.2) and the solutions obtained from the perspective of

shipping lines with simultaneous planning in this section, reveals that considerable

differences between these solutions exist. For a given problem instance and service

type, on average 68% of the ports visited in the former case are visited in the latter

case as well. Vice versa the same percentage applies. Only 9% of all roundtrips are

exactly the same for both cases, although this percentage greatly depends on the

service type under consideration. For service type 300/1, 40% of all roundtrips are

identical while none of the roundtrips are identical for service type 100/2. Comparing

solutions regarding the number of loaded containers transported is not possible since

in the model from the perspective from shipping lines, all transport demand for loaded

containers should be fulfilled.

Average results for the second scenario are shown in Tables 3.6 and 3.7. The same

transport demand instances as for scenario one are used but it is assumed that 30% of

the clients have demand only every two weeks. Average weekly costs are lower for this

scenario due to lower total transport demand. As a consequence, average percentage

of transports by barge are slightly higher than for the first scenario. Other results are

similar to those of scenario one.

Again twenty-one service types with two vessels are analyzed for the third scenario.

Results of the six service types which offer on average the lowest costs are presented in

Tables 3.8 and 3.9. Since two vessels are employed, a larger portion of total transports
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Table 3.6: Results for scenario two: separate planning

Service types 300/1 300/2 150/2 150/3 100/2 100/3

Weekly cost (e) 76096 88854 88317 107456 100349 106475

Transports by barge (%) 72.5 73.1 62.1 47.9 47.9 45.2

Available time used by vessel (%) 64.4 88.3 84.0 86.3 73.4 86.1

Capacity used (loaded) (%) 80.5 46.0 72.5 45.9 84.9 63.2

Empty container transports (%) 30.1 33.3 34.7 31.8 35.3 33.1

Median of computation times (s) 1.0 1.0 1.0 1.0 1.0 1.0

Maximum computation time (s) 1.0 1.0 1.0 1.0 1.0 1.0

Table 3.7: Results for scenario two: simultaneous planning

Service types 300/1 300/2 150/2 150/3 100/2 100/3

Weekly cost (e) 72574 81790 82785 96400 95909 97883

Transports by barge (%) 76.6 78.7 67.9 59.9 51.9 54.5

Available time used by vessel (%) 66.0 92.6 89.4 95.5 79.2 97.4

Capacity used (loaded) (%) 78.5 42.7 72.5 41.9 79.3 57.3

Empty container transports (%) 29.3 31.8 33.0 30.6 32.7 32.0

Median of computation times (s) 1.0 2.0 4.0 5.5 15.5 7.5

Maximum computation time (s) 2.0 3.0 13.0 10.0 58.0 31.0

Average cost reduction (%) 4.6 8.0 6.3 10.3 4.4 8.1

are performed by barge compared with the first scenario. As a result, less costly road

transports are required and weekly costs are on average lower than when a single

vessel is employed. On the other hand, the percentage of empty containers in total

transports increases compared with scenario one. This is caused by the fact that

daily container inventories are not taken into account and only container balancing

constraints over the total planning period are imposed in the third scenario. This

offers more flexibility for empty container repositioning. Although the percentage of

empty containers in total transport increases, the portion of these empty container

transports which is carried out by costly road transportation is reduced drastically

from 36 to 15%. Finally, average cost reductions from simultaneously planning barge
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services and empty container repositioning movements are much larger for the third

scenario compared with scenarios one and two. The reason is as follows. When barge

services are planned only based on loaded container transport demand, for some

instances it is better not to perform all roundtrips of both vessels. If capacity usage

during a roundtrip would be too small, it might be more cost-efficient not to make

a roundtrip, thereby saving charter and fuel costs, while transporting containers by

truck. In case empty container repositioning needs are taken into account, capacity

usage of the vessels will be higher and performing these roundtrips might in some

cases be cheaper than transporting all containers by truck.

Table 3.8: Results for scenario three: separate planning

Service types 300/1 300/1 300/1 300/2 150/2 150/2

300/2 150/2 150/3 150/2 150/2 150/3

Weekly cost (e) 122257 122892 123833 133714 125177 125049

Transports by barge (%) 85.1 79.3 78.8 75.2 76.3 74.8

Available time used by vessel (%) 70.5 64.1 74.6 81.4 80.0 86.7

Capacity used (loaded) (%) 63.8 74.7 64.4 67.6 77.4 72.8

Empty container transports (%) 45.6 45.5 45.3 45.7 45.2 36.5

Median of computation times (s) 1.5 2.0 2.0 1.0 1.5 2.5

Maximum computation time (s) 4.0 5.0 4.0 2.0 4.0 7.0

Table 3.9: Results for scenario three: simultaneous planning

Service types 300/1 300/1 300/1 300/2 150/2 150/2

300/2 150/2 150/3 150/2 150/2 150/3

Weekly cost (e) 105946 108486 108865 106238 111093 111233

Transports by barge (%) 93.7 87.0 88.2 90.8 82.5 83.0

Available time used by vessel (%) 76.9 73.9 82.6 88.4 81.8 89.5

Capacity used (loaded) (%) 53.3 66.8 51.7 58.1 69.0 58.6

Empty container transports (%) 44.4 44.4 44.5 44.4 44.4 35.7

Median of computation times (s) 3.0 7.0 9.5 7.5 18.5 13.5

Maximum computation time (s) 4.0 19.0 22.0 14.0 80.0 36.0

Average cost reduction (%) 13.3 11.7 12.1 20.6 11.3 11.1
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As shown in the previous paragraphs, the proposed model may be used by shipping

lines to determine the best service type and the corresponding shipping routes for a

given demand scenario while taking empty container repositioning into account. A

sensitivity analysis on costs and freight rates may be performed as well. Additionally,

the model may be applied for supporting long term strategic decisions. For exam-

ple, the effect of changes in the network and service network configurations on the

hinterland transport chain may be analyzed, as explained in the following paragraph.

In the numerical experiments described earlier, it is assumed that empty container

hubs are only located at both river banks in the port of Antwerp while all hinterland

ports have a maximum storage capacity of twenty containers. The starting inventory

at these hinterland ports is chosen by the model. Examples of strategic decisions

that may be analyzed include increasing or reducing container storage capacity of

hinterland ports and the establishment of an empty container hub at one of the

hinterland ports. For example, for the instances used in this thesis, a decrease of the

storage capacity at the hinterland ports to ten containers increases costs on average

by 1.21%, while establishing an empty container hub at the hinterland port in Genk

yields an average decrease in costs of 1.50%. To correctly interpret the magnitude

of these changes, it is necessary to have information on the cost of implementing the

decisions.

3.5 Conclusions and further research

Despite the growing role of barge transportation in the hinterland access of major

seaports in Northwestern Europe, service network design for intermodal barge trans-

portation has received little research attention so far. In this chapter, a tactical

planning model for service network design along a single waterway is proposed. A

corridor network design is assumed. The model may be used as a decision support

tool for barge operators and shipping lines that want to offer roundtrip barge services

between a major seaport and several hinterland ports. It allows to calculate optimal

shipping routes for a given vessel capacity and roundtrip frequency. A case study on

the hinterland network of the port of Antwerp in Belgium is presented. To demon-

strate the versatility and flexibility of the model, it is applied in two different problem

contexts.

From the perspective of barge operators, the objective is to maximize profits.

Unprofitable transport demand may be foregone and empty container repositioning

decisions are not taken into account. Numerical experiments for three scenarios are
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presented to indicate how the model may be used in practice. On average, profit is

higher when larger vessels are used and less roundtrips are made. However, customer

preferences should be taken into account when making final decisions on the services

that will be offered.

From the perspective of shipping lines, the model may be used when containers

are transported under the carrier haulage principle and shipping lines organize the

maritime as well as the inland part of maritime container transports. Several authors

indicate that shipping lines seek to increase the portion of containers transported in

this way in order to gain organizational control of the inland transportation part and

to reduce costs. In such a situation, shipping lines are responsible for both scheduling

barge services and empty container repositioning. The proposed model is adapted to

account for empty container repositioning by imposing container balancing constraints

at each port. Experimental results indicate that shipping lines may reduce costs by

simultaneously planning barge services and empty container repositioning movements

instead of planning empty container repositioning movements in a post-optimization

phase.

In the future, additional aspects of the problem may be introduced in the model

to better reflect the decision making process in reality. At the moment, the model

concentrates on a single corridor while often several waterways are connected to a

seaport. In such a situation, the simultaneous optimization of repositioning decisions

for the complete network may be required. Only a single decision maker, either a

barge operators or a shipping line, is assumed by the model, although it may be

expected that in reality port authorities and terminal operators may play a role in

the decision making process as well. In some case, when certain ports are able to

attract sufficient volumes on their own, even a direct service between a hinterland

port and the seaport may be established. In addition, transport demand is assumed

to be deterministic in the proposed planning model. Future research could focus on

how uncertainty regarding transport demand could be taken into account. Reserving

a portion of vessel capacity for unexpected increases in transport demand may be an

opportunity. Similar to the concept of safety stock in inventory theory, the amount

of capacity to be reserved should depend on the variability of transport demand. A

direction for qualitative research may be identified as well. The effect of service fre-

quency on transport demand may be investigated. At the moment, it is not clear how

shippers will react to changes regarding this frequency. Finally, additional numerical

experiments may be performed to analyze whether the model can still be solved ef-

ficiently for larger problem instances (increase in number of ports, vessels, clients or

weeks).



Chapter 4

Optimization of drayage

operations: problem

description and formulation

4.1 Introduction

The previous chapter focuses on container transportation by barge from a major

seaport to intermodal terminals at smaller hinterland ports. Chapters 4 to 7 focus

on drayage operations (Figure 4.1)1,2. These operations relate to the full truckload

container transport activities that take place on a regional scale around intermodal

terminals. They are mostly performed by truck and often constitute a large part of

the total cost of an intermodal transport (Smilowitz, 2006). An overview of the types

of transport in drayage operations is given in Figure 4.2. Drayage operations include

the pre- and end-haulage activities of intermodal transports which involve the trans-

port of loaded containers from intermodal container terminals to final consignees (a)

and from shipping customers to container terminals (b). Additionally, empty con-

tainers are repositioned since a customer is often either a consignee or a shipper but

not both. Shippers request empty containers to be delivered while consignees request

empty containers to be picked up. Container depots, often located at container ter-

minals, may act as source and sink locations for these transports. As a result, empty

containers are transported from container terminals/depots to shippers (c) and from

1Chapters 4 and 5 are based on Braekers et al. (2012b)
2An overview of the symbols used in Chapters 4 to 7 can be found at the beginning of the thesis.
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consignees to container terminals/depots (d). To reduce empty container movements,

empty containers may be transported directly from consignee to shippers (e) as well.

This option is known as a street turn or triangulation (see Section 2.2.2). Finally,

empty container balancing flows between terminals/depots may be needed (f). These

balancing flows may sometimes be performed using modes of mass transportation

(barge, rail), which is considered in the previous chapter.

Figure 4.1: Outline of the thesis

The operational planning of drayage operations is studied. Special attention is

paid to optimizing empty container movements since these are costly non-revenue

generating activities. As discussed in Section 2.4, traditionally a sequential approach
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Figure 4.2: Overview of transports

is used for the operational planning of loaded and empty container movements in

drayage operations. The problem is decomposed into two subproblems, an allocation

and a routing problem. First, an empty container allocation model is used to deter-

mine the optimal repositioning of empty containers based on the locations of demand

and supply in the region. Such an allocation model minimizes the total distance

traveled by empty containers, without taking vehicle routing decisions into account.

Next, a routing model is used to create efficient vehicle routes performing both loaded

and empty container transport requests (Crainic et al., 1993b; Huth and Mattfeld,

2009). The objective is to minimize the number of vehicles used, distance traveled,

traveling time, route duration or a combination of these. Such vehicle routing models

are known to be very complex, especially when time windows are involved (Cordeau

et al., 2007b). To solve problems of realistic size often meta-heuristics are used.

Recently, some efforts are made to integrate the allocation and routing subprob-

lems in drayage operations described above. By using an integrated approach, thus

considering empty container allocation and vehicle routing decisions simultaneously,

drayage costs may be reduced. Since the origin or destination of empty container

transports are not determined in advance, the resulting problem is even more com-

plex. Although several papers have addressed this idea, the advantage of an integrated

over a sequential approach for planning drayage operations, has not been quantified.
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In this thesis both a sequential and an integrated approach are proposed and com-

pared with each other.

This chapter serves as an introductory chapter for the following three chapters.

Related literature is reviewed in Section 4.2. A detailed problem description is given

in Section 4.3. Section 4.4 describes how both solution approaches are applied to the

problem. For both the sequential and integrated approach, the routing problem can

be formulated as an asymmetric multiple vehicle Traveling Salesman Problem with

Time Windows (am-TSPTW).

In Chapter 5, a deterministic annealing meta-heuristic is proposed to solve this

routing problem. A hierarchical objective function which first minimizes the number

of vehicles and second the total distance traveled is used and the advantage of an

integrated approach is quantified. The effect of considering street turns as an option

to reduce empty container movements is analyzed as well. In Chapter 6, alternative

objective functions are considered. First, the trade-off between the number of vehicles

and total distance is analyzed by interpreting the problem as a bi-objective problem

i.e. no priority is given to one of the objectives. In the second part of that chapter, it

is shown how the algorithm presented in Chapter 5 may be adapted to accommodate

the minimization of total route duration. This adaptation allows to benchmark the

quality of the proposed algorithm by comparing it with a recently proposed solution

method on a similar problem. Finally, in Chapter 7 the problem is extended to the

case where travel times depend on the time of the day. A modified version of the

algorithm is presented to solve the extended version of the problem.

4.2 Related literature

The operational planning of loaded and empty container movements in drayage op-

erations is related to two different fields of research. First, the problem is related

to the field of empty container management. Literature on this topic is extensively

reviewed in Chapter 2. Regional empty container allocation models are described in

Section 2.8.1, while papers concerning the integration of empty container allocation

and vehicle routing decisions in drayage operations are discussed in Section 2.8.3.

Second, the problem is related to the field of vehicle routing. Routing problems

in drayage operations can be classified as full truckload pickup and delivery problems

(Erera and Smilowitz, 2008; Srour, 2010). The routing problem of the sequential

approach may be modeled as a deterministic Full Truckload Pickup and Delivery

Problem with Time Windows (FT-PDPTW). It differs from the Vehicle Routing
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Problem with Backhauls and Time Windows (VRPBTW) since empty containers

may be transported directly between customers (street turns). Jula et al. (2005)

and Wang and Regan (2002) show that a FT-PDPTW may be transformed to an

asymmetric multiple vehicle Traveling Salesman Problem with Time Windows (am-

TSPTW) by collapsing each transport request into a single node. Section 4.4.2 shows

how the integrated problem may be formulated as an am-TSPTW as well. In the

following paragraphs, literature on FT-PDPTW and (a)m-TSPTW is discussed.

Gronalt et al. (2003) develop four savings based heuristics for a FT-PDPTW.

Goods are transported between distribution centers or depots. Vehicles are based

at different depots and may perform several routes during the planning period. A

FT-PDPTW with multiple vehicle depots and additional weight constraints in the

context of log truck scheduling is studied by Gronalt and Hirsch (2007). Different

variants of the tabu search meta-heuristic are proposed to solve the problem. A tabu

search heuristic for a FT-PDPTWwith heterogeneous products and vehicles where the

pickup points of goods to be delivered to customers are not predefined is proposed

by Currie and Salhi (2004). The objective is to minimize total costs, including a

fixed cost per vehicle used. Imai et al. (2007) introduce a full truckload pickup and

delivery problem in the context of an intermodal terminal. They propose a Lagrangian

relaxation-based heuristic. Caris and Janssens (2009) extend this problem to a FT-

PDPTW by including time window constraints at customer locations. The problem

is solved by a local search heuristic. In a subsequent work, a deterministic annealing

algorithm is proposed (Caris and Janssens, 2010). The effect of the introduction

of an appointment-based access control system at a port on full truckload drayage

operations with time windows is studied by Namboothiri and Erera (2008). Mes

et al. (2007, 2010) propose an agent-based approach for a dynamic version of the

FT-PDPTW.

For early references on the m-TSPTW, the reader is referred to Desrochers et al.

(1988). More recently, Wang and Regan (2002) use a time window partitioning

method to solve an am-TSPTW. The authors iteratively solve an under- and over-

constrained version of the problem. Jula et al. (2005) present an exact dynamic

programming approach for solving small instances of the am-TSPTW. An insertion

heuristic is proposed to solve large problem instances. Lower bounds on the number

of vehicles for the (a)m-TSPTW are presented by Desrosiers et al. (1988) using La-

grangian relaxation, and by Mitrović-Minić and Krishnamurti (2006) using precedence

graphs.

The Multiple Depot Vehicle Scheduling Problem with TimeWindows (MDVSPTW),

which is equivalent to a FT-PDPTW with multiple vehicle depots, is studied by Min-
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gozzi et al. (1995), Desaulniers et al. (1998) and Hadjar and Soumis (2009). Currently,

problems up to 900 tasks can be solved to optimality. However, since the problem

is applied in the context of urban bus scheduling, time windows are assumed to be

small (maximum 30 minutes) while in our problem time windows up to four hours

are considered.

4.3 Problem description

In this section, the problem under study is described in detail. The problem is to

create efficient vehicle routes performing all loaded and empty container transport

requests in a region during a single day. It is assumed that a single vehicle depot and

one or more container terminals with a container depot are located in the region. Both

the container terminals and the vehicle depot are opened during the whole planning

period P . Empty containers can be stored at each container terminal and sufficient

empty containers are available at each terminal. Balancing flows between terminals

are not considered. A homogeneous fleet of vehicles with a single container capacity is

assumed. All vehicles start and end their route at the vehicle depot. When a vehicle

arrives early at a location, waiting is allowed at no cost. The service time to pickup

and drop off containers is constant and the same for loaded and empty containers.

Loaded container transport requests represent transports from a shipper to a con-

tainer terminal (pickup customer, outbound loaded container) and from a container

terminal to a consignee (delivery customer, inbound loaded container). For each

transport, the terminal to be used is predefined (the closest one is used) so that for

all loaded container transports the origin and destination are known in advance. Hard

time windows are imposed on these transport requests.

For empty container transports, either the origin or the destination is not defined

in advance. A shipper may request an empty container to be delivered before a

specific point in time. The origin of this empty container is irrelevant for the shipper

and is chosen by the decision maker. On the other hand, a consignee will have an

empty container available after unloading an inbound loaded container. This container

becomes available at a certain point in time and should be picked up before the end of

the day. The destination of the empty container is determined by the decision maker.

Empty containers can thus be transported from consignees to a container terminal,

from a container terminal to a shipper or directly from a consignee to a shipper.

Different objective functions could be proposed for this problem. The main goal

of solving the problem is to compare a sequential and integrated planning approach.
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It is expected that using an integrated approach will lead to a reduction in the total

distance traveled and might even lead to a reduction in the number of vehicles neces-

sary to perform all transport requests (Braekers et al., 2009). Therefore a hierarchical

objective function which first minimizes the number of vehicles and second the total

distances traveled will be used. Using a hierarchical objective function instead of a

weighted objective function which minimizes total costs, has the advantage that no

fixed cost per vehicle used and no cost per kilometer traveled need to be determined.

Priority is given to minimizing the number of vehicles used, as is common in vehicle

routing literature (Bräysy and Gendreau, 2005a; Jozefowiez et al., 2008; Gendreau

and Tarantilis, 2010). Total distance is used as the secondary objective instead of

total duration of the vehicle routes for several reasons. Total route duration includes

travel times, container pickup and drop off times and waiting times. On the one hand

travel times are assumed to be proportional to distance, so the effect on travel times of

using an integrated instead of a sequential approach is the same as on total distance.

On the other hand no large effect of using an integrated approach on pickup and drop

off times and waiting times is expected. Furthermore, total distance better reflects the

social interest of reducing the external effects of freight transport. Finally, from the

perspective of the growing advocacy of internalizing external costs of transport, the

objective to minimize total distance will stay a priority for transportation companies.

In Chapter 6 two alternative objective functions will be considered: a bi-objective

function to analyze the trade off between the number of vehicles and total distance

and the objective to minimize route duration in order to compare our algorithm with

an existing method proposed by Zhang et al. (2010).

Problems the closest related to the one described in this section are studied by

Smilowitz (2006) and Zhang et al. (2009, 2010). A detailed description of these

papers can be found in Section 2.8.3. The main difference between our problem and

the one of Smilowitz (2006) is the fact that Smilowitz (2006) limits the number of

feasible allocations by imposing a maximum distance on them. Differences between

the problem of Zhang et al. (2009, 2010) and our problem include:

� multiple vehicle depots are considered,

� container depots are located at vehicle depots rather than at container terminals,

� when a vehicle delivers a loaded container to a consignee it has to wait at this

location until the container is unloaded and can be picked up, while in this

thesis it is assumed that the vehicle may leave for another task and an empty

container that becomes available at the consignee’s location may be picked up
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by any vehicle,

� the objective function (minimize travel times in Zhang et al. (2009) and minimize

route durations in Zhang et al. (2010))

Finally, Smilowitz (2006) and Zhang et al. (2009, 2010) do not make a comparison

between their integrated planning method and a sequential method.

4.4 Problem formulation

The general problem described in the previous section can be defined on a graph

Ggen = (Ngen, Agen) with node setNgen (indices g, h) and arc set Agen = {(g, h)|g, h ∈
Ngen, g ̸= h}. The node set Ngen consists of six different subsets, i.e. Ngen =

NPIC ∪NDEL ∪NS ∪ND ∪NT ∪NV D with:

NPIC : a node for the origin (shipper) of each outbound loaded container that has

to be picked up and transported directly to the closest terminal

NDEL: a node for the destination (consignee) of each inbound loaded container that

has to be delivered from the closest terminal

NS : a node for each empty container supplied by a consignee

ND: a node for each empty container demanded by a shipper

NT : a node for each container terminal (with container depot)

NV D: a node for the vehicle depot

For each node, its location and its time window [ag, bg] are known. An overview of

the values and meaning of these time windows can be found in Table 4.1. For nodes

where a container should be picked up by a vehicle (NPIC ∪ NS), the time window

indicates the time interval in which this pickup should begin. For nodes where a

container should be dropped off (NDEL ∪ ND), the time window indicates the time

interval that this drop off should be finished. For the remaining nodes (NT∪NV D), the

time window indicates the opening time of the terminal/depot (which is the whole

planning period P ). It can be noted that the nodes related to empty containers

supplied (NS) and demanded (ND) have a one-sided time window to facilitate an

efficient planning of empty container movements. Finally, it is assumed that these

time windows allow at least a single feasible solution to the problem.

The distance dgh and travel time tgh between all pairs of nodes are assumed to

be constant and proportional to the Euclidean distance between these nodes. The
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Table 4.1: Overview of time windows

Node set Value Meaning

NPIC [ag, bg] Container pickup should begin

NDEL [ag, bg] Container delivery should be finished

NS [ag, P ] Container pickup should begin

ND [0, bg] Container delivery should be finished

NT [0, P ] Terminal opening time

NV D [0, P ] Depot opening time

service time for picking up or dropping off a container at a node is denoted by lg. The

maximum number of vehicles available is K and M is a very large number.

In the following sections, the sequential and integrated solution approaches are

described in detail. To make this discussion more clear, a small example is shown in

Figure 4.3 to demonstrate how a solution is found by the two solution approaches.

Figure 4.3(a) shows the problem situation. The network consists of a vehicle depot,

two container terminals with an empty container depot, a single loaded container

delivery customer, a single empty container supply location and a single empty con-

tainer demand location. No time windows and a single vehicle are considered in this

example. Parts (b), (c) and (d) of Figure 4.3 are discussed throughout Sections 4.4.1

and 4.4.2.

4.4.1 Sequential approach

When solving the problem sequentially, empty container allocations are determined

before vehicle routes are created. This may lead to a suboptimal solution but reduces

the complexity of the vehicle routing problem. The allocation model is discussed in

Section 4.4.1.1. This model results in a set of empty container transports that need to

be performed. In a second step, the routing problem is solved for loaded and empty

container transports together. This problem is described in Section 4.4.1.2.

4.4.1.1 Empty container allocation problem

Based on known demand and supply locations, the best distribution of empty con-

tainers is determined by an empty container allocation model (Crainic et al., 1993b).

The objective is to minimize the total distance traveled by empty containers.



74 Chapter 4

Figure 4.3: Advantage of integrated approach: example

In this thesis, a static, deterministic, single commodity allocation model which

allows street turns is proposed. This allocation problem can be formulated as a Trans-

portation Problem (TP). The set of origins Norig is composed of the container termi-

nals and locations of the empty containers supplied by consignees (Norig = NT ∪NS).

Each container terminal has a supply supg equal to the total number of empty con-

tainers demanded by shippers in the region. This ensures that all empty containers

can be supplied by a single container terminal if this would be desirable. The supply

supg of all other origins is equal to one. Similarly, the set of destinations Ndest is

composed of the container terminals and the empty containers demanded by shippers

(Ndest = NT ∪ND). Each container terminal has a demand demh equal to the total

number of empty containers supplied by consignees in the region. The demand demh

of all other destinations is equal to one. In case the total number of empty containers

supplied does not equal the number of empty containers demanded, a dummy origin
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or destination is created to balance demand and supply. The set of possible allocations

is Aalloc = {(g, h)|g ∈ Norig, h ∈ Ndest}. The cost of each allocation (g, h) ∈ Aalloc is

denoted by cgh and defined as follows:

cgh =


dgh if ag + lg + tgh + lh ≤ bh ∧ (g /∈ NT ∨ h /∈ NT )

0 g ∈ NT ∧ h ∈ NT

M else

For each feasible allocation, the cost is represented by the distance between the

origin and destination. Terminal-to-terminal allocations have a cost of zero since they

do not represent actual movements of containers. The cost for allocations that are not

feasible because of time window violations is set to a large value M . Integer decision

variables ygh indicate the number of empty containers allocated from origin g ∈ Norig

to destination h ∈ Ndest. The formulation of the problem (P4.1) is as follows:

(P4.1)min
∑

(g,h)∈Aalloc

cghygh (4.1)

Subject to ∑
h:(g,h)∈Aalloc

ygh = supg ∀g ∈ Norig (4.2)

∑
g:(g,h)∈Aalloc

ygh = demh ∀h ∈ Ndest (4.3)

ygh ≥ 0 and integer ∀(g, h) ∈ Aalloc (4.4)

The objective is to minimize the distance traveled by empty containers (4.1).

Constraints (4.2) and (4.3) ensure that supply and demand at each location are met.

Finally, constraint (4.4) defines the integer decision variables.

The transportation problem is solved optimally by the well-known Ford-Fulkerson

algorithm (Ford and Fulkerson, 1956). The optimal allocations (consignee-to-shipper,

consignee-to-terminal and terminal-to-shipper) represent the empty container trans-

ports tasks that need to be performed. These transports now have a fixed start and

end location.

Solving the empty container allocation problem for the example in Figure 4.3 leads

to the optimal (least-distance) solution shown in part (b) of this figure. The empty

container supplied is transported to the container terminal on the right while the

empty container demanded is supplied from the container terminal on the left. An-

other option is to perform a street turn by transporting the empty container supplied
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directly to the empty container demand location, but then the distance traveled by

the empty container would be larger.

4.4.1.2 Routing problem

Once the empty container allocation problem is solved, all transportation tasks to be

performed are fully defined. Loaded containers should be transported from pickup

nodes to the closest terminal and from the closest terminal to delivery nodes. Empty

containers should be transported according to the optimal allocations found by the

allocation problem. Thus, the routing problem can be formulated as a Full Truckload

Pickup and Delivery Problem with Time Windows (FT-PDPTW).

Since vehicles are assumed to have a single container capacity, the origin and

destination of a transport task should be visited immediately after each other by

the same vehicle. Therefore, a transport task may be represented by a single node

and the problem can be formulated as an asymmetric multiple vehicle Traveling

Salesman Problem with Time Windows (am-TSPTW) (Wang and Regan, 2002; Jula

et al., 2005).

The problem is defined on a graph Gseq(Nseq, Aseq). The node set Nseq (indices

i, j) consists of a node for the vehicle depot (index 0) and a node for each (loaded

and empty container) transport task to be performed. Each node i ∈ Nseq has:

� a start location (index g),

� an end location (index h),

� a distance di = dgh

� a duration si = lg + tgh + lh

� a time window [ai, bi] during which a vehicle should arrive at the node in order

to be able to perform the task in time.

The node for the vehicle depot does not represent a task to be performed. The

start and end location are assumed to be the same and hence distance and duration of

this node are equal to zero. The time window is [0, P ]. The time windows of the other

nodes are calculated as shown in Table 4.2. These time windows are then tightened

where possible. For example, the start of the time window of a terminal-to-demand

allocation can be increased from zero to the time needed to reach the terminal from

the vehicle depot.

Parameters dij and tij represent respectively the distance and travel time from the

end location of task i to the start location of task j. The arc set Aseq = {(i, j)|i, j ∈
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Table 4.2: Calculation of time windows [ai, bi]

Task type Time window of Time window of task

Start loc. End loc.

Loaded container pickup [ag, bg] [0, P ] [ag,min(bg, P − lg − tgh − lh)]

Loaded container delivery [0, P ] [ah, bh] [max(0, ah − lg − tgh − lh),

bh − lg − tgh − lh]

Supply-demand allocation [ag, P ] [0, bh] [ag, bh − lg − tgh − lh]

Supply-terminal allocation [ag, P ] [0, P ] [ag, P − lg − tgh − lh]

Terminal-demand allocation [0, P ] [0, bh] [0, bh − lg − tgh − lh]

Nseq, i ̸= j, ai + si + tij ≤ bj} contains links between nodes which are feasible with

respect to time windows. Binary decision variables xij are used to determine whether

any vehicle v ∈ V travels directly from the end location of task i to the start location

of task j. Continuous variables ti represent the point in time at which a vehicle starts

task i. The routing problem (P4.2) is formulated as follows:

(P4.2) lexmin (
∑

i:(0,i)∈Aseq

x0i,
∑

(i,j)∈Aseq

dijxij +
∑

i∈Nseq

di) (4.5)

Subject to ∑
j:(i,j)∈Aseq

xij = 1 ∀i ∈ Nseq\{0} (4.6)

∑
j:(0,j)∈Aseq

x0j ≤ K (4.7)

∑
j:(i,j)∈Aseq

xij =
∑

j:(j,i)∈Aseq

xji ∀i ∈ Nseq (4.8)

ti + si + tij ≤ tj +M(1− xij) ∀(i, j) ∈ Aseq,

j ̸= 0 (4.9)

ti + si + ti0 ≤ P +M(1− xi0) ∀i ∈ Nseq (4.10)

ai ≤ ti ≤ bi ∀i ∈ Nseq (4.11)

ti ≥ 0 ∀i ∈ Nseq (4.12)

xij ∈ {0, 1} ∀(i, j) ∈ Aseq (4.13)
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The notation ’lexmin’ in the objective function (4.5) denotes that a hierarchical or

lexicographic objective function is used (Ehrgott, 2005). The primary objective is to

minimize the number of vehicles used (
∑

i:(0,i)∈Aseq
x0i). The secondary objective is

to minimize total distance traveled, which consists of the distance traveled from each

task to the next (
∑

(i,j)∈Aseq
dijxij) and the distance traveled to perform each task

itself (
∑

i∈Nseq
di). Constraints (4.6), (4.7) and (4.8) are flow constraints. Constraint

(4.9) ensures that a vehicle cannot start a new task before finishing the previous task

and traveling to the new one. Constraint (4.10) ensures that all vehicles return to the

vehicle depot before the end of the planning period. Time windows are represented

by constraint (4.11). Finally, constraints (4.12) and (4.13) make sure that both types

of variables only take on the appropriate values.

Figure 4.3(b) shows that after solving the empty container allocation problem for

the small example, three transport tasks need to be performed: one loaded container

transport and two empty container transports. Using the vehicle routing problem

described above leads to the optimal solution for the sequential approach which is

shown in Figure 4.3(c). First, the vehicle performs the loaded container transport.

Second, it performs the first empty container transport by traveling via the empty

container supply location back to the container terminal at the right. Finally, it

travels to the container terminal at the left to perform the second empty container

transport before returning to the vehicle depot.

4.4.2 Integrated approach

When using an integrated approach, empty container allocations are not made before-

hand but simultaneously with vehicle routing decisions. This means that the origin

(destination) of an empty container demanded by a shipper (supplied by consignee)

is not fixed in advance.

The integrated problem can be formulated by creating a node for the vehicle depot,

for all loaded container transports and for all feasible empty container allocations.

Extra constraints should impose that a single allocation node for each empty container

demanded/supplied is chosen. Such a formulation of the problem can be found in

Braekers et al. (2010). Solving this problem is however problematic since the number

of possible allocations and thus the number of nodes in the network becomes very large

for problems of realistic size. Smilowitz (2006) uses a similar approach by defining

feasible allocations as possible executions of a flexible task. To overcome the problem

of the exponential growth of the network, a heuristic column generation approach is

proposed and the number of feasible allocations is restricted by imposing a maximum
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distance.

Alternatively, the integrated problem can be formulated as an am-TSPTW like

the routing problem for the sequential approach. This is done by introducing an

intermediate stop at a container terminal when traveling between certain types of

nodes (Ileri et al., 2006; Zhang et al., 2009). The node set Nint (indices i, j) is

composed of:

� the vehicle depot (NV D, index 0),

� a node for each loaded container pickup task and for each loaded container

delivery task (NL),

� a node for each empty container demanded (ND),

� a node for each empty container supplied (NS).

A distance di, a duration si and a time window [ai, bi] are assigned to each node.

For the vehicle depot and the nodes representing the loaded container transports,

these values are identical as those for the routing problem from the sequential ap-

proach. For the empty containers supplied and demanded, di and si are equal to zero

and their time windows are equal to those of the original nodes in ND and NS . These

time windows are tightened where possible.

The main difference between the integrated problem and the routing problem of

the sequential problem is that in some cases directly traveling between two nodes is

not feasible. Instead, an intermediate stop at a container terminal is required. This

is the case when traveling:

� from an empty container supply node to the vehicle depot, a loaded container

task or another supply node,

� from the vehicle depot, a loaded container task or an empty container demand

node to another demand node.

In the first case, it is necessary to drop off the empty container which was picked

up at the supply node before the vehicle is able finish its route at the vehicle depot,

transport a loaded container or pickup another empty container. The terminal which

is used to drop off the empty container is chosen on a lowest distance basis. Similarly,

when leaving the vehicle depot, finishing a loaded container task or dropping of an

empty container at a demand node, an empty container needs to be picked up at a

container terminal before traveling to an empty container demand node.
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The calculation of the distance d̂ij of traveling between two nodes i ∈ Nint and

j ∈ Nint is shown in Table 4.3 where parameter dij represents the Euclidean distance

between (the end location of) node i and (the start location of) node j. Travel

times t̂ij between two nodes are calculated similarly as the distances, but augmented

with the container pickup and drop off time when making an intermediate stop at a

container terminal or traveling directly from an empty container supply to an empty

container demand location. A consequence of introducing these intermediate stops is

that the triangle inequality does not hold anymore. For some combinations of nodes,

inserting a node i′ between nodes i and j might lead to a decrease in distance and

travel time (d̂ij > d̂ii′ + d̂i′j).

Table 4.3: Calculation of distance coefficients d̂ij

j ∈ NV D ∪NL j ∈ NS j ∈ ND

i ∈ NV D ∪NL dij dij min
r∈NT

(dir + drj)

i ∈ NS min
r∈NT

(dir + drj) min
r∈NT

(dir + drj) dij

i ∈ ND dij dij min
r∈NT

(dir + drj)

The arc set Aint = {(i, j)|i, j ∈ Nint, i ̸= j, ai + si + t̂ij ≤ bj} is only composed of

feasible links between nodes. The meaning of the other variables (K,M, xij , ti) and

the formulation of the problem are the same as for the sequential approach, except

that node set Nint and arc set Aint are used and variables dij and tij are replaced by

respectively d̂ij and t̂ij .

Although the formulation is the same, the integrated problem is harder to solve

than the routing problem of the sequential approach. The reason is twofold. First,

the number of nodes slightly increases. Second, the nodes representing the empty

container demand and supply locations have much wider time windows than the

nodes representing empty container transport requests in the sequential approach.

When the integrated approach is applied to the small example in Figure 4.3(a), the

optimal vehicle route is determined without first deciding on the origin and destination

of the empty container demanded respectively supplied. Figure 4.3(d) shows the

optimal solution. Clearly the total distance traveled is less than for the solution of

the sequential approach (shown in Figure 4.3(c)). The reason for this lower distance is

that another empty container allocation is chosen. In this case, an empty container is

transported directly from the empty container supply location to the empty container
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demand location. Although the distance traveled by empty containers is larger for

the integrated solution (since the optimal container allocation is not chosen), total

distance traveled by the vehicle is smaller than for the solution of the sequential

approach.

4.5 Conclusions

In this chapter, empty container management in the context of drayage operations is

studied. The focus is on the operational planning level. A detailed problem descrip-

tion of planning drayage operations is presented. The objective is to find an efficient

planning of loaded and empty containers transports within the service area of one or

more container terminals. Two solution approaches are presented: a sequential and

an integrated approach. With a sequential approach, empty container allocations are

made in a first step while vehicle routes are created in a second step. This may lead to

sub-optimal solutions. With an integrated approach, both types of decisions are taken

simultaneously. It is shown that the routing problem of both solution approaches can

be formulated as an asymmetric multiple vehicle Traveling Salesman Problem with

Time Windows (am-TSPTW). Since the formulation is the same, a single solution

method may be developed to solve the drayage problem according to both solution

approaches. To solve these problems within a reasonable time frame, a meta-heuristic

approach is proposed in Chapter 5.
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Chapter 5

Optimization of drayage

operations: deterministic

annealing meta-heuristic

5.1 Introduction

In the previous chapter, an operational planning problem in drayage operations is

presented. Two solution approaches, a sequential and integrated, are proposed. For

both approaches, the routing problem can be formulated as an am-TSPTW. Solving

problem instances of realistic size exactly seems not feasible. In this chapter1, a

Deterministic Annealing meta-heuristic (DA) is proposed to solve the problem (Figure

5.1). Meta-heuristics provide a more profound search of the objective space than

traditional heuristics and are less likely to get stuck in a local optimum. For detailed

overviews of meta-heuristics for solving vehicle routing problems, the reader is referred

to Cordeau et al. (2007a,b, 2008) and Gendreau et al. (2008).

Deterministic annealing, also referred to as threshold accepting, is a variant on

the well-known simulated annealing meta-heuristic. It was first introduced by Dueck

and Scheuer (1990) and can be categorized as a meta-heuristic based on local search

(Cordeau et al., 2007b). In each iteration, a neighboring solution x′ of current solution

x is generated. If the objective value of the new solution is better than that of the

current solution, x′ is automatically accepted and becomes the new current solution.

1This and the previous chapter are based on Braekers et al. (2012b).

83
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Figure 5.1: Outline of the thesis

Otherwise, solution x′ is accepted as long as the worsening in the objective value ∆ =

f(x′)− f(x) is smaller than a deterministic threshold value T . This threshold value

T is gradually lowered during the search until only solutions improving the objective

value are accepted (Caris and Janssens, 2010). Recently, deterministic annealing has

been successfully implemented for a number of vehicle routing problems (Bräysy et al.,

2003, 2008a; Tarantilis et al., 2004; Nikolakopoulos and Sarimveis, 2007; Caris and

Janssens, 2010).

The chapter is organized as follows. In Section 5.2, the deterministic annealing

meta-heuristic is presented in detail. For both solution approaches a single and a two-
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phase variant are proposed. Next, a way to improve the meta-heuristic by introducing

elements of tabu search is described (Section 5.3). An experimental design to test the

algorithms is set up in Section 5.4. The calculation of lower bounds and parameter

testing are discussed in Sections 5.5 and 5.6. In Section 5.7, results of the algorithms

are presented. Finally, conclusions are drawn in Section 5.8.

5.2 Deterministic annealing algorithm

In this section, a deterministic annealing meta-heuristic is proposed for solving the

routing problems discussed in Sections 4.4.1.2 and 4.4.2. To simplify notation, we

will refer to a general problem for which the network consists of a vehicle depot and

n nodes to be visited exactly once. Each of these nodes has a distance di, duration

si and a time window [ai, bi] associated with it. The problem is defined on a graph

G = (N,A) with parameters dij and tij indicating the distance and travel time

between two nodes i ∈ N and j ∈ N . A solution to this problem is represented by

a decision vector x = (x01, ..., xnn−1, t0, ..., tn) and its corresponding objective vector

f(x).

In Section 5.2.1, the insertion heuristic used to find a feasible starting solution

for the algorithm is described. The local search operators and the deterministic

annealing scheme are respectively introduced in Sections 5.2.2 and 5.2.3. Finally, the

implementation of the algorithm on the problem under study is discussed in Section

5.2.4.

5.2.1 Insertion heuristic

An initial solution for the problem is obtained by a parallel insertion heuristic. In a

first step, a simple lower bound on the number of vehicles is calculated by equation

(5.1). A lower bound on the total time needed to perform all tasks is found by taking

the sum over all nodes of the duration of the task at the node and the minimal time

needed to travel to another node. This total time is then divided by the maximal

time a vehicle can be used (time window width of the vehicle depot).

lbv =

[∑
i∈N

(si + min
j:(i,j)∈A

tij)

]
/(b0 − a0) (5.1)

The parallel insertion heuristic works as follows. A solution is created with lbv

empty routes. Next, a node is selected randomly and inserted in the best possible
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position (least increase in distance). This operation is repeated until all nodes are

inserted. If a node is selected but no feasible insertion in one of the existing routes

can be found, an additional route is created. The procedure is iterated a thousand

times to obtain a good starting solution.

5.2.2 Local search operators

During each iteration of the deterministic annealing algorithm, several local search

operators are used to find neighboring solutions of the current solution. A first im-

provement strategy is used for all operators.

Four operators try to reduce the distance traveled. One of these operators is an

intra-route operator which changes the sequence of three succeeding nodes in a route.

These nodes can be arranged in six different ways and each ordering is considered.

Rearranging more than three nodes is not considered since experimental results have

indicated that this offers only limited improvements while it results in a considerable

increase in computation time2. An example of the operator can be found in Figure

5.2. In each iteration, the intra-route operator is used on all combinations of three

succeeding nodes of a single randomly selected route.

Figure 5.2: Example of the intra-route operator

The three other operators affecting distance are inter-route operators. A relocate

operator is used to remove a node from its current route and insert it in another route

(Figure 5.3).

The 2-Opt* operator (Potvin and Rousseau, 1995) removes an arc from two routes

and recombines the resulting parts, that is: the first part of route one with the second

part of route two and vice versa (Figure 5.4).

An exchange operator is used to swap a number of nodes between two routes.

Several variations of this operator are considered, based on the number of nodes

that are swapped: exchange(1,1), exchange(2,1), exchange(2,2), exchange(3,2) and

exchange(3,3). An example of the exchange(1,1) operator is shown in Figure 5.5. In

each iteration of the algorithm, one of these exchange operators is randomly selected

2For the test instances discussed in Section 5.4, rearranging four nodes instead of three reduces

the relative gap with the lower bound on total distance only from 4.81% to 4.79% while average

computation time increases from 5.02 to 6.25 seconds (for algorithm 2-DATS).
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to be used. For the exchange(1,1) operator the insertion position of a node can also

be one place before or after the removal position of the other node. When two or three

nodes from a route are swapped to another route, the reverse insertion of these nodes

is considered as well. For each inter-route operator, one route is selected randomly

and all combinations of nodes or arcs of this route with those of all other routes are

considered in a random order.

Figure 5.3: Example of the relocate operator

Figure 5.4: Example of the 2-Opt* operator

Figure 5.5: Example of the exchange(1,1) operator

Finally, two operators try to reduce the number of vehicles by reinserting all nodes

of respectively one or several routes into the other routes. The first operator tries

to insert all nodes of a randomly selected route into the other routes. The second

operator tries to insert all nodes of the p shortest routes (in terms of the number of

nodes) into all other routes and p − 1 empty routes. The parameter p is defined as

a percentage of the number of routes in the solution. The order in which the nodes

are reinserted depends on a simple measure of difficulty similar to the one proposed

by Bräysy et al. (2008a). This measure favors nodes which have a large duration (si)

and a small time window (bi − ai) to be inserted first.

To ensure an efficient implementation of the local search operators, the earliest eti

and latest lti arrival time at each node are maintained during the search. Consider
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for example the evaluation of a 2-Opt* -move between links (i, i+ 1) and (j, j + 1) of

two different routes. First it is verified whether the new links (i, j + 1) and (j, i+ 1)

are part of the set of feasible links. Next, it is checked whether the move is feasible

and whether the effect on the objective value is acceptable. Since the latter can be

performed the fastest, this is done first. In this case, there is no effect on the number

of vehicles when assuming (i ̸= 0 or j ̸= 0) and (i+1 ̸= 0 or j+1 ̸= 0). The effect on

total distance is ∆d = dij+1+dji+1−dii+1−djj+1. Only when the move is acceptable

(∆d < T ), a feasibility check should be performed. The move is feasible when the

following inequalities are valid:

eti + si + tij+1 ≤ ltj+1 (5.2)

etj + sj + tji+1 ≤ lti+1 (5.3)

Finally, when the move is accepted, the earliest and latest arrival times of each node

are updated.

5.2.3 Deterministic annealing scheme

The proposed deterministic annealing scheme is based on the one in Bräysy et al.

(2008a) and Caris and Janssens (2010), as presented in Algorithm 1. The current

best solution xb is set to the best solution found by the insertion heuristic and the

threshold value T is set to its maximum value Tmax. The deterministic annealing

algorithm is iterated nit times. At each iteration, all local search operators are used

in a random order. The acceptance rule is as follows. New solutions with a lower

number of vehicles as the current solution are always accepted. New solutions with

the same number of vehicles and total distance lower than the distance of the current

solution plus the threshold value T are accepted as well. If a solution is better than

the best solution found so far, this solution is set as best solution. When no new best

solution has been found, the threshold value T is reduced by the threshold reduction

parameter ∆T . Whenever T becomes negative, it is reset to r×Tmax, with r a random

number between zero and one. In case T becomes negative and no improvement has

been found for nimp iterations, the search is restarted from the best solution.

5.2.4 Implementation

In this section, the implementation of the deterministic annealing algorithm is dis-

cussed. For both the sequential and integrated approach a single and a two-phase

variant of deterministic annealing algorithm are presented. An overview of the struc-

ture of these variants can be found in Figure 5.1.
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Algorithm 1 Implementation of the deterministic annealing algorithm

T = Tmax, ilast = 0 and x = xb = best solution of the insertion heuristic

for i = 1→ nit do

for j = 1→ m do

Apply local search operator j on x and accept or reject new solution x′

if x′ is accepted then

x← x′

if f(x) < f(xb) then

xb ← x

ilast ← 0

end if

end if

end for

if ilast > 0 then

ilast ← ilast + 1

T ← T −∆T

if T < 0 then

T ← r × Tmax

if ilast > nimp then

x← xb

ilast ← 0

end if

end if

end if

end for

5.2.4.1 Single phase algorithms

The implementation of the single phase algorithms is straightforward. For the se-

quential problem, first the optimal empty container allocations are determined by

solving the transportation problem (TP). Second, an initial solution is found by the

insertion heuristic. Finally, this solution is improved by the deterministic annealing

algorithm (DA) for a predefined number of iterations. All local search operators are

used during the algorithm which means that the number of vehicles and total distance

are minimized simultaneously.

For the integrated problem, the implementation is similar: the insertion heuristic

is used to find an initial solution and next the number of vehicles and total distance
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Table 5.1: Structure of algorithms

Sequential Integrated

Single - TP: optimal allocations - Insertion heuristic

phase - Insertion heuristic

- DA: minimize vehicles + distance - DA: minimize vehicles + distance

- TP: optimal allocations - TP: optimal allocations

- Insertion heuristic - Insertion heuristic

Two-

phase - DA: minimize vehicles -


DA: minimize vehicles (50%)

Relax optimal allocations

DA: minimize vehicles (50%)

- DA: minimize distance - DA: minimize distance

are minimized by the deterministic annealing algorithm.

5.2.4.2 Two-phase algorithms

As pointed out by Homberger and Gehring (2005) and Bent and Van Hentenryck

(2006), the simultaneous reduction of the number of vehicles and total distance trav-

eled in vehicle routing problems by a meta-heuristic controlling a neighborhood search,

may lead to an important shortcoming. The objective function often drives the search

towards solutions with a small distance. This complicates reaching solutions with a

low number of vehicles but higher distance, i.e. the search is mainly guided by the

secondary objective. To overcome this shortcoming, a two-phase solution method

may be used for which the number of vehicles is minimized during the first phase and

total distance is minimized during the second phase. According to Nagata and Bräysy

(2009) most of the recent and best heuristics use such a two-phase method. Examples

can be found in Bent and Van Hentenryck (2004, 2006), Bräysy et al. (2004) and

Homberger and Gehring (2005). Bent and Van Hentenryck (2004, 2006) use simu-

lated annealing during the first phase and Large Neighborhood Search (LNS) during
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the second phase for respectively the vehicle routing problem with time windows and

the pickup and delivery problem with time windows. Bräysy et al. (2004) propose

a new operator, similar to ejection chains, to reduce the number of routes during

the first phase of their local search algorithm for the vehicle routing problem with

time windows. Another two-phase solution method for the vehicle routing problem

with time windows is presented by Homberger and Gehring (2005). The first phase

uses a (µ, λ)-evolution strategy. A population of µ solutions is created and in each

iteration λ descendants are generated and evaluated. A tabu search algorithm is used

during the second phase. Since these two-phase methods provide very good results, a

two-phase solution method for our problem is proposed as well. During both phases

the deterministic annealing meta-heuristic is used.

First phase: reduce the number of vehicles Instead of using objective function

(4.5), a specific hierarchical objective function presented by Bent and Van Hentenryck

(2006) is used during the first phase of the algorithm. This objective function (5.4)

guides the search towards solutions with a small number of vehicles, while partially

ignoring the secondary objective to reduce total distance. Parameter zv represents

the number of nodes visited by vehicle v ∈ V .

lexmin (
∑
i∈N

x0i, −
∑
v∈V

z2v ,
∑

(i,j)∈A

dijxij +
∑
i∈N

di) (5.4)

The objective function (5.4) consists of three hierarchically structured objectives. The

primary objective is to minimize the number of vehicles used while the secondary

objective is to maximize the sum of the squares of the number of nodes in each

route. Finally, minimizing total distance is the third objective. The purpose of the

second objective is to favor solutions with an unbalanced distribution of nodes over

the vehicles over solutions with an even distribution of nodes, i.e. a solution with

a few long and a few short routes is preferred over a solution for which all routes

have a length close to the average. The idea behind this objective is to remove nodes

from shorter routes and insert them into longer routes, thereby gradually reducing

the number of vehicles (Bent and Van Hentenryck, 2006).

During each iteration of the deterministic annealing algorithm, all six types of local

search operators are applied in a random order. The two route reducing operators have

an effect on the primary objective, while the relocate, 2-Opt*, exchange(2,1) and ex-

change(3,2) operators affect the secondary objective. The intra-route, exchange(1,1),

exchange(2,2) and exchange(3,3) operators only have an effect on the third objective

and are mainly used to diversify the search. During this phase, the acceptance rule of
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a neighboring solution differs from the general rule described in Section 5.2.3. A new

solution is accepted when it is better than the current solution according to objective

function (5.4) or when it has the same number of vehicles and the worsening of the

second objective value is smaller than the threshold value T .

The implementation of the first phase of the sequential algorithm is straightfor-

ward: the initial solution found by the insertion heuristic is improved by the deter-

ministic annealing algorithm for a fixed number of iterations. The implementation for

the integrated algorithm is more complex. The insertion heuristic and first phase of

the algorithm are not directly applied on the integrated problem. Instead, an initial

solution is found in the same way as for the sequential problem (by first determining

the optimal empty container allocations by the transportation problem) and during

half the number of iterations of the first phase, the number of vehicles is reduced

while keeping the empty container allocations fixed. Next, the best solution found so

far is transformed to a solution for the integrated problem by relaxing the optimal

allocations. During the second half the number of iterations of the first phase, the

number of vehicles is reduced further.

Second phase: reduce total distance During the second phase, the best solution

found during the first phase is further improved with respect to total distance. The

original objective function (4.5) is used. The two route reducing operators are not

used since reducing the number of vehicles is not considered anymore.

5.3 Combination with tabu search

In this section, the deterministic annealing algorithm (DA) described in the previous

section is improved by introducing elements of tabu search. Tabu search (TS) is

a well-known meta-heuristic introduced by Glover (1986) and formalized in Glover

(1989, 1990). Generally, a tabu search method works as follows. In each iteration, it

finds a set of feasible local search moves in the neighborhood of the current solution

and selects the best among these moves. Since the selected local search move does

not necessarily improve the objective function, cycling between solutions might occur.

The basic idea of tabu search is to prevent cycling by keeping information on recently

visited solutions in memory and forbidding local search moves that would result in

a solution visited recently. Detailed surveys about the use of tabu search for solving

vehicle routing problems can be found in Bräysy and Gendreau (2002), Toth and Vigo

(2002) and Cordeau and Laporte (2005).
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In the algorithm presented in the previous section, local search moves that worsen

the objective value might be accepted as well and hence a risk of cycling between

solutions exists. This risk is already reduced in several ways. First, local search

operators are applied in a random order, each operator starts its search at a random

node/arc in a random route and a first improvement strategy is followed. Second,

if no global best solution has been found in an iteration, the threshold value T is

decreased, thereby changing the set of acceptable moves in the next iteration. Still, a

risk of cycling remains, especially when the set of feasible and acceptable local search

moves is limited. Therefore, it is proposed to use a simple tabu search method in

combination with the deterministic annealing algorithm.

Although recently there has been a growing interest in hybrid algorithms which

combine several meta-heuristic methods (Blum et al., 2011), to the author’s knowl-

edge only two papers deal with the combination of deterministic annealing and tabu

search. Chao (2002) presents a tabu search method for the truck and trailer rout-

ing problem. The author incorporates the concept of deterministic annealing in a

tabu search algorithm by forbidding moves that would deteriorate the objective value

more than an adaptive threshold value. Bräysy et al. (2008b) develop a determinis-

tic annealing algorithm for the fleet size and mix vehicle routing problem with time

windows. The authors propose to include a simple tabu search method to prevent

cycling. Arcs that are introduced in a solution and improve the objective function

are forced to be kept in the solution for a given number of iterations.

In this thesis, another method which combines deterministic annealing with some

elements of tabu search is proposed. The idea is that when an arc is removed from a

solution, it is forbidden to re-enter the solution for a given number of iterations. This

will prevent the search from returning to a previously visited solution. No aspiration

criterion is implemented which means that an arc with tabu status can never enter

the solution. This offers the advantage that no feasibility checks and evaluation of

local search moves have to be performed when one of the involved links has the tabu

status. The combination of deterministic annealing with this tabu search method is

considered for both the single and two phase algorithm variants discussed in Section

5.2.4. For the single phase algorithms, the tabu search method is implemented for

all distance-reducing operators (intra-route, relocate, 2-Opt*, exchange). For the two-

phase algorithms, the tabu search method is only implemented during the second

solution phase. During the first solution phase, where the number of vehicles is

minimized, the method is not implemented. The secondary objective during this first

phase favors an uneven distribution of the number of nodes over the routes. Such a

distribution of nodes is obtained by gradually inserting nodes of routes which become
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shorter into routes which become longer. This procedure may require some links to

be removed and inserted repeatedly and hence cycling is not forbidden. As a result,

four variants of the deterministic annealing algorithm for both the sequential and

integrated solution approach are considered:

� a single phase deterministic annealing algorithm: 1-DA

� a two-phase deterministic annealing algorithm: 2-DA

� a single phase deterministic annealing algorithm combined with tabu search

elements: 1-DATS

� a two phase deterministic annealing algorithm combined with tabu search ele-

ments: 2-DATS

5.4 Experimental design

The robustness of the proposed algorithms is tested by setting up a 24 factorial design

(Law, 2007). Four problem characteristics are identified. For each characteristic a

high (+) and low (-) value is determined. The time window width for loaded containers

(F1) is a random number between 60 and 120 minutes (-) or between 120 and 240

minutes (+). The number of container terminals (F2) is one (-) or three (+). For

each instance the number of nodes (F3) is 100 (-) or 200 (+). These nodes exist

of an even amount of loaded container delivery locations, loaded container pickup

locations, empty container supply locations and empty container demand locations.

Finally, the (X,Y)-coordinates of all nodes (F4) are randomly chosen between 0 and

25 kilometers (-) or between 0 and 50 kilometers (+) on both axes. This results in 16

problem classes as shown in Table 5.2. For each problem class three random problem

instances are generated, resulting in 48 problem instances. Besides, for parameter

testing purposes an additional test instance is generated for each problem class.

It is assumed that a single vehicle depot is located in the center of the square

region and the location of the container terminals is the same for each instance. The

planning period equals eight hours. Service time for picking up or dropping off a

container is ten minutes.

5.5 Lower bounds

In order to evaluate the performance of the proposed meta-heuristic, lower bounds on

the number of vehicles and total distance are calculated. A time window partitioning
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Table 5.2: Overview of problem classes

Class F1 F2 F3 F4 Class F1 F2 F3 F4

1 - - - - 9 - - - +

2 + - - - 10 + - - +

3 - + - - 11 - + - +

4 + + - - 12 + + - +

5 - - + - 13 - - + +

6 + - + - 14 + - + +

7 - + + - 15 - + + +

8 + + + - 16 + + + +

or time window discretization method is used for this purpose. This method has been

proven effective in the past. A first time partitioning method for the am-TSPTW

was introduced by Wang and Regan (2002). The authors propose a method to both

to solve their problem and to calculate lower bounds by iteratively solving an over-

and underconstrained version of the model. Zhang et al. (2010) improve this method

by immediately selecting a good partitioning width and thereby avoiding the need to

solve both models several times. They apply the method to their am-TSPTW which

is very similar to our problem as discussed in Section 4.3. Preliminary results on

our instances have shown that solving the problem discussed in the previous chapter

for realistic sizes by a time window partitioning method does not offer good results.

However, the method can be used to find strong lower bounds.

A time window partitioning formulation of our problem with node set ω (indices

v, w) and arc set Ω is created as follows. The time window of each node i ∈ N\{0}
is discretized into smaller parts. For each part, a subnode v ∈ ω is created with time

window [av, bv]. The vehicle depot is still represented by a single node (v = 0). The

fact that v is a subnode of original node i is denoted by δ(v) = i. The distance and

duration of the task to be performed at subnode v ∈ ω are equal to the values of its

original node i: dv = dδ(v) and sv = sδ(v). Distance and travel times between two

subnodes v, w ∈ ω are the same as the values between the original nodes i, j ∈ N as

well: dvw = dδ(v)δ(w) and tvw = tδ(v)δ(w).

No links are defined between two subnodes of the same node, i.e. Ω = {(v, w)|v, w ∈
ω, δ(v) ̸= δ(w), av + sv + tvw ≤ bw}. Binary flow variables xij for feasible links
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(i, j) ∈ A between nodes are replaced by binary flow variables xvw ∈ Ω for feasible

links between subnodes. Continuous variables tv indicate the moment in time that a

subnode is visited by a vehicle. The formulation of the problem (P5.1) is as follows:

(P5.1) lexmin (
∑

v:(0,v)∈Ω

x0v,
∑

(v,w)∈Ω

dvwxvw +
∑
i∈N

di) (5.5)

Subject to ∑
(v,w)∈Ω
δ(v)=i

xvw = 1 ∀i ∈ N\{0} (5.6)

∑
w:(0,w)∈Ω

x0w ≤ K (5.7)

∑
w:(w,v)∈Ω

xwv =
∑

w:(v,w)∈Ω

xvw ∀v ∈ ω (5.8)

tv + sv + tvw ≤ tw +M(1− xvw) ∀(v, w) ∈ Ω,

w ̸= 0 (5.9)

tv + sv + tv0 ≤ P +M(1− xv0) ∀v ∈ ω (5.10)

av ≤ tv ≤ bv ∀v ∈ ω (5.11)

tv ≥ 0 ∀v ∈ ω (5.12)

xvw ∈ {0, 1} ∀(v, w) ∈ Ω (5.13)

The objective function (5.5) still minimizes first the number of vehicles used and then

the total distance traveled. Constraint (5.6) ensures that exactly one subnode of each

node is visited while constraint (5.7) controls the maximum number of vehicles. A

vehicle must enter and leave the same subnode (5.8) of an original node. Constraints

(5.9), (5.10) and (5.11) ensure that time windows are respected and no cycles occur.

Finally, constraints (5.12) and (5.13) determine the domain of the decision variables.

The above formulation is still valid for the original problem. To obtain a lower

bound, constraints (5.9), (5.10), (5.11) and (5.12) are removed from problem (P5.1).

This problem is referred to as problem (P5.2). By removing these constraints, all links

(v, w) ∈ Ω are assumed to be feasible, regardless of the time that node v is visited.

This may result in cycles and infeasibilities regarding time windows. Solutions to

problem (P5.2) are not necessarily feasible to the original problem, but the reverse is

true and therefore problem (P5.2) represents a lower bound on the original problem.

The strength of this lower bound will depend on the width of the time windows of the

subnodes. The smaller the partitioning width, the better the lower bound will be.

Both Wang and Regan (2002) and Zhang et al. (2010) use this type of binary
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integer programming (BIP) problem to find a lower bound on their problem. Here,

two improvements are proposed. First, the set of links in the network is drastically

reduced as follows. From each subnode, at most one link is allowed to a subnode

of another original node. This is the feasible link to the subnode with the earliest

time window. For example, consider two original nodes i and j with each three

subnodes, respectively v1, v2, v3 and w1, w2, w3. Assume that link (v1, w1) is feasible

i.e. av1 + si + tij ≤ bw1
. The links (v1, w2) and (v1, w3) will be feasible as well, since

bw1 < bw2 < bw3 . However, links (v1, w2) and (v1, w3) are not added to the network

because a feasible solution which uses one of these links can easily be transformed

to a feasible solution which uses link (v1, w1). Second, instead of solving the BIP

problem, the LP relaxation is solved. The advantage is that problems with much

larger networks (i.e. smaller partitioning width) can be solved within a comparable

amount of computation time. This results in a better lower bound.

Since two objectives are considered in this chapter, a lower bound on both ob-

jectives is calculated using the time window partitioning method. To obtain a lower

bound on the number of vehicles (LBv), problem (P5.3) is solved.

(P5.3)min
∑

(v,w)∈Ω

(tvw + waitvw)xvw +
∑
i∈N

si (5.14)

Subject to ∑
(v,w)∈Ω
δ(v)=i

xvw = 1 ∀i ∈ N\{0} (5.15)

∑
w:(0,w)∈Ω

x0w ≤ K (5.16)

∑
w:(w,v)∈Ω

xwv =
∑

w:(v,w)∈Ω

xvw ∀v ∈ ω (5.17)

0 ≤ xvw ≤ 1 ∀(v, w) ∈ Ω (5.18)

The objective function (5.14) minimizes the sum of travel times, service times and

unavoidable (or necessary) waiting times. The unavoidable waiting time waitvw for

a link (v, w) ∈ Ω is calculated as follows: waitvw = max(0, aw − bv − sv − tvw). The

objective value is itself a lower bound on the total time needed to perform all tasks

(there might be additional waiting times) and is then divided by the length of the

planning period P to find a lower bound on the number of vehicles (Koo et al., 2004).

For example, when the minimal time needed to perform all tasks is at least 95 hours

and the planning period is 10 hours, at least 10 vehicles are required.

Lower bounds on total distance are calculated for each number of vehicles. This
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allows to compare each solution with the lower bound on distance for the correspond-

ing number of vehicles. A lower bound on total distance when k vehicles are used

(LBd(k)) is found by solving problem (P5.4). A general lower bound on total distance

(LBd), independent of the number of vehicles, can be found by removing constraint

(5.20) from this problem.

(P5.4)min
∑

(v,w)∈Ω

dvwxvw +
∑
i∈N

di (5.19)

Subject to

(5.6) to (5.8)∑
v:(0,v)∈Ω

x0v = k (5.20)

0 ≤ xvw ≤ 1 ∀(v, w) ∈ Ω (5.21)

To evaluate the quality of the lower bounds obtained by the proposed time window

partitioning method, results are compared with lower bounds calculated by two simple

methods. The first method is to solve the LP relaxation of the original formulation

of the problem. The second method is to slightly relax the Subtour Elimination

Constraints (SEC) of the original formulation by replacing constraints (4.9) and (4.10)

by constraints (5.22) and (5.23).

ai + si + tij ≤ tj +M(1− xij) ∀(i, j) ∈ A, j ̸= 0 (5.22)

ti + si + tij ≤ bj +M(1− xij) ∀(i, j) ∈ A (5.23)

In Table 5.3, the three methods for calculating general lower bounds on total

distance (LBd) are compared for the integrated problem for eight different problem

instances. For each method the corresponding lower bound and its computation

time are shown. The partitioning width for the LP relaxation of the time window

partitioning method ranges from three to fifteen minutes, depending on the problem

class, and is chosen to ensure that the problem can be solved within five minutes. The

partitioning width for the BIP model is chosen in such a way that the computation

time is about the same as for the LP relaxation. All lower bounds are computed in

AIMMS using the CPLEX 12.0 solver. The two simple methods result in a rather weak

lower bound. The time window partitioning method offers stronger lower bounds.

Although computation times are much larger than for the relaxations of the original

formulation, they are still acceptable. When comparing the BIP and LP relaxation

of the time window partitioning method, it is clear that the LP relaxation offers on

average the best results. Therefore, the LP relaxation of the time window partitioning

method will be used to calculate lower bounds.
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Table 5.3: Analysis of lower bounds

Class LP relax. relax SEC TW partitioning

BIP LP relax.

LBd T LBd T LBd T LBd T

1.1 918 1 940 2 993 243 990 230

4.1 595 1 601 2 646 180 664 171

6.1 1524 1 1541 20 1571 294 1585 219

7.1 1153 1 1192 41 1273 229 1303 254

10.1 1806 1 1824 3 1893 123 1898 129

11.1 1435 1 1494 2 1565 157 1563 113

13.1 2908 1 2961 28 3169 493 3187 254

16.1 2329 1 2373 25 2486 175 2576 189

Finally, it should be noted that separate lower bounds are calculated for the se-

quential and integrated problem and that the lower bounds on the sequential problem

are tighter than those on the integrated problem. The reason is that the average time

window width is smaller for the sequential problem because the one-sided time win-

dows of empty container supply and demand nodes are combined into a two-sided time

window for allocations representing a street turn (see Section 4.4.1.2). Therefore a

smaller partitioning width for the sequential approach is chosen without increasing

computation time. For the sequential problem, partitioning width ranges from two

to ten minutes, depending on the problem class.

5.6 Parameter testing

Several parameters are used in the deterministic annealing scheme which is discussed

in Section 5.2.3. These parameters are:

� nit: number of iterations,

� Tmax: maximum threshold value,

� ∆T : threshold reduction parameter,

� nimp: number of iterations without new best solution after which the search is

restarted.
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To optimize results, good parameter values need to be determined. Since the deter-

ministic annealing scheme is implemented in several ways as discussed in 5.2.4, several

values are defined for parameters Tmax, ∆T and nimp. Parameters are tested on a

set of 16 test instances, one per problem class defined in Section 5.4.

First, the set of parameter values to be used in the single phase algorithms is

determined. The following initial values are considered: nit = 100000, Tmax = 6,

∆T = 0.003 and nimp equal to 500 times the number of vehicles in the initial solution.

A sensitivity analysis is performed on these values. The sensitivity analysis on the

maximum threshold value Tmax is shown in Figure 5.6. On the horizontal axis, the

different values of Tmax are shown while the vertical axis represents the average gap

between the total distance of a solution and its lower bound (LBd(k)). Results for

both the sequential and integrated approach are presented. Gaps for the sequential

approach are smaller than for the integrated approach since different and tighter lower

bounds are used as discussed in the previous section. It is assumed that the value

of Tmax is related to the distances in the network under consideration. Therefore, a

distinction is made between problems defined on a small region (25km2) and problems

defined on a large region (50km2). The best solutions are found with Tmax equal to

four kilometers for problems defined on a small region and with Tmax equal to eight

kilometers for problems defined on a large region.

Instead of explicitly distinguishing between small and large regions, the value for

∆T is defined as a fraction of Tmax i.e. ∆T = Tmax/q with q = 2000 for the initial

values. A sensitivity analysis on the value of q is presented in Figure 5.7. The figure

shows that the value of q has only a small impact on solution quality. For both

solution approaches, parameter ∆T is fixed at Tmax/2500 since this offers on average

the best results. The number of iterations without finding a new best solution after

which the search is restarted nimp has little effect on the solution quality as well. This

parameter is kept at 500 times the number of vehicles in the initial solution.

The number of iterations nit to be performed is analyzed in Figures 5.8 and 5.9.

Figure 5.8 shows the average number of reductions in the number of vehicles found

per step of 5000 iterations for both solution approaches. It is clear that reductions

in the number of vehicles are almost all found during the first 40000 iterations.

Similarly, Figure 5.9 shows the average reduction in total distance traveled per 5000

iterations. Performing 50000 iterations is assumed to be sufficient, since thereafter

improvements are rather small.

Second, parameter values for the two-phase algorithms are determined. For each

phase, the number of iterations is fixed at 50000 as for the single phase algorithms.

For the second phase, where total distance is minimized, the parameter values of
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Figure 5.6: Sensitivity analysis on parameter Tmax (single phase)
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102 Chapter 5

nit

A
v
e
r
a
g
e
 
i
m
p
r
o
v
e
m
e
n
t
 
i
n
 
n
u
m
b
e
r
 
o
f
 
v
e
h
i
c
l
e
s
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5000 15000 25000 35000 45000 55000 65000 75000 85000 95000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

0.20

Sequential

Integrated

Figure 5.8: Effect of parameter nit on number of vehicles

nit

A
v
e
r
a
g
e
 
i
m
p
r
o
v
e
m
e
n
t
 
i
n
 
t
o
t
a
l
 
d
i
s
t
a
n
c
e
 
(
k
m
)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5000 15000 25000 35000 45000 55000 65000 75000 85000 95000

0

5

10

15

20

25

30

35

40

45

50

Sequential

Integrated

Figure 5.9: Effect of parameter nit on total distance



Optimization of drayage operations: deterministic annealing meta-heuristic 103

the single phase algorithms are used. In the first phase, the number of vehicles is

minimized by using objective function (5.4). The threshold value T is related to the

secondary objective, minimizing the sum of squares of the number of nodes in each

route, as explained in Section 5.2.4. Figure 5.10 shows the average gap between the

number of vehicles used and its lower bound (LBv) for several values of Tmax for

both the sequential and integrated approach. Based on the results in Figure 5.10, the

value of parameter Tmax is fixed at 8 for the sequential approach and at 12 for the

integrated approach.
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Figure 5.10: Sensitivity analysis on parameter Tmax (first phase of two-phase algo-

rithms)

The parameter value for ∆T during the first phase of the two-phase algorithms is

analyzed in Figure 5.11. As for the single phase algorithm, the value of ∆T has only

a limited effect on solution quality. Best results are obtained for a parameter value of

∆T = Tmax/2000. The number of iterations without finding a new best solution after

which the search is restarted nimp is again fixed 500 times the number of vehicles in

the initial solution.

Finally, for the 1-DATS and 2-DATS algorithms, the number of iterations for which

an arc cannot re-enter the current solution after it has been removed, is set at twenty.

This value offers on average the best results, although differences are small (see Figure

5.12).
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5.7 Experimental results

This section discusses the experimental results of the deterministic annealing algo-

rithm on the problem instances discussed in Section 5.4. An overview of these results

and a comparison of the different variants of the algorithm is given in Section 5.7.1.

Next, the sequential and integrated approach are compared with each other (Section

5.7.2). In Section 5.7.3, the robustness of the deterministic annealing algorithm with

respect to changes in problem characteristics is discussed. The contribution to solu-

tion quality of the different local search operators and of the deterministic annealing

scheme is analyzed in Section 5.7.4. Finally, the effect of performing street turns is

discussed (Section 5.7.5).

5.7.1 Overview of results

The transportation problem and the deterministic annealing algorithm are imple-

mented in C on a 2.1GHz Intel Core 2 laptop with 4GB RAM. All four variants of

the algorithm are tested on the 48 problem instances for both the sequential and

integrated solution approach. For each instance, average results over fifty runs of the

algorithm are obtained. Detailed results for the sequential and integrated solution

approach are presented respectively in Appendices B and C. A summary of these

results is presented in Table 5.4 for the sequential approach and in Table 5.5 for the

integrated approach. The first two rows in these tables show the average number of

vehicles used and the average absolute gap with the corresponding lower bound. The

average distance traveled and the average relative gap with the corresponding lower

bound are presented in rows three and four. Different lower bounds are calculated for

the sequential and integrated approach as discussed in Section 5.5. In the last row,

average computation time in seconds is shown.

Tables 5.4 and 5.5 demonstrate that all algorithms are able to find good quality

solutions in a small amount of computation time. When comparing the results of

the single and two-phase algorithms, it is clear that the two-phase method performs

much better in terms of number of vehicles. Average distances are higher for the

two-phase algorithms than for the single phase algorithms which can be explained by

the fact that the two objectives (minimize vehicles and distance) are often conflicting.

Since minimizing the number of vehicles is prioritized over minimizing total distance,

best solutions are obtained by the two-phase algorithms. This corresponds with the

findings of Homberger and Gehring (2005) and Bent and Van Hentenryck (2006) that

two-phase methods work well on problems with a hierarchical objective function.



106 Chapter 5

Table 5.4: Summary of results: sequential approach

Value 1-DA 2-DA 1-DATS 2-DATS

Average number of vehicles 10.45 10.00 10.46 10.00

Average gap (absolute) 0.99 0.54 1.00 0.54

Average distance (km) 1802 1822 1800 1821

Average gap (%) 2.07 2.85 1.97 2.75

Average computation time (s) 2.51 3.91 2.94 4.39

Table 5.5: Summary of results: integrated approach

Value 1-DA 2-DA 1-DATS 2-DATS

Average number of vehicles 10.30 9.99 10.30 9.99

Average gap (absolute) 1.05 0.74 1.05 0.74

Average distance (km) 1800 1809 1797 1807

Average gap (%) 4.41 4.93 4.31 4.86

Average computation time (s) 3.01 4.43 3.49 4.91

When the deterministic annealing algorithms (1-DA, 2-DA) are compared with

their variants in which tabu search elements are implemented (1-DATS, 2-DATS),

results indicate that introducing elements of tabu search has a small, positive effect

on solution quality. On the other hand, the algorithm becomes more complex and

average computation time increases slightly. Whether an algorithm with or without

the simple tabu search method should be used, is open for discussion and may be

selected by the decision maker. In the remainder of this thesis, the 2-DATS-variant

of the deterministic annealing algorithm will be considered unless stated otherwise.

5.7.2 Comparison of sequential and integrated approach

A comparison of the sequential and integrated approach should be based on real values

instead of the gaps with the lower bounds since different bounds are calculated for

both problems. Results in Tables 5.4 and 5.5 show that on average the integrated

approach offers better results than the sequential approach for all algorithm variants

and both in terms of the number of vehicles and total distance. Comparing results for
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each problem instance individually shows that the integrated approach almost always

performs better (21%) or equally good (70%) in terms of the number of vehicles used.

When both approaches result in the same number of vehicles, the integrated approach

is able to find a better solution in terms of distance in 87% of the cases.

To further substantiate the fact that an integrated approach provides better results

than a sequential one, a statistical test is performed on the results. For all 48 problem

instances and for all four algorithm variants, the results of the integrated approach are

compared with those of the sequential approach. This means that for each solution

approach in total 192 results are obtained. Each of these results represents the average

of the best solutions obtained during fifty runs of the algorithm. Clearly, for a given

problem instance and algorithm variant, a dependence between the solutions of the

sequential and integrated approach exists. As a consequence, a statistical test for two

dependent samples should be used. Since it is not guaranteed that the populations

of both solution sets follow the normal distribution and that they have the same

variance, the t test for two dependent samples should not be used. Instead, the

Wilcoxon matched-pairs signed-ranks test is used. This is a nonparametric test which

may be applied on dependent samples when one or more of the assumptions of the

t test for two dependent samples are violated. (Sheskin, 1997) The test will be used

separately on the number of vehicles and on total distance traveled.

The Wilcoxon matched-pairs signed-ranks test works as follows. For each of the

192 solution pairs a difference score is calculated by subtracting the solution of the

integrated approach from that of the sequential approach. Next, the test evaluates

whether or not the median of these differences scores (indicated θD) equals zero. Since

the aim is to demonstrate that the integrated approach outperforms the sequential

one, a one-tailed test with the following null and alternative hypotheses is applied:

H0 : θD = 0 (5.24)

H1 : θD > 0 (5.25)

When the null hypothesis is rejected, the integrated approach offers significantly bet-

ter solutions (solutions with lower objective values).

The Wilcoxon T statistic is calculated based on the difference scores. First, the

absolute values of these difference scores are ranked. The highest absolute difference

receives the highest rank. Difference scores of zero are eliminated from the analysis.

Next, the sign of each difference score is placed in front of its rank. Finally, all ranks

with positive signs are summed together (
∑

R+) and all ranks with negative signs are

summed together (
∑

R−). The Wilcoxon T statistic is equal to the lowest absolute

value of
∑

R+ and
∑

R−. The number of non-zero difference scores is indicated by
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n. For small values of n (n < 50), critical values for the Wilcoxon T statistic are

available in tabular form. When n is larger, like in this thesis, the distribution of

the Wilcoxon T statistic may be approximated by the normal distribution. Equation

5.26 shows the calculation of the normal approximation z of the Wilcoxon T statistic.

(Sheskin, 1997)

z =
T − n(n+1)

4√
n(n+1)(2n+1)

24

(5.26)

At a significance level of 0.01, the alternative hypothesis H1 is supported when:

�

∑
R+ > |

∑
R− |

� the absolute value of z is equal to or greater than the corresponding critical

value of the normal distribution which is 2.33

Table 5.6 gives an overview of the test results. For both objectives, the number

of vehicles (V) and total distance (D), the sum of the positive ranks, the sum of the

negative ranks, the Wilcoxon T statistic and the corresponding absolute value of z

are shown. Since both |z| values are larger than 2.33, the integrated approach offers

significantly better results than the the sequential approach, both in terms of the

number of vehicles and total distance (at a 1% significance level).

Table 5.6: Results of Wilcoxon matched-pair signed-rank test

V D∑
R+ 1408 14941∑
R− -303 -3587

Wilcoxon T 303 3587

n 58 192

|z| 4.28 7.39

5.7.3 Robustness of the algorithm with respect to problem

characteristics

To analyze the robustness of the deterministic annealing algorithm with respect to

problem characteristics, a distinction between both solution approaches is made. Ta-

ble 5.7 presents effects on solution quality when problem characteristics are altered.
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Solution quality is indicated by average gaps between solutions and their lower bounds

on both objectives. For each problem characteristic defined in Section 5.4, average

gaps over all instances with a high value (+) minus average gaps over all instances

with a low value (-) are presented. This difference gives an indication of the effect on

solution quality of increasing a problem characteristic from its low to its high value. It

should be stressed that only an indication of the effect is given since different problem

instances are randomly generated for each combination of factor values. Table 5.7

shows that the largest effect on solution quality stems from increasing the number

of nodes. Problem instances with a larger number of nodes have a larger number

of feasible links which increases problem complexity. Finding good quality solutions

becomes slightly more difficult. For the same reason, a similar but smaller effect is

noticed when the number of terminals is increased. The effects of time window width

and area of problem region are rather small. Based on these results, it is concluded

that the deterministic annealing algorithm offers results of similar quality for all types

of problems i.e. the algorithm is robust to changes in problem characteristics.

Table 5.7: Comparison of problem classes

Factor Sequential Integrated

V D V D

F1: time window width -0.03 0.40 -0.21 0.04

F2: number of terminals 0.08 0.64 0.23 1.04

F3: number of nodes 0.72 1.36 0.63 2.44

F4: coordinates 0.30 -0.20 0.47 -0.44

5.7.4 Contribution of local search operators

The contribution to solution quality of the different local search operators and of the

deterministic annealing scheme may be analyzed as well. The second phase of the two-

phase deterministic annealing algorithm with tabu search (2-DATS) is used for this

analysis. The algorithm is used five more times (fifty runs each) on each instance. The

first time, the deterministic annealing scheme is left out, meaning that only solutions

resulting in an improvement of the objective function are accepted. The other four

times, each time a single local search operator is removed from the search. Table 5.8

gives an overview of the results. As expected, removing the deterministic annealing
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scheme has by far the largest negative impact on results. With respect to the local

search operators, the exchange and 2-Opt* operators seem to have the largest impact

on results, although interaction effects between local search operators are ignored in

this analysis.

Table 5.8: Contribution of local search operators and deterministic annealing scheme

Average distance (km) Average gap with LBd(k) (%)

Original algorithm 1807 4.86

No deterministic annealing 1891 9.88

No intra-route operator 1812 5.12

No relocate operator 1813 5.20

No 2-Opt* operator 1823 5.78

No exchange operator 1826 5.91

5.7.5 Effect of street turns

Both in literature and practice the direct transportation of empty containers between

consignees and shippers is often proposed as a method to reduce empty container

movements around intermodal container terminals. These types of transports, called

street turns, are allowed in this thesis as well. Although street turns are considered as

highly desirable by all parties involved, some practical limitations for implementing

them exists (see Section 2.2.2 for a detailed description).

In this section, the advantage of allowing and implementing street turns is ana-

lyzed. The 2-DATS algorithm is applied on the integrated problem for this purpose.

This algorithm is already used in the previous sections for the problem situation

where street turns are allowed. Two additional problem situations are considered in

this section.

As discussed in Section 2.2.2, street turns may require some extra work related to

damage inspection and paperwork regarding insurance and liability issues. The first

additional problem situation takes into account the additional time which might be

needed to perform these activities. The original problem setting where street turns

are allowed is considered but the travel time between two nodes i ∈ NS and j ∈ ND

is augmented with a constant value. This constant values is varied from five minutes

to one hour, in steps of five minutes.
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Second, the problem is solved with the restriction that street turns are not allowed.

This means that it is no longer possible to travel directly between two nodes i ∈ NS

and j ∈ ND. Instead, a detour to a container terminal is required to drop off the

empty container picked up at node i ∈ NS . At this container terminal another empty

container is picked up and delivered to node j ∈ ND. The distance dij between the

nodes is calculated as follows:

dij = min
r∈NT

(dir + drj) ∀i ∈ NS ,∀j ∈ ND (5.27)

The travel time tij is calculated in a similar way but augmented with the pickup and

drop off times for both empty containers involved.

Table 5.9: Effect of street turns

Problem Additional V D

situation time (min)

0 9.99 1807

5 10.26 1826

10 10.58 1838

15 10.90 1850

20 11.12 1866

Street turns 25 11.35 1885

allowed 30 11.63 1901

35 11.80 1916

40 11.90 1938

45 11.95 1966

50 11.97 2000

55 11.98 2033

60 12.00 2064

No street turns - 11.93 2320

For each problem situation the average number of vehicles (V) and the average

total distance (D) is shown in Table 5.9. Not allowing street turns considerably

increases the number of vehicles used (+19%) and total distance traveled (+28%).

When taking additional time to perform street turns into account, both objective
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values increase as well. However, as long as the additional time to perform a street

turn is not more than 40 minutes, solutions are better than when no street turns are

implemented. When the additional time is larger than 40 minutes, the number of

vehicles is higher than when no street turns are allowed, although total distance is

still much lower. This is an interesting conclusion since it indicates that even when

performing a street turn would take a considerable amount of additional time, it is

still a good approach to reduce the number of vehicles and total distance traveled.

5.8 Conclusions and further research

A deterministic annealing meta-heuristic is proposed to solve a full truckload rout-

ing problem in drayage operations which is described in the previous chapter. The

primary objective is to minimize the number of vehicles used while the secondary ob-

jective is to minimize total distance traveled. For both the sequential and integrated

solution approach, four variants of the algorithm are described. Extensive numerical

experiments on a set of randomly generated problem instances are performed. By

comparing solutions with lower bounds, it is demonstrated that all variants are able

to find high quality solutions in a small amount of computation time. The robustness

of the algorithms with respect to changes in problem characteristics is indicated as

well. Results show that a two-phase algorithm which combines deterministic anneal-

ing with some elements of tabu search offers the best results. In the first phase of the

algorithm, the number of vehicles is minimized while partially ignoring the secondary

objective. In the second phase, total distance is minimized. A comparison of the

sequential and integrated solution approach indicates that an integrated approach for

planning daily drayage operations is significantly better than a sequential approach.

Finally, the advantage of implementing street turns is analyzed. It is concluded that

allowing street turns considerably reduces the number of vehicles required and total

distance traveled in drayage operations. Even when performing a street turn would

take a limited amount of additional time, performing street turns is still favorable to

situations in which street turns are not allowed.

In Chapter 6, two alternative objective functions for the (integrated) drayage

problem are considered. First, the problem is interpreted as a bi-objective problem

by not assigning priority to one of the objectives. Second, the objective to minimize

total route duration instead of total distance traveled is introduced. It is analyzed

how the deterministic annealing algorithm may be adapted to accommodate these

alternative objective functions.
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Further research could focus on a number of extensions of the problem. Currently

it is assumed that sufficient empty containers are available at each container terminal.

This assumption might be relaxed by imposing a limit on container availability at each

terminal. This reduces the set of feasible solutions for the empty container allocation

subproblem and strongly complicates the integrated drayage problem as is discussed

by Zhang et al. (2011b). Another extension may be to consider a problem with

multiple container and vehicle types. For some combinations of container and vehicle

type it may for example be feasible to transport two containers simultaneously by a

single vehicle. Besides, containers of different owners may be assumed, restricting the

use of a container to a particular set of consignees and shippers. Future research could

focus on how the solution algorithm may be adapted to take this variety in containers

and vehicles into account. Finally, in order to use the proposed modeling approach

in real-time dispatching, a dynamic version of the algorithm should be developed. In

a dynamic problem setting, some problem information changes or becomes available

during the planning period rather than being known beforehand. Examples include

new requests arriving or existing requests being canceled during the day, changes

in customer time windows and vehicle breakdowns. Although the current modeling

approach provides good results within an acceptable time frame for real-time usage, a

slightly different algorithm would be required. In a dynamic environment it may not

be desirable to plan vehicle routes completely from scratch each time new information

becomes available. Instead, the existing planning could be adapted to take the new

problem information into account. A new request may for example be inserted in an

existing route, after which the solution may be reoptimized. Furthermore, in a highly

dynamic environment it may be reasonable to focus on optimizing vehicle routes for

the near future, while less attention is being paid to the far future, since it is likely

that the problem situation will be considerably different by the time this moment is

reached. (Berbeglia et al., 2010; Pillac et al., 2011)
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Chapter 6

Optimization of drayage

operations: alternative

objective functions

6.1 Introduction

In the previous chapters, drayage operations are optimized according to a hierarchical

objective function. A deterministic annealing algorithm is proposed to solve both the

sequential and integrated drayage problem. This chapter analyzes how the algorithm

may be applied in situations where alternative objective functions are preferred (Fig-

ure 6.1). Since the previous chapter showed that an integrated approach outperforms

a sequential one, only an integrated approach is considered in this chapter.

In the first part of the chapter1 (Section 6.2), the hierarchical objective function

from the previous chapter is replaced by a bi-objective function which gives no prior-

ity to one of the two objectives (minimizing the number of vehicles and minimizing

total distance traveled). By interpreting the problem as a bi-objective problem, the

trade-off between both objectives can be analyzed. A bi-objective version of the de-

terministic annealing algorithm is proposed to solve the problem. In the second part

of the chapter (Section 6.3), the objective to minimize total route duration instead

of total distance is considered. Using total route duration as an objective makes the

evaluation of the effect of a local search move on the objective value more complex

1This part of the chapter is based on Braekers et al. (2011a) and Braekers et al. (2012a).
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Figure 6.1: Outline of the thesis

than in the previous chapter. A method to deal with this increased complexity is

discussed. Results indicate that the proposed deterministic annealing algorithm out-

performs a recent time window partitioning method proposed by Zhang et al. (2010).

Finally, Section 6.4 contains conclusions and opportunities for further research.

6.2 Bi-objective approach

Typically a hierarchical objective function is used in vehicle routing problems. The

primary objective is to minimize the number of vehicles while the secondary objec-
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tive is to minimize total distance, total travel time or total route duration (Bräysy

and Gendreau, 2005a; Jozefowiez et al., 2008; Gendreau and Tarantilis, 2010). In the

previous chapter, a hierarchical objective function is used for the integrated drayage

problem as well. A natural extension is to take a bi-objective approach by not as-

signing priority to one of the objectives. While minimizing the number of vehicles

affects vehicle investment and labor costs, minimizing distance affects time and fuel

resources (Ombuki et al., 2006). Clearly, both objectives might be conflicting in

some cases (Caseau and Laburthe, 1999; Jozefowiez et al., 2008). Solutions with the

minimal number of routes kopt may have a total distance which is higher than the

total distance of solutions with (kopt + 1) or (kopt + 2) vehicles. Using a hierarchical

objective function will bias the search towards minimizing the number of vehicles,

while a bi-objective approach will result in a set of good solutions which use different

numbers of vehicles. In this way, the possible trade-off between both objectives will

be revealed. This trade-off information can be very useful to the decision maker.

For example, given a number of vehicles that are available, expected routing costs

to perform all transportation tasks can be estimated. On the other hand, when the

transportation tasks to be performed are known, the minimum number of trucks that

need to be allocated to these tasks in order to keep the operational routing cost below

a certain level can be deducted. Even tactical decisions about changing the fleet size

may be supported by the provided trade-off information. (Tan et al., 2006a) In the

latter case, daily distance-related costs should be compared over a longer planning

horizon (e.g. three months) for different fleet sizes. To the author’s knowledge, no

other bi- or multi-objective approach is proposed for a drayage problem in intermodal

freight transportation.

The problem formulation of the bi-objective integrated drayage problem is exactly

the same as that of the integrated problem in the previous chapter (see Section 4.4.2),

except that objective function (4.5) is replaced by objective function (6.1).

min f = (f1, f2) (6.1)

with:

f1 =
∑

i:(0,i)∈A

x0i (6.2)

f2 =
∑

(i,j)∈A

dijxij +
∑
i∈N

di (6.3)

In Section 6.2.1, literature on bi- and multi-objective vehicle routing is reviewed.

Pareto optimality and the dominance concept are discussed in Section 6.2.2. Sec-

tion 6.2.3 discusses how the two-phase integrated algorithm (2-DATS) presented in
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the previous chapter is adapted to take into account the bi-objective optimization

function. Finally, in Section 6.2.4 results are discussed.

6.2.1 Related literature

A recent overview of research on multi-objective vehicle routing problems can be found

in Jozefowiez et al. (2008). According to the authors, three approaches exist to deal

with a multi-objective problem. In an a priori approach, the decision maker provides

preferences for the different objectives, while in an interactive approach the decision

maker’s choices are made during the solution process. Finally, in an a posteriori

approach the decision maker chooses among a set of non-dominated solutions that

has been generated. The approach followed here clearly fits in the last category.

Several methods may be used to solve multi-objective problems. Overviews of

these methods can be found among others in Ehrgott and Gandibleux (2002, 2004) and

Jozefowiez et al. (2008). Two main categories of solution methods for multi-objective

problems can be distinguished: scalar methods, using mathematical transformations,

and Pareto methods, directly using the notion of Pareto dominance. The most popular

scalar method is to use a weighted objective function. The advantage of this method

is that the problem is transformed to a single objective problem and thus existing

(meta-)heuristics described in literature may be used. (Ehrgott and Gandibleux,

2002; Jaszkiewicz, 2004; Jozefowiez et al., 2008) A disadvantage is that agreeing on

a set of weights is not straightforward (Corberan et al., 2002). Other scalar methods

include goal programming and the ϵ-constraint method. In the goal programming

method, goals are set for each of the objectives and the distance between solutions

and these goals is minimized. A recent goal programming method for a bi-objective

Vehicle Routing Problem with Time Windows (VRPTW) is presented by Ghoseiri

and Ghannadpour (2010). In the ϵ-constraint method, a single objective is optimized

while the other objectives are considered as constraints. (Jozefowiez et al., 2008)

In contrast to scalar methods, Pareto methods use the notion of Pareto domi-

nance directly. They are often used within an evolutionary approach. An overview

of evolutionary multi-objective optimization methods can be found in Zitzler et al.

(2004), while references to papers using such methods are presented among others in

Jozefowiez et al. (2008). Evolutionary algorithms for VRPTW and truck and trailer

vehicle routing problems with the same objective function as in this chapter can be

found in Ombuki et al. (2006) and Tan et al. (2006a,b).

The solution algorithm presented in this chapter for the bi-objective integrated

drayage problem can be categorized as a scalar method and resembles the ϵ-constraint
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method. For each number of vehicles, a solution with minimal total distance is sought,

while keeping the number of vehicles constant. A similar method is used by Corberan

et al. (2002) and Pacheco and Marti (2006) for the rural school bus routing problem

where the number of buses and the maximum time a student spends on a bus are

minimized.

6.2.2 Pareto optimality and dominance concept

Since a bi-objective approach is used and the objectives might be conflicting, a single

optimal solution to the problem will often not exist. Instead, the goal is to find the

set of Pareto optimal or efficient solutions.

According to Ehrgott and Gandibleux (2004), a multi-objective optimization prob-

lem can be defined as

min
x∈X

(f1(x), ..., fp(x)) (6.4)

where X ⊂ Rn is the set of feasible solutions and f : Rn → Rp is a vector valued

objective function with p different objectives. A solution x ∈ X is said to weakly

dominate solution x′ (x ≼ x′) if ∀1, ..., p : f(x) ≤ f(x′). A solution x dominates

solution x′ (x ≺ x′) if and only if x ≼ x′ and ∃j ∈ {1, ..., p} : fj(x) < fj(x
′). A

solution x ∈ X is called efficient or Pareto optimal if no other solution x′ ∈ X exists

which dominates x. In other words, no solution is at least as good as x for all criteria,

and strictly better for at least one. If x is efficient then the corresponding objective

vector f(x) = (f1(x), ..., fp(x)) is called non-dominated. Solving a multi-objective

optimization problem means finding the set of efficient solutions XE . Its image in

objective space YN is referred to as the non-dominated frontier or efficient frontier.

For a more detailed description of Pareto optimality and its underlying principles, the

reader is referred to Ehrgott and Gandibleux (2002, 2004) and Ehrgott (2005).

Since exactly solving our problem within reasonable computation time seems not

feasible for large problem instances, in the following section a meta-heuristic approach

is proposed to find a set of solutions S that approximates the set of efficient solutions

XE . This set S is composed of mutually non-dominated points, i.e. @x1,x2 ∈ S|x1 ≺
x2. In the remainder of this chapter, the set of objective vectors corresponding to

solution set S is referred to as the set of non-dominated solutions.

6.2.3 Bi-objective deterministic annealing algorithm

The bi-objective problem has the advantage that one of the objective values (the

number of vehicles) can only take on a limited number of discrete values: integers
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between the lower bound and the total number of nodes. Preliminary results even

showed that total distance could only be decreased by adding a limited number of

extra vehicles to the lower bound. Solutions that use even more vehicles are likely

to be dominated by solutions which use less vehicles. Hence, an efficient method to

find a set of non-dominated solutions is to look for a solution with minimum total

distance for each of these limited values for the number of vehicles.

A simple approach would be to repeatedly solve the problem using the algorithm

for a hierarchical objective function presented in Chapter 5. This algorithm gives

priority to minimizing the number of vehicles. After the problem is solved for the

first time, a solution with the minimum number of vehicles kmin would be obtained.

Next, the problem can be solved repeatedly while imposing a lower limit of (kmin +

1), (kmin + 2), etc. on the number of vehicles. This means that from the moment a

solution with the number of vehicles equal to this limit is found, no further attempts

to reduce the number of vehicles are made. Only total distance is minimized during

the following iterations. In the remainder of this chapter, this approach is referred to

as the iterative method (IM). The disadvantage of this iterative method is that each

time the problem is solved, information from previous iterations is neglected.

A more sophisticated approach is presented in this section. The approach explicitly

takes the bi-objective problem context into account and is compared with the iterative

method in Section 6.2.4. The approach is denoted as a bi-objective deterministic

annealing algorithm (BI-DA). The idea is that when looking for a minimal-distance

solution with k vehicles, information on previously found solutions (with less than k

vehicles) may be used. The proposed two-phase solution algorithm works as follows.

In the first phase, a solution with the minimal number of vehicles kmin is searched for.

Hence, this solution phase is very similar to the first solution phase for the integrated

problem with a hierarchical objective function described in Section 5.2.4.2. Optimal

empty container allocations are found by solving a transportation problem and a

simple parallel insertion heuristic is used to find an initial solution for the problem.

The number of vehicles used by this solution is denoted by kinit. The algorithm then

tries to reduce the number of vehicles of the initial solution one by one during a

predefined number of iterations of the deterministic annealing meta-heuristic. After

half of the predefined number of iterations, the optimal empty container allocations

are relaxed to return to an integrated problem setting and the solution is improved

further. Meanwhile, for each number of vehicles for which a solution is found, the

solution with minimum distance is stored in solution set S. This set will serve as

input for the second solution phase. At the end of the first solution phase, a solution

with the minimum number of vehicles kmin is obtained and S contains kinit−kmin+1
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solutions.

In the second phase, a set of non-dominated solutions for the bi-objective problem

is obtained. This is done by iteratively minimizing total distance and increasing

the number of vehicles by one. The deterministic annealing meta-heuristic combined

with elements of tabu search is used (see Section 5.3). An overview of the second

solution phase can be found in Algorithm 2. The current number of vehicles kcur is

set equal to the lowest number of vehicles for which a solution was found in phase one.

The current solution x is initialized as the corresponding solution in solution set S.

The solution phase consists of a loop which is continued until a predefined stopping

criterion is met. Each iteration in the loop consists of two steps. First, the total

distance of the current solution x is minimized while keeping the number of vehicles

fixed at kcur. A predefined number of iterations of the deterministic annealing meta-

heuristic is used for this purpose. The intra-route, relocate, 2-Opt* and exchange

operators are applied. A new solution is accepted if it has a total distance lower than

the total distance of the current solution plus the threshold value. No route reduction

operators are applied. After a predefined number of iterations, the final solution xb

with kcur vehicles is obtained. This solution is stored in solution set S (and replaces

the solution with kcur vehicles currently in S). Second, it is checked whether the

stopping criterion is met. If this is not the case, the current number of vehicles kcur

is increased by one. A new current solution with kcur vehicles is then selected. This

solution can be obtained in two ways:

� Solution x1 in S with kcur vehicles, if there exists one

� Solution x2 obtained by applying a route splitting operator on solution xb

The best of these solutions is selected to become the new current solution and another

iteration in the loop is started. The advantage of selecting the new current solution

in this way is that information on a previously found solution is used. This previous

solution is either a solution found during the first phase of the algorithm or a solution

with one vehicle less which was found during the second phase of the algorithm. As

a result, a good initial solution is obtained for the deterministic annealing meta-

heuristic in the next iteration. Another advantage over the iterative method is that

the proposed algorithm spends only once computation time on reducing the number

of vehicles.

The route splitting operator that is used to transform a solution with k vehicles

to a solution with (k + 1) vehicles works as follows. It finds the best (least distance)

way to split one of the current routes into two new routes. The operator is tested
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Algorithm 2 Overview of second solution phase

kcur = kmin

x = xb = {x ∈ S : f1(x) = kcur}
stop = 0

while stop = 0 do

Minimize distance of x→ xb

Save xb in S

if stopping criterion is met then

stop← 1

else

kcur ← kcur + 1

Find x with f1(x) = kcur:

x is best of {x1,x2} with
x1 = {x ∈ S : f1(x) = kcur}
x2 found by applying split operator on xb

end if

end while

Remove dominated solutions from S

on all routes and a best improvement strategy is followed. The stopping criterion

of the second solution phase is defined as a number of times (three in this thesis)

the number of vehicles was increased without obtaining a solution with a lower total

distance. When the stopping criterion is met, dominated solutions are removed from

solution set S. The set S then represents the final solution set to the problem.

Finally, a further improvement of the BI-DA algorithm is proposed. This improve-

ment is related to the maximum threshold value Tmax during the second solution

phase. Up to now, Tmax is kept constant throughout the search while the number

of vehicles is increased after each iteration in the loop. The proposed improvement

is to gradually reduce Tmax while the number of vehicles is increased. The reason is

as follows. When the number of vehicles increases, the nodes are divided over more

routes and hence more spare time will be available in each route. As a result, the

number of feasible local search moves will increase. To avoid the acceptance of local

search moves that considerably worsen the objective value while numerous other and

better moves exist, the maximum threshold value may be reduced. In this thesis, it is

proposed to reduce Tmax by ten percent each time the number of vehicles is increased.

This version of the bi-objective deterministic annealing algorithm is denoted BI-DA*.
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6.2.4 Experimental results

Three solution algorithms are proposed for the bi-objective drayage problem: an

iterative method (IM), a bi-objective deterministic annealing algorithm (BI-DA) and a

bi-objective deterministic annealing algorithm where the maximum threshold value is

gradually reduced (BI-DA*). The 48 randomly generated problem instances presented

in Section 5.4 are used to test the robustness and to compare the performance of the

algorithms. The same parameter settings as discussed in Section 5.6 are implemented

and the lower bounds which are calculated in the previous chapter (LBv, LBd, LBd(k))

are valid for the bi-objective problem as well.

For all three algorithms, 50 runs are performed on all 48 problem instances. An

example of a solution set obtained by a single run of the BI-DA* algorithm for instance

1.1 is shown in Figure 6.2. The number of vehicles and total distance are shown

respectively on the x- and y-axis. A set of five non-dominated solutions is found.

They are indicated by a circle. Besides these solutions, lower bounds for the problem

instance are depicted. The vertical bar represents the lower bound on the number of

vehicles (LBv) while the horizontal bar represents the general lower bound on total

distance, independent of the number of vehicles used (LBd). Finally, the squares

indicate the specific lower bounds on total distance for the corresponding number of

vehicles (LBd(k)).
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Figure 6.2: Solution set for instance 1.1
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Figure 6.2 shows that a solution with the number of vehicles equal to the lower

bound has been found. As for most instances, increasing the number of vehicles by

one leads to a considerable reduction in total distance traveled. On average this

reduction is 1.96%. When increasing the number of vehicle further, the reduction in

total distance is generally much lower. From one to two extra vehicles and from two

to three extra vehicles, average reductions in total distance of 0.63% and 0.29% are

found. Another observation that can be made from Figure 6.2 is that the gap between

the total distance traveled and the specific lower bound becomes smaller when the

number of vehicles increases. A similar observation is made for all other instances.

Often this is even the case when the number of vehicles is increased further and the

solutions that are found are dominated by others.

Evaluating the quality of solutions of a bi- or multi-objective problem is not

straightforward. The same accounts for comparing different solution techniques on

these problems. In literature, various quality indicators are proposed and often a com-

bination of these is used. (Zitzler et al., 2003, 2008; Knowles et al., 2006) According

to Knowles et al. (2006), only quality indicators that are Pareto compliant should be

used. An indicator is Pareto compliant when it does not contradict the weak Pareto

dominance criterion. This means that the indicator value for solution set A should be

at least as good as the indicator value of solution set B whenever A if preferable to

B with respect to weak Pareto dominance (every solution in B is weakly dominated

by at least one solution in A). (Knowles et al., 2006)

In this thesis, three Pareto compliant quality indicators are used: the hypervol-

ume indicator (IH), the unary multiplicative epsilon indicator (Iϵ) and the coverage

indicator (IC). The hypervolume indicator IH(A), introduced by Zitzler and Thiele

(1999), measures the portion of the objective space weakly dominated by a solution

set A. In order to calculate the hypervolume, a reference point that bounds the ob-

jective space is needed. This reference point should be (weakly) dominated by all

solutions considered. In this thesis, this reference point consists of the combination

of the worst objective values over all solutions of all algorithms, increased by 1%.

Normalized objective values are used to calculate the hypervolume and higher values

are preferable. The unary epsilon indicator Iϵ(A) gives the minimum number ϵ by

which each point in a reference set R should be multiplied such that the resulting

transformed approximation set is weakly dominated by solution set A (Zitzler et al.,

2003). Ideally, the reference set R should be equal to the efficient frontier. In case

this is unknown, as here, R can be approximated by using the union of all solutions

considered and removing dominated solutions. Lower values are preferable for this

indicator. For a more detailed discussion of these two quality indicators, the reader
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is referred to Zitzler and Thiele (1999), Zitzler et al. (2003), Knowles et al. (2006)

and Parragh et al. (2009). Finally, the coverage indicator IC(A,B) represents the

fraction of solutions in set B that are weakly dominated by at least one solution of

set A. Higher values are preferable for solution set A. (Zitzler and Thiele, 1999;

Garcia-Najera and Bullinaria, 2011)

Table 6.1 gives an overview of the average values over all runs and all instances for

the hypervolume and epsilon indicators for each solution algorithm. This table further

provides some useful information on the average gaps between the non-dominated

solutions and their lower bounds:

� The average absolute gap in number of vehicles between LBv and the solution

with the smallest number of vehicles

� The average relative gap in distance traveled between LBd and the solution with

minimum distance

� The average relative gap in distance traveled between each solution and its

corresponding specific lower bound on distance LBd(k)

Finally, Table 6.1 shows the average computation time in seconds. An overview of

the average values for the coverage indicator is given in Table 6.2. To calculate

these values, for each instance the average is taken over the indicator value of all

2500 combinations of the 50 solution sets provided by the two algorithms that are

compared.

Table 6.1: Comparison of algorithms

Algorithm IH Iϵ Average gaps Computation

LBv LBd LBd(k) time (s)

IM 0.4744 1.0273 0.74 2.83 3.38 18.02

BI-DA 0.4893 1.0258 0.74 2.72 3.24 13.53

BI-DA* 0.5022 1.0257 0.74 2.56 3.14 14.50

Tables 6.1 and 6.2 show that the proposed bi-objective deterministic annealing

algorithm (BI-DA) provides on average better results than the iterative method

(IM) on each of the three quality indicators: the hypervolume indicator IH is larger

(0.4893 > 0.4744), the unary epsilon indicator Iϵ(A) is smaller (1.0258 < 1.0273) and
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Table 6.2: Coverage indicator IC(A,B)

B

IM BI-DA BI-DA*

A

IM - 0.37 0.29

BI-DA 0.58 - 0.38

BI-DA* 0.65 0.57 -

the fraction of solutions of IM that are dominated by solutions of BI-DA is larger than

the other way around (0.58 > 0.37). By gradually lowering the maximum threshold

value even better results on all three quality indicators are obtained by the BI-DA*

algorithm. Although the average gaps in Table 6.1 cannot be considered as quality

indicators for comparing the different solution algorithms, they show that on average

each of the algorithms is able to find solutions close to the lower bounds. In line with

the results on the quality indicators, these values suggest that the BI-DA* algorithm

provides the best results. Detailed results of the BI-DA* algorithm on all 48 problem

instances are shown in Appendix D.

6.3 Minimization of total route duration

In Chapters 4 and 5 and in the first section of this chapter, the two objectives to be

minimized are the number of vehicles used and total distance traveled. Reasons for

choosing these objectives are discussed in Section 4.3. In this section, the objective to

minimize total distance traveled is replaced by the objective to minimize total route

duration.

The duration of a vehicle route is defined as the time period between a vehicle

leaving from and returning to the vehicle depot. This time period includes travel

times between locations, service times for picking up and dropping of containers and

waiting times at customer locations or container terminals when arriving before the

opening of a time window. Minimizing total route duration might be preferred over

minimizing total distance traveled in some cases, for example when drivers are paid

on an hourly basis. The reason for introducing the objective to minimize total route

duration in this section is that this allows to compare our deterministic annealing

algorithm with a recent time window partitioning method on a similar problem. The



Optimization of drayage operations: alternative objective functions 127

hierarchical objective function which minimizes first the number of vehicles used and

second total route duration can be expressed as follows:

lexmin (
∑

i:(0,i)∈A

x0i,
∑

i:(i,0)∈A

xi0(ti + si + ti0)−
∑

i:(0,i)∈A

x0i(ti − t0i)) (6.5)

Section 6.3.1 discusses how the proposed deterministic annealing algorithm may be

adapted to take the objective to minimize total route duration into account. Results

on the random instances introduced in Section 5.4 are presented in Section 6.3.2. The

comparison with a recent time window partitioning method on a similar problem is

described in Section 6.3.3.

6.3.1 Modified algorithm

The deterministic annealing algorithm has to be modified slightly to cope with the

objective to minimize total route duration. Up to now it was assumed that vehicles

leave the vehicle depot at the beginning of the planning period (t0 = 0), although in

reality vehicles may leave the vehicle depot at any time. For a given route, changing

the departure time of a vehicle will not affect total distance, total travel time and

total service time of the route. However, when minimizing total route duration, the

departure time of a vehicle at the depot will have an impact on the objective value.

By postponing the departure of a vehicle, unnecessary waiting times at customers

might be avoided.

For a given route, determining the departure time of the vehicle at the depot

that minimizes the duration of the route is straightforward. The optimal departure

time t∗0 is equal to the latest possible departure time. Leaving the depot earlier may

invoke unnecessary waiting times along the route while leaving later will result in

infeasibilities regarding time windows. (Savelsbergh, 1992; Van Der Bruggen et al.,

1993; de Jong et al., 1996; Campbell and Savelsberg, 2004)

While determining the optimal departure time for a given route is rather simple,

determining the effect of a local search move on total route duration is more complex.

Total distance and total travel time are only affected by the length and duration of

the nodes and arcs that are introduced or removed, while the effect on total route

duration is less clear. For example exchanging two nodes between two routes will not

only affect the travel times from and to these nodes, but will also change the time

that other nodes in these routes are visited. This might change the optimal departure

times of vehicles and/or result in additional or reduced waiting times. Hence, it is not

straightforward to determine the effect on total route duration. (Savelsbergh, 1992)
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Minimizing route duration is considered as an objective in several contributions

to the vehicle routing literature (see Bräysy and Gendreau (2005a,b) for references).

Others consider a maximum route duration constraint, especially when studying Dial-

A-Ride Problems (Cordeau and Laporte, 2003; Cordeau et al., 2004; Parragh et al.,

2010). Several methods to efficiently calculate the effect of a local search move on

route duration are proposed. One method is the concept of forward and backward time

slack at a node introduced by Savelsbergh (1992). This method is used among others

by Cordeau and Laporte (2003), Cordeau et al. (2004) and Parragh et al. (2010).

Fleischmann et al. (2004) propose to use the concept of time window of a route, which

is based on earlier work of Van Landeghem (1988) and Savelsberg (1990). Finally,

Campbell and Savelsberg (2004) propose an efficient method to determine whether

the insertion of a node in a route violates the maximum route duration constraint.

The method makes use of variables for the earliest and latest arrival time at a node

to calculate the duration of a route.

Since variables for the earliest and latest arrival time (eti, lti) are already main-

tained by our algorithm to check the feasibility of a local search move, the method

of Campbell and Savelsberg (2004) is chosen. This method works as follows. Besides

the variables eti and lti, a variable cti needs to be maintained. This variable cti

indicates the core time after node i and is equal to the sum of all travel, service and

unavoidable waiting times in the route after the node. Unavoidable waiting time on

a link (i, j) ∈ A is calculated as max(0, aj − bi − si − tij). Variable ct0 indicates the

total core time of the route i.e. the sum of all travel, service and unavoidable waiting

times. Consider a route (0, 1, ...i, i + 1, ...n, n + 1) which visits n nodes and where

indices 0 and n+1 indicate the vehicle depot. Campbell and Savelsberg (2004) show

that when a node j is inserted between nodes i and i + 1, the earliest arrival time

êtn+1 of the vehicle at the depot may be computed as:

êtn+1 = max(etn+1, êtj + sj + tji+1 + cti+1) (6.6)

where etn+1 indicates the previous earliest arrival time at the depot and êtj is the

new earliest arrival time at node j. Similarly, the latest departure time l̂t0 of the

vehicle at the depot may be computed as follows:

l̂t0 = min(lt0, l̂tj − tij − si − (ct0 − cti)) (6.7)

where lt0 indicates the previous latest departure time at the depot and l̂tj is the new

latest arrival time at node j.

Suppose a vehicle leaves the depot at time l̂t0. When there are no unnecessary

waiting times, the total duration of the route will be determined by the new core time
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(ĉt0) which is the sum of all travel, service and unavoidable waiting times. When there

are unnecessary waiting times, total duration will be higher. Since there are waiting

times, it is obvious that when the vehicle leaves the depot at l̂t0, it can still return to

the depot at êtn+1. Hence, total duration is equal to max(ĉt0, êtn+1 − l̂t0).

The method of Campbell and Savelsberg (2004) is only valid when a node is

inserted in a route and not when a node is removed. More precise, it is valid when

∀i : êti ≥ eti ∧ l̂ti ≤ lti. In this paragraph a slight adaptation of the method is

introduced to make the method valid for all types of local search moves. Two extra

slack variables at each node are maintained during the search. The first variable sl1i

is similar to the backward time slack of Savelsbergh (1992) and indicates how much

the arrival time at node i can be shifted backwards in time (i.e. be earlier) without

introducing extra waiting time after the node:

sl1i = min
j=i+1,...n

(etj − aj) (6.8)

The second variable sl2i indicates by how much the latest departure time at the vehicle

depot lt0 will increase at most when the latest arrival time lti at node i increases.

In other words this means that when lti increases by more than sl2i, lt0 will only

increase by sl2i. This variable is computed as follows:

sl2i = min
j=1,...,i−1,i

(bj − ltj) (6.9)

Both slack variables are used in the calculation of the earliest arrival and latest de-

parture time of a vehicle at the depot. Assuming link (j, i+ 1) is the latest new link

in the route and êtj is the earliest time node j can be reached, it can be shown that

the new earliest arrival time at the vehicle depot is:

êtn+1 = max(etn+1 − sl1j , êtj + sj + tji+1 + cti+1) (6.10)

Assuming link (i, j) is the first new link in the route and l̂tj is the latest arrival time

at node j, the new latest departure time at the vehicle depot is:

l̂t0 = min(lt0 + sl2j , l̂tj − tij − si − (ct0 − cti)) (6.11)

Finally, total route duration is still equal to max(ĉt0, êtn+1 − l̂t0).

6.3.2 Results on own instances

In this section, results on the problem instances introduced in Section 5.4 are discussed

for a hierarchical objective function which first minimizes the number of vehicles and

second total route duration (6.5).
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Lower bounds are calculated by the time window partitioning method discussed

in Section 5.5. Objective function (6.5) is not used since relaxing the integrality

constraints results in a very weak lower bound. Instead, a general lower bound on

total core time and hence on total route duration is found by solving problem (P5.3).

When this lower bound is divided by the length of the planning period, a lower bound

on the number of vehicles is obtained as well. A lower bound on total duration when

k vehicles are used, is found by adding constraint (6.12) to problem (P5.3).∑
v:(0,v)∈Ω

x0v = k (6.12)

Table 6.3 gives an overview of the results for the two-phase integrated deterministic

annealing algorithm (2-DATS). Detailed results are available in Appendix E. Again,

the algorithm provides good results in a small amount of computation time. Results

for the number of vehicles are similar to those presented in Table 5.5 for the objective

to minimize the number of vehicles and total distance. This is obvious since the first

solution phase is the same.

Table 6.3: Summary of results

Value Result

Average number of vehicles 9.98

Average gap (absolute) 0.73

Average duration (min) 4247

Average gap (%) 1.89

Average computation time (s) 5.85

When analyzing the solutions provided by the algorithm in more detail, it appears

that unnecessary waiting times are often negligible. Unnecessary waiting times are

those waiting times that are not included in the unavoidable or necessary waiting

times. Only 30% of all solutions contain one or more route with unnecessary waiting

time. Average total core time is 4246 minutes, indicating that on average less than

0.02% of the duration of a route represents unnecessary waiting time.

Although differences between total route duration and total core time are often

very small in the solutions obtained by the algorithm, using an objective function that

minimizes total core time in order to obtain solutions with low total route duration

is not a good approach. Experimental results have shown that using this objective
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function yields an average total route duration of 4294 minutes, even when optimal

departure times of vehicles are calculated in a post-optimization phase.

Finally, the similarity between the solutions obtained in this section and those

obtained in Section 5.7 with the secondary objective to minimize total distance trav-

eled, is analyzed. Although it may be assumed that a certain level of correlation

exists between distance traveled and route duration, the analysis reveals that both

objectives should not be used interchangeably. An overview of this analysis is shown

in Table 6.4. From this table, it is clear that applying one of both objectives does not

necessarily lead to good solutions on the other objective. Furthermore, when two so-

lutions obtained by different secondary objectives are compared, on average only 43%

of the links appear on both solutions. When two solutions obtained by the same sec-

ondary objective are compared, this percentage increases up to 60% which indicates

that differences between solutions are considerably larger when they are obtained by

different secondary objectives.

Table 6.4: Comparison of distance and duration

Results Secondary objective

Total distance Total duration

Average total distance (km) 1807 1835

Average gap (%) 4.86 6.83

Average total duration (min) 4391 4247

Average gap (%) 5.62 1.89

6.3.3 Comparison with time window partitioning method

Up to now, the quality of the proposed deterministic annealing algorithm is shown by

comparing results with a lower bound. To further assess the quality of our algorithm,

it is compared with another solution method in this section.

Zhang et al. (2010) describe a problem which is very similar to the one described

in Section 4.3. The authors take an integrated solution approach and formulate their

problem in a similar way as discussed in 4.4.2. The single objective is to minimize

total route duration. A time window partitioning method is proposed to solve the

problem and results on twenty random problem instances are reported. In this section,

our single phase integrated deterministic annealing algorithm (1-DATS) is compared

with the time window partitioning heuristic on the problem instances of Zhang et al.
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(2010). The single phase algorithm is used because minimizing the number of vehicles

is not an objective of Zhang et al. (2010).

Since there are slight differences between the problem in this thesis and that of

Zhang et al. (2010), a number of changes to the single phase integrated algorithm

need to be made. First, the modifications described in Section 6.3.1 are introduced to

change the objective function to minimizing total route duration. Second, Zhang et al.

(2010) assume that empty container depots are located at the vehicle depots rather

than at container terminals. Besides, when a vehicle delivers a loaded container to a

consignee, it has to wait at this location until the container is unloaded and can be

picked up. Instead, in this thesis it is assumed that the vehicle may leave for another

task and an empty container which becomes available at the consignee’s location may

be picked up by any vehicle. These differences do not ask for an adaption of the single

phase integrated algorithm since for each problem instance all network information

is provided by Zhang et al. (2010) i.e. the nodes with their time windows and all

feasible links with their travel times. Finally, in this thesis only a single vehicle

depot is assumed, while Zhang et al. (2010) assume multiple vehicle depots which

all have a limited number of vehicles. The authors make the simplifying assumption

that a vehicle does not have to return to its original depot at the end of a tour and

the vehicles depots do not have time window constraints. Therefore, only a small

modification to our algorithm is needed. First, the deterministic annealing algorithm

is used to solve the problem with a single artificial vehicle depot. The travel time

between this artificial vehicle depot and another node is equal to the travel time

from the closest vehicle depot to this node. Similarly, the travel time between a

node and the artificial vehicle depot is set equal to the travel time from this node to

the closest depot. Second, the solution to this problem is transformed to a feasible

solution of the problem with multiple vehicle depots by imposing the constraint that a

limited number of vehicles may leave a certain depot. This is done by solving a small

transportation problem which minimizes the sum of the travel times form the vehicle

depots to the first node of each route while ensuring that the number of routes starting

at each vehicle depot is not higher than number of vehicles available. Clearly, the

solution procedure could be improved by taking this constraint into account during

the search of the deterministic annealing algorithm. For example, additional operators

that change the starting vehicle depot of a route or swap the starting vehicle depots

of two routes might be introduced. This is not considered in this thesis.

Zhang et al. (2010) generate twenty random problem instances. For each instance,

locations are randomly generated in a Euclidean plane with length and width equal

to a travel time of 180 minutes. Three container terminals and five vehicle depots
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with an empty container depot and ten vehicles available each are assumed. Con-

tainer pickup/drop off times are five minutes while, container loading and unloading

time is uniformly distributed between five and sixty minutes. Each instance consists

of eighty-five nodes. Forty nodes represent inbound loaded container transports for

which a loaded container should be picked up at the terminal, transported to the

consignee, dropped off, unloaded, picked up and transported either to a depot or to

an empty container demand location. Five nodes represent outbound loaded con-

tainer transports for which an empty container should be delivered to the shipper,

dropped off, loaded, picked up, transported to the terminal and dropped off. Finally,

forty nodes represent empty containers which are available at a container terminal.

These empty containers should be transported from the terminal to a depot or to

an empty container demand location. Time window width is randomly generated

between one and respectively 60, 120, 180 and 240 minutes (five problem instances

for each maximum width).

These instances are less complex than those presented in Section 5.4 for several

reasons. First, the transportation of loaded containers from terminals to consignees

and the empty container transport following on this, are considered as a single task

which should be performed by the same vehicle. The same reasoning is followed when

considering loaded container transports from shipper to terminals: the empty con-

tainer needed by the shipper should be delivered by the same vehicle. Therefore,

vehicles spend a lot of time waiting for a container to be (un)packed and transporta-

tion tasks have a large duration. Hence, a vehicle can only perform a limited number

of transportation tasks during the planning period. Second, the number of trans-

portation tasks to be performed is smaller. Third, average time window widths are

smaller, ranging from about 30 minutes to 120 minutes.

Zhang et al. (2010) use a time window partitioning method to both compute

lower bounds and solve the problem. Lower bounds are found by solving an un-

derconstrained version of the problem as discussed in Section 5.5. Solutions for

the problem are found by solving an overconstrained version of the problem. The

under- and overconstrained problems are exactly the same, except that the set of

links in the network is different. Instead of allowing all links (v, w) that might

be feasible (av + sv + tvw ≤ bw), only links (v, w) that are always feasible, inde-

pendent of the arrival time at node v are included in the overconstrained problem:

Ω = {v, w ∈ ω, δ(v) ̸= δ(w), bv + sv + tvw ≤ bw}. In Section 5.5, two improvements

are proposed for calculating lower bounds by this time window partitioning method.

The first improvement, reducing the set of links in the network, is applied to the

overconstrained problem as well. The second improvement, relaxing the integrality
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constraints, cannot be applied since this would result in infeasible solutions. The

improved overconstrained problem is solved for the twenty instances of Zhang et al.

(2010). Since, these instances are rather simple, the improved overconstrained prob-

lem can be solved efficiently with a partitioning width of a single minute. Because

this version of the problem is equivalent to a time-indexed formulation, the obtained

solutions are optimal. Next, the single phase deterministic annealing algorithm is

used to solve the instances as well.

An overview of the results can be found in Table 6.5. The first two columns show

the optimal solutions found by the improved overconstrained problem and its com-

putation time. The following columns present the solutions obtained by Zhang et al.

(2010) and average solutions obtained over five runs of the single phase deterministic

annealing algorithm. For each solution, the relative gap with the optimal solutions

and the computation times are shown as well. Results show that the single phase

deterministic annealing algorithm outperforms the time window partitioning method

of Zhang et al. (2010). On average, better solutions are found in 18 out of 20 in-

stances. Computation times are reduced drastically as well. Finally, it is noticed that

the average number of vehicles used drops from 44.1 to 42.5.

The quality of the deterministic annealing algorithm is confirmed by the fact

that its solutions are very close to the optimal solutions. The average gap is only

0.33%. For all instances, solutions within 1% of the optimal solution are found. Two

reasons may be suggested why small gaps remain. First, the allocation of vehicles to

routes is done after the solution algorithm has finished, as explained above. Second,

improvements in the number of vehicles are always accepted in our algorithm (without

considering a possible increase in total route duration). As a result, the solutions

found by our algorithm tend to use slightly less vehicles than the optimal solution

(42.5 versus 42.9 on average).

Although the improved overconstrained problem can be solved efficiently for the

instances of Zhang et al. (2010), even with a partitioning width of a single minute, us-

ing this approach to solve the instances discussed in Section 5.4 does not provide good

results. Experimental results have shown that in order to solve the integer restricted

overconstrained problem within reasonable time, the partitioning width should be

considerably larger than a single minute. As a result, a lot of links that might ap-

pear in a feasible solution of the original problem are excluded in the overconstrained

problem. Hence, resulting solutions are of poor quality. It can therefore be concluded

that the improved time window partitioning method is only able to generate good so-

lutions for problem instances of limited complexity, while the proposed deterministic

annealing algorithm also performs well on more complex problem instances.
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Table 6.5: Comparison with time window partitioning method

Max. TW No. Optimal Zhang et al. (2010) 1-DATS

width Dur Time Dur Gap Time Dur Gap Time

60 1 14983 0.65 15042 0.39 69 15128 0.97 3.20

2 15769 0.47 15803 0.22 104 15774 0.03 3.20

3 14823 0.48 14829 0.04 141 14848 0.17 3.40

4 15794 0.38 15857 0.40 96 15795 0.01 3.20

5 12757 0.53 12863 0.83 105 12795 0.30 3.00

120 6 17706 0.83 17946 1.36 107 17733 0.15 3.20

7 14620 1.17 14688 0.47 116 14666 0.31 3.00

8 15991 0.90 16082 0.57 80 16006 0.09 3.20

9 12726 1.36 12892 1.30 72 12726 0.00 3.00

10 17639 0.78 17829 1.08 70 17664 0.14 3.40

180 11 14293 2.70 14495 1.41 195 14386 0.65 3.00

12 15516 2.39 15870 2.28 124 15545 0.19 3.00

13 14433 11.15 14905 3.27 150 14458 0.17 3.20

14 15929 6.04 15960 0.19 199 15930 0.01 3.00

15 13816 3.31 13887 0.51 123 13881 0.47 3.00

240 16 15068 17.74 15334 1.77 75 15127 0.39 3.00

17 13291 10.47 13476 1.39 105 13396 0.79 3.20

18 14187 4.54 14485 2.10 130 14287 0.70 3.20

19 15988 3.62 16110 0.76 98 16079 0.57 3.00

20 11893 8.63 12032 1.17 212 11960 0.56 3.00

Average 3.91 1.09 119 0.33 3.12

6.4 Conclusions and further research

In this chapter, alternative objective functions for the integrated drayage problem are

introduced. First, a bi-objective approach is taken by not assigning priority to the

minimization of the number of vehicles or the minimization of total distance. To our

knowledge, this type of problem has not been considered from a bi- or multi-objective
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perspective before. A bi-objective approach has the advantage that a set of good

solutions is handed to the decision maker, rather than a single solution. It allows

to analyze the trade-off between both objectives as well. Experimental results have

shown that this trade-off is rather small for the problem instances considered in this

thesis. By using more vehicles, only limited savings in total distance may be achieved.

To solve the problem, a bi-objective version of the deterministic annealing algorithm

is proposed. A comparison based on a set of three quality indicators reveals that

this algorithm offers solution sets of higher quality than when iteratively solving the

problem using the algorithm for a hierarchical objective function presented in Chapter

5. Second, the objective to minimize route duration is considered instead of the

objective to minimize total distance. The necessary modifications to the deterministic

annealing algorithm are described. The algorithm is then compared with a recent time

window partitioning method on a similar integrated drayage problem. Our algorithm

outperforms this method.

Future research may focus on a multi-objective approach for the integrated drayage

problem by considering three or more objectives. Minimizing the number of vehicles,

total distance and total route duration have already been introduced in this thesis.

An additional objective might be to balance the workload among vehicles. Such an

objective is often introduced in vehicle routing problems in order to bring an element

of fairness into play (Jozefowiez et al., 2008). The workload of a vehicle may be

expressed in terms of the number of nodes visited, total distance traveled or total

duration of the route.



Chapter 7

Optimization of drayage

operations: time-dependent

travel times

7.1 Introduction

The vast majority of research on vehicle routing problems focuses on situations where

travel times between locations are constant and known in advance. This approach

was adopted in the previous chapters as well. In reality, travel times in a region are

not solely a function of the distance traveled. Rather they will vary from time to time.

Several causes for these variations may be identified. A major cause is the temporal

variation in traffic density. Average traffic volumes are affected by hourly, daily,

weekly and seasonal influences. Traffic density will be higher during peak hours than

during non-peak hours, while holidays and specific events may result in daily or weekly

variations. Other causes of travel time variation include stochastic or unforeseeable

events like accidents, vehicle breakdowns and weather conditions. (Malandraki and

Daskin, 1992; Balseiro et al., 2011) Neglecting the time-dependency of travel times

may seriously affect the applicability of vehicle routing models in practice, especially

when time windows at customers are involved and vehicle movements are planned in

heavily congested areas (Hill and Benton, 1992).

In this chapter1, the effect of hourly variations in travel times on the operational

1This chapter is based on Braekers et al. (2012d).
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planning of drayage operations is studied (Figure 7.1). Travel times are assumed to

be a deterministic function of distance and time of day. This means that although

travel times are not constant during the planning period, travel times at each point

in time are known in advance. As a result, a deterministic planning approach may be

used like in the previous chapters. Travel time variations due to random events like

weather conditions and accidents are not considered. To take these variations into

account, a stochastic approach should be considered.

Figure 7.1: Outline of the thesis

The chapter is organized as follows. In Section 7.2 concepts related to the mod-

eling of time-dependent travel times in vehicle routing problems are discussed. The
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formulation of the time-dependent drayage problem is presented in Section 7.3. An

integrated planning approach and a hierarchical objective function which first mini-

mizes the number of vehicles and next total route duration are considered. Next, a

time-dependent version of the two-phase deterministic annealing algorithm is intro-

duced (Section 7.4). Section 7.5 describes the speed profile of the vehicles that is used

in this chapter. Results are presented in Section 7.6 while two approaches to speed-up

the algorithm are analyzed in Section 7.7. Finally, Section 7.8 contains conclusions

and opportunities for further research.

7.2 Time-dependent vehicle routing

The first steps to account for time-dependency of travel times in vehicle routing prob-

lems are presented by Hill and Benton (1992) and Malandraki and Daskin (1992). Hill

and Benton (1992) propose a model to calculate time-dependent travel times based

on time-dependent travel speeds. For each time period, a travel speed is assigned to

each node. This travel speed represents the average travel speed in the area of the

node at that time. The average travel speed on a link (i, j) is then defined as the

averages of the speed levels of nodes i and j. Malandraki and Daskin (1992) propose

to use stepwise functions for modeling travel time variations. The planning period is

divided in a number of intervals and the travel time on a link differs from interval to

interval. As a result, the travel time on a link makes a jump at discrete moments in

time.

A major drawback of these early approaches is that they violate the non-passing or

FIFO (’First-In-First-Out’) property. This property encompasses the common sense

idea that when a vehicle leaves node i for node j at a given time, any identical vehicle

that leaves node i at a later time, cannot arrive earlier at node j. (Ahn and Shin,

1991; Malandraki and Dial, 1996) A simple example can demonstrate how the method

of Malandraki and Daskin (1992) may violate the non-passing property. Assume that

the travel time on a link (i, j) is 10 minutes when leaving before 14h and 6 minutes

when leaving at or later than 14h. A vehicle leaving node i at 13h59 will arrive node

at node j at 14h09 while a vehicle leaving node i at time 14h00 will arrive at time

14h06. Clearly this violates the non-passing property.

Fleischmann et al. (2004) describe a method to exclude the possibility of passing.

The authors propose to remove the discrete jumps in stepwise travel time functions by

smoothing the function. This smoothing relies on two parameters that have to be set

appropriately. The resulting smoothed travel time function satisfies the non-passing
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property as long as the slope of the function is everywhere larger than minus one

(Fleischmann et al., 2004; Kuo et al., 2009). Furthermore, Fleischmann et al. (2004)

describe a method to efficiently check the feasibility of inserting nodes in a route and

of 2-Opt local search moves. Another method to ensure the non-passing property is

presented by Ichoua et al. (2003). The authors propose to use a stepwise function

for travel speed instead of a stepwise function for travel time. This means that the

speed on a link changes at discrete points in time. It is easy to see that this method

satisfies the non-passing property since at any time all vehicles traveling along an arc

will have the same speed no matter where they are. The corresponding travel time

function for a link can be calculated by a simple procedure. Assume that the planning

period is divided in a number of time intervals Pk =]tk, tk] with different speed levels.

The distance of link (i, j) is indicated by dij and the speed level on link (i, j) during

time interval k is indicated by vijk. Let t denote the current time and tj the arrival

time at node j. The travel time τij(ti) of a vehicle on link (i, j) when leaving node

i at time ti ∈ Pk can then be determined by Algorithm 3. An example of a stepwise

travel speed function and its corresponding travel time function for a link of length 1

are shown in Figures 7.2 and 7.3.

Algorithm 3 Travel time calculation (adapted from Ichoua et al. (2003))

t← ti

d← dij

tj ← t+ (d/vijk)

while tj > tk do

d← d− vk(tk − t)

t← tk

tj ← t+ (d/vk)

k ← k + 1

end while

return (tj − ti)

Even when the non-passing property is satisfied, time-dependent travel times

might not be fully realistic. Often the simplifying assumption is made that the route

taken between two locations is always the same, namely the one with shortest distance.

Instead, when not all links have the same speed profile, the route which minimizes

travel time might depend on the time of the day. Not taking this into account might
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Figure 7.2: Stepwise speed function (adapted from Ichoua et al. (2003))
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Figure 7.3: Travel time function (adapted from Ichoua et al. (2003))

lead to a violation of the triangle inequality. A solution to this problem would be to

calculate time-dependent shortest paths for all possible start times between all pairs of

locations in the network. (Fleischmann et al., 2004; Wohlgemuth and Clausen, 2009)

Efficient methods to calculate such time-dependent shortest paths are described by

Sung et al. (2000) and Dean (2004).

Recently, time-dependency of travel times in vehicle routing problems has received

increased attention. All recent papers consider travel times that satisfy the non-
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passing property. Most of them use a method which is similar to the one of Ichoua

et al. (2003) to ensure this (Jabali et al., 2009; Kuo et al., 2009; Balseiro et al., 2011;

Dabia et al., 2011; Figliozzi, 2012). Calculation of time-dependent shortest paths is

generally not considered.

To the author’s knowledge, only Namboothiri and Erera (2004) deal with time-

dependent travel times in a full truckload pickup and delivery problem. The authors

study a drayage problem involving the transport of loaded containers between cus-

tomers and a single terminal at the port. Delays at the terminal due to congestion

are the only source of time-dependency of travel times. A simple exact and heuristic

column generation approach are proposed to solve the problem.

Kuo et al. (2009) present a tabu search algorithm for the Time-Dependent Vehicle

Routing Problem (TD-VRP). A tabu search algorithm for a TD-VRP where unex-

pected delays at customer locations are considered is proposed by Jabali et al. (2009).

Jung and Haghani (2001) propose a genetic algorithm for a dynamic time-dependent

vehicle routing problem with multiple vehicle types and mixed linehauls and backhauls

(goods have to be delivered to and from the depot). Soft time windows are consid-

ered. Additional experimental results and the calculation of a lower bound on the

problem are discussed in Haghani and Jung (2005). Sifa et al. (2011) propose a tabu

search heuristic for a similar problem. They consider time-dependent travel times

which are based on time-dependent fuzzy vehicle speeds. Other research on time-

dependency in vehicle routing has focused on the Time-Dependent Vehicle Routing

Problem with Time Windows (TD-VRPTW). Hashimoto et al. (2008) present an it-

erated local search algorithm for the TD-VRPTW where time windows are soft. Ant

colony system algorithms for the TD-VRPTW with hard time windows are proposed

by Donati et al. (2008) and Balseiro et al. (2011). Figliozzi (2012) proposes a solution

algorithm based on a route construction and route improvement heuristic to solve the

TD-VRPTW with both hard and soft time windows. Exact solution approaches for

the TD-VRPTW are considered by Soler et al. (2009) and Dabia et al. (2011). Soler

et al. (2009) describe a method to transform the TD-VRPTW into an asymmetric

capacitated vehicle routing problem which can be solved exactly for small problem

instances. Dabia et al. (2011) present a column generation approach embedded in a

branch and cut framework. Finally, Kok et al. (2011) study a TD-VRPTW where

driving regulations are imposed. The authors introduce a ILP formulation to opti-

mize the vehicle departure time at the depot. An insertion heuristic which takes the

driving regulations into account is proposed as well.

Vehicle routing problems with stochastic time-dependent travel times are studied

by Van Woensel et al. (2007, 2008), Lecluyse et al. (2009) and Janssens et al. (2009).
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Van Woensel et al. (2007, 2008) apply queueing theory to capture the dynamic and

stochastic nature of travel times. Respectively an ant colony optimization and tabu

search algorithm are used to solve the TD-VRP. Lecluyse et al. (2009) build on the

work of Van Woensel et al. (2007, 2008). The authors introduce the aspect of variabil-

ity in the objective function of the problem. As a result, vehicle routes tend to have

slightly longer travel times but are more reliable. Finally, Janssens et al. (2009) show

how time Petri nets may be used to evaluate the sensitivity of solutions regarding

travel time uncertainties.

7.3 Problem formulation

The time-dependent integrated drayage problem is formulated similarly as its time-

independent counterpart in Section 4.4.2, although some modifications are required

to reflect the time-dependency of travel times. The problem is formulated on a graph

Gtd = (Ntd, Atd). The node set Ntd is the same as that of the time-independent

problem and consists of:

� the vehicle depot (NV D, index 0),

� a node for each loaded container transport request (NL)

� a node for each empty container demanded (ND),

� a node for each empty container supplied (NS).

For each node i ∈ Ntd, a time window [ai, bi] during which a vehicle should arrive

at the node is defined. The meaning of these time windows is the same as for the

time-independent problem.

Let Aij(t) denote the arrival time function which indicates the earliest arrival

time at node j when arriving at node i at time t. Table 7.1 shows how these arrival

times are calculated (assuming that t ∈ [ai, bi]). When the first node represents a

loaded container transport request (i ∈ NL), indices g and h denote the location

of respectively the origin and destination of this request. Similarly, indices g′ and

h′ denote the location of the origin and destination of a loaded container request

j ∈ NL. The container pickup or drop off time at a location is indicated by li. Travel

time between two locations i and j when leaving location i at time t is calculated by

the method of Ichoua et al. (2003) and is denoted by τij(t). Finally, NT represents
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Table 7.1: Calculation of arrival time function Aij(t)

Node i Node j Arrival time at j when arriving at node i at time t

i ∈ NV D j ∈ NV D t

i ∈ NV D j ∈ NL max(aj , t+ τig′(t))

i ∈ NV D j ∈ NS max(aj , t+ τij(t))

i ∈ NV D j ∈ ND max(aj , t+ min
r∈NT

(τir(t) + lr + τrj(t+ τir(t) + lr) + lj))

i ∈ NL j ∈ NV D q + τhj(q)

i ∈ NL j ∈ NL max(aj , q + τhg′(q))

i ∈ NL j ∈ NS max(aj , q + τhi(q))

i ∈ NL j ∈ ND max(aj , q + min
r∈NT

(τhr(q) + lr + τrj(q + τhr(q) + lr) + lj))

i ∈ NS j ∈ NV D li + min
r∈NT

(τir(t+ li) + lr + τrj(t+ li + τir(t+ li) + lr))

i ∈ NS j ∈ NL max(aj , li + min
r∈NT

(τir(t+ li) + lr + τrg′(t+ li + τir(t+ li) + lr)))

i ∈ NS j ∈ NS max(aj , li + min
r∈NT

(τir(t+ li) + lr + τrj(t+ li + τir(t+ li) + lr))

i ∈ NS j ∈ ND max(aj , li + τij(t+ li) + lj)

i ∈ ND j ∈ NV D t+ τig′(t)

i ∈ ND j ∈ NL max(aj , t+ τig′(t))

i ∈ ND j ∈ NS max(aj , t+ τij(t))

i ∈ ND j ∈ ND max(aj , t+ min
r∈NT

(τir(t) + lr + τrj(t+ τir(t) + lr) + lj))

the set of container terminals in the region. To improve the readability of the table,

t+ lg + τgh + lh is replaced by q.

As is shown in Table 7.1, the arrival time function Aij(t) takes into account:

� the execution of the transport task at node i (if i ∈ NL),

� the travel time between nodes i and j including possible detours to a container

terminal and container pickup and drop off times,

� possible waiting times at node j.

When an intermediate stop at a container terminal is required, the choice of the

terminal now depends on the duration of the detour, rather than on the distance as
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in Section 4.4.2. As a result, the container terminal that is selected is not necessarily

the same at every moment during the planning period.

Since travel times between two locations are calculated by the method of Ichoua

et al. (2003) which ensures that the non-passing property is satisfied, the arrival time

function Aij(t) is a (strictly) monotonic increasing function. As a consequence the

inverse of this function A−1
ij (t) exists and is a monotonic function as well. This inverse

function A−1
ij (t) indicates the latest arrival time at node i in order to arrive at the

latest at time t at node j. The values of A−1
ij (t) are calculated in a similar way as

those of the arrival time function. The major advantage of the existence of the inverse

function A−1
ij (t) is that it is possible to calculate backwards in a route and hence the

route feasibility checks may be performed in a similar way as discussed in Section

5.2.2 (Ahn and Shin, 1991; Fleischmann et al., 2004; Donati et al., 2008).

The arc set Atd in the network consists of all feasible links between nodes: Atd =

{i, j ∈ Ntd, i ̸= j, Aij(ai) ≤ bj}. The problem is formulated as an am-TSPTW.

Binary variables xij indicate whether a vehicle travels directly between two nodes i

and j or not, while variables ti indicate the time that a vehicle visits node i. The

problem (P7.1) may be formulated as follows:

(P7.1) lexmin (
∑

i:(0,i)∈Atd

x0i,

∑
(i,0)∈Atd

xi0Ai0(ti)−
∑

(0,i)∈Atd

x0iA
−1
0i (ti)) (7.1)

Subject to ∑
j:(i,j)∈Atd

xij = 1 ∀i ∈ Ntd\{0} (7.2)

∑
j:(0,j)∈Atd

x0j ≤ K (7.3)

∑
j:(i,j)∈Atd

xij =
∑

j:(j,i)∈Atd

xji ∀i ∈ Ntd (7.4)

Aij(ti) ≤ tj +M(1− xij) ∀(i, j) ∈ Atd,

j ̸= 0 (7.5)

Ai0(ti) ≤ P +M(1− xi0) ∀i ∈ Ntd (7.6)

ai ≤ ti ≤ bi ∀i ∈ Ntd (7.7)

ti ≥ 0 ∀i ∈ Ntd (7.8)

xij ∈ {0, 1} ∀(i, j) ∈ Atd (7.9)
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A hierarchical objective function is used (7.1). The primary objective is to mini-

mize the number of vehicles used while the secondary objective is to minimize total

route duration. Constraints (7.2), (7.3) and (7.4) are flow constraints. Constraint

(7.5) ensures that a vehicle cannot arrive at a node before leaving the previous node

and traveling to the new one. Constraint (7.6) ensures that all vehicles return to the

vehicle depot before the end of the planning period. Time windows are represented

by constraint (7.7). Finally, constraints (7.8) and (7.9) make sure that both types of

variables only take on the appropriate values.

7.4 Time-dependent algorithm

A time-dependent version of the two-phase integrated deterministic annealing algo-

rithm presented in Chapter 5 is introduced in this section. The objective is to min-

imize first the number of vehicles and second total route duration. The algorithm is

implemented in a similar way as discussed in Sections 5.2.3 and 5.2.4. A transporta-

tion problem is solved to find good empty container allocations and an initial solution

is found by a parallel insertion heuristic. In the first phase of the algorithm, the num-

ber of vehicles is reduced. After half the number of iterations of this first phase, the

empty container allocations are relaxed and the current best solution is transformed

to a solution for the integrated problem. In the second phase, total route duration

is reduced. In the following paragraphs, more details on the implementation of the

time-dependent algorithm are provided. During this discussion, let τ̂ij(t) = Aij(t)− t

denote the time needed to arrive at node j when arriving at node i at time t. Fur-

thermore, τ̂min
ij represents the least possible duration of a link (i, j) ∈ Atd:

τ̂min
ij = min

t∈[ai,bi]
{τ̂ij(t)|Aij(t) ≤ bj} (7.10)

7.4.1 Transportation problem

In the time-independent case, the transportation problem minimizes total distance of

the empty container allocations. In the time-dependent case, it is more appropriate to

minimize total travel time. The reason is as follows. Assume three nodes: an empty

container supply node i ∈ NS and two empty container demand nodes j, j′ ∈ ND with

dij < dij′ . When minimizing total distance, the empty container which is available

at node i will rather be assigned to node j than to node j′. However, due to time-

dependent travel times, it is perfectly possible that τ̂min
ij > τ̂min

ij′ . This means that the

time needed to traverse link (i, j′) might be smaller than the time needed to traverse
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link (i, j). Such a situation might occur when the time window of empty container

demand node j forces the empty container to be transported during a congested

period, while this is not the case when allocating the empty container to node j′

(bj < bj′).

Of course, using the objective to minimize travel time is in itself complicated by

the fact that the travel time between two locations is not a unique value but depends

on the time of the day. Three approaches are considered to overcome this problem.

The travel time between two locations is set equal to: the least possible travel time

(τ̂min
ij ), the average travel time or the largest possible travel time. Experimental

results have shown that using the least possible travel time offers the best results,

although differences with the other approaches are rather small.

7.4.2 Optimal departure time at the vehicle depot

When travel times are time-independent, the optimal departure time of a vehicle at

the depot is the latest possible start time (t∗0 = lt0). By leaving the depot at this

time, unnecessary waiting times are avoided as much as possible. This is no longer

true when travel times are time-dependent. Leaving the depot earlier than the latest

possible time, might result in a route of shorter duration. Travel times depend on

the time that the nodes are visited. Visiting nodes earlier might in some cases reduce

travel times and even route duration. (Fleischmann et al., 2004; Donati et al., 2008)

In this thesis, the optimal start time of a vehicle is calculated as follows. First an

interval in which t∗0 lies is determined. The upper bound of this interval is the latest

possible start time lt0 which is maintained during the search similarly as the latest

times at all other nodes. The lower bound is the latest possible start time of the

vehicle at the depot while returning to the depot at the earliest possible time etn+1.

This value, indicated as et0, can be found by a backward loop through the route

while calculating the latest time at each node in order to arrive at the depot at etn+1.

Leaving the depot earlier than et0 will only increase route duration since the vehicle

cannot return to the depot earlier than etn+1. Hence, t∗0 ∈ [et0, lt0]. All the departure

times in this interval result in a route without waiting time. Which of these departure

times results in the minimal route duration is found by an iterative method. For each

departure time t0 the corresponding route duration is calculated by a forward loop

through the route. The optimal departure time is the one which results in the smallest

duration.
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7.4.3 Implementation of local search operators

The same local search operators as presented in Section 5.2.2 are used for the time-

dependent problem. As discussed in Section 7.3, the feasibility of a local search move

can still be inspected efficiently by using the earliest and latest arrival times at each

node. Section 6.3.1 describes how the effect of a local search move on route duration

can be calculated for the time-independent case. Unfortunately, this method no longer

works when travel times are time-dependent. A shift in the arrival time at a node

does not only affect arrival times at other nodes and waiting times in the route. It

may affect the travel time between any pair of consecutive nodes in the route as well.

As a result, it is not possible to predict the effect of a local search move on total route

duration. (Fleischmann et al., 2004; Balseiro et al., 2011)

The duration-reducing operators (intra-route, relocate, 2-Opt* and exchange) are

implemented as follows. Each time an operator finds a feasible local search move, this

move is carried out. Next, the optimal start time of the affected routes is recalculated

and the new total route duration is found. The new solution is accepted when the new

total route duration is less than the old total route duration plus the deterministic

annealing threshold value. When the new solution is not accepted, the local search

move is reversed and the search of the operator is continued.

The two operators that reduce the number of routes are implemented in a different

way. These operators are involved with inserting several nodes into a number of

existing (and empty) routes. Often multiple feasible insertion positions for a node

can be found. Evaluating each feasible location by calculating the effect on total route

duration would take too much computation time. Therefore, the insertion position

of a node is selected by looking at the effect on total minimal duration. The total

minimal duration of a route is defined as the sum of the least possible travel times

τ̂min
ij of all links in the route. The effect on total minimal duration of inserting node

i′ between nodes i and j is calculated as τ̂min
ii′ + τ̂min

i′j − τ̂min
ij . The insertion position

which results in the least increase in total minimal duration is selected. Selecting

insertion positions this way has the advantage that the optimal start time of the

route and the corresponding total route duration do not have to be calculated after

every insertion. Instead these values only have to be updated at the end of the search

of the operator and only when the operator succeeds in inserting all nodes in the

existing (and empty) routes, thereby reducing the number of vehicles in the solution.
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7.5 Speed profile

In literature often different speed profiles are assigned to different (types of) links

in the network. This requires a good understanding of the different types of links

and the extent to which they are subject to congestion. This may be the case when

working with travel speeds on an actual road network. On the other hand, (ran-

domly) assigning speed profiles to links might not make much sense when working

with problem instances which are randomly generated on a Euclidean plane like here.

Furthermore, when assigning different speed profiles to different links, time-dependent

shortest paths should be calculated to adhere to the triangle inequality as discussed

in the previous section.

In this chapter, the assumption is made that the whole region in which drayage

operations take place is equally affected by congestion during peak hours. This means

that all links in the network have the same speed profile. A similar approach is consid-

ered by Jabali et al. (2009) and Figliozzi (2012). The advantage of this assumption is

that there is no need to calculate time-dependent shortest paths between all locations

since the shortest path will always be the one with minimal Euclidean distance. For

each problem instance, the total planning period of eight hours is divided into five

time intervals. Speed during the first, third and fifth interval is assumed to be 60

kilometers per hour. This speed is considered in the previous chapters as well. Two

periods of congestion are considered during which speeds drops to 36 kilometers per

hour (a reduction of 40%). Figure 7.4 gives an overview of the speed profile, while

the corresponding travel times on a link of 20 kilometers are shown in Figure 7.5.

7.6 Experimental results

The random problem instances discussed in Section 5.4 cannot be used to test the

time-dependent algorithm. Since at some moments during the planning period travel

speed is lower than 60 km/hour, it is not ensured that all tasks defined by these

instances can be performed within their time windows. A new set of 48 random

problem instances is created according to the same 24 full factorial design (3 problem

instances per class).

Lower bounds on the number of vehicles and on total route duration are found

using a time window partitioning method as discussed in Section 6.3.2. The travel

time between each combination of subnodes is set equal to the least possible travel

time when leaving the first subnode during its time window. Since the actual travel

time between two subnodes might be slightly larger than this least possible travel
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Figure 7.5: Travel times for a link of 20 kilometers

time, the resulting lower bounds are likely to be less tight than those of the time-

independent case.

Fifty runs of the algorithm are performed on each of the 48 problem instances.

Table 7.2 gives an overview of the average results for the time-dependent two-phase in-

tegrated deterministic annealing algorithm. Detailed results are available in Appendix

F. Average results are close to the lower bounds which indicates that the determinis-

tic annealing algorithm is able to deal with deterministic time-dependent travel times.
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Gaps are larger than those that were obtained for the time-independent problem (see

Section 6.3.2) because the problem is more complex and the lower bounds are less

tight. Finally, it is noted that the average computation time of the time-dependent

algorithm (14.83s) is substantially higher than that of the time-independent algorithm

(5.69s). This results from the complexity in determining the effect of a local search

move on total route duration. Repeatedly local search moves have to be reversed

because the resulting total route duration is not acceptable for the current threshold

value.

Table 7.2: Summary of results

Value Result

Average number of vehicles 11.17

Average gap (absolute) 1.17

Average duration (min) 4751

Average gap (%) 3.40

Average computation time (s) 14.83

7.7 Speed-up approaches

To reduce the computation time of the time-dependent algorithm, two speed-up ap-

proaches are considered. These approaches are compared with the base algorithm

(v0) described in Section 3. The first approach (v1) is to calculate the optimal de-

parture time of a vehicle at the depot only in a post-optimization step, rather than

recalculating the optimal departure time every time a local search move affects the

route. Dabia et al. (2011) note that this is a common approach both in literature

and in practice. A similar approach is among others proposed by Fleischmann et al.

(2004) and Hashimoto et al. (2008). When studying solutions of the base algorithm

in detail, it appeared that the optimal start time of route is often equal to the latest

possible start time. This is because leaving the depot earlier may result in (addi-

tional) unnecessary waiting time. Although leaving the depot earlier might in some

cases also result in reduced travel times along the route, this reduction in travel times

only has an effect on total route duration when there are no waiting times along the

route. By postponing the calculation of the optimal start time until the end of the

search, computation time is saved. During the search, the latest possible start time is
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considered as optimal. To reduce the risk of ignoring potentially promising solutions,

the fifty best solutions are maintained during the search instead of just the single best

solution. At the end of the algorithm, optimal departure times are calculated for each

of these fifty solutions and the solution which offers the least total route duration is

reported.

The second speed-up approach is related to reducing the number of feasible local

search moves which are carried out and subsequently need to be reversed because the

increase in route duration is larger than the deterministic annealing threshold value.

It is proposed to only carry out a selection of the feasible local search moves while

rejecting other moves immediately. The following selection rule is implemented in

version v2 of the algorithm. During the search, the threshold value T for accepting

solutions with a higher total route duration as the current solution, will be between 0

and its maximum value Tmax. When a local search move increases the total minimal

duration of a solution with more than the current threshold value T plus the maximum

threshold value Tmax, the local search move is rejected immediately. The idea is that a

move which results in a considerable increase in total minimal duration will probably

not result in an acceptable effect on total route duration. Finally, a combination of

both speed-up approaches is considered as well (v3).

An overview of the results of each version of the time-dependent algorithm is

shown in Table 7.3. Using one of the speed-up approaches (v1 or v2) hardly affects

solution quality while computation times are reduced by 20 to 25%. Even when a

combination of both speed-up approaches is considered (v3), the negative effect on

solution quality is limited, while computation times are reduced by 30%. Which of

the speed-up approaches should be used, if any, depends on the preferences of the

decision maker. Finally, it should be noted that although the speed-up approaches

seem to work well here, this does not guarantee a similar performance in other problem

contexts. For example when links in the network all have different and more complex

speed profiles, selecting local search moves based on the effect on minimal duration

might not be a good approach.

7.8 Conclusions and further research

Travel times are generally not constant but depend on the time of day. Several causes

for this variation can be identified: congestion, accidents, weather conditions and

other random events. This chapter studies how hourly variations in travel times due

to congestion may be taken into account when planning drayage operations. A time-
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Table 7.3: Speed-up approaches

Value Result

v0 v1 v2 v3

Average number of vehicles 11.17 11.17 11.17 11.17

Average gap (absolute) 1.17 1.17 1.17 1.17

Average duration (min) 4751 4752 4752 4752

Average gap (%) 3.40 3.41 3.42 3.43

Average computation time (s) 14.83 11.74 11.11 10.35

dependent version of the two-phase deterministic annealing algorithm is presented.

Good results are obtained which indicates that the solution algorithm is able to deal

with deterministic time-dependent travel times. Finally, two approaches to reduce

computation time are proposed.

In the future, supplementary computational tests could be performed. It would

be interesting to analyze the performance of the algorithm when not all links in

the network have the same speed profile. In order to ensure that realistic travel

times are considered, time-dependent shortest paths between all locations should be

calculated. Furthermore, more complex speed profiles with multiple speed levels may

be considered. Another interesting research direction would be to study a dynamic

version of the problem, similarly as discussed for the time-independent case at the end

of Chapter 5. Next to the dynamic aspects discussed in Section 5.9, information on

congestion and travel times may be updated during the planning horizon, although

this would require that real-time traffic information is available to the decision maker.
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Chapter 8

Final conclusions and further

research

The purpose of this thesis was to analyze how empty container movements in the

hinterland of a major seaport may be optimized. Special attention has been paid to

the integration of empty container movements with loaded container transports which

take place on the same network. In Chapter 2, a detailed overview of literature on

the topic is presented. In the following chapters, two main aspects of the problem

are analyzed. On the one hand, empty container repositioning decisions at a tactical

decision level are studied in the context of service network design for an intermodal

barge transportation network (Chapter 3). On the other hand, the operational plan-

ning of drayage operations in the service area of intermodal container terminals is

investigated (Chapters 4 to 7). This final chapter summarizes the main conclusions

and indicates opportunities for further research (Figure 8.1).

8.1 Final conclusions

Empty container repositioning is one of the longstanding and ongoing issues in con-

tainerized transport. Empty container movements are costly while not generating any

revenue. Minimizing these movements is therefore of crucial importance to shipping

lines and transportation companies. A social benefit in terms of reduced external

effects of transport is identified as well.

In this thesis, the optimization of empty container movements in the hinterland

of a major seaport is studied. With the majority of papers being published less than

155
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Figure 8.1: Outline of the thesis

twenty years ago, empty container repositioning is a relatively young research domain.

An overview of existing research on the topic is presented in order to identify research

gaps and interesting opportunities for further research. Most existing research has

focused on maritime repositioning movements while empty container repositioning on

a regional level in the hinterland of seaports has only received increased attention

since ten years. The literature review indicates that especially research on strategic

and tactical aspects of the repositioning problem is rather scarce. Besides, research

on regional repositioning has mainly focused on a single transportation mode (road

transport). Designing physical and service networks which consider empty container

repositioning decisions in a multimodal context is therefore identified as an interesting
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research direction. For the operational planning level, it is concluded that recently

promising efforts are made to integrate container allocation and vehicle routing deci-

sions in drayage operations and that future research could focus on designing efficient

heuristics and meta-heuristics for this problem. These two research opportunities are

studied in this thesis.

At at tactical planning level, service network design in the context of intermodal

barge transportation between a seaport and a number of hinterland ports is ana-

lyzed. Service network design is concerned with decisions regarding shipping routes

on which transport services should be offered and the characteristics of these services.

A mathematical model is proposed to assist barge operators and shipping lines with

these decisions. The model determines optimal shipping routes for a given vessel ca-

pacity, service frequency and transport demand scenario. Vessel capacity and service

frequency decisions may be evaluated by the model. When the model is applied from

the perspective of a shipping line which offers door-to-door transportation services,

empty container repositioning decisions should be made. These decisions can be taken

either after barge services are planned or simultaneously with service network deci-

sions. Results indicate that operating costs may be reduced if barge services and

empty container repositioning movements are planned simultaneously.

The operational planning of drayage operations constitutes the second aspect of

the empty container repositioning problem which is studied in this thesis. This plan-

ning problem is involved with determining efficient vehicle routes for performing all

loaded and empty container transports in the service area of one or more intermodal

container terminals. This thesis proposes solution algorithms which may be used in

practice for the daily planning of these container transports. In the past, the problem

has been divided into two subproblems to reduce problem complexity. These subprob-

lems are solved sequentially. In a first step, the distribution or allocation of empty

containers between consignees, shippers and container terminals is determined. In

a second step, vehicle routes are created. Recently, several efforts to integrate both

planning steps into a single model are proposed. This means that empty container

allocations are made simultaneously with vehicle routing decisions. Although the ad-

vantage of an integrated approach over a sequential one seems clear, no comparison

between both approaches has been made before. In this thesis planning models for

both a sequential and an integrated planning approach are presented. The primary

objective is to minimize the number of vehicles used. The secondary objective is to

minimize total distance traveled. By extensive numerical experiments, the advantage

of an integrated approach is demonstrated and quantified. A statistical test is em-

ployed to confirm that an integrated approach offers significantly better results than
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a sequential approach in terms of both objectives.

Both in literature and practice the direct transportation of empty containers be-

tween consignees and shippers is often proposed as a method to reduce empty con-

tainer movements in the service area of intermodal container terminals. These type of

transports are called street turns. The integrated planning model is used to assess the

effect of implementing street turns in drayage operations on the number of vehicles

and total distance traveled. Results indicate that street turns are highly beneficial,

even when accounted for supplementary time needed to take care of paperwork, dam-

age checks or other issues.

To solve the sequential and integrated planning models, a deterministic annealing

algorithm is proposed. Several variants of this algorithm are discussed and com-

pared with each other. Results show that on average a two-phase algorithm which

combines deterministic annealing with some elements of tabu search offers the best so-

lutions. The quality of this algorithm is analyzed in several ways. First, its results are

compared with lower bounds obtained by a time window partitioning method. This

comparison demonstrates that the algorithm provides near-optimal solutions within

an acceptable time frame. Second, results show that the algorithm outperforms an

existing solution method on a similar problem. Third, the effect of changes in problem

characteristics on solution quality is analyzed. The algorithm is robust with respect

to these changes.

The versatility of the deterministic annealing algorithm is demonstrated as well.

It is discussed how the algorithm may be adapted when alternative objective func-

tions are preferred. First, a bi-objective version of the integrated drayage problem is

considered by not assigning priority to the minimization of the number of vehicles or

the minimization of total distance. This way, the trade-off between both objectives

is analyzed. Numerical experiments have shown that this trade-off is rather limited

for the problem instances considered in this thesis. Second, it is discussed how the

algorithm may be adapted in order to minimize total route duration instead of total

distance.

Finally, time-dependent travel times in drayage operations are considered. Travel

times are generally not constant but depend on the time of the day. Several causes

for this variation can be identified: congestion, accidents, weather conditions and

other random events. It is studied how hourly variations in travel times due to

congestion may be taken into account when planning drayage operations. A time-

dependent version of the two-phase deterministic annealing algorithm is presented.

Good results are obtained which indicates that the solution algorithm is able to deal

with deterministic time-dependent travel times.
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8.2 Further research

Empty container repositioning constitutes a broad domain of research, ranging from

long-term strategic issues to day-to-day operational decisions. Although research

attention for the problem has increased in the last years, several opportunities for

further research may be identified.

The effect of cooperation between shipping lines or transportation companies on

empty container repositioning has only been studied by a few authors. In case future

research could indicate that substantial benefits may be achieved from cooperation,

companies might be less reluctant to participate in container sharing initiatives. A

similar argumentation may be made for technological developments (Internet-based

platforms, foldable containers, ...). These technologies seem interesting options to

facilitate and/or reduce the costs of empty container management. By demonstrating

potential savings which they could bring about, the probability and speed of adopting

these technologies in practice may be increased.

Further research opportunities concerning the aspects of empty container repo-

sitioning studied in this thesis, may be identified as well. Currently, the tactical

planning model for service network design in barge transportation concentrates on a

single corridor while often several waterways are connected to a seaport. In such a

situation, the simultaneous optimization of repositioning decisions for the complete

network may be required. Only a single decision maker, either a barge operators or a

shipping line, is assumed by the model, although it may be expected that in reality

port authorities and terminal operators may play a role in the decision making pro-

cess as well. In some case, when certain ports are able to attract sufficient volumes

on their own, even a direct service between a hinterland port and the seaport may be

established. In addition, transport demand is assumed to be deterministic, while in

practice barge services are planned based on uncertain forecasts for transport demand.

Future research could focus on how this uncertainty may be taken into account by the

model. Reserving a portion of vessel capacity for unexpected increases in transport

demand may be an opportunity. Similar to the concept of safety stock in inventory

theory, the amount of capacity to be reserved should depend on the variability of the

demand. Additional numerical experiments may be performed to analyze whether the

model can still be solved efficiently for larger problem instances (increase in number

of ports, vessels, clients or weeks).

Regarding the operational planning of drayage operations, several extensions of

the integrated drayage problem may be investigated. Limits on the number of empty

containers available at each container terminal could be imposed. This reduces the set
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of feasible solutions for the empty container allocation subproblem and further com-

plicates the integrated drayage problem. Local search operators have to be adapted

to avoid violations of the additional constraint. Furthermore, only a single container

type and a single vehicle type are assumed in this thesis, while multiple types are

used in practice. Future research could focus on how the solution algorithm may be

adapted to take this variety in containers and vehicles into account. For some com-

binations of container and vehicle type, it may for example be feasible to transport

two containers simultaneously by a single vehicle. Containers of different owners may

be assumed, restricting the use of a container to a particular set of consignees and

shippers. In a case of a heterogeneous fleet, different fixed costs may apply for each

type of vehicle and some consignees and shippers may not be able to accommodate

all types of vehicles due to practical limitations. Next, a multi-objective version of

the problem may be proposed by considering three or more objectives. Minimizing

the number of vehicles, total distance and total route duration have already been

introduced in this thesis. An additional objective might be to balance the workload

among vehicles. Such an objective is often introduced in vehicle routing problems

in order to bring an element of fairness into play. A new solution approach to deal

with this multi-objective problem would have to be introduced. With respect to the

algorithm for the time-dependent problem, solution quality in case of links with dif-

ferent and more complex speed profiles could be investigated. Finally, in this thesis a

static planning approach is considered. To increase the applicability of the modeling

approach in practice, a dynamic version of the integrated drayage problem may be

studied. In a dynamic problem context, not all problem information is known at

the beginning of the planning period. Instead this information becomes available or

is updated during the planning period. Examples include new requests arriving or

existing requests being canceled during the day, changes in customer time windows

and vehicle breakdowns. The existing planning should be updated in real-time to

accommodate the new information.
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Data overview for service

network design model

This appendix provides an overview of the data used in the tactical planning model

for service network design in intermodal barge transportation which is presented in

Chapter 3. Cost data are mainly based on a recent report commissioned by the Dutch

government agency ’Rijkswaterstaat’ of the Ministry of Infrastructure and the Envi-

ronment NEA (2009). Other sources include Vacca et al. (2007), Promotie Binnen-

vaart Vlaanderen (2008), Konings (2009), Caris (2011) and personal communication.

The terminals at Antwerp right river bank and Antwerp left river bank are denoted

respectively RRB and LRB.

A.1 Network

Table A.1: Distances dij (km)

Genk Meerhout Deurne RRB LRB

Liege 41.2 77.7 125.2 134.5 139.5

Genk 36.5 84.0 93.3 98.3

Meerhout 47.5 56.8 61.8

Deurne 9.3 14.3

RRB 5.0
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Table A.2: Travel times tij (h)

Genk Meerhout Deurne RRB LRB

Liege 3 7 11 14 16.5

Genk 4 8 11 13.5

Meerhout 4 7 9.5

Deurne 3 5.5

RRB 2.5

Table A.3: Freight rates (e/TEU)

Loaded (f l
ij) Empty (fe

ij)

RRB LRB RRB LRB

Liege 120 120 50 50

Genk 110 110 45 45

Meerhout 95 95 40 40

Deurne 80 80 35 35

Table A.4: Truck rates ĉij (e/TEU)

Genk Meerhout Deurne RRB LRB

Liege 125 180 213 216 220

Genk 123 185 200 203

Meerhout 133 140 150

Deurne 100 110

RRB 80
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A.2 Ports

Container handling costs: chi = 13 e/TEU ∀i ∈ N

Port entry costs: cei = 0 e ∀i ∈ N

Container handling time: thi = 0.0417 h/TEU ∀i ∈ N

Mooring and unmooring time: tmi = 0.5 h ∀i ∈ N

Container storage costs: csp = 1 e/(TEU × day) ∀p ∈ P

Maximum inventory level: invmax
p =

 20

∞

∀p = {1, 2, 3, 4}

∀p = {5, 6}

A.3 Vessels

Table A.5: Vessels

Capacity Charter and crew costs Fuel and maintenance costs

(TEU) crchar (e/day) crfuel (e/km)

100 2560 6.80

150 3615 7.27

300 5714 12.57
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Appendix B

Detailed results: sequential

solution approach

Detailed results of all algorithm variants for the sequential solution approach are

presented in this appendix. Table B.1 shows the average number of vehicles used

and average total distance traveled for each problem instance. Table B.2 shows the

absolute gap for the number of vehicles used and the relative gap for the total dis-

tance traveled. To calculate the relative gap for the total distance, the distance of

each solution is compared the lower bound for the corresponding number of vehicles

(LBd(k)).

Table B.1: Detailed results: sequential approach

Instance 1-DA 2-DA 1-DATS 2-DATS

Va Db V D V D V D

1.1 7.00 1031 6.00 1067 7.00 1030 6.00 1065

1.2 7.00 967 6.00 1010 7.00 966 6.06 1008

1.3 6.06 973 6.00 973 6.06 972 6.00 972

2.1 6.00 1010 6.00 1009 6.00 1009 6.00 1008

2.2 6.22 969 6.00 970 6.32 964 6.00 968

2.3 6.00 921 6.00 921 6.00 920 6.00 921

3.1 6.00 823 6.00 823 6.00 823 6.00 823

3.2 6.00 750 6.00 751 6.00 749 6.00 749
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Va Db V D V D V D

3.3 6.00 724 6.00 724 6.00 724 6.00 724

4.1 6.00 695 6.00 695 6.00 695 6.00 695

4.2 6.00 682 6.00 683 6.00 682 6.00 683

4.3 6.00 706 6.00 706 6.00 705 6.00 705

5.1 12.42 1792 12.00 1800 12.68 1781 12.00 1797

5.2 12.00 1821 12.00 1822 12.02 1818 11.92 1825

5.3 12.00 1647 11.00 1688 12.00 1647 11.00 1685

6.1 12.00 1640 11.00 1673 11.96 1639 11.00 1673

6.2 12.00 1655 11.00 1676 12.00 1654 11.00 1675

6.3 12.00 1787 11.02 1824 12.00 1785 11.00 1823

7.1 11.00 1410 11.00 1409 11.00 1409 11.00 1409

7.2 11.00 1299 10.78 1315 11.00 1297 10.76 1313

7.3 11.00 1288 10.00 1320 11.00 1288 10.00 1319

8.1 11.00 1348 11.00 1348 11.00 1345 11.00 1345

8.2 11.00 1294 10.38 1322 11.00 1293 10.56 1314

8.3 10.40 1162 10.00 1166 10.70 1156 10.00 1165

9.1 9.00 1934 9.00 1934 9.00 1934 9.00 1934

9.2 9.00 1970 9.00 1967 9.00 1965 9.00 1966

9.3 8.80 1833 8.00 1874 8.78 1831 8.00 1871

10.1 9.00 1938 8.00 1971 9.00 1938 8.00 1970

10.2 8.84 1849 8.00 1897 8.88 1847 8.00 1896

10.3 8.42 1888 8.00 1889 8.52 1886 8.00 1889

11.1 8.00 1605 8.00 1605 8.00 1605 8.00 1605

11.2 8.00 1666 8.00 1665 8.00 1663 8.00 1663

11.3 9.00 1495 8.12 1633 9.00 1492 8.06 1631

12.1 8.00 1469 7.06 1548 8.00 1467 7.02 1543

12.2 8.00 1548 8.00 1547 8.00 1548 8.00 1550

12.3 7.00 1345 7.00 1345 7.00 1344 7.00 1345

13.1 16.98 3363 16.00 3413 17.00 3358 16.00 3403

13.2 17.00 4044 17.00 4044 17.00 4040 16.98 4043
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Va Db V D V D V D

13.3 17.00 3487 16.00 3513 17.00 3488 16.00 3514

14.1 16.00 3340 15.00 3418 16.00 3339 15.00 3412

14.2 17.00 3594 16.00 3626 17.00 3591 16.00 3623

14.3 16.00 3224 15.00 3276 16.00 3222 15.00 3273

15.1 15.00 2908 14.72 2939 15.00 2906 14.58 2951

15.2 14.98 2792 14.00 2831 14.96 2791 14.00 2826

15.3 15.94 2703 15.00 2739 15.94 2701 15.00 2735

16.1 14.60 2777 14.00 2793 14.40 2785 14.00 2794

16.2 14.00 2651 14.00 2650 14.00 2649 13.98 2649

16.3 14.00 2682 14.00 2682 14.00 2677 14.00 2676

a V: average number of vehicles used (over fifty runs)

b D: average total distance traveled (over fifty runs)

Table B.2: Detailed results: sequential approach - gaps

Instance 1-DA 2-DA 1-DATS 2-DATS

∆Va ∆Db ∆V ∆D ∆V ∆D ∆V ∆D

1.1 1.00 0.85 0.00 2.52 1.00 0.79 0.00 2.34

1.2 1.00 0.82 0.00 2.02 1.00 0.76 0.06 2.02

1.3 0.06 2.06 0.00 1.97 0.06 1.97 0.00 1.85

2.1 0.00 1.73 0.00 1.69 0.00 1.71 0.00 1.61

2.2 0.22 2.01 0.00 1.86 0.32 1.52 0.00 1.73

2.3 0.00 1.61 0.00 1.66 0.00 1.53 0.00 1.60

3.1 0.00 0.72 0.00 0.72 0.00 0.70 0.00 0.67

3.2 0.00 3.18 0.00 3.23 0.00 3.01 0.00 3.02

3.3 1.00 1.80 1.00 1.81 1.00 1.80 1.00 1.79

4.1 1.00 2.15 1.00 2.19 1.00 2.21 1.00 2.18

4.2 1.00 1.59 1.00 1.66 1.00 1.60 1.00 1.63

4.3 1.00 1.28 1.00 1.30 1.00 1.26 1.00 1.25
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∆Va ∆Db ∆V ∆D ∆V ∆D ∆V ∆D

5.1 1.42 2.43 1.00 2.53 1.68 1.99 1.00 2.36

5.2 1.00 2.85 1.00 2.90 1.02 2.71 0.92 2.96

5.3 1.00 2.27 0.00 3.80 1.00 2.27 0.00 3.61

6.1 1.00 2.43 0.00 4.29 0.96 2.36 0.00 4.25

6.2 1.00 1.38 0.00 2.70 1.00 1.32 0.00 2.59

6.3 1.00 2.95 0.02 4.61 1.00 2.85 0.00 4.50

7.1 1.00 3.84 1.00 3.81 1.00 3.80 1.00 3.80

7.2 1.00 2.55 0.78 3.55 1.00 2.37 0.76 3.38

7.3 1.00 2.34 0.00 4.29 1.00 2.37 0.00 4.21

8.1 1.00 3.93 1.00 3.94 1.00 3.70 1.00 3.69

8.2 1.00 4.06 0.38 6.05 1.00 3.93 0.56 5.49

8.3 1.40 3.49 1.00 3.89 1.70 2.82 1.00 3.86

9.1 1.00 0.99 1.00 0.96 1.00 0.96 1.00 0.95

9.2 0.00 1.02 0.00 0.86 0.00 0.77 0.00 0.79

9.3 0.80 1.24 0.00 2.01 0.78 1.11 0.00 1.86

10.1 1.00 1.27 0.00 1.93 1.00 1.28 0.00 1.86

10.2 0.84 1.59 0.00 3.31 0.88 1.52 0.00 3.25

10.3 0.42 0.90 0.00 0.86 0.52 0.83 0.00 0.90

11.1 0.00 1.09 0.00 1.09 0.00 1.07 0.00 1.08

11.2 0.00 1.77 0.00 1.71 0.00 1.56 0.00 1.57

11.3 1.00 0.84 0.12 7.05 1.00 0.67 0.06 6.73

12.1 1.00 0.96 0.06 5.80 1.00 0.80 0.02 5.45

12.2 1.00 0.96 1.00 0.91 1.00 0.98 1.00 1.06

12.3 0.00 1.84 0.00 1.84 0.00 1.78 0.00 1.81

13.1 2.98 1.70 2.00 2.82 3.00 1.54 2.00 2.52

13.2 1.00 2.33 1.00 2.32 1.00 2.23 0.98 2.27

13.3 2.00 1.41 1.00 2.05 2.00 1.44 1.00 2.05

14.1 2.00 1.92 1.00 4.20 2.00 1.89 1.00 4.03

14.2 2.00 2.25 1.00 2.86 2.00 2.18 1.00 2.77
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∆Va ∆Db ∆V ∆D ∆V ∆D ∆V ∆D

14.3 2.00 2.32 1.00 3.79 2.00 2.27 1.00 3.69

15.1 1.00 3.04 0.72 3.70 1.00 2.95 0.58 3.91

15.2 1.98 1.99 1.00 2.70 1.96 1.93 1.00 2.51

15.3 2.94 1.98 2.00 3.11 2.94 1.91 2.00 2.94

16.1 1.60 3.59 1.00 4.17 1.40 3.88 1.00 4.18

16.2 1.00 3.50 1.00 3.48 1.00 3.44 0.98 3.43

16.3 1.00 4.50 1.00 4.47 1.00 4.29 1.00 4.24

a ∆V: average absolute gap for number of vehicles

b ∆D: average relative gap for distance traveled
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Appendix C

Detailed results: integrated

solution approach

Detailed results of all algorithm variants for the integrated solution approach are

presented in this appendix. Table C.1 shows the average number of vehicles used

and average total distance traveled for each problem instance. Table C.2 shows the

absolute gap for the number of vehicles used and the relative gap for the total dis-

tance traveled. To calculate the relative gap for the total distance, the distance of

each solution is compared the lower bound for the corresponding number of vehicles

(LBd(k)).

Table C.1: Detailed results: integrated approach

Instance 1-DA 2-DA 1-DATS 2-DATS

Va Db V D V D V D

1.1 7.00 1017 6.06 1063 7.00 1014 6.00 1065

1.2 6.00 989 6.00 987 6.02 988 6.00 985

1.3 6.12 973 6.00 972 6.26 966 6.00 969

2.1 6.00 1001 6.00 1000 6.00 1001 6.00 1001

2.2 6.34 970 6.00 972 6.38 968 6.00 973

2.3 6.00 918 6.00 919 6.00 917 6.00 917

3.1 6.00 808 6.00 808 6.00 808 6.00 809

3.2 6.00 743 6.00 743 6.00 743 6.00 742
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Va Db V D V D V D

3.3 6.00 699 6.00 699 6.00 699 6.00 699

4.1 6.00 692 6.00 692 6.00 692 6.00 692

4.2 6.00 679 6.00 679 6.00 679 6.00 679

4.3 6.00 696 6.00 696 6.00 696 6.00 696

5.1 12.00 1802 12.00 1792 12.00 1797 12.00 1789

5.2 12.00 1820 11.98 1821 12.00 1815 12.00 1815

5.3 11.98 1647 11.00 1681 12.00 1645 11.00 1678

6.1 12.00 1655 11.00 1682 12.00 1653 11.00 1678

6.2 11.76 1659 11.00 1665 11.82 1658 11.00 1663

6.3 12.00 1782 11.12 1806 12.00 1779 11.00 1806

7.1 11.00 1394 11.00 1397 11.00 1392 11.00 1393

7.2 11.00 1279 10.86 1285 11.00 1277 10.82 1286

7.3 11.00 1294 10.00 1320 11.00 1290 10.02 1315

8.1 11.00 1339 10.96 1339 11.00 1337 10.92 1342

8.2 11.00 1286 10.50 1307 11.00 1285 10.44 1309

8.3 10.00 1161 10.00 1160 10.00 1161 10.00 1158

9.1 9.00 1934 9.00 1930 9.00 1936 9.00 1931

9.2 9.00 1959 9.00 1955 9.00 1957 9.00 1956

9.3 8.48 1823 8.00 1843 8.54 1816 8.00 1842

10.1 9.00 1937 8.00 1962 9.00 1935 8.00 1961

10.2 8.68 1850 8.00 1876 8.76 1847 8.00 1873

10.3 8.54 1885 8.00 1885 8.52 1883 8.00 1885

11.1 8.00 1601 8.00 1602 8.00 1600 8.00 1600

11.2 8.00 1656 8.00 1655 8.00 1653 8.00 1654

11.3 8.74 1509 8.00 1567 8.56 1518 8.00 1565

12.1 8.00 1452 7.00 1516 8.00 1449 7.00 1521

12.2 8.00 1550 8.00 1550 8.00 1549 8.00 1551

12.3 7.00 1346 7.00 1343 7.00 1345 7.00 1346

13.1 16.00 3329 15.42 3354 16.00 3324 15.62 3340

13.2 17.00 4037 17.00 4038 17.00 4034 16.98 4033
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Va Db V D V D V D

13.3 16.00 3502 16.00 3506 16.00 3498 16.00 3500

14.1 16.00 3354 15.00 3394 16.00 3351 15.00 3387

14.2 16.20 3623 16.00 3610 16.16 3615 16.00 3607

14.3 15.60 3253 15.00 3258 15.54 3252 15.00 3254

15.1 15.00 2896 14.74 2919 15.00 2891 14.80 2909

15.2 14.48 2803 14.00 2817 14.48 2803 14.00 2816

15.3 15.00 2725 15.00 2721 15.00 2725 15.00 2722

16.1 14.44 2733 14.00 2735 14.52 2731 14.00 2733

16.2 14.00 2647 14.00 2640 14.00 2639 14.00 2641

16.3 14.00 2670 13.98 2673 14.00 2668 14.00 2671

a V: average number of vehicles used (over fifty runs)

b D: average total distance traveled (over fifty runs)

Table C.2: Detailed results: integrated approach - gaps

Instance 1-DA 2-DA 1-DATS 2-DATS

∆Va ∆Db ∆V ∆D ∆V ∆D ∆V ∆D

1.1 1.00 2.03 0.06 5.10 1.00 1.70 0.00 5.13

1.2 0.00 4.12 0.00 3.86 0.02 3.98 0.00 3.69

1.3 0.12 5.34 0.00 4.99 0.26 4.94 0.00 4.70

2.1 0.00 2.64 0.00 2.58 0.00 2.65 0.00 2.63

2.2 0.34 3.59 0.00 3.63 0.38 3.45 0.00 3.73

2.3 0.00 3.02 0.00 3.05 0.00 2.90 0.00 2.92

3.1 0.00 3.09 0.00 3.04 0.00 3.11 0.00 3.13

3.2 1.00 5.18 1.00 5.10 1.00 5.11 1.00 4.99

3.3 1.00 2.46 1.00 2.45 1.00 2.44 1.00 2.47

4.1 1.00 3.94 1.00 4.00 1.00 3.96 1.00 4.00

4.2 1.00 2.36 1.00 2.42 1.00 2.46 1.00 2.38

4.3 1.00 3.19 1.00 3.18 1.00 3.14 1.00 3.19
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∆Va ∆Db ∆V ∆D ∆V ∆D ∆V ∆D

5.1 1.00 5.11 1.00 4.54 1.00 4.84 1.00 4.34

5.2 1.00 6.01 0.98 6.05 1.00 5.72 1.00 5.75

5.3 1.98 5.05 1.00 7.03 2.00 4.91 1.00 6.83

6.1 1.00 4.36 0.00 6.08 1.00 4.21 0.00 5.83

6.2 0.76 3.86 0.00 4.33 0.82 3.79 0.00 4.22

6.3 1.00 5.00 0.12 6.46 1.00 4.81 0.00 6.44

7.1 1.00 6.97 1.00 7.15 1.00 6.79 1.00 6.84

7.2 1.00 6.06 0.86 6.54 1.00 5.86 0.82 6.56

7.3 1.00 6.70 0.00 8.77 1.00 6.41 0.02 8.36

8.1 1.00 7.07 0.96 7.12 1.00 6.91 0.92 7.35

8.2 1.00 6.95 0.50 8.83 1.00 6.91 0.44 8.97

8.3 1.00 7.54 1.00 7.50 1.00 7.52 1.00 7.32

9.1 1.00 2.17 1.00 1.95 1.00 2.26 1.00 2.02

9.2 1.00 3.32 1.00 3.14 1.00 3.24 1.00 3.21

9.3 0.48 2.99 0.00 3.59 0.54 2.68 0.00 3.51

10.1 1.00 1.88 0.00 2.41 1.00 1.79 0.00 2.36

10.2 0.68 3.76 0.00 4.49 0.76 3.67 0.00 4.34

10.3 0.54 1.88 0.00 2.06 0.52 1.79 0.00 2.05

11.1 1.00 2.03 1.00 2.09 1.00 1.99 1.00 1.97

11.2 1.00 3.36 1.00 3.28 1.00 3.19 1.00 3.22

11.3 1.74 3.83 1.00 7.06 1.56 4.32 1.00 6.94

12.1 1.00 2.60 0.00 7.48 1.00 2.43 0.00 7.84

12.2 1.00 3.73 1.00 3.73 1.00 3.66 1.00 3.76

12.3 0.00 3.83 0.00 3.58 0.00 3.75 0.00 3.79

13.1 2.00 4.47 1.42 5.16 2.00 4.29 1.62 4.75

13.2 1.00 4.45 1.00 4.48 1.00 4.38 0.98 4.33

13.3 2.00 4.07 2.00 4.20 2.00 3.97 2.00 4.02

14.1 2.00 5.30 1.00 6.78 2.00 5.22 1.00 6.57

14.2 2.20 4.86 2.00 4.48 2.16 4.62 2.00 4.41
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∆Va ∆Db ∆V ∆D ∆V ∆D ∆V ∆D

14.3 1.60 5.27 1.00 5.50 1.54 5.24 1.00 5.39

15.1 2.00 6.11 1.74 6.83 2.00 5.92 1.80 6.48

15.2 1.48 5.36 1.00 5.91 1.48 5.37 1.00 5.89

15.3 2.00 5.85 2.00 5.70 2.00 5.86 2.00 5.74

16.1 1.44 5.59 1.00 5.84 1.52 5.48 1.00 5.76

16.2 2.00 6.84 2.00 6.54 2.00 6.48 2.00 6.57

16.3 1.00 6.69 0.98 6.80 1.00 6.59 1.00 6.72

a ∆V: average absolute gap for number of vehicles

b ∆D: average relative gap for distance traveled
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Appendix D

Detailed results: bi-objective

approach

Detailed results of the BI-DA* algorithm for each of the 48 problem instances are

shown in Table D.1. For each instance the lower bound on the number of vehicles

is shown in the second column. The following columns contain the average results

of the non-dominated solutions over fifty runs for each number of vehicles starting

from the lower bound. For each instance, three values are shown per column. The

first value is the average distance while the second value indicates in how many runs

a non-dominated solution for this number of vehicles was found. The third value

represents the average relative gap with the specific lower bound on total distance for

this number of vehicles.

It is important to note that only non-dominated solutions provided by each run of

the algorithm are used to construct Table D.1. However, this does not imply that the

average of the non-dominated solutions for a particular number of vehicles is lower

than the average of the non-dominated solutions for a lower number of vehicles. In

case a non-dominated solution with a high number of vehicles is only found for a

subset of the runs, it might occur that the average distance of these non-dominated

solutions is higher than the average distance of the non-dominated solutions with fewer

vehicles. This is for example the case for instance 1.1 where the average distances

of the non-dominated solutions with 10 and 11 vehicles are higher than the average

distance of the solutions with 9 vehicles.
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Table D.1: Detailed results of the BI-DA* algorithm

Inst. LB Distance / number of solutions / gap with LBd(k)

=k k k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10 k+11

1.1 6 1065 1015 1006 1000 1001 1004

50 50 50 50 14 1

5.21 1.83 1.48 1.08 0.98 1.06

1.2 6 985 958 950 949 950

50 50 50 27 1

3.66 1.92 1.18 0.97 0.77

1.3 6 971 935 921 910 908 907 909

50 50 50 48 31 24 1

4.85 3.12 2.41 1.63 1.39 0.99 0.82

2.1 6 1001 984 979 977 979

50 50 50 37 5

2.62 1.42 0.86 0.52 0.47

2.2 6 973 949 946 946 948

50 50 45 16 1

3.72 1.84 1.60 1.24 0.82

2.3 6 917 904 903 902 903

50 50 42 19 6

2.92 1.88 1.70 1.45 1.19

3.1 6 808 794 790 788 791

50 50 50 31 1

3.11 2.25 2.05 1.52 1.48

3.2 5 743 728 721 717 716 720

50 50 50 43 27 1

5.13 4.01 3.56 2.93 2.16 1.85

3.3 5 699 696 694 696

50 50 32 4

2.45 1.95 1.40 1.26
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Inst. LB k k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10 k+11

4.1 5 691 685 683 683

50 50 41 2

3.89 3.07 2.24 1.69

4.2 5 679 676 677 677

50 44 5 1

2.38 1.83 1.50 0.80

4.3 5 696 691 692 692

50 44 12 1

3.20 2.02 1.69 1.06

5.1 11 1790 1765 1754 1748 1741 1737 1735 1735 1737 1735

50 50 49 50 47 39 19 13 7 1

4.43 3.28 2.80 2.48 2.01 1.69 1.44 1.28 1.20 0.86

5.2 11 1866 1814 1788 1773 1763 1756 1753 1753 1752 1752

1 50 50 50 49 48 38 27 15 3

8.26 5.68 4.41 3.67 3.09 2.70 2.39 2.24 2.02 1.79

5.3 10 1679 1638 1622 1615 1611 1609 1608 1613

50 50 50 48 45 28 8 1

6.88 4.44 3.51 2.96 2.51 2.10 1.72 1.73

6.1 11 1678 1646 1633 1626 1624 1624 1627

50 50 50 45 32 8 2

5.85 3.81 2.83 2.22 1.77 1.46 1.27

6.2 11 1663 1646 1642 1640 1639 1640

50 50 46 35 20 5

4.21 3.06 2.67 2.36 2.05 1.85

6.3 11 1807 1778 1761 1752 1748 1746 1745 1744 1745 1744 1750

49 50 50 49 46 32 26 17 7 2 1

6.48 4.78 3.75 3.13 2.71 2.41 2.11 1.85 1.64 1.31 1.33

7.1 10 1394 1367 1354 1351 1350 1349 1349

50 50 50 46 30 21 6

6.98 4.88 3.83 3.39 3.09 2.77 2.42
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Inst. LB k k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10 k+11

7.2 10 1322 1277 1263 1257 1253 1253 1254 1256

10 50 50 44 33 24 4 1

9.42 5.91 4.64 3.90 3.33 2.97 2.67 2.42

7.3 10 1317 1289 1279 1272 1269 1269 1268 1268 1269

49 50 50 50 35 22 12 7 1

8.55 6.28 5.39 4.68 4.33 4.10 3.83 3.60 3.27

8.1 10 1396 1336 1322 1314 1309 1308 1308 1311 1309

4 50 50 50 43 20 15 5 2

11.74 6.86 5.58 4.72 4.03 3.63 3.29 3.09 2.51

8.2 10 1328 1285 1270 1263 1260 1259 1259 1259 1259

28 50 50 47 45 20 9 3 1

10.59 6.85 5.49 4.63 4.12 3.80 3.35 2.98 2.54

8.3 9 1159 1146 1143 1142 1142

50 50 36 16 2

7.36 5.80 5.07 4.52 3.98

9.1 8 1932 1910 1899 1893 1894

50 50 50 49 3

2.03 1.48 1.12 0.83 0.70

9.2 8 1957 1921 1911 1907 1904 1908

50 50 50 37 19 1

3.21 2.18 1.97 1.81 1.43 1.33

9.3 8 1841 1793 1781 1775 1776

50 50 50 43 4

3.46 1.87 1.54 1.05 0.75

10.1 8 1960 1934 1923 1919 1920

50 50 47 39 5

2.29 1.75 1.30 0.80 0.41

10.2 8 1873 1835 1814 1808 1803 1808

50 50 50 45 32 6

4.32 3.22 2.24 1.79 1.20 1.06
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Inst. LB k k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10 k+11

10.3 8 1884 1868 1871

50 50 21

2.03 0.80 0.44

11.1 7 1600 1580 1576 1575

50 50 43 12

1.99 1.01 0.87 0.44

11.2 7 1653 1625 1613 1611 1611 1615

50 50 50 27 9 2

3.14 2.27 1.77 1.67 1.57 1.59

11.3 7 1563 1485 1469

50 50 50

6.79 2.48 1.34

12.1 7 1521 1449 1450

49 50 12

7.83 2.40 1.85

12.2 7 1610 1550 1538 1534 1536

1 50 49 35 1

7.03 3.69 2.78 2.19 1.84

12.3 7 1343 1327 1323 1325

50 50 35 14

3.59 2.41 1.65 1.22

13.1 14 3376 3319 3291 3276 3269 3271 3268 3276

21 50 49 45 28 18 8 1

5.77 4.14 3.22 2.62 2.21 2.08 1.75 1.36

13.2 16 4091 4031 3979 3945 3921 3904 3896 3888 3887 3886 3883 3891

2 50 50 50 50 47 44 43 29 18 16 2

5.18 4.30 3.34 2.66 2.19 1.79 1.56 1.33 1.24 1.12 0.92 1.00

13.3 14 3500 3460 3451 3450 3453 3454

50 50 42 24 6 3

4.01 2.74 2.32 2.03 1.86 1.61
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Inst. LB k k+1 k+2 k+3 k+4 k+5 k+6 k+7 k+8 k+9 k+10 k+11

14.1 14 3388 3331 3317 3312 3311 3311

50 50 49 35 15 8

6.59 4.59 3.92 3.44 3.09 2.73

14.2 14 3608 3579 3567 3560 3557 3555 3555 3559

50 50 46 43 29 22 7 1

4.43 3.51 3.07 2.71 2.41 2.14 1.86 1.67

14.3 14 3251 3223 3210 3202 3199 3200 3201

50 49 49 39 28 13 5

5.29 4.25 3.64 3.17 2.83 2.63 2.37

15.1 13 2990 2893 2851 2824 2810 2801 2798 2796 2798

12 50 50 50 46 46 29 14 8

9.16 5.98 4.58 3.59 2.95 2.45 2.16 1.89 1.69

15.2 13 2814 2780 2759 2755 2753 2752 2756

50 50 50 38 27 18 3

5.82 4.48 3.62 3.22 2.85 2.51 2.34

15.3 13 2720 2690 2680 2675 2675 2678

50 50 48 35 20 6

5.65 4.37 3.76 3.27 2.89 2.57

16.1 13 2732 2706 2696 2693 2697 2695

50 50 44 25 7 1

5.70 4.36 3.56 2.92 2.49 1.75

16.2 12 2638 2611 2599 2594 2595 2599

50 50 48 36 13 3

6.48 5.00 4.07 3.39 2.86 2.47

16.3 13 2667 2629 2612 2603 2603 2603 2607

50 50 49 36 24 8 1

6.58 4.92 4.04 3.43 3.08 2.67 2.36
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Detailed results:

minimization of total route

duration

Table E.1: Detailed results: route duration

Instance Va ∆Vb Durc ∆Durd

1.1 6.00 0.00 2685 1.26

1.2 6.00 0.00 2571 1.93

1.3 6.00 0.00 2559 1.45

2.1 6.00 0.00 2591 1.12

2.2 6.00 0.00 2605 0.99

2.3 6.00 0.00 2567 0.67

3.1 6.00 0.00 2531 1.45

3.2 6.00 1.00 2370 1.33

3.3 6.00 1.00 2302 1.83

4.1 6.00 1.00 2317 1.23

4.2 6.00 1.00 2339 0.71

4.3 6.00 1.00 2333 1.27

5.1 12.00 1.00 4943 1.47
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Instance Va ∆Vb Durc ∆Durd

5.2 12.00 1.00 5040 1.93

5.3 11.00 1.00 4833 2.32

6.1 11.00 0.00 4893 1.70

6.2 11.00 0.00 4868 1.32

6.3 11.00 0.00 5038 2.03

7.1 11.00 1.00 4694 2.06

7.2 10.76 0.76 4513 2.35

7.3 10.00 0.00 4540 2.80

8.1 10.84 0.84 4604 1.90

8.2 10.36 0.36 4567 2.89

8.3 10.00 1.00 4261 2.31

9.1 9.00 1.00 3571 0.75

9.2 9.00 1.00 3586 1.29

9.3 8.00 0.00 3455 0.82

10.1 8.00 0.00 3667 0.76

10.2 8.00 0.00 3476 1.80

10.3 8.00 0.00 3466 0.86

11.1 8.00 1.00 3349 0.86

11.2 8.00 1.00 3363 1.30

11.3 8.00 1.00 3258 3.27

12.1 7.00 0.00 3139 3.87

12.2 8.00 1.00 3208 1.98

12.3 7.00 0.00 2987 2.09

13.1 15.48 1.48 6579 2.81

13.2 16.92 0.92 7361 1.24

13.3 16.00 2.00 6750 2.42

14.1 15.00 1.00 6529 3.42

14.2 16.00 2.00 6843 2.23

14.3 15.00 1.00 6398 2.89

15.1 14.52 1.52 6349 2.26
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Instance Va ∆Vb Durc ∆Durd

15.2 14.00 1.00 6063 2.69

15.3 14.98 1.98 6030 3.05

16.1 14.00 1.00 6012 1.98

16.2 14.00 2.00 5906 2.80

16.3 14.00 1.00 5945 2.78

a V: average number of vehicles used

b ∆V: average absolute gap for number of vehicles

c Dur: average total route duration

d ∆Dur: average relative gap for total route duration
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Appendix F

Detailed results:

time-dependent travel times

Table F.1: Detailed results: time-dependent travel times

Instance Va ∆Vb Durc ∆Durd

TD 1.1 7.00 0.00 2807 2.99

TD 1.2 7.00 1.00 2920 1.44

TD 1.3 7.00 1.00 2862 2.87

TD 2.1 7.00 1.00 2871 1.44

TD 2.2 6.00 0.00 2697 2.87

TD 2.3 7.00 1.00 2740 2.24

TD 3.1 6.00 0.00 2556 2.56

TD 3.2 6.00 0.00 2625 2.67

TD 3.3 7.00 1.00 2785 2.42

TD 4.1 6.00 0.00 2533 2.11

TD 4.2 6.00 1.00 2435 2.08

TD 4.3 6.00 1.00 2418 1.83

TD 5.1 12.68 1.68 5457 3.66

TD 5.2 13.00 1.00 5549 2.36

187



188 Appendix F

Instance Va ∆Vb Durc ∆Durd

TD 5.3 13.00 1.00 5496 3.23

TD 6.1 13.00 1.00 5607 4.39

TD 6.2 12.00 1.00 5410 5.82

TD 6.3 12.00 1.00 5401 4.87

TD 7.1 11.08 0.08 4971 3.79

TD 7.2 11.90 0.90 5073 2.42

TD 7.3 11.58 0.58 5024 2.53

TD 8.1 11.00 1.00 4830 4.63

TD 8.2 11.00 1.00 4825 5.30

TD 8.3 11.00 1.00 4777 5.78

TD 9.1 10.00 1.00 4299 2.06

TD 9.2 11.00 1.00 4642 0.98

TD 9.3 10.00 0.00 4194 2.78

TD 10.1 10.00 1.00 4276 1.58

TD 10.2 9.00 1.00 3854 1.45

TD 10.3 9.00 1.00 3863 2.55

TD 11.1 9.00 1.00 3709 3.57

TD 11.2 8.94 0.94 3524 2.62

TD 11.3 9.00 1.00 3710 2.18

TD 12.1 8.00 1.00 3410 3.06

TD 12.2 8.00 1.00 3445 3.28

TD 12.3 9.00 1.00 3700 2.25

TD 13.1 19.00 3.00 7931 4.21

TD 13.2 18.00 2.00 7737 2.98

TD 13.3 18.74 2.74 7731 3.21

TD 14.1 18.92 2.92 7931 5.65

TD 14.2 18.00 2.00 7728 5.15

TD 14.3 17.98 2.98 7521 5.39

TD 15.1 15.60 1.60 6683 4.40

TD 15.2 16.62 2.62 7031 4.26
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Instance Va ∆Vb Durc ∆Durd

TD 15.3 15.94 1.94 6679 4.23

TD 16.1 15.00 2.00 6460 6.77

TD 16.2 15.00 1.00 6690 6.01

TD 16.3 15.00 2.00 6649 6.40

a V: average number of vehicles used

b ∆V: average absolute gap for number of vehicles

c Dur: average total route duration

d ∆Dur: average relative gap for total route duration
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Samenvatting

Sinds de introductie van containers ongeveer vijftig jaar geleden, is het gebruik er-

van voor het transport van goederen continu toegenomen. Voordelen van het trans-

porteren van goederen per container zijn de standardisatie van zowel ladingen als

materieel, kortere laad- en lostijden en verminderde veiligheids- en schaderisico’s. Als

gevolg van deze voordelen, productiviteitswinsten in de sector en de toenemende glob-

alisatie, kende containertransport een gemiddeld jaarlijks groeipercentage van 8.2%

tussen 1990 en 2010.

Doordat containers relatief makkelijk van de ene naar de andere transportmodus

overgeslagen kunnen worden, zorgt het toenemende gebruik van containers ook voor

een stimulans voor intermodaal container transport. Bij intermodaal container trans-

port worden goederen per container getransporteerd door middel van minstens twee

transportmodi, zonder de goederen te behandelen tijdens de overslag. Het langste

gedeelte van het transport wordt afgelegd via één of meerdere duurzame transport-

modi zoals binnenvaart, spoorvervoer of zeevaart. Het eerste en laastste gedeelte, het

voor- en natransport, wordt meestal uitgevoerd per vrachtwagen.

Naast bovenvermelde voordelen, zorgt het toenemende gebruik van containers voor

een aantal nieuwe planningsproblemen zoals het bepalen van de grootte van de con-

tainervloot, de keuze tussen het aankopen of leasen van containers en de herposi-

tionering van lege containers. Vooral het laatste probleem is erg complex. Dankzij

het onevenwicht tussen de in- en uitvoer van goederen in een regio, zal in bepaalde

regio’s over verloop van tijd een overschot aan containers ontstaan, terwijl elders een

tekort heerst. Op globaal niveau worden lege containers daarom geherpositioneerd

tussen zeehavens, met als gevolg dat ongeveer 20% van alle maritieme container-

transporten leeg zijn. Op regionaal niveau, in het achterland van een zeehaven, is

het herpositioneren van lege containers eveneens vereist. Beladen containers worden

getransporteerd van de zeehaven naar hun finale bestemming (importeurs) via weg-

transport, binnenvaart, spoorvervoer of een combinatie van deze modi. Omgekeerd
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worden beladen containers getransporteerd van exporteurs naar de zeehaven. Omdat

exporteurs en importeurs vaak niet op dezelfde locatie gelegen zijn, is het nodig om

lege containers te herpositioneren tussen importeurs, exporteurs, intermodale con-

tainerterminals, binnenlandse containerdepots en containerterminals en -depots in de

haven. Schattingen voor deze lege transporten variëren tussen de 40 en 50% van alle

continentale containertransporten.

In tegenstelling tot het transport van beladen containers, zijn er meestal geen

opbrengsten verbonden aan lege containertransporten. Het reduceren van deze ac-

tiviteiten is daarom een belangrijk middel van rederijen en transportbedrijven om

hun kosten te minimaliseren. Verder leidt het reduceren van het aantal lege con-

tainertransporten tot een vermindering van de externe effecten van transport, zoals

congestie en luchtvervuiling, hetgeen het herpositioneringsprobleem eveneens relevant

maakt vanuit een maatschappelijk standpunt.

In dit doctoraat wordt de herpositionering van lege containers in het achterland

van een zeehaven bestudeerd. Aangezien lege containers worden getransporteerd over

hetzelfde transportnetwerk en met dezelfde transportmiddelen als beladen containers,

wordt gefocust op de integratie van beladen en lege containerbewegingen om de kosten

van het herpositioneren te minimaliseren. Twee aspecten van het probleem worden

geanalyseerd in dit onderzoek. Het eerste aspect betreft het ontwikkelen van een

dienstennetwerk voor het transport van beladen en lege containers via binnenvaart

tussen een zeehaven en een aantal havens in het achterland. Het tweede aspect betreft

de integratie van beladen en lege containerbewegingen tijdens het voor- en natransport

tussen intermodale containerterminals en importeurs en exporteurs. Het eerste aspect

heeft betrekking op het tactische planningsniveau terwijl het tweede aspect betrekking

heeft op het operationele planningsniveau.

Het eerste gedeelte van dit doctoraat behandelt een tactisch planningsprobleem

in de containerbinnenvaart, namelijk het bepalen van de aan te bieden binnenvaart-

diensten tussen een zeehaven en een aantal kleinere havens in het achterland die via

een enkele waterstroom met elkaar worden verbonden. Een mathematisch model,

toegepast op de situatie van het Albertkanaal en de haven van Antwerpen, wordt

voorgesteld. Dit model bepaalt de optimale routes (de te bezoeken havens) voor

één of meerdere schepen, het aantal te transporteren containers en de bijhorende

kosten en opbrengsten voor een gegeven transportvraag, scheepscapaciteit en service-

frequentie. Verder kan de beste combinatie van capaciteit en servicefrequentie bepaald

worden door verschillende scenario’s te vergelijken. Het model kan gebruikt worden

in de context van twee verschillende beslissingsnemers, binnenvaartoperatoren ener-

zijds en zeerederijen die deur-tot-deur transport aanbieden anderzijds. In het geval
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van binnenvaartoperatoren is de doelstelling het maximaliseren van de winst. Een

niet-winstgevende transportvraag mag worden geweigerd en de herpositionering van

lege containers wordt niet expliciet in rekening gebracht omdat binnenvaartoperatoren

hier niet voor verantwoordelijk zijn. In het geval van zeerederijen die deur-tot-deur

transport aanbieden is de beslissingsnemer tevens de eigenaar van de containers en

bijgevolg wel verantwoordelijk voor de herpositionering ervan. De doelstelling is om

de kosten te minimaliseren terwijl aan elke transportvraag wordt voldaan. Resul-

taten tonen aan dat wanneer reeds rekening wordt gehouden met de herpositionering

van lege containers bij het bepalen van de aan te bieden diensten, kostenbesparingen

kunnen worden gerealiseerd.

In het tweede gedeelte van dit doctoraat wordt een operationeel probleem met

betrekking tot het wegtransport van beladen en lege containers tussen container-

terminals, importeurs en exporteurs in een bepaalde regio bestudeerd. Beladen contai-

ners moeten worden getransporteerd van exporteurs naar containerterminals en van

containerterminals naar importeurs. Verder vragen exporteurs lege containers en

zijn lege containers beschikbaar bij importeurs. Ten slotte wordt verondersteld dat

aan elke containerterminal een containerdepot gelegen is, waar een voorraad lege

containers beschikbaar is en waar lege containers tijdelijk opgeslagen kunnen wor-

den. Het probleem bestaat uit het vinden van een efficiënte rittenplanning voor een

set van voertuigen waarbij alle beladen containertransporten worden uitgevoerd, aan

de vraag naar lege containers van exporteurs wordt voldaan en alle lege containers

beschikbaar bij importeurs worden opgehaald. Zowel het transport van beladen als

van lege containers is onderhevig aan tijdsvensters. Bijkomend is enkel de oorsprong

(bestemming) van een aangeboden (gevraagde) lege container vooraf gekend. Een

sequentiële en een gëıntegreerde oplossingsmethode worden voorgesteld en met elkaar

vergeleken. Bij de sequentiële oplossingsmethode worden in een eerste stap de uit te

voeren lege containertransporten bepaald. In tweede instantie worden voertuigroutes

gecreëerd die alle beladen en lege containertransporten uitvoeren. Bij de gëıntegreerde

oplossingsmethode worden beide types van beslissingen tegelijkertijd genomen. Dit

leidt tot een complexer probleem maar resulteert in betere oplossingen. Aangezien het

exact oplossen van het probleem via een van beide methoden niet mogelijk is voor pro-

bleeminstanties van realistische grootte, wordt een metaheuristiek voorgesteld. Deze

metaheuristiek is gebaseerd op ’deterministic annealing’ en leidt tot quasi-optimale

oplossingen. Resultaten voor een set van artificiële probleeminstanties worden be-

sproken. Verschillende doelstellingsfuncties worden hierbij verondersteld. Resultaten

tonen aan dat een gëıntegreerde oplossingsmethode significant betere oplossingen geeft

dan een sequentiële oplossingsmethode. Verder blijkt dat het uitvoeren van directe
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wissels, i.e. het direct transporteren van lege containers tussen importeurs en expor-

teurs zonder tussenstop bij een containerdepot, een grote positieve invloed heeft op

de resultaten. Ten slotte wordt een uitbreiding van het probleem bestudeerd waarbij

de reistijd tussen twee locaties niet langer constant is maar afhangt van het tijdstip

van de dag. Op die manier kan congestie in rekening worden gebracht.
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