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Abstract

Weighted scale-free networks with topology-dependent interactions are studied. It is shown that

the possible universality classes of critical behaviour, which are known to depend on topology, can

also be explored by tuning the form of the interactions at fixed topology. For a model of opinion

formation, simple mean field and scaling arguments show that a mapping γ′ = (γ − µ)/(1 − µ)

describes how a shift of the standard exponent γ of the degree distribution can absorb the effect of

degree-dependent pair interactions Jij ∝ (kikj)
−µ, where ki stands for the degree of vertex i. This

prediction is verified by extensive numerical investigations using the cavity method and Monte

Carlo simulations. The critical temperature of the model is obtained through the Bethe-Peierls

approximation and with the replica technique. The mapping can be extended to nonequilibrium

models such as those describing the spreading of a disease on a network.

PACS numbers: 89.75.Hc, 64.60.Fr, 05.70.Jk, 05.50.+q
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I. INTRODUCTION

In recent years [1, 2] it has become clear that many natural and technological networks

are quite different from simple random networks [3] and share several unexpected properties

such as a scale-free degree distribution [1, 2], small world connectivity [4], soft modularity

(meaning that the network consists of different modules whose mutual interactions are sup-

pressed but not completely eliminated [5]), and so on. Much work has gone into a precise

characterization of these topological properties for a variety of networks as diverse as the

internet [6], metabolic networks in cells [7] or networks of chemical reactions in planetary

atmospheres [8]. Nontrivial topology is now established as an essential ingredient of complex

systems [9]. This observation naturally raises the question how these structures are formed

and grow. A well known mechanism is that of preferential attachment which leads to the

Barabási-Albert network with a power-law degree distribution [10].

Another important question is how the network topology affects physical properties such

as collective behaviour, transport quantities, the spreading of a disturbance, ... Particular

interest has been devoted to the behaviour of the Ising model on a network. Besides being

the standard model of (equilibrium) statistical mechanics, the Ising model is also expected

to give a simple description of sociological phenomena such as opinion formation [11]. The

first studies of this model indicated [12] that on a Barabási-Albert network , the Ising model

is always ordered. It was, however, soon realised that a finite transition temperature can be

obtained if one considers the Ising model on scale-free networks with a degree distribution

that is less long ranged than that of the Barabási-Albert one [13, 14]. Even more interesting

is the observation of non-trivial critical behaviour for these cases [13–16].

Another mechanism that leads to a finite transition temperature was discovered by one

of us in the so called special attention network. This is a model of a weighted network

where the interactions between connected spins are made topology-dependent [17]. A fur-

ther investigation of that and related models then led to the discovery that topology and

interaction can be “traded”, in the sense that the effect of a change in interaction law can be

transformed away by an appropriate change of the degree distribution law. In the present

paper we present a detailed investigation of the critical behaviour of the Ising model with
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degree-dependent interactions. We also discuss the extension of our results to nonequilibrium

situations. A summary of our results was published earlier [18].

This paper is organised as follows. In the next section, we define the model and present

the results of a simple mean field theory. In section 3, we study the model with the cavity

approach. In section 4, we describe the application of the Bethe-Peierls method and the

replica technique to our model. In section 5, we present the results of extensive Monte Carlo

simulations. In section 6, we discuss the extension of our main result to a nonequilibrium

process. Finally, we present our conclusions in section 7.

II. THE MODEL

Our model can be defined on a general network (or graph). When in a graph a vertex

(or node) i is connected with ki other nodes we say it has degree ki. We will mostly have

in mind a scale-free network for which the degree is a random variable whose distribution

P (k) is a power-law: P (k) ∝ k−γ. We take γ > 2 so that the average degree Q =
∫
kP (k)dk

is finite. For future reference we also introduce the notation Q2 for the second moment of

P (k). The Barabási-Albert (BA) network has γ = 3 [10]. The number of nodes in the

network is denoted by N .

We next define an Ising model on this network by associating to each node i a variable

si = ±1 and to each pair of linked nodes an energy −Jijsisj . In this paper, we will choose

the couplings Jij to be given by

Jij = JQ2µ/(kikj)
µ . (1)

with J > 0. For µ = 0, the behaviour of this model has been investigated by various authors

and the critical behaviour was found to depend on γ [13–16]. For γ > 5 the results of

standard mean field theory were found to apply: the critical temperature Tc is finite, the

order parameter vanishes with an exponent 1/2 and the specific heat has a finite jump at

Tc. When 3 < γ < 5, the transition temperature remains finite, the specific heat goes to

zero continuously as a function of temperature with an exponent that depends on γ. The

same is true for the order parameter. In the borderline case γ = 5, logarithmic corrections

appear. For all cases with γ > 3, the zero-field susceptibility diverges as |T −Tc|−1. Finally,

when 2 < γ ≤ 3, the system is ordered at all temperatures.
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When µ = 1/2, our model corresponds to the special attention network (SAN) introduced

earlier by one of us [17]. A simple mean field approach showed that on a BA network, the

SAN has a finite transition temperature [17].

We start by extending that simple approach to the case of general µ and γ.

A. A simple mean-field approximation

For a given network realization, the local magnetisation mi = 〈si〉 at node i obeys the exact

equation

mi = 〈si〉 =

〈
tanh

(
ki∑

j=1

Jij

kBT
sj

)〉
. (2)

Here 〈.〉 is the thermal average, kB is Boltzmann’s constant and T is the temperature.

Following Bianconi [19], we now apply a double mean field approximation to this equation

by rewriting it as

mi = tanh

(
N∑

j=1

[Jij]

kBT
mj

)
, (3)

where the sum now runs over all the nodes and [.] denotes the average over all the realisations

of the network with a fixed set of degrees {ki}. For a BA network the probability pij that

two nodes are connected was shown to be equal to kikj/(QN), [19] and we can expect this

result to hold in some other cases [16]. We therefore have

[Jij ] = Jijpij =
JQ2µ−1

N
(kikj)

1−µ , (4)

so that Eq. (3) can be rewritten as

mi = tanh

(
JQµ

kBT
k1−µ

i

Qµ−1

N

N∑

j=1

k1−µ
j mj

)
. (5)

The quantity

S =
Qµ−1

N

N∑

j=1

k1−µ
j mj , (6)

is a convenient order parameter. From Eq. (5) it follows that S obeys the selfconsistency

equation

S =
Qµ−1

N

N∑

i=1

k1−µ
i tanh

(
JQµ

kBT
k1−µ

i S

)
(7)
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For N → ∞, the term on the right hand side is simply related to the average over the

distribution P (k) so that we can rewrite Eq. (7) as

S = Qµ−1

∫ ∞

m

k1−µ tanh

(
JQµ

kBT
k1−µS

)
P (k)dk (8)

Here m ≥ 1 is the lowest degree that is possible in the network. Eq. (8) can be analysed in

a standard way. For example, the critical temperature is determined by assuming S to be

small. After linearisation we then obtain

Tc =
JQ2µ−1

kB

∫ ∞

m

k2−2µP (k)dk . (9)

For the power-law distribution this gives a finite Tc provided γ > 3− 2µ. This is consistent

with the earlier finding of a finite Tc for the SAN on the BA network. One could then go on

and determine, for example, the exponent β from a further analysis of Eq. (8). It is however

more suitable to perform the transformation of variables

k′ = Qµk1−µ (10)

This gives for the case that the degree distribution is power-law, and for µ < 1

S = A

∫ ∞

m′

(k′)
1−γ
1−µ tanh

(
Jk′S

kBT

)
dk′ (11)

where A is a constant and m′ = Qµm1−µ. Comparison with (8) teaches us that (11) is

precisely the mean field equation for µ′ = 0 and for a degree distribution with an exponent

that is modified to

γ′ =
γ − µ

1 − µ
(12)

This relation can be expected to hold more generally. Indeed, it should be valid whenever

within a mean-field approach the degree k only enters in physical properties through the

quenched average interaction between any two nodes with fixed degrees, ki and kj. This

average is, as shown above, Jijpij with pij = kikj/(QN). For µ 6= 0, the ki can then

be transformed using (10). In order to retain the same physics, averages over the degree

distribution must be invariant. This requires a distribution transformation

P (k) = P ′(k′(k))
dk′(k)

dk
(13)

from which (12) follows for a scale-free P (k). In section 6, we will in fact show that (12) also

holds for a contact process with degree-dependent infection rates. The general derivation

5



scheme outlined above, will also apply there. Thus, our simple mean field analysis indicates

that by tuning µ ∈ [2−γ, 1] we can encounter the whole range of universality classes that was

found in earlier work at µ = 0. As an example, one can study the whole set of universality

classes by working on a BA-network and tuning µ. For the particular example of the SAN,

(12) gives γ′ = 5.

In the rest of this paper we will apply several other approaches that go beyond simple

mean field to our model. These will allow us to get a better estimate than (9) for the critical

temperature, and to verify the equivalence between universality classes as expressed in Eq.

(12).

We also observe that from (5) and (6) it follows that

mi = tanh

(
JQµ

kBT
k1−µ

i S

)
≈
JQµ

kBT
k1−µ

i S (14)

where the last approximation holds close to Tc. We therefore anticipate that the local

magnetisation is proportional to k1−µ
i , a result that we will use further in this paper and

which will be verified numerically.

III. THE CAVITY METHOD

We begin with a study of our model using the cavity approach. One reason for this is

that concepts like the cavity field and the propagated field, which also appear in the replica

study of our model, can be introduced in a physically transparent way within the context

of this method.

The cavity method is closely related to the well known Bethe-Peierls (BP) approximation

for a spin model on a Cayley tree [20]. In fact, both methods are equivalent when there is

replica symmetry (for the precise relation between various mean-field approximations, see

reference 20). The cavity method was applied to diluted spin models in references 21-23. For

Ising like models on a network, the method has the advantage that it can take into account

site degree correlations, which certainly are present in networks grown via a preferential

attachment rule [24, 25] or in real world networks (from biology, sociology, information

technology, ...). These correlations can be measured in terms of the clustering coefficient,

the betweenness [1] or the abundance of cycles of a given length [26, 27]. This has to be

contrasted with the replica approach of the next section, which, in its simplest form assumes
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independence of the site degrees. Extensions of the replica approach that take into account

degree correlations are known [25], but necessarily are more involved. Another attractive

property of the cavity method is that thermodynamic quantities like the magnetisation can

be calculated on a single network realisation. Together these properties allow the analysis

of real world networks and to work with ensembles that, as in the BA case, are defined only

through a growth process.

To derive the cavity equations, it is assumed that the network has the structure of a tree.

It is at first sight paradoxical that the tree approximation is adequate for determining the

critical point of the network, because the Ising model on a tree (without loops) cannot display

spontaneous symmetry breaking (SSB) at finite temperature and thus Tc = 0. However, in

the same way that the Bethe-Peierls approximation for an Ising model on a Cayley tree

introduces an effective symmetry breaking field in the bulk so that SSB becomes possible,

the cavity method introduces a random distribution of effective fields in the bulk (all fields

being of the same sign) so that SSB becomes possible notwithstanding the absence of loops

on the tree. Thus, the SSB due to the sparse loops in the actual network is replaced, in the

cavity method, by the SSB due to the effective fields. The question remains whether the

two SSB mechanisms lead to exactly the same value of Tc.

Consider then a particular site j in the network (see Fig. 1). The assumption of tree

structure implies that the sites connected to j form the roots of a set of independent sub-

graphs.

l3
l2

i2

i5

i3
i4

l1

i1

j

FIG. 1: Local structure of a network used in the derivation of the cavity equations (see text).

The site j is connected to kj others. In the presence of an external field H the magneti-
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sation at site j is given by (with β = 1/kBT )

mj =
eβH

∏kj

i=1 Zij(+) − e−βH
∏kj

i=1 Zij(−)

eβH
∏kj

i=1 Zij(+) + e−βH
∏kj

i=1 Zij(−)
(15)

Here Zij(s) is the partition sum of the whole subgraph starting from site i and s is the value

of the spin at j. This partition sum also includes the bond between the vertices i and j.

Clearly, we can always write

Zij(s) ∝ eβuijs (16)

where we call uij the local cavity message. With this assumption, Eq. (15) becomes

mj = tanh



βH + β

kj∑

i=1

uij



 (17)

which also gives a clear physical interpretation to uij. Indeed, uij can be seen as the con-

tribution to the total magnetic field acting on site j coming from the independent subtree

having site i as root. In the cavity ansatz, those local contributions are indeed independent.

We need extra equations to determine the cavity fields selfconsistently. In order to determine

these, we write Zij(s) in terms of the subtrees that are connected to it (see Fig. 1). We

denote the sites adjacent to i by the index l. Their number equals ki, but clearly, one of

them is the starting site j. From the definition of Zij(s), we have

Zij(s) = eβH+βJijs

ki−1∏

l=1

Zli(+) + e−βH−βJijs

ki−1∏

l=1

Zli(−) (18)

so that using Eq. (15) and Eq. (16), we obtain after a little algebra

uij =
1

β
tanh−1 (tanh (βhij) tanh (βJij)) (19)

where

hij = H +

ki−1∑

l=1

uli (20)

is called the propagated field (sometimes also called cavity field). The equations (19) -(20)

are known as belief propagation equations [20]. They were derived iteratively here, but

it is possible to obtain the same equations through a variational procedure and assuming

that configuration probabilities properly factorize on a tree. A short derivation from the

variational approach will be presented in section 4.1.
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We solved the belief propagation equations iteratively for different values of µ in our

model. One can show in this case that belief propagation equations, when converging, do

so to a unique fixed point (beside the fully paramagnetic solution which is always present

in absence of external field). When possible, we could also be interested in averaging belief

propagation equations over a proper random network ensemble. In that case, equations

for propagated messages and fields become a set of integral equations for field probability

distributions [22, 23]. This unfortunately cannot be easily done in the case of growing

network ensembles, like the BA one. In the case of uncorrelated power-law degree distributed

graphs, the self consistent integral equations can be written straightforwardly from (19) and

(20). The resulting equations turn out to be exactly equations (48) and (49) that we will

obtain through the replica approach. On the same random network ensemble, the replica

symmetric calculation and the cavity method are therefore completely equivalent. Note,

however, that the analytical results for Tc presented in the replica calculation are valid for

a graph ensemble which is not exactly the BA one. It is therefore plausible that we obtain

a slight discrepancy between the replica and the cavity results obtained after averaging over

real BA network realisations.

Within the cavity approach, it is also possible to obtain the free energy F (β) and from

this other thermodynamic quantities such as the energy U(β) and the specific heat C(β).

Here we only quote the result for U

U(β) = −
∑

i,j

Jij

(
tanh(βJij) + tanh(βhij) tanh(βhji)

1 + tanh(βJij) tanh(βhij) tanh(βhji)

)
(21)

We now turn to a discussion of our numerical results. These were obtained on BA

networks. Ensemble averages in the case of BA networks can be performed numerically

generating a large number of graphs with a given number of nodes with the usual preferential

attachment rule, and subsequently averaging the results over all the graphs at a given N .

Quantities such as Tc and the critical exponents can then be found using finite size scaling.

We studied 1000 realisations of networks of N = 50, 100, 250, 500, 1000, 5000 and 104 nodes,

100 realisations with N = 5 × 104 nodes and 10 realisations of 105 and 106 nodes. For each

of these the cavity messages were determined iteratively. The numerical results showed little

fluctuations when comparing different realisations, even for small network sizes.

We first investigated the SAN and studied cases with Q = 4, 6, 8, 10 and 20. In table

1 (see section 4) we give our estimates for Tc as a function of Q. These results will be
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compared with those coming from other methods.

From the behaviour of the magnetisation M (M = 1
N

∑
imi) below Tc (Fig. 2), we can

determine the exponent β. We find a value which is very close to the mean field value of

1/2. This value hardly depends on N or on Q. These data also allow us to obtain finite

size estimates Tc(N) for the critical temperature. We measured the magnetisation within

a small temperature window around each value of Tc(N) and this for small values of the

external field H . From an extrapolation for large N , the value of the exponent δ was found

to be close to 3. More precisely we find 1/δ = 0.333± 0.010 for Q = 4. For bigger Q-values,

we find the same value for 1/δ while the error decreases with Q. Using the scaling relation

γs = β(δ − 1), this leads to the value 1 for the susceptibility exponent γs.

2.5 2.6 2.7 2.8 2.9 3.0
0.0

0.1

0.2

0.3

0.4

0.5
N=102  
N=103  
N=104  
N=105  
N=106  

M

kBT / J 7.0 7.5 8.0 8.5 9.0 9.5
0.0

0.1

0.2

0.3

0.4

0.5

0.6
N=103      
N=5600   
N=104      
N=105      

M

kBT / J

FIG. 2: Magnetisation versus temperature for Q = 4 (left) end Q = 10 (right) for N =

102, 103, 104, 105. For Q = 4, results for N = 106 are also included.

Specific heat computations (see Fig. 3) show a jump around the transition. However,

the discontinuity seems to become smaller for large N such that

lim
T→T−

c

dC

dT
= −∞ (22)

Both cases (vanishing jump with diverging derivative or discontinuity in C) can be consistent

with a critical exponent α = 0.

The conjecture embodied in (12) predicts that the SAN on a BA network has γ′ = 5.

The critical exponents are then given by γs = 1, β = 1/2 and α = 0 [13–15]. In conclusion,

we can say that the results from the cavity method for the SAN are in agreement with the

relation (12).
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FIG. 3: Specific heat versus temperature for Q = 4 (left) end Q = 10 (right) for N =

102, 103, 104, 105. For Q = 4, results for N = 106 are also included.

A peculiar behaviour of the specific heat can be seen in Fig. 3. For both Q-values shown

there, one observes a maximum in the specific heat at a temperature below the critical one.

This seems not to be a finite size effect. Moreover, as Fig. 4 shows, this kind of behaviour

does not appear for the SAN on a network with a Poisson degree distribution.

2.6 2.8 3.0 3.2 3.4

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

N=103      
N=104      
N=105      

C
 k

BT
2  /J

2

kBT / J

FIG. 4: Specific heat versus temperature for a graph with a degree distribution that is Poisson

(Q ≈ 4). The plots refer to an average over 500 realisations for N = 103, 104 and 50 realisations

for N = 105.

Another interesting feature is that close to Tc we observe an inversion phenomenon in the

local magnetisation of sites. Below the transition, there is a clear hierarchy in sites according

to their spin magnetisation. Even though couplings are weighted, hubs are still the most

magnetized sites and are believed to drive the transition. Plots of the local magnetization

versus site degree for a few values of the temperature above and below Tc are shown in Fig.

5. These data are consistent with the prediction (14) coming from the simple mean field
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theory.
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FIG. 5: Scatter plot of single node magnetisations versus degree for one network of N = 10000

and Q = 4 at different temperatures: (a) below Tc(kBTc/J = 2.87 ± 0.01), (b) above Tc.

As can be seen in the scatter plots of Fig. 6, low degree nodes connected to hubs have

a lower magnetisation than equal degree nodes that are not connected to hubs. Above the

transition, however, this situation is reversed. This is different from the situation for an

Ising model with degree-independent couplings on a network, where at fixed degree, nodes

connected to hubs are always most magnetised.

 0.1
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FIG. 6: Scatter plot of magnetisations of all nodes of degree k = 2 for the same network as in

Fig. 5, versus node index (i.e. the time step at which this node is added when the network grows

according to the BA-rule). Diamonds represent those nodes connected to hubs whereas crosses

represent nodes of degree 2 not connected to hubs. Older nodes (smaller index) are on average

more connected to hubs than later ones. Different clusters represent different temperatures. In (a)

we show the results for two temperatures below Tc while in (b) the temperatures are above the

critical one. The inversion phenomenon described in the text can clearly be seen.

Besides the SAN, we also investigated our model with the same techniques for µ = 1/3
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on a BA network. For that case, (12) predicts γ′ = 4 which leads to the exponent values

γs = β = −α = 1 and δ = 2. In Fig. 7 we show some representative results for the

specific heat and the magnetisation as a function of temperature (both at Q = 4). They

show the appearance with increasing N of a regime where both quantities depend linearly

on temperature, consistent with the above prediction.
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FIG. 7: The specific heat (left) and the magnetisation (right) as a function of temperature for a

BA network with µ = 1/3. The average connectivity is Q = 4.

IV. THE CRITICAL TEMPERATURE

In this section we discuss two approaches, the Bethe-Peierls approximation and the replica

method, that allow us to get precise results for the critical temperature. Both approaches

assume that there are no degree correlations present in the network.

A. Bethe-Peierls approximation

The Bethe-Peierls (BP) approximation is the simplest of the cluster variation methods

[29]. It amounts to approximating the entropic part of the free energy, F (β), by restricting

the probability distribution ρ of a configuration of N spins to a combination of single-site

and nearest-neighbour pair distributions. For a particular fixed network, this leads to the

following expression for F (β)

F (β)β ≈ β〈H〉 +
∑

i

(1 − ki)
∑

si=±1

ρi ln ρi +
1

2

∑

i

ki∑

j=1

∑

si,sj=±1

ρij ln ρij (23)
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where

H = −
1

2

∑

i

ki∑

j=1

Jijsisj (24)

ρi =
1 +misi

2
(25)

ρij =
1 +misi +mjsj + ψijsisj

4
(26)

Here ψij = 〈sisj〉. Expressions for the local magnetisations mi and the neighbour spin-spin

correlations ψij are obtained by looking for extrema of the free energy

∂F

∂mi
= 0 ∀ i (27)

∂F

∂ψij
= 0 ∀ i, j (28)

It can be shown that (27) and (28) are fully equivalent to (19) and (20) [20].

Next, the resulting selfconsistency equations are linearised in the mi. In this way one

obtains for the spin-spin correlations

ψij = tanh (Jij/kBT ) (29)

After summing over all the vertices, the equation for the magnetisation becomes

1

N

∑

r

(kr − 1)mr =
1

N

∑

r

mr

kr∑

j=1

1

1 + ψrj
(30)

Since we now want to get a simpler analytic expression for the critical temperature, we do

not solve (30) on single graphs, as already done in a more complete setting with the cavity

approach. Instead, we average it over the network realizations. This we do in two steps.

Firstly, using a similar approximation as in section 2.1, we replace the second sum on the

right hand side by a sum over all nodes. Hence, we obtain

1

N

∑

r

(kr − 1)mr =
1

N

∑

r

mr

N∑

j=1

prj

(
1

1 + ψrj

)
(31)

where again prj = krkj/(QN). Secondly, we insert the proportionality between mj and k1−µ
j

implied by (14): mj ∝ k1−µ
j . In the limit N → ∞ the resulting equation can again be

written in terms of the average over the degree distribution. We then finally obtain

Q

∞∑

k=m

P (k)(k − 1)k1−µ =

∞∑

k1=m

P (k1)k
2−µ
1

∞∑

k2=m

P (k2)
k2

1 + tanh
(

JQ2µ

kBTkµ
1 kµ

2

) (32)
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For the case µ = 0, and for Q large, (32) can be approximated and gives the estimate

kBTc/J ≈ (Q2 − Q)/Q, in agreement with exact results [13]. Also, for the SAN on a BA-

network, we get for Q large: kBTc/J ≈ Q−1. On a regular lattice with coordination number

Q, the Bethe-Peierls approximation gives J/(kBTc) = ln
(

Q
Q−2

)
/2 [28]. As can be seen in

table 1, this approximation gives a very good value for Tc for Q > 4.

Equation (32) can be solved numerically. In table 1 we present our results for the SAN

on a BA network with P (k) = 2m(m+ 1)/k(k + 1)(k + 2) (for this case, m = Q/2).

TABLE I: Critical temperature kBTc/J as a function of Q for the SAN on networks, as obtained

from various approaches. On a regular lattice with coordination number Q, the Bethe-Peierls (BP)

approximation gives kBTc/J = log
(

Q
Q−2

)
/2. This value is given in the second column. In the

third column the results of the cavity approach are given, while the fourth column presents the

estimate obtained within the Bethe-Peierls approximation on the network, equation (32). The

fifth column gives the solution to (56) obtained in the replica approach. The last column gives

the estimates coming from the Monte Carlo simulations. The results for the cavity method and

the simulations were obtained on BA networks. The results for the network BP and the replica

method were obtained on uncorrelated networks. This has dramatic consequences for Q = 2. For

Q = 2, Tc = 0 on BA networks because BA networks with Q = 2 are simple trees without loops.

In contrast, uncorrelated networks with Q = 2 may feature loops as well as disconnected parts.

Q lattice BP cavity network BP replica Monte Carlo

2 0. 0. 0.95230 0.94614 0.

4 2.8854 2.87± 0.01 2.95508 2.92468 2.91 ± 0.02

6 4.9326 4.92± 0.01 4.9554 4.94511

8 6.9521 6.94± 0.01 6.9406 6.95796

10 8.9628 8.94± 0.01 8.9087 8.96607 8.96 ± 0.01

20 18.9824 18.98 ± 0.01 18.9107 18.98187 19.09 ± 0.04
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B. Replica theory for an uncorrelated network

The replica approach is a powerful mathematical technique that provides a way to perform

an average over random network ensembles. For the present model, and in absence of

degree correlations, it leads to a relatively simple analytical equation from which the critical

temperature can be determined numerically.

In order to define the random ensemble of networks we start by defining the adjacency

matrix C of a graph. This matrix is the N × N matrix whose element cij is one if there is

a link between node i and j and zero otherwise. Clearly,

N∑

j=1

cij = ki (33)

Moreover, for undirected graphs C is symmetric, cij = cji. Using the adjacency matrix we

can write the Hamiltonian H for our model as

H = −
1

2

N∑

i6=j

JΦ(ki, kj)cijsisj −H
N∑

i=1

si (34)

where in our case Φ(ki, kj) = Jij/J = Q2µ/(kikj)
µ. The replica approach can, however, be

performed for more general forms of Φ. In Eq. (34), we have also included an external

magnetic field H for later convenience.

We calculate the typical properties of all networks with a given fixed set of degrees {ki}.

The matrix elements cij are assumed to be completely uncorrelated apart from the constraint

(33). Therefore given that

P (cij) =
Q

N
δcij ,1 +

(
1 −

Q

N

)
δcij ,0 (35)

we can write their joint probability distribution as

P({cij}) ∝
∏

i<j

P (cij)
∏

i

δ

(
∑

j

cij − ki

)

(36)

As usual in disordered systems, we compute the quenched average of the free energy density

per site, fq(β), from which typical properties can be determined

−βfq(β) = lim
N→∞

1

N
[lnZ] (37)
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where β = 1/(kBT ). Since the calculation is rather involved but standard [14, 21, 30], we

summarize here only the major steps and results. Using the equality lnZ = limn→0
1
n
(Zn−1)

the quenched free energy density is written as

−βfq(β) = lim
N→∞

lim
n→0

1

Nn
([Zn(β)] − 1) (38)

The replicated partition function Zn(β) equals

Zn(β) =
∑

~s1

· · ·
∑

~sN

exp

[
β

2

n∑

α=1

∑

i,j

Jijs
α
i s

α
j + βH

n∑

α=1

N∑

i=1

sα
i

]

(39)

where ~si = {s1
i , . . . , s

n
i }. For the distribution of connectivities given in Eq. (36), the average

[·] is

[A({cij})] =
1

N

∫ [∏

i<j

dcijP (cij)

]
N∏

i=1

δ

(
∑

j

cij − ki

)

A({cij}) (40)

where N is the normalisation

N =

∫ [∏

i<j

dcijP (cij)

]
N∏

i=1

δ

(
∑

j

cij − ki

)
(41)

In order to calculate this average , it is common to introduce an exponential representation

of the constraint

δ

(
N∑

j=1

cij − ki

)

=

∫ 2π

0

dξi
2π
eiξi(

PN
j=1 cij−ki) (42)

A straightforward but lengthy calculation in which we integrate over the disorder and the

auxiliary variables ξi allows us to obtain the free energy density in terms of the functional

order parameter

Rk(~s) =
1

N

N∑

i=1

δ~s,~si
δk,ki

eiξi (43)

and its canonical conjugate R̂k. This order parameter is an order parameter in the replica

space which is the joint density of finding a spin configuration ~s with average connectivity

k at each site, when a link has been removed from that site. The result is

−βfq(β) = Extr{ bRk(~s),Rk(~s)}

{
−Q

∑

~s,k

R̂k(~s)Rk(~s) +
Q

2
+

∑

k

P (k) log
∑

~s

[
R̂k(~s)

]k
eβH

Pn
α=1 sα

+
Q

2

∑

k,k′

∑

~s,~σ

Rk(~s)Rk′(~σ)eβJΦ(k,k′)~s·~σ

}
(44)
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where we also performed the rescaling iR̂k(~s) → −QR̂k(~s).

Stationarity of the free energy with respect to Rk(~s) and R̂k(~s) leads to the saddle-point

equations

R̂k(~s) =
∑

k′,~σ

R′
k(~σ)eβJΦ(k,k′)~s·~σ

Rk(~s) =
kP (k)

Q

[
R̂k(~s)

]k−1

eβH
Pn

α=1 sα

∑
~σ

[
R̂k(~σ)

]k
eβH

Pn
α=1 σα

(45)

If all the Φ(k, k′) are positive, so that the model only has ferromagnetic interactions, it can

be expected that the solution to these equations has replica symmetry (RS). For the order

parameter and its conjugate, this assumption takes the form

Rk(~s) =

∫
dhWk(h)

eβh
Pn

α=1 sα

[2 cosh(βh)]n
(46)

and

R̂k(~s) =

∫
duQk(u)

eβu
Pn

α=1 sα

[2 cosh(βu)]n
(47)

respectively. Here h and u are the local cavity message and the propagated field that we

already encountered in section 2. While the cavity approach calculates these fields for a

specific network, in the replica approach we can obtain their probability distributions over

the set of all networks obeying the constraints (33). These distributions are denoted as

Wk(h) and Qk(u) respectively. Within the RS ansatz, the saddle-point equations become

Qk(u) =
∑

k′

∫
dhWk′(h)δ

(
u−

1

β
tanh−1 [tanh(βh) tanh [βJΦ(k, k′)]]

)
(48)

Wk(h) =
P (k)k

Q

∫ [k−1∏

l=1

dulQk(ul)

]
δ

(
h−

k−1∑

l=1

ul −H

)
(49)

and the free energy density equals

βfq(β) = −Q log 2 +Q
∑

k

∫
dudhQk(u)Wk(h) log [1 + tanh(βu) tanh(βh)]

−
∑

k

P (k)

∫ [ k∏

l=1

dulQk(ul)

]
log




2 cosh

[
β
(∑k

l=1 ul +H
)]

∏k
l=1 2 cosh (βul)



 (50)

−
Q

2

∑

k,k′

∫
dhdh′Wk(h)Wk′(h′)Fkk′(β, h, h′)
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where

Fkk′(β, h, h′) = log [cosh [βJΦ(k, k′)] + sinh [βJΦ(k, k′)] tanh(βh) tanh(βh′)]

The average zero-field magnetisation per site, M , then follows immediately

M = −
∂fq

∂H
(H = 0) =

∑

k

P (k)

∫ [ k∏

l=1

dulQk(ul)

]
tanh

(
β

k∑

l=1

ul

)
(51)

From Eq. (48) and Eq. (49) we can obtain an equation that contains only the functions

Qk(u)

Qk(u) =
∑

q

P (q)q

Q

∫ [q−1∏

l=1

dulQq(ul)

]
δ (u−Gkq(β)) (52)

where

Gkq(β) =
1

β
tanh−1

[

tanh

(

β

q−1∑

l=1

ul

)

tanh [βJΦ(k, q)]

]

(53)

One can try to solve this set of equations, for example using population dynamics tech-

niques. Here we only investigate the simpler question of locating the critical temperature.

For this, we assume that the cavity fields u are very small near the transition. The argument

of the delta-function in Eq. (52) can then be linearised using

Gkq(β) ≈ tanh [βJΦ(k, q)]

q−1∑

l=1

ul

We next multiply both sides in Eq. (52) by u and we integrate. This gives

∫
duQk(u)u =

∑

q

P (q)q

Q
tanh [βJΦ(k, q)]

q−1∑

l=1

∫
dulQq(ul)ul (54)

Finally, we denote xk =
∫
Qk(u)udu and define a matrix A(β) with elements

Aq,k(β) =
P (q)q(q − 1)

Q
tanh [βJΦ(k, q)] q, k ≥ m (55)

(m is the smallest degree appearing in the network). Finding the critical temperature now

amounts to locating the value of β for which the matrix A has an eigenvalue one , i.e. to

solving

det (A(βc) − I) = 0 (56)
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In principle, the matrix A is infinite dimensional. For a given P (k), m and Φ(k, k′) one

can, however, calculate an estimate Tc(K) for the critical temperature by truncating the

matrix and limiting q and k to be smaller than a given K. An extrapolation for K → ∞

then gives Tc. We have performed such a calculation for the SAN for different values of Q.

Some numerical values can be found in table 1.

V. MONTE CARLO SIMULATION RESULTS

Finally, we also investigated our model numerically on a BA network. This allows us to

investigate effects that are neglected within the cavity approach, such as the appearance of

loops in the network.

Firstly, we investigated the SAN with various values of Q. When a BA network is grown

by the addition of m new links, one always ends up with an even value of Q, since Q = 2m.

In order to obtain an odd average connectivity, alternating values of m were used. For

example, by alternating m between 1 and 2 we obtain Q = 3. We used the standard

Metropolis algorithm to simulate our model. Typically, we averaged over 400 uncorrelated

configurations at each temperature and for each realisation of the network.

The simulations were made for networks with N ranging between 100 and 56000. At

low values of Q we found large fluctuations in the properties of different realisations. We

typically investigated between 200 and 5000 realisations of the network, depending on the

size of the network and the quantity under investigation.

The value of Tc was obtained from the intersection of the Binder cumulants UN = 1 −

〈M4〉/(3〈M2〉2), with M the total magnetisation in a given configuration. In order to obtain

a value for the intersection point, we first fitted a curve through the data points (generally

a fifth degree polynomial) and then solved for the intersections of the fitted curves. From

this, we obtain the finite-size “critical temperature” Tc(N). These were then extrapolated

using the standard relation

Tc(N) ≃ Tc(∞) − bN− 1
2−α

(1+ων) (57)

where ω is a correction-to-scaling exponent, introduced by Binder [31–33], and ν the “cor-

relation length” exponent proper to lattice models. In our network models the product ων

figures as a single number, since a correlation length is not defined. In Fig. 8, a typical
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example of such a fit is shown. The resulting estimate of Tc, together with those obtained

for other Q-values, is given in table 1. Moreover, from the data in Fig. 8, the estimate

(1 + ων)/(2 − α) = 0.58 ± 0.12 is obtained. The network with Q = 3 was only investigated

with the simulation method and for this case we find kBTc/J = 1.85 ± 0.03.
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FIG. 8: Finite-size estimate of the critical temperature (divided by the mean field estimate JQ/kB)

as a function of 1/N obtained using the intersections of the cumulants. An example of such an

intersection is given in the second plot. The average connectivity is Q = 4.

From the Binder cumulant, we can estimate the exponent α. Indeed, the derivative of

the cumulant U ′
N = dUN/dT at Tc(N) scales as

U ′
N (Tc)

U ′
N ′(Tc)

=

(
N

N ′

) 1
2−α

(58)

The derivative can be obtained from the polynomial fit used to determine Tc(N). The values

that we obtain are consistent with the assumption that α = 0.

Next, we calculated the magnetisation at Tc(N) as a function of N . This allows us to

estimate the exponent β/(2 − α) as ≃ 0.25. In Fig. 9 (left side) we show our numerical

results for Q = 10. This result is consistent with the mean field values β = 1/2 and α = 0.

As a further test, we plotted the squared magnetisation as a function of T . Below Tc, we

expect this to be a linear function and from a fit to this form we can get a second estimate

of Tc (see Fig. 9, right side). The values that we find in this way are in agreement with

those coming from the cumulants, although the precision is less good.

We also computed the finite-lattice susceptibility χ′, introduced by Binder [34]

χ′ ∝ 〈M2〉 − 〈|M |〉2 (59)
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FIG. 9: N -dependence of the magnetisation of the SAN at Tc(N) (Q = 10). The slope is −0.25 ±

0.01. The right side shows the magnetization squared as a function of temperature for a network

of 3200 nodes, averaged over 400 samples.

By taking the modulus of the magnetisation, one tries to minimise finite-size effects. Besides

giving information about Tc, which is in agreement with the results coming from the cumu-

lants and the magnetisation, the susceptibility provides information on the critical exponent

γs. At Tc, one expects χ′ ∝ Nγs/(2−α). We calculated χ′ as a function of N at a temperature

close to Tc. We find that γs/(2 − α) is close to 0.47 ± 0.03, which is consistent with γs = 1

using the earlier estimate of α.

The plots for the specific heat as a function of temperature (Fig. 10, left side) look similar

to those obtained from the cavity method. The specific heat does not diverge with size but

saturates, which implies α ≃ 0. However, the plots do not show the usual, mean field jump

at Tc, but are in agreement with the presence of logarithmic corrections. The maximum

in the specific heat below Tc that was found within the cavity approach (Fig. 3) is also

clearly visible in the data. When we change the value of µ from 1/2 to 1 we do find results

consistent with the usual mean field behaviour, i.e. with a jump at Tc (see Fig. 10, right

side and compare with Fig. 4). Indeed µ = 1 corresponds to γ′ → ∞, which corresponds to

a network with a narrow degree distribution.

We also performed a completely similar investigation of the network with µ = 1/3 and

Q = 10. In Fig. 11, we show log-log plots of the magnetisation (left) and the susceptibility

(right) as a function of N at the numerically determined value of Tc. From these data

we obtain β/(2 − α) = 0.358 ± 0.001 and γs/(2 − α) = 0.282 ± 0.002. These results are

consistent with the predictions coming from (12): β/(2 − α) = 1/3 and γs/(2 − α) = 1/3.
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FIG. 10: The specific heat as a function of temperature for a network of 5600 nodes (SAN model,

left) and for the modified model with µ = 1 (right). Averages were taken over 400 samples. The

average connectivity is Q = 10.

The remaining discrepancy is probably due to errors in the determination of Tc. We also

obtained data for the specific heat, but they do not allow a precise determination of α. From

(12), the prediction α = −1 follows. This implies that the specific heat decreases linearly to

its high-temperature background value. The data shown in Fig. 12 are consistent with this

expectation.
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FIG. 11: Log-log plot of the magnetisation (left) and the susceptibility (right) versus N at Tc for

the case µ = 1/3, Q = 10.

From the simple mean field theory of section 2, it follows that the local order parameter

mi ∝ k1−µ
i . We also used this relation in our derivation of the BP approximation. In order

to get further confirmation for this type of scaling, we checked it numerically. Our results

are shown in Fig. 13, for the cases µ = 0, 0.5 and 1 on a BA-network. For high values of

the degree, the statistics is not very good, but for smaller ki-values the scaling (14) seems
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FIG. 12: The specific heat as a function of temperature for a network of 1000 nodes (µ = 1/3).

The average connectivity is Q = 10. Notice the linear regime for 8 < kBT/J < 10.2
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FIG. 13: The magnetization of individual spins as a function of degree for a network of 1000 nodes

and different values of µ. The averages are made over 1000 networks. The values of µ and the

predicted k-dependence, respectively, is: µ = 0 - linear; µ = 0.5 - square root; µ = 1 - constant.

The temperature is slightly below the respective critical temperatures.

to be well satisfied.

We finally remark that for the SAN with Q = 2, the Monte Carlo simulations indicate a

zero critical temperature. Indeed, for this value of Q, the BA network has the structure of a

tree and therefore it cannot support order. This is in contrast with the results coming from

the replica approach. However, in that approach loops are not excluded and the network

can be a collection of disconnected clusters, the largest of which determines the non-zero

Tc in the large-N limit. To test this, we generated a set of random (uncorrelated) networks

with Q = 2 and γ = 3 by ascribing to each vertex a degree taken from the distribution

P (k). The links going out of the vertices are then randomly paired to create a network.

The resulting network is indeed found to consist of disconnected parts. In Fig. 14 we show
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Monte Carlo results for the Binder cumulant as a function of temperature for two networks

(N = 2000 and N = 4000) generated in this way. We took µ = 1/2. Clearly there is

an intersection from which we obtain the finite-size estimate for the critical temperature.

After extrapolation (N → ∞) we obtain from these kind of data kBTc/J = 0.92648. For

comparison, the BP prediction for kTc/J is 0.952 and the replica method gives 0.946 (Table

1).
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FIG. 14: Binder cumulants as a function of temperature for a network with γ = 3, Q = 2 and

µ = 1/2. The figure shows a clear intersection of the cumulants for N = 2000 (circles) and

N = 4000 (squares) indicating the presence of a critical point at finite temperature. The averages

were done over 6000 and 5000 realizations of the networks, respectively. The fit with a third degree

polynomial is also shown in the figure.

VI. NONEQUILIBRIUM MODELS

In this section, we show that the basic result of this paper, (12), is also true for a nonequi-

librium model. In particular, we will investigate the contact process [35] on a network. This

process is a well known model originally introduced to describe the spreading of a disease

in a population. Later, it was found to be related to directed percolation [36] and became

the prototype model used in the study of absorbing state phase transitions [37]. Recently

the contact process has also been applied in metapopulation ecology [38], but in this paper

we will use the epidemiological language.

On a network we define the contact process as follows. Each vertex i can be in two states

that we denote as ill (ni = 1) and healthy (ni = 0). The dynamics of the model is given

by a continuous time Markov process [39]. An ill site can cure with a rate 1 (this fixes the
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time scale). A healthy site becomes ill with a rate that equals λ times the number of ill

neighbours, where on a network two vertices are called “neighbours” if they are linked.

This model has an absorbing state: if all sites are healthy, they will stay healthy forever.

For an infinite system, there is a phase transition at some λc. If λ ≤ λc, the system will

evolve to the absorbing state. For λ > λc, there will always be a finite density of “ill”

sites. This density is the order parameter of the model and it goes to zero if one approaches

λc from above. Vespignani and coworkers [40, 41] showed that on a scale-free network for

2 < γ ≤ 3, λc = 0 and the exponents are γ-dependent. For 3 < γ ≤ 4, λc > 0 and the

critical exponents are again γ-dependent. Finally, for γ > 4, λc > 0 and critical exponents

assume the mean-field values for the contact process on a regular lattice. This scenario is

reminiscent of that for the opinion formation model.

We next generalise the contact process by taking the infection rate as

λij = λQ2µ(kikj)
−µ (60)

Using standard techniques from the theory of stochastic processes [39], one can show that

ρi = 〈ni〉 (where 〈.〉 in this paragraph denotes the average over histories of the stochastic

process) obeys the exact equation

dρi

dt
= −ρi +

∑

l

λil〈(1 − ni)nl〉 (61)

The sum runs over the neighbours of i. We now make two approximations similar to those

performed in section 2. The first one, the dynamical mean field approximation, puts 〈(1 −

ni)nl〉 ≈ 〈(1 − ni)〉〈nl〉 = (1 − ρi)ρl. Next, again following Bianconi [19], we replace the

sum over the neighbours by a sum over all the nodes, and take for λij its average over all

realisations of the network with a given set of degrees. Then (61) becomes

dρi

dt
= −ρi + (1 − ρi)

N∑

j=1

[λij]ρj (62)

Now (see section 2) [λij ] = λijpij with pij = kikj/(QN), the probability that nodes i and j

are connected. This gives

dρi

dt
= −ρi + (1 − ρi)

λQ2µ−1

N
k1−µ

i

N∑

j=1

k1−µ
j ρj (63)
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We introduce Θ

Θ =
Qµ−1

N

N∑

j=1

k1−µ
j ρj (64)

From here on, we will assume that ρi depends only on the degree of i. We can then write

for a large network

Θ = Qµ−1
∑

k

P (k)k1−µρ̃k (65)

where ρ̃k is the density of sites that are ill and have degree k.

Using (64) and this assumption, (63) becomes

dρ̃k

dt
= −ρ̃k + λ(1 − ρ̃k)Q

uk1−µΘ (66)

We are interested in the static properties, i.e. the properties of the model in the long

time limit. Then, from (66) we get

ρ̃k =
λQµk1−µΘ

1 + λQµk1−µΘ
(67)

Using (65), we find a self-consistency equation for Θ

Θ = λQ2µ−1
∑

k

P (k)
k2−2µΘ

1 + λQµk1−µΘ
(68)

We can now in principle analyse this equation.

But as was the case for the opinion formation model, it is easier to transform away the

µ-dependence. This is most easily done by rewriting (68) as an integral

Θ = AλQ2µ−1

∫ ∞

m

k−γ k2−2µΘ

1 + λQµk1−µΘ
dk (69)

where A is a normalisation constant and where the power-law form for P (k) is inserted. If

we change variables to k′ = Qµk1−µ, (10) becomes (if µ ≤ 1)

Θ = A′

∫ ∞

m′

(k′)
1−γ
1−µ

k′Θ

1 + λk′Θ
dk′ (70)

where A′ is another constant and m′ = m1−µQµ.

This is precisely the form (69) assumes for µ′ = 0 provided we shift γ to γ′ given by

γ′ =
γ − µ

1 − µ
(71)
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Thus, the same relation holds as for the static Ising case [42]. But notice that now, taking

µ = 1/2 and a Barabasi-Albert network (i.e. the epidemiological version of the SAN), leading

to γ′ = 5, we are in a situation where mean-field theory should hold without logarithmic

corrections.

The relation (12) thus appears to be quite general and one may wonder whether there

are any exceptions to it. We first discuss a recently proposed realization of the Bak-Tang-

Wiesenfeld sandpile model on scale-free networks [43]. In this model an avalanche can be

generated through the following dynamical rules: 1) at each time step, a grain is added at

a randomly chosen network node i; 2) if the height hi at node i exceeds a given threshold

zi, it becomes unstable and an integer number of grains, n[zi], at the node topple, with

n[zi] − 1 < zi ≤ n[zi], to randomly chosen n[zi] nodes among ki adjacent ones; 3) whenever

adjacent nodes become unstable toppling takes place also there, on all unstable nodes in

parallel, and the avalanche continues until there are no unstable nodes left. In the proposed

version of the model [43], a parameter η is introduced and the threshold zi of node i is taken

to be

zi = k1−η
i (72)

Note that for η = 0 the model features a simple degree-dependent threshold, and in the

extended model k is replaced by k1−η. Note that this is reminiscent of the transformation

k → k1−µ which we discussed in other contexts in this paper.

A key quantity in the description of the avalanche dynamics by mapping each avalanche

to a tree, is the branching probability Pb(n) that a node, which receives a grain from a

neighbour, generates n branches. This probability consists of two factors [43]. If branching

occurs for a given node i, n[zi] branches are generated. Therefore, the first factor, P1(n), is

the probability that n coincides with n[zi] for a node i already connected to the tree. The

second factor is the probability that the height hi takes the value n− 1 at the moment that

node i receives a grain from a neighbour. This probability, P2(n), is not important for us

here, but in the case of independent random heights 0, 1, ..., n− 1 in the inactive state of

the sandpile, it equals 1/n. If we would adopt a continuum approximation, treating n as a

real number, and approximate n[zi] by zi, we would arrive at the result

Pb(n) = (n1/(1−η)P (n1/(1−η))/Q)P2(n), (73)

where the first factor, P1(n) = kP (k)/Q, is the probability that the first neighbour of a
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node has degree k, with in our case k = n1/(1−η). This probability differs from P (k) in that

it presupposes that the generating node is already connected to the tree.

If we compare this Pb(n) with its counterpart for the model with η = 0, we easily ob-

serve that the extended model is equivalent to the basic model with η′ = 0, provided the

topological exponent is transformed according to

γ′ =
γ − η

1 − η
(74)

This is in agreement with our general exponent relation, but, as we shall show now, and as

Goh et al already found [43] this result is incorrect.

The currect exponent relation is found when taking into account properly that n is always

an integer, and that all tresholds in the interval n−1 < zi ≤ n contribute to the probability

of generating n branches. P1(n) thus consists of a sum, or, for simplicity and without loss

of relevant precision, an integral, so that

Pb(n) = (

∫ n1/(1−η)

(n−1)1/(1−η)

kP (k)dk/Q)P2(n), (75)

from which follows the correct relation

γ′ =
γ − 2η

1 − η
, (76)

which was already obtained by Goh et al [43]. We conclude that an exception to our

general exponent relation arises here due to the discrete (integer) character of the toppling

process. Indeed, the general relation is recovered in a (rough) continuum approximation of

the problem.

A second exception to our general exponent relation is provided by the study of Dezsö and

Barabási [44] of disease spreading on a scale-free network. The model they consider starts

from the usual contact process, for which it is known that the epidemic treshold λc vanishes

for γ ≤ 3. This is similar to the divergence of the critical temperature for an Ising model

with constant interactions on a scale-free network. We have seen that topology-dependent

interactions are a way to get around this and we have discussed this in detail also for the

contact process.

However, Dezsö and Barabási provide an alternative means of rendering the epidemic

threshold finite and thus offering new avenues for controlling diseases (e.g., eradicating

viruses). Their strategy consists of curing the hubs with a probability that scales with the

29



degree k of a node as kα. Note that α = 0 corresponds to the usual model in which all nodes

are cured with the same probability.

As a result Eq. (69) takes the modified form [44]

Θ = AλQ−1

∫ ∞

m

k−γ k2Θ

kα + λkΘ
dk, (77)

from which we can derive the following exponent relation

γ′ =
γ − 2α

1 − α
, (78)

with γ′ the effective topological exponent for an equivalent model with degree-independent

curing rate (α′ = 0). Curiously, this new relation is akin to that of the previous exception

(sandpile model), but this coincidence has to our insight no significance.

VII. DISCUSSION

In this paper, we investigated the critical properties of an Ising model and a contact pro-

cess with topology-dependent interactions on scale-free networks. The interaction strength

between two spins, or the infection rate between two individuals, was assumed to be propor-

tional to (kikj)
−µ. We have developped mean-field theories for these models from which our

main result follows: the critical behaviour can always be related to that of the corresponding

model with homogeneous couplings (µ′ = 0) on a network with a modified degree distribu-

tion γ′, where γ′ is given by equation (12). Due to the small-world property of scale-free

networks, mean field theory is generally believed to be exact. This expectation is found to

be true also in the present case. We performed extensive numerical calculations for the Ising

model on a BA-network, focusing on the cases µ = 1/2 (the SAN, which was the original

motivation for the present work) and µ = 1/3. We used two techniques: “numerically exact”

studies with the cavity approach, and Monte Carlo simulations. The first approach assumes

the absence of loops in the network, which is a good approximation for a BA-network. The

Monte Carlo calculations approximate the true thermal average by an average over a finite

set of well chosen spin configurations. Within their numerical accuracy, both approaches

give the same results. More importantly, they provide strong evidence that the exponent

relation (12) is correct.

For static network ensembles it is possible to obtain an exact equation for the location of

the critical temperature from the replica approach, see equations (55) and (56). A simpler
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equation for this quantity, (32), can be derived from the Bethe-Peierls approximation. From

the numerical values listed in table 1, it can be seen that this simple aproach gives results

that are accurate to better than one percent. From the table one also observes that the

differences in the critical temperature as obtained from the different approaches are very

small for Q ≥ 4.

Besides the contact process, the behaviour of several other (non) equilibrium models have

been studied on scale-free networks. In particular, we mention here diffusion-annihilation

[45] and the Bak-Sneppen model [46]. In both cases, the critical behaviour shows a γ-

dependence that is reminiscent of that of the Ising model and the contact process. It

remains to be investigated whether appropriately extended versions of these models obey

the relation (12) or whether they follow modified transformation laws as we found to be the

case for the sandpile model of ref. 43 or the modified contact process of ref. 44.
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