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Abstract. It has been known from many years now that operational activity-based models 1 

need a lot of survey data to incorporate behavioural decision making of people. While there 2 

have been contributions from the field of statistics about how much survey data is needed to 3 

come to reliable estimates of behaviour; an obvious question which is often overlooked in the 4 

domain is how much survey data is really necessary to obtain an activity-based model that is 5 

sufficiently competent and accurate. This question is not only scientifically challenging and 6 

interesting, but also can significantly reduce data collection costs and is also very useful for 7 

practitioners. A very appealing question would be whether an activity-based model could also 8 

be trained with a smaller survey data set without losing too much model quality. This paper 9 

tries to explore this research question in the case of an activity-based model for Flanders 10 

(Belgium) inside the ‘Forecasting Evolutionary Activity-Travel of Households and their 11 

Environmental RepercussionS’ (FEATHERS) framework. As the scheduler in this study is 12 

based on decision trees, progressive sampling is being applied in order to investigate 13 

accuracy for all discrete choice decision trees. Based on the results of this investigation, it is 14 

demonstrated that for some decision trees the activity-based survey data set can be very small 15 

without losing accuracy, while for other decision trees bigger data sets are needed. 16 
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INTRODUCTION 1 
 2 

Travel demand models are an important tool used in the transportation planning process to 3 

analyze transportation policies and decisions. Transportation forecasts have traditionally 4 

followed the sequential 4-step model where 4 sequential steps from trip generation to traffic 5 

assignment yield traffic volumes on network links. Activity-based models on the other hand 6 

form another class of transportation demand models that predict on an individual level where 7 

and when specific activities (e.g. work, leisure, shopping, etc.) are conducted. Along with 8 

these activities also trips are generated so that the end result of an activity-based model 9 

consists of activity-travel diaries or schedules. Activity-based models can be developed as 10 

standalone applications, however they can also be embedded in a framework that allows the 11 

models to be created, updated and maintained more easily. One such framework is the 12 

FEATHERS framework (1). The idea was conceived to develop a modular activity-based 13 

model of transport demand framework, where the emphasis is on the one hand on the practical 14 

use of the system by practitioners and end users and on the other hand on facilitating the 15 

creation of alternative activity-travel demand models. Similar initiatives, like for instance the 16 

Multi-Agent Transport SIMulation toolkit (MATSIM) (2) and the Common Modelling 17 

Framework (CMF) (3) have been developed for trip-based and complex tour-based models, 18 

highlighting the potential relevance of such a modular system. The activity-based scheduling 19 

model that is implemented in the FEATHERS framework and that is used in this study is 20 

based on the scheduling model that is present in A Learning BAsed TRansportation Oriented 21 

Simulation System (ALBATROSS) (4). 22 

However, any activity-based model needs activity-based survey data in order to be 23 

trained. Typically, a subset of the entire study population is selected for participating into a 24 

travel survey. These travel surveys might take many different forms such as PAper and Pencil 25 

Interviews (PAPI), Computer Assisted Telephone Interviews (CATI), Web Assisted Personal 26 

Interviews (WAPI), Tablet Assisted Personal Interviews (TAPI), Personal Digital Assistant 27 

Interviews and others. All of these survey forms have their advantages and disadvantages, 28 

however most surveys being set up will cost a certain amount of money which restricts the 29 

number of respondents being interviewed as monetary resources are in most cases limited (5). 30 

Therefore, an interesting question is how small a travel survey size can be in order to still 31 

have an activity-based model with reliable estimates of the population’s travel behaviour. 32 

This is what will be investigated in this study. 33 

To date, partial and fully operational activity-based micro simulation systems include 34 

A Learning BAsed TRansportation Oriented Simulation System (ALBATROSS) (6),  Micro-35 

analytic Integrated Demographic Accounting System (MIDAS) (7), the Activity-Mobility 36 

Simulator (AMOS) (8), Prism Constrained Activity-Travel Simulator (PCATS) (9), Florida’s 37 

Activity Mobility Simulator (FAMOS) (10) and other systems developed and applied to 38 

varying degrees in Portland, Oregon, San Francisco, Florida and New York.  39 

As stated before, all these activity-based models need activity-travel survey data as 40 

input for training the model. These travel survey data set sizes differ from study area to study 41 

area. For example, for the ALBATROSS (6) model as it is employed in The Netherlands, the 42 

survey for that study invited households to fill out an activity diary for two consecutive days. 43 

This resulted in a total of 5.295 household records that were used for training the model. As 44 

will be further discussed in this paper, for the study presented in this paper, the travel survey 45 

for Flanders in total has 8.800 person records as only 1 person per household was surveyed.  46 

This paper is organized as follows: first, a general overview of the FEATHERS 47 

activity-based framework is given, where after the currently available activity-based model 48 

based on the ALBATROSS core, which resides in FEATHERS, will be discussed. In a second 49 

part the travel survey data for this study is explored, so that in a third step the actual analysis 50 
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of the accuracy of a step-wise larger survey data set is explored based on an accuracy 1 

indicator. Subsequently, major conclusions are drawn and avenues for future research are 2 

worked out. 3 

 4 

FEATHERS AND THE ALBATROSS SYSTEM 5 
 6 

In order to facilitate the development and maintenance of dynamic activity-based models for 7 

transport demand, the FEATHERS framework was developed. For this purpose FEATHERS 8 

provides the tools needed in order to develop and maintain activity-based models in a 9 

particular study area. The framework supplies tailored memory structures such as, 10 

‘households’, ‘persons’, ‘activities’, ‘trips’, ‘cars’, etc. and at the same time FEATHERS is 11 

also equipped with a database structure  that is able to nourish activity-based models being 12 

developed, assimilated or modified inside FEATHERS. In such a way, in the framework, 13 

users can opt for a wide variety of functionalities that are provided by the FEATHERS 14 

modules facilitating the creation and maintenance of activity-travel demand models. Because 15 

of these properties, FEATHERS is very suitable for the research proposed in this paper. 16 

Currently the FEATHERS framework incorporates the core of the ALBATROSS 17 

Activity-Based scheduler (6).  This scheduler assumes a sequential decision process 18 

consisting of decision trees that intends to simulate the way individuals build schedules. The 19 

output of the model consisting of predicted activity schedules, describes for a given day 20 

which activities are conducted, at what time (start time), for how long (duration), where 21 

(location), and, if travelling is involved, the transport mode used and chaining of trips.  22 

The underlying methodology and assumptions used in each major step within the 23 

ALBATROSS model are as follows. The scheduler first starts with an empty schedule or 24 

diary where after it will evaluate whether or not work activities will be included. If this is the 25 

case, then the number of work activities will be estimated together with their beginning times 26 

and durations. In a second step the locations of the work activities are determined. The system 27 

sequentially assigns locations to the work activities in order of schedule position. This is done 28 

by systematically consulting a fixed list of specific decision trees. During the third step the 29 

model proceeds with the next decision steps, that is: selection of work related transport 30 

modes, inclusion and time profiling of non-work fixed and flexible activities, determination of 31 

fixed and flexible activity locations and finally determination of fixed and flexible activity 32 

transport modes.  33 

 34 

ACTIVITY-BASED TRAVEL SURVEY DATA USED IN THIS STUDY 35 
 36 

Activity-based models differ highly from traditional transport forecasting models in the sense 37 

that the former models aim at predicting the interdependencies and interrelationships between 38 

the multitude of facets of activity profiles on an individual level. The major distinction with 39 

conventional models is that scheduling of activities comprises the foundation of activity-40 

based models. Therefore, and in line with the basic underpinnings of the activity-based 41 

paradigm, the data required to estimate an activity-based model differs from the data required 42 

to build conventional models. More specifically, in order to build an activity-based model of 43 

transport demand, data on activity patterns are required. While there is a wide variety of 44 

possible types of travel surveys that can be employed for the purpose of estimating 45 

conventional transport models, the primary objective of the data collection effort for activity-46 

based models should be reflective of the data necessary to estimate this kind of model. 47 

Current household travel surveys rely extensively on the use of mail, telephone, internet and 48 

multimedia methods to obtain information on the daily travel and other activities of a 49 

representative sample of the population. Given the needs of the activity-based modelling 50 
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approach, the travel survey to be called in has to pay attention on the measurement of 1 

activities at the end of trips and to how and when the respondent chose to do them. One such 2 

travel survey for the Flemish study area that can be used for estimating the activity-based 3 

model inside FEATHERS is the Onderzoek VerplaatsingsGedrag Vlaanderen (OVG) travel 4 

survey. This OVG survey formally is a trip-based survey method, however information about 5 

trip purposes and hence information about activities in between trips is available. Therefore, 6 

this survey is particularly suitable for estimating the activity-based model embedded in the 7 

FEATHERS framework. The OVG travel survey was conducted through 8.800 persons that 8 

were selected based on a random sample from the national register. These persons (1 9 

randomly chosen adult per household) were all involved in a 1-day survey that was conducted 10 

primarily through face-to-face interviews. During these surveys information about the 11 

demographic, socioeconomic, household and trip-making characteristics of these individuals 12 

were gathered and for the purpose of this research, all person records and their according 13 

travel were then processed and being used as input for estimating the activity-based model 14 

incorporated inside FEATHERS.  15 

 16 

INVESTIGATION OF THE MINIMUM SURVEY SAMPLE SIZE PER DECISION 17 

TREE 18 
 19 

Having access to these travel survey data sets does not necessarily imply that induction 20 

algorithms for training decision trees must use them all. Smaller samples often provide the 21 

same accuracy. However, the correct sample size rarely is obvious. In this paper a method of 22 

progressive sampling is being applied where progressively larger samples of the original 23 

travel survey data are used as long as model accuracy improves till a point where no 24 

improvement can be obtained. In case smaller samples of the original travel survey data set 25 

can be used without losing model accuracy, then smaller surveys might be employed, and thus 26 

saving monetary costs and precious time as processing survey data can be very time-27 

consuming.  28 

 29 

Progressive sampling 30 
 31 

The requirement for accurate models often demands the use of large data sets that allow 32 

algorithms to discover complex structures and make accurate parameter estimates. In this 33 

paper we study a progressive sampling method, which attempts to maximize accuracy. 34 

Progressive sampling starts with a small sample and uses progressively larger ones until 35 

model accuracy no longer improves. A central component of progressive sampling is a 36 

sampling sequence S = {n0, n1, n2, ..., nk} where each ni is an integer that specifies the size of 37 

a sample to be provided to an induction algorithm. In this study, the induction algorithm used 38 

in the activity-based model inside FEATHERS, is the Chi-squared Automatic Interaction 39 

Detector (CHAID) (11). 40 

A learning curve (Figure 1) depicts the relationship between sample size and model 41 

accuracy. The horizontal axis represents n, the number of instances in a given training set, that 42 

can vary between zero and N, the total number of available instances. The vertical axis 43 

represents the accuracy of the model produced by an induction algorithm, in this case 44 

CHAID, when given a training set of size n.  45 

Learning curves typically have a steeply sloping portion early in the curve, a more 46 

gently sloping middle portion, and a plateau late in the curve. The middle portion can be 47 

extremely large in some curves (12, 13, 14) and almost entirely missing in others. The plateau 48 

occurs when adding additional data instances does not improve accuracy. The plateau, and 49 

even the entire middle portion, can be missing from curves when N is not sufficiently large. 50 
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Conversely, the plateau region can constitute the majority of curves when N is very large. It is 1 

assumed that learning curves are well behaved. Specifically, it is assumed that the slope of a 2 

learning curve is monotonically non-increasing with n except for local variance. When a 3 

learning curve reaches its final plateau, we say it has converged. We denote the training set 4 

size at which convergence occurs as nmin. Given a data set, a sampling procedure, and an 5 

induction algorithm, nmin is the size of the smallest sufficient training set. Models built with 6 

smaller training sets have lower accuracy than models built from training sets of size nmin, and 7 

models built with larger training sets have no higher accuracy. Figure 1 shows an example 8 

sampling sequence and its relation to a learning curve. Empirical estimates are necessary to 9 

determine nmin. In general, these characteristics are not known in advance, thus, in many 10 

cases, nmin is nearly impossible to determine from theory. However nmin can be approximated 11 

empirically by a progressive sampling procedure.   12 

 13 

 14 
FIGURE 1  Learning curves and progressive samples. 15 
 16 

Different kinds of progressive sampling approaches can be distinguished. An 17 

elementary sampling approach, called arithmetic sampling (15), uses the following sequence:  18 

 19 

Sa = n0 + (i.nδ) = {n0, n0 + nδ, n0 + 2.nδ, ..., n0 + k.nδ}                                                (1) 20 

 21 

An example arithmetic sampling sequence is {100, 200, 300, ..., nk}. An alternative sampling 22 

sequence approach is called geometric sampling and uses the following sequence: 23 

 24 

Sg = a
i
.n0 = {n0, a.n0, a

2
.n0, a

3
.n0, ..., a

k
.n0}                                                                  (2) 25 

 26 

In this paper, the authors have chosen to work with an arithmetic sampling approach, because 27 

of its simplicity and because of the fact that the data sets we are dealing with are not that large 28 

when compared with huge data sets that sometimes exist in the field of data mining.  29 

In progressive sampling the learning curve is being evaluated. However this learning 30 

curve essentially is the chain of values of the accuracy indicator for each decision tree. Which 31 

accuracy indicator is being used in this study is explained in the section below. 32 

 33 

The accuracy indicator 34 
 35 
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While performing progressive sampling, an accuracy indicator is being calculated for each 1 

discrete decision tree of the activity-based model. The accuracy indicator that is chosen in this 2 

study is the Confusion Matrix Accuracy (CMA) measure (16). If a classification system has 3 

been trained to distinguish between choices, a confusion matrix will summarize the results of 4 

testing the algorithm for further inspection. The CMA value of a decision tree is calculated by 5 

calculating a ratio where the nominator is calculated by the sum over all cells in the confusion 6 

matrix of the decision tree, and the denominator is calculated by the sum over all diagonal 7 

cells of the confusion matrix. The following example in table 1 will illustrate this calculation 8 

of the CMA value of a decision tree. Let’s assume we are dealing with a decision tree that can 9 

predict the transport mode of a trip. Let’s further assume we have three transport modes, 10 

namely car, public transport and bike. Table 1 shows, as a fictitious example, the confusion 11 

matrix for this decision tree.  12 

 13 

TABLE 1  Example of a confusion matrix 14 

   

Predicted class 

 

 

  

Car Public transport Bike 

 

Car 5 3 0 

Actual class Public transport 2 3 1 

 

Bike 0 2 11 

 15 

In this confusion matrix, of the eight actual cars, the system predicted that three were public 16 

transport, and of the six public transports, it predicted that one was a bike and two were cars. 17 

We can see from the matrix that the system in question has trouble distinguishing between 18 

cars and public transport, but can make the distinction between bike and other types of 19 

transport mode pretty well. All correct guesses are located in the diagonal of the table, so it's 20 

easy to visually inspect the table for errors, as they will be represented by any non-zero values 21 

outside the diagonal. The CMA value in this case equals 70.3 %.  22 

 23 

Detecting convergence 24 
 25 

A key assumption behind all the progressive sampling procedures discussed above is that 26 

convergence can be detected accurately and efficiently. Convergence detection is 27 

fundamentally a statistical judgement. As explained before, the learning curve is modelled as 28 

sampling progresses. However, at this point an important remark has to be made. Each sample 29 

being taken from the original travel survey data set is unique, that is to say, the original travel 30 

survey data set can be used in order to obtain different samples of the same size. Indeed, 31 

starting from a data set of a certain size, one can obtain many different samples of the same 32 

size by randomly selecting instances of the original travel survey data set. Therefore, the 33 

authors suggest to compile 30 different samples of the same size for each step in the 34 

progressive sampling approach. Each of the different 30 samples will yield a different group 35 

of decision trees and therefore also different CMA values. Table 2 shows the average values 36 

of those CMA values while table 3 shows a summary of all normalised average CMA values. 37 

Normalisation of the CMA values is necessary in order to compare learning curves between 38 

themselves. The learning curve for each decision trees is made by chaining the averages of the 39 

CMA values for each sample step in the progressive sampling approach. These points on the 40 

learning curve are then used to estimate a tangential line, for each of the 30 samples, so that 41 

the slope of the tangential line is compared to zero. As explained before, learning curves, as 42 

shown in figure 1, have three regions of behaviour, a primary rise, a secondary rise, and a 43 

plateau. Once the plateau is reached, the tangential line is approximately zero. At this point 44 
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we have taken advantage of a common property of learning curves: the slope of the line 1 

tangent to the curve constantly decreases. Taking into account the explanation above, the 2 

authors of this paper suggest to use the following criterion as a stopping criterion where 3 

convergence is being reached. Convergence is reached when more than 90% of the 30 sample 4 

CMA values at a given point on the learning curve have a tangent smaller or equal than 0.25 5 

degrees, which is almost zero degrees or flat. 6 

 7 

TABLE 2 Average CMA values, for each progressive sampling step from 10% till 90% 8 

(expressed in percent) 9 

Nr Decision tree 10% 20% 30% 40% 50% 60% 70% 80% 90% 

1 Inclusion work 75,7 75,9 75,7 75,7 75,7 75,8 75,8 75,8 75,7 

2 Number of episodes 66,2 66,7 66,4 66,7 67,2 67,1 67,3 67,7 68 

3 Location, same as previous 56,7 58,2 62,2 63,1 64,3 65,3 65,8 66,6 66,9 

4 Location, in/out home 59,4 60,6 61,6 61,8 62,5 62,9 63,0 63,4 63,8 

5 Location, order (1) 26,6 27,8 28,1 28,6 29,1 29,4 29,8 30,0 30,2 

6 Location, nearest of order 69,0 71,1 71,7 72,3 72,3 73,0 73,5 73,8 74,2 

7 Location, distance band (1) 20,4 21,0 22,5 23,2 23,8 24,5 25,0 25,5 25,5 

8 Location, order (2) 31,2 32,6 33,6 34,0 34,4 35,1 35,6 36,0 36,4 

9 Location, distance band (2) 29,9 32,3 34,0 35,6 36,4 36,9 37,4 37,6 38,0 

10 Transport mode (1) 58,8 60,6 60,9 61,5 61,9 62,8 63,0 63,4 64,4 

11 Inclusion fixed 86,7 87,1 87,1 87,2 87,2 87,2 87,3 87,3 87,3 

12 Number of episodes 45,2 46,3 47,1 47,0 47,1 47,4 47,6 47,9 48,1 

13 Chaining, work 46,2 47,1 47,6 48,3 48,9 49,3 49,7 49,9 50,3 

14 Location, same as previous 58,4 58,4 59,8 60,2 60,3 60,4 60,4 60,4 60,5 

15 Location, distance-size class 6,3 6,9 7,4 7,8 8,1 8,3 8,3 8,4 8,4 

16 Inclusion flexible 78,8 78,9 79,0 79,1 79,2 79,2 79,3 79,3 79,4 

17 Duration 37,0 37,8 38,4 38,8 39,1 39,3 39,4 39,5 39,6 

18 Timing 39,7 43,2 44,7 45,6 46,1 46,2 46,1 46,2 46,2 

19 Chaining 82,2 86,2 86,7 87,1 87,5 87,4 87,4 87,5 87,4 

20 Transport mode (2) 47,8 50,3 51,8 52,7 53,3 53,7 53,8 53,9 53,8 

 10 

Table 4 shows for all discrete decision trees the convergence of the accompanying learning 11 

curves. When taking a look at table 1 some interesting conclusions can be drawn. First of all, 12 

there are 3 decision tree learning curves that reach convergence immediately at a 10% fraction 13 

of the total travel survey data set. Astonishingly they constitute the inclusion decision trees. 14 

Apparently the inclusion decision trees do not need much travel survey data in order to be 15 

accurate enough. Figure 2 shows an example of the learning curve of the first decision tree 16 

which models the inclusion of work activities. As can be clearly seen, the learning curve is 17 

flat, meaning that the 3th region of the learning curve, the plateau, is reached almost 18 

immediately. Another interesting conclusion that can be drawn is that most other decision 19 

trees have a learning curve that reach the plateau when the sample fraction is between 10% 20 

and 90 %. Figure 3, showing the learning curve of decision tree 18, gives an example. The 21 

last conclusion that can be made is that there are a few decision trees that do not reach 22 

convergence and hence there is no plateau. This means that for these decision trees more 23 

travel survey data is needed in order to have decision trees with a fine accuracy. Not 24 

surprisingly it comprehend decision trees that are used to make location choices. This is in 25 

line with expectation, as location choices by nature are more difficult to make when compared 26 

with decisions regarding the inclusion of a certain activity like for instance a work activity.  27 

 28 
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TABLE 3  Normalised average CMA values, for each progressive sampling step from 1 

10% till 90% (expressed in percent) 2 

Nr Decision tree 10% 20% 30% 40% 50% 60% 70% 80% 90% 

1 Inclusion work 100,1 100,3 100,0 100,0 100,0 100,1 100,1 100,1 100,0 

2 Number of episodes 97,0 97,7 97,3 97,8 98,4 98,3 98,5 99,1 99,6 

3 Location, same as previous 84,3 86,5 92,4 93,8 95,5 97,1 97,8 98,9 99,5 

4 Location, in/out home 92,9 94,6 96,2 96,5 97,6 98,2 98,4 99,1 99,6 

5 Location, order (1) 87,0 90,7 91,7 93,5 95,2 96,0 97,5 97,9 98,6 

6 Location, nearest of order 92,2 95,0 95,7 96,6 96,5 97,5 98,1 98,5 99,1 

7 Location, distance band (1) 77,1 79,4 85,1 87,5 89,7 92,4 94,4 96,1 96,5 

8 Location, order (2) 85,5 89,2 92,0 93,1 94,0 96,2 97,6 98,6 99,7 

9 Location, distance band (2) 78,1 84,6 89,0 93,3 95,3 96,6 97,8 98,4 99,5 

10 Transport mode (1) 90,6 93,3 93,8 94,8 95,3 96,8 97,1 97,7 99,3 

11 Inclusion fixed 99,2 99,7 99,7 99,8 99,8 99,8 99,9 99,9 100,0 

12 Number of episodes 94,4 96,7 98,3 98,2 98,3 98,9 99,4 100,0 100,5 

13 Chaining, work 92,5 94,4 95,5 96,8 98,1 98,9 99,6 100,0 100,9 

14 Location, same as previous 96,9 97,0 99,2 99,9 100,1 100,2 100,3 100,3 100,4 

15 Location, distance-size class 75,7 83,0 89,5 93,8 97,5 100,4 100,6 101,2 101,6 

16 Inclusion flexible 99,2 99,3 99,4 99,5 99,6 99,7 99,8 99,8 99,9 

17 Duration 93,8 95,9 97,3 98,3 99,2 99,7 99,8 100,0 100,3 

18 Timing 85,7 93,3 96,4 98,3 99,3 99,6 99,5 99,7 99,7 

19 Chaining 94,2 98,7 99,3 99,7 100,2 100,1 100,1 100,2 100,1 

20 Transport mode (2) 88,5 93,1 95,8 97,5 98,6 99,4 99,7 99,7 99,7 

 3 

TABLE 4  Percentage of the number of samples with a tangent smaller than 0.25 4 

degrees, for each progressive sampling step from 10% till 90% (expressed in precent) 5 

Nr Decision tree 10% 20% 30% 40% 50% 60% 70% 80% 90% 

1 Inclusion work 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

2 Number of episodes 90,0 100,0 97,0 97,7 100,0 100,0 97,7 100,0 100,0 

3 Location, same as previous 60,0 13,3 53,3 70,0 63,3 77,7 86,7 96,7 100,0 

4 Location, in/out home 73,3 80,0 100,0 96,7 93,3 100,0 100,0 100,0 100,0 

5 Location, order (1) 40,0 60,0 63,3 63,3 80,0 70,0 93,3 86,7 76,7 

6 Location, nearest of order 50,0 86,7 93,3 100,0 100,0 100,0 100,0 100,0 100,0 

7 Location, distance band (1) 60,0 10,0 50,0 56,7 50,0 56,7 53,3 76,7 30,0 

8 Location, order (2) 36,7 43,3 80,0 83,3 63,3 63,3 96,7 96,7 100,0 

9 Location, distance band (2) 20,0 16,7 23,3 73,3 73,3 90,0 100,0 86,7 100,0 

10 Transport mode (1) 50,0 86,7 90,0 100,0 76,7 100,0 96,7 93,3 100,0 

11 Inclusion fixed 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

12 Number of episodes 53,3 56,7 96,7 96,7 90,0 93,3 96,7 93,3 100,0 

13 Chaining, work 53,3 66,7 70,0 76,7 76,7 96,7 96,7 86,7 100,0 

14 Location, same as previous 90,0 63,3 100,0 100,0 100,0 100,0 100, 100,0 100,0 

15 Location, distance-size class 6,7 16,7 23,3 26,7 40,0 93,3 86,7 83,3 100,0 

16 Inclusion flexible 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

17 Duration 60,0 90,0 93,3 96,7 100,0 96,7 100,0 100,0 100,0 

18 Timing 3,3 26,7 76,7 96,7 100,0 100,0 100,0 100,0 100,0 

19 Chaining 10,0 93,3 100,0 100,0 100,0 100,0 100,0 100,0 100,0 

20 Transport mode (2) 16,7 40,0 63,3 90,0 90,0 100,0 100,0 100,0 100,0 
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Figure 4 shows, as an example, the learning curve of the first location decision tree that does 1 

not reach a plateau. 2 

 3 

 4 
FIGURE 2  Learning curve of decision tree 1. 5 

 6 

 7 
FIGURE 3  Learning curve of decision tree 18. 8 
 9 

 10 
FIGURE 4  Learning curve of decision tree 5. 11 
 12 
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CONCLUSIONS AND DISCUSSION 1 
 2 

The study performed in this paper tried to find out if it is possible to train an activity-based 3 

model, based on decision trees, with a smaller travel survey data set than the original one used 4 

for the study area Flanders. As it appeared, for some decision trees, namely the inclusion 5 

decision trees, extreme small survey data sets can be used, data sets that are of a size 10% of 6 

the original survey data set. For the majority of the decision trees smaller travel data sets 7 

could be used without losing model accuracy, while for a few decision trees, all location-8 

related decision trees, more survey data should be used in order to have a model with high 9 

accuracy. Overall, the conclusion is that in general, all decision trees taken together, it is not 10 

advisable to work with small travel survey data sets as there are a few decision trees that are 11 

strongly affected by the survey size. Making use of a small travel survey would decrease the 12 

accuracy of an activity-based model, especially the location model which is an important 13 

component, as activity-based models in transportation research are used for predicting trips. 14 

These trips and hence origin-destination matrices could become less reliable when the model 15 

is trained with only a small travel survey data set.  16 

In this paper we only focused on the decision trees constituting the activity-based 17 

model components. However, it could be interesting to deduce decision trees based on 18 

increasingly smaller travel survey data sets and then based on those new decision trees to 19 

predict travel behaviour of the Flemish population in order to investigate whether or not there 20 

is an impact of the smaller decision trees on travel behaviour in Flanders. This could be done 21 

for future research.   22 

 23 
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