
Made available by Hasselt University Library in https://documentserver.uhasselt.be

On the CRON Conjecture

Peer-reviewed author version

AMELOOT, Tom & VAN DEN BUSSCHE, Jan (2012) On the CRON Conjecture. In:

Barceló, Pablo; Pichler, Reinhard (Ed.). Datalog in Academia and Industria, p. 44-55.

DOI: 10.1007/978-3-642-32925-8_6

Handle: http://hdl.handle.net/1942/14567

On the CRON Conjecture
Tom J. Ameloot ∗ Jan Van den Bussche

Abstract
Declarative networking is a recent approach to programming distributed

applications with languages inspired by Datalog. A recent conjecture
posits that the delivery of messages should respect causality if and only if
they are used in non-monotone derivations. We present our results about
this conjecture in the context of Dedalus, a Datalog-variant for distributed
programming. We show that both directions of the conjecture fail under a
strong semantical interpretation. But on a more syntactical level, we can
show that positive Dedalus programs can tolerate non-causal messages, in
the sense that they compute the correct answer even when messages can
be sent into the past.

1 Introduction
In declarative networking, distributed computations and networking protocols
are modeled and programmed using formalisms based on Datalog [17]. Heller-
stein has made a number of intriguing conjectures concerning the expressiveness
of declarative networking [14, 15]. In the present paper, we are focusing on the
CRON conjecture (Causality Required Only for Non-monotonicity).

Causality stands for the physical constraint that an effect can only happen
after its cause. Applied to message delivery, this intuitively means that a sent
message can only be delivered in the future, not in the past. Now, the conjecture
relates the causal delivery of messages to the nature of the computations that
those messages participate in, like monotone versus non-monotone, and asks us
to think about the cases where causality is really needed.

There seem to be interesting real-world applications of the CRON conjecture,
one of which is crash recovery. During crash recovery, a program can read an old
checkpointed state and a log of received messages, which is disjoint from that
state. These messages could appear to come from the “future” when put side-by-
side with the old state because according to the old state, those messages have
yet to be sent. Then, it is not always clear how the program should combine
the old state and the message log, certainly if negation and more generally non-
monotone operations are involved. One can understand the CRON conjecture as
saying that during recovery, for non-monotone operations, messages from the log
∗PhD. Fellow of the Fund for Scientific Research – Flanders (FWO)

1

should be read in causal order, like the order in which they are received, and they
should not be exposed all at once. From the other direction, if you know that
only monotone operations are involved, the recovery could perhaps become more
efficient by reading the messages all at once. Distributed computations happen
often in large clusters of compute nodes, where failure of nodes is not uncommon
[22], and indeed distributed computing software should be robust against failures
[9]. We want to avoid restarting entire computations when only a few nodes fail,
and therefore it seems natural to use some lightweight crash recovery facility for
individual nodes that can still make the computation succeed, although perhaps
some partial results might have to be recomputed. The CRON conjecture could
help us better understand how such recovery facilities can be designed.

In this paper we formally investigate the CRON conjecture in the setting of
the language Dedalus, which is a Datalog-variant for distributed programming
[4, 5, 15]. It turns out that stable models [12] provide a way to reason about
non-causality, and we use this to formalize the CRON conjecture. A strong
interpretation of the conjecture posits that causality is not needed if and only
if the query computed by a Dedalus program is monotone. Neither the “if” nor
the “only if” direction holds, however, which is perhaps not entirely surprising
as we can do special tricks with negation. Therefore we have turned attention
to a more syntactic version of the conjecture, and there we indeed find that
causal message ordering is not needed for positive Dedalus programs in order
to compute meaningful results, if these programs already behave correctly in a
causal operational semantics.

This paper is organized as follows. Section 2 gives preliminaries on databases,
Datalog, and Dedalus. Next, Section 3 states the CRON conjecture and gives
the formalization of non-causality. Section 4 contains the results. We conclude
in Section 5.

Acknowledgment We thank Joseph M. Hellerstein for his thoughtful com-
ments on an earlier draft of this paper.

2 Preliminaries
2.1 Databases and Facts
A database schema D is a finite set of pairs (R, k) where R is a relation name and
k ∈ N its associated arity. A relation name occurs at most once in a database
schema. We often write (R, k) as R(k).

We assume some infinite universe dom of atomic data values. A fact f is a
pair (R, ā), often denoted as R(ā), where R is a relation name and ā is a tuple
of values over dom. For a fact R(ā), we call R the predicate. We say that a fact
R(a1, . . . , ak) is over database schema D if R(k) ∈ D. A database instance I
over D is a set of facts over D. For a subset D′ ⊆ D, we write I|D′ to denote the
subset of facts in I whose predicate is a relation name in D′. We write adom(I)
to denote the set of values occurring in facts of I.

2

2.2 Datalog with Negation
We recall Datalog with negation [2], abbreviated Datalog¬. Let var be a uni-
verse of variables, disjoint from dom. An atom is of the form R(u1, . . . , uk)
where R is a relation name and ui ∈ var∪ dom for i = 1, . . . , k. We call R the
predicate. If an atom contains no data values, we call it constant-free. A literal
is an atom or an atom with “¬” prepended. A literal that is an atom is called
positive and otherwise it is called negative.

A Datalog¬ rule ϕ is a triple

(headϕ, posϕ, negϕ)

where headϕ is an atom, and posϕ and negϕ are sets of atoms. The components
headϕ, posϕ and negϕ are called respectively the head, the positive body atoms
and the negative body atoms. We refer to posϕ ∪ negϕ as the body atoms. Note,
negϕ contains just atoms, not negative literals. Every Datalog¬ rule ϕ must
have a head, whereas posϕ and negϕ may be empty. If negϕ = ∅ then ϕ is called
positive.

A rule ϕ may be written in the conventional syntax. For instance, if headϕ =
T (u, v), posϕ = {R(u, v)} and negϕ = {S(v)}, with u, v ∈ var, then we can write
ϕ as

T (u, v)← R(u, v), ¬S(v).

The specific ordering of literals to the right of the arrow is arbitrary.
The set of variables of ϕ is denoted vars(ϕ). We call ϕ safe if the variables

in ϕ all occur in posϕ. If vars(ϕ) = ∅ then ϕ is called ground, in which case
{headϕ} ∪ posϕ ∪ negϕ is a set of facts.

Let D be a database schema. A rule ϕ is said to be over schema D if for each
atom R(u1, . . . , uk) ∈ {headϕ} ∪ posϕ ∪ negϕ we have R(k) ∈ D. A Datalog¬
program P over D is a set of safe Datalog¬ rules over D. We write sch(P) to
denote the database schema that P is over. We define idb(P) ⊆ sch(P) to be the
database schema consisting of all relations in rule-heads of P . We abbreviate
edb(P) = sch(P) \ idb(P).1

Any database instance I over sch(P) can be given as input to P . Note, I may
already contain facts over idb(P). The need for this will become clear in Sec-
tion 2.5. Let ϕ ∈ P . A valuation for ϕ is a total function V : vars(ϕ)→ dom.
The application of V to an atom R(u1, . . . , uk) of ϕ, denoted V (R(u1, . . . , uk)),
results in the fact R(a1, . . . , ak) where for each i ∈ {1, . . . , k} we have ai = V (ui)
if ui ∈ var and ai = ui otherwise. In words: applying V replaces the variables
by data values and leaves the old data values unchanged. This is naturally ex-
tended to a set of atoms, which results in a set of facts. Valuation V is said to
be satisfying for ϕ on I if V (posϕ) ⊆ I and V (negϕ) ∩ I = ∅. If so, ϕ is said to
derive the fact V (headϕ).

1The abbreviation “idb” stands for “intensional database schema” and “edb” stands for
“extensional database schema” [2].

3

2.2.1 Positive and Semi-positive

Let P be a Datalog¬ program. We say that P is positive if all rules of P are
positive. We say that P is semi-positive if for each rule ϕ ∈ P , the atoms of
negϕ are over edb(P). Note, positive programs are semi-positive.

We now give the semantics of a semi-positive Datalog¬ program P [2]. First,
let TP be the immediate consequence operator that maps each instance J over
sch(P) to the instance J ′ = J ∪ A where A is the set of facts derived by
all possible satisfying valuations for the rules of P on J . Note, adom(J ′) ⊆
adom(J).

Let I be an instance over sch(P). Consider the infinite sequence I0, I1, I2,
etc, inductively defined as follows: I0 = I and Ii = TP (Ii−1) for each i ≥ 1. The
output of P on input I, denoted P (I), is defined as

⋃
j Ij ; this is the minimal

fixpoint of the TP operator. Note, I ⊆ P (I). When I is finite, the fixpoint
is finite and can be computed in polynomial time (if P is considered constant
[21]).

2.2.2 Stratified Semantics

We now recall the stratified semantics for a Datalog¬ program P [2]. As a
slight abuse of notation, here we will treat idb(P) as a set of only relation
names (without associated arities). First, P is called syntactically stratifiable if
there is a function σ : idb(P)→ {1, . . . , |idb(P)|} such that for each rule ϕ ∈ P ,
having some head predicate T , the following conditions are satisfied:

• σ(R) ≤ σ(T) for each R(ū) ∈ posϕ|idb(P);

• σ(R) < σ(T) for each R(ū) ∈ negϕ|idb(P).

For R ∈ idb(P), we call σ(R) the stratum number of R. For technical con-
venience, we may assume that if there is an R ∈ idb(P) with σ(R) > 1 then
there is an S ∈ idb(P) with σ(S) = σ(R) − 1. Intuitively, function σ parti-
tions P into a sequence of semi-positive Datalog¬ programs P1, . . . , Pk with
k ≤ |idb(P)| such that for each i = 1, . . . , k, the program Pi contains the rules
of P whose head predicate has stratum number i. This sequence is called a
syntactic stratification of P . We can now apply the stratified semantics to P :
for an input I over sch(P), we first compute the fixpoint P1(I), then the fix-
point P2(P1(I)), etc. The output of P on input I, denoted P (I), is defined as
Pk(Pk−1(. . . P1(I) . . .)). It is well known that the output of P does not depend
on the chosen syntactic stratification (if more than one exists). Not all Datalog¬
programs are syntactically stratifiable.

2.2.3 Stable Model Semantics

We now recall the stable model semantics for a Datalog¬ program P [12, 20].
Let I be an instance over sch(P). Let ϕ ∈ P . Let V be a valuation for ϕ whose
image is contained in adom(I). Valuation V does not have to be satisfying
for ϕ on I. Together, V and ϕ give rise to a ground rule ψ, obtained from

4

ϕ by replacing each u ∈ vars(ϕ) with V (u). We call ψ a ground rule of ϕ
with respect to I. Let ground(ϕ, I) denote the set of all ground rules of ϕ with
respect to I. The ground program of P on I, denoted ground(P, I), is defined
as

⋃
ϕ∈P ground(ϕ, I).

Let M be another instance over sch(P). We write groundM (P, I) to denote
the program obtained from ground(P, I) as follows:

1. remove every rule ψ ∈ ground(P, I) for which negψ ∩M 6= ∅;

2. remove the negative (ground) body atoms from all remaining rules.

Note, groundM (P, I) is a positive program. We say that M is a stable model of
P on input I ifM is the output of groundM (P, I) on input I. If so, the semantics
of positive Datalog¬ programs implies I ⊆ M and adom(M) ⊆ adom(I). Not
all Datalog¬ programs have stable models on every input.

2.3 Network and Distributed Databases
A (computer) network is a nonempty finite set N of nodes, which are values
in dom. Intuitively, N represents the identifiers of compute nodes involved
in a distributed system. Communication channels (edges) are not explicitly
represented because we allow a node x to send a message to any node y, as
long as x knows about y by means of input relations or received messages.
When using Dedalus for general distributed or cluster computing, the delivery
of messages is handled by the network layer, which is abstracted away. But
Dedalus programs can also describe the network layer itself [17, 15], in which
case we would restrict attention to programs where nodes only send messages to
nodes to which they are explicitly linked; these nodes would again be provided
as input.

A distributed database instance H over a network N and a database schema
D is a function that maps every node of N to an ordinary finite database
instance over D. This represents how data over the same schema D is spread
over a network.

2.4 Dedalus Programs
We now recall the language Dedalus, that can be used to describe distributed
computations [4, 5, 15]. Essentially, Dedalus is an extension of Datalog¬ to
represent updatable memory for the nodes of a network and to provide a mech-
anism for communication between these nodes. To simplify notation, we present
Dedalus as Datalog¬ extended with annotations.2

Let D be a database schema. We write B{v̄}, where v̄ is a tuple of variables,
to denote any sequence β of literals over database schema D, such that the
variables in β are precisely those in the tuple v̄. Let R(ū) denote any atom over
D. There are three types of Dedalus rules over D:

2These annotations correspond to syntactic sugar in the previous presentations of Dedalus.

5

• A deductive rule is a normal Datalog¬ rule over D.

• An inductive rule is of the form

R(ū)• ← B{ū, v̄}.

• An asynchronous rule is of the form

R(ū) | y← B{ū, v̄, y}.

For inductive rules, the annotation ‘•’ can be likened to the transfer of “tokens”
in a Petri net from the old state to the new state. For asynchronous rules, the
annotation ‘| y’ with y ∈ var means that the derived head facts are transferred
(“piped”) to the node represented by y. Deductive, inductive and asynchronous
rules will express respectively local computation, updatable memory, and mes-
sage sending (cf. Section 2.5). Like in Section 2.2, a Dedalus rule is called safe
if all its variables occur in at least one positive body atom.

To illustrate, if D = {R(2), S(1), T (2)}, then the following three rules are
examples of, respectively, deductive, inductive and asynchronous rules over D:

T (u, v)← R(u, v), ¬S(v).

T (u, v)• ← R(u, v).
T (u, v) | y← R(u, v), S(y).

Now consider the following definition:

Definition 2.1. A Dedalus program over a schema D is a set of deductive,
inductive and asynchronous Dedalus rules over D, such that all rules are safe,
and the set of deductive rules is syntactically stratifiable.

Let P be a Dedalus program. The definitions of sch(P), idb(P), and edb(P)
are like for Datalog¬ programs. An input for P is a distributed database instance
H over some network N and the schema edb(P).

2.5 Operational Semantics
In this section we give an operational semantics for Dedalus. We describe how
a network executes a Dedalus program P when an input distributed database
instance H is given. This operational semantics is in line with earlier formal
work on declarative networking [10, 19, 13, 6, 1].

The essence of the operational semantics is as follows. Let N be the network
that H is over. Every node of N runs the same Dedalus program, and a node
has access only to its own local state and any received messages. The nodes
are made active one by one in some arbitrary order, and this continues an
infinite number of times. During each active moment of a node x, called a local
(computation) step, node x receives message facts and applies its deductive,
inductive and asynchronous rules. Concretely, the deductive rules, forming a

6

stratified Datalog¬ subprogram, are applied to the incoming messages and the
previous state of x. Deductive rules “complete” the available facts by adding
all new facts that can be logically derived from them. Next, the inductive rules
are applied to the output of the deductive subprogram, and these allow x to
store facts in its memory: these facts become visible in the next local step of x.
Finally, the asynchronous rules are also applied to the output of the deductive
subprogram, and these allow x to send facts to the other nodes or to itself.
These facts become visible at the addressee after some arbitrary delay, which
represents asynchronous communication. We will refer to local steps simply as
“steps”. The next subsections make the above sketch concrete.

2.5.1 Configurations

Let P, H, and N be like above. A configuration describes the network at a
certain point in its evolution. We define a configuration of P on H to be a pair
ρ = (st, bf) where

• st is a function mapping each node of N to an instance over sch(P); and,

• bf is a function mapping each node of N to a set of pairs of the form
〈i,f〉, where i ∈ N and f is a fact over idb(P).

We call st and bf the state and (message) buffer respectively. The state says
for each node what facts it has stored in its memory, and the message buffer
bf says for each node what messages have been sent to it but that are not yet
received. The reason for having numbers i, called send-tags, attached to facts in
the image of bf is merely a technical convenience: these numbers help separate
multiple instances of the same fact when it is sent at different moments (to the
same addressee), and these send-tags will not be visible to the Dedalus program.

The start configuration of P on input H, denoted start(P, H), is the config-
uration ρ = (st, bf) defined by st(x) = H(x) and bf (x) = ∅ for each x ∈ N .

2.5.2 Subprograms

We look at the operations executed locally during each step of a node. We split
P into three subprograms, containing respectively the deductive, inductive and
asynchronous rules. These programs are used in Section 2.5.3.

First, we define deducP to be the Datalog¬ program consisting of all de-
ductive rules of P. Secondly, we define inducP to be the Datalog¬ program
consisting of all inductive rules of P after removing the annotation ‘•’. Thirdly,
we define asyncP to be the Datalog¬ program consisting of all rules

T (y, ū)← B{ū, y}

where
T (ū) | y← B{ū, y}

is an asynchronous rule of P. In asyncP , the first head variable represents
the addressee. Note, programs deducP , inducP and asyncP are just Datalog¬

7

programs over sch(P). Moreover, the definition of P implies that deducP is
syntactically stratifiable. Possibly inducP and asyncP are not syntactically
stratifiable.

Now we define the semantics of the three subprograms. Let I be an instance
over sch(P). We define the output of deducP on input I, denoted deducP(I), to
be given by the stratified semantics. This implies I ⊆ deducP(I). We define the
output of inducP on input I, denoted inducP〈I〉, to be the set of facts derived
by the rules of inducP for all possible satisfying valuations in I, in just one
derivation step (i.e., no fixpoint). The output for asyncP on input I, denoted
asyncP〈I〉, is defined as for inducP , but now using asyncP instead of inducP .

Regarding data complexity [21], the output of each subprogram can be com-
puted in PTIME with respect to the size of its input.

2.5.3 Transitions and Runs

Transitions formalize how to go from one configuration to another. Here we
use the subprograms of P. Transitions are chained to form a run. Regarding
notation, for a set m of pairs of the form 〈i,f〉, we define untag(m) = {f | ∃i ∈
N : 〈i,f〉 ∈ m}.

A transition with send-tag i ∈ N is a five-tuple (ρ1, x,m, i, ρ2) such that
ρ1 = (st1, bf 1) and ρ2 = (st2, bf 2) are configurations of P on input H, x ∈ N ,
m ⊆ bf 1(x), and, letting

I = st1(x) ∪ untag(m),
D = deducP(I),
δi→y = {〈i, R(ā)〉 | R(y, ā) ∈ asyncP〈D〉} for each y ∈ N ,

for x and each y ∈ N \ {x} we have

st2(x) = H(x) ∪ inducP〈D〉,
bf 2(x) = (bf 1(x) \m) ∪ δi→x,

st2(y) = st1(y),
bf 2(y) = bf 1(y) ∪ δi→y.

We call ρ1 and ρ2 respectively the source- and target-configuration, and say
this transition is of the active node x. Intuitively, the transition expresses how
x reads its old state together with the received facts in untag(m) (thus without
the tags). Subprogram deducP completes this information; the new state of x is
set to the input facts of x united with all facts derived by subprogram inducP ;
and, subprogram asyncP generates messages, whose first component indicates
the addressee. Specifically, for each y ∈ N , the set δi→y contains all messages
addressed to y; there we drop the addressee-component because y is known. We
also attach the send-tag i. Messages with an addressee outside the network are
ignored. This way of defining local computation closely corresponds to that of
the language Webdamlog [1]. If m = ∅, we call it a heartbeat transition.

A run R of P on input H is an infinite sequence of transitions, such that
(i) the very first configuration is start(P, H), (ii) the target-configuration of
each transition is the source-configuration of the next transition, and (iii) the

8

transition at ordinal i of the sequence uses send-tag i. The resulting transition
system is highly non-deterministic because in each transition we can choose the
active node and also what messages to deliver. An infinite number of transitions
is always possible because the set of delivered messages may be empty.

It is natural to require certain “fairness” conditions on the execution of a
system [11, 8, 16]. A run R of P on H is called fair if (i) every node does an
infinite number of transitions, and (ii) every sent message is eventually delivered.
We only consider fair runs.

2.5.4 Output and Consistency

We formalize the output of a run. Assume a subset out(P) ⊆ idb(P), called the
output schema, is selected: the relation names in out(P) designate the intended
output of the program. Following Marczak et al. [18], we define this output
based on ultimate facts. In a run R, we say that a fact f over schema out(P) is
ultimate at some node x if there is some transition of R after which f is output
by deducP during every transition of x. Thus, f is eventually always present
at x. The output of R, denoted output(R), is the union of the ultimate facts
across all nodes. Note, we ignore what node is responsible for what piece of the
output, following the intuition of cloud computing.

Because the operational semantics is nondeterministic, different runs can
produce different outputs. Now, program P is called consistent if individu-
ally for every input H, every run produces the same output, which we denote
as outInst(P, H). Guaranteeing or deciding consistency in special cases is an
important research topic [1, 18, 7].

2.5.5 Timestamps

For each transition i of a run, we define the timestamp of the active node x
during i to be the number of transitions of x that come strictly before i. This
can be thought of as the local (zero-based) clock of x during i. For example,
suppose we have the following sequence of active nodes: x, y, y, x, x, etc. If
we would write the timestamps next to the nodes, we get this sequence: (x, 0),
(y, 0), (y, 1), (x, 1), (x, 2), etc.

3 CRON Conjecture and Non-Causality
3.1 Conjecture
Conjecture 1. Causality Required Only for Non-monotonicity (CRON) [15]:
Program semantics require causal message ordering if and only if the messages
participate in non-monotonic derivations.

The CRON conjecture talks about an intuitive notion of “causality” on mes-
sages. As mentioned in the introduction, causality here stands for the physical
constraint that an effect can only happen after its cause. Our operational se-
mantics respects causality because a message can only be delivered after it was

9

sent. When the delivery of one message causes another one to be sent, the
second one is delivered in a later transition. For this reason, we want a new for-
malism to reason about non-causality, which entails sending messages into the
“past”. In Section 3.2 we introduce such a formalism. This is used in Section 4
to formally investigate the CRON conjecture.

3.2 Modeling Non-Causality
In a previous work [3], we have shown that the operational semantics of Dedalus
is equivalent to a declarative semantics based on stable models. There we
described a causality transform that converts a Dedalus program to a pure
Datalog¬ program containing extra rules, called the causality rules, that en-
force causality on message sending in every stable model of the pure Datalog¬
program. In the current work, we remove the causality rules and explain how
stable models can now represent non-causal message sending.

3.2.1 Transformation

Let P be a Dedalus program. Below, we present the SZ-transformation that
transforms P into pureSZ(P), which is a pure Datalog¬ program that models
the distributed computation in a holistic fashion: the data across all nodes and
their local timestamps is modeled as facts of the form R(x, s, ā), representing
that fact R(ā) is present at node x during local timestamp s. For asynchronous
rules, to select an arrival timestamp for every sent message, we use a rewriting
technique inspired by the work of Saccà and Zaniolo, who show how to express
dynamic choice under the stable model semantics [20].

For technical convenience, we assume that the relation names presented be-
low do not yet occur in sch(P). We will also assume that rules of P contain at
least one positive body atom; this assumption allows for a more elegant way to
enforce the safety condition on rules of pureSZ(P), and is not fundamental.

First, timestamps in pureSZ(P) will be represented by the following database
schema:

Dtime = {time(1), tsucc(2), 6=(2)}.

Relation ‘6=’ will be written in infix notation. We assume N ⊆ dom and consider
only the following instance over Dtime:

Itime = {time(s), tsucc(s, s+ 1) | s ∈ N} ∪ {(s 6= t) | s, t ∈ N : s 6= t}.

We now specify pureSZ(P) by transforming the rules of P. Let x, s, t and t′

be variables not yet used in P. For any sequence L of literals, let L⇑x,s denote
the sequence obtained by adding x and s as first and second components to each
atom in L (negated atoms stay negated).

First, for each deductive rule ‘R(ū) ← B{ū, v̄}’ in P, we add to pureSZ(P)
the following rule:

R(x, s, ū)← B{ū, v̄}⇑x,s. (3.1)

10

This expresses that deductively derived facts are directly visible within the same
step (of the same node) in which they were derived.

Next, for each inductive rule ‘R(ū)• ← B{ū, v̄}’ in P, we add to pureSZ(P)
the following rule:

R(x, t, ū)← B{ū, v̄}⇑x,s, tsucc(s, t). (3.2)

This expresses that inductively derived facts become visible in the next step of
the same node.

Lastly, for each asynchronous rule ‘R(ū) | y← B{ū, v̄, y}’ in P, letting w̄ be
a tuple of new and distinct variables with |w̄| = |ū|, we add to pureSZ(P) the
following rules, for which the intuition is given below:

candR(x, s, y, t, ū)← B{ū, v̄, y}⇑x,s, all(y), time(t). (3.3)
chosenR(x, s, y, t, w̄)← candR(x, s, y, t, w̄), ¬otherR(x, s, y, t, w̄). (3.4)

otherR(x, s, y, t, w̄)← candR(x, s, y, t, w̄), chosenR(x, s, y, t′, w̄), t 6= t′. (3.5)
R(y, t, w̄)← chosenR(x, s, y, t, w̄). (3.6)

A fact of the form all(x) means that x is a node of the network. Rule (3.3)
represents message sending: it derives messages by evaluating the original asyn-
chronous rule, verifies that the addressee of each message is in the network,
and it considers for each message all possible candidate arrival timestamps
at the addressee. In the candR-facts, we include the sender’s location and
send-timestamp, the addressee’s location and arrival-timestamp, and the actual
transmitted data. Next, rules (3.4) and (3.5) together enforce under the stable
model semantics that precisely one arrival timestamp will be chosen for every
sent message, using the technique of [20]. Rule (3.6) models the actual arrival of
messages, where the sender-information is projected away, and the transmitted
data is placed in the addressee’s relation R. Note, if multiple asynchronous rules
in P have the same head predicate R, only new candR-rules have to be added
because the rules (3.4)–(3.6) are sufficiently general.

This concludes the specification of program pureSZ(P).

3.2.2 Semantics

Let H be an input for P, over a network N . To represent H, we give pureSZ(P)
the following input:

inputSZ(H) ={R(x, s, ā) | x ∈ N , R(ā) ∈ H(x), s ∈ N}
∪ {all(x) | x ∈ N} ∪ Itime.

Intuitively, for each node its input facts are made available at each of its lo-
cal timestamps; relation all represents the network; and, all timestamps are
provided together with comparison relations.

Now, we call any stable model M of pureSZ(P) on inputSZ(H) an SZ-model
of P on input H. Program pureSZ(P) does not enforce causality on the messages
in M because the arrival timestamps can be chosen arbitrarily, even into the

11

past. But causality could be respected in some models. In fact, P has at
least one causal SZ-model on every input. This is because P has at least one
run on every input (possibly with only heartbeats), and because each run can
be naturally encoded into an SZ-model: across all transitions one unites the
outputs of deducP after adorning those facts with the location and timestamp
of their creation, and all message sending and arrival events are encoded with
candR-, chosenR- and otherR-facts.

We call an SZ-model M well-formed if (i) for each R(x, s, ā) ∈M |sch(P) we
have x ∈ N and s ∈ N; and (ii), letting c ∈ {cand, chosen, other}, for each
cR(x, s, y, t, ā) ∈M we have x, y ∈ N and s, t ∈ N. Using the definition of stable
model, it can be shown that M is always well-formed (details omitted).

Similar to [3], we focus on SZ-modelsM that contain for each (y, t) ∈ N ×N
only finitely many facts of the form chosenR(x, s, y, t, ā). This expresses that
every node y receives only a finite number of messages on every timestamp t.
This is a natural constraint, because in real system a node always processes a
finite number of messages during each computation step. This constraint could
also be directly enforced with additional rules of pureSZ(P), but we have omitted
the technical details for easier presentation.

3.2.3 Output and SZ-consistency

The output of an SZ-model M , denoted output(M), is defined with ultimate
facts like in the operational semantics (Section 2.5.4):

output(M) =
⋃

R(k)∈out(P)

{R(ā) | ∃x ∈ N , ∃s ∈ N, ∀t ∈ N : t ≥ s⇒ R(x, t, ā) ∈M}.

Now, an already consistent Dedalus program P is called SZ-consistent if indi-
vidually for every input H, every SZ-model M yields the output outInst(P, H).
Intuitively, if a consistent program is SZ-consistent, then it also computes the
same result when messages can be sent into the past.

4 Results
We have considered a semantical and syntactical interpretation of the CRON
conjecture, for which we present the results below.

4.1 Semantical Interpretation
We have first formalized the CRON conjecture purely on the semantical level,
by relating causality to the monotonicity of the queries computed by Dedalus
programs.

A query Q is a function from database instances over an input schema D1 to
database instances over an output schema D2. QueryQ ismonotone if for each I
and J over D1, I ⊆ J implies Q(I) ⊆ Q(J). Relating to the distributed setting,
an instance I over a database schema D can be partitioned over a network N by

12

Algorithm 1 Program for emptiness query

empty(x) | y← ¬S(), Id(x), Node(y).
empty(y)• ← empty(y).
missing()← Node(y), ¬empty(y).
T ()← Id(x), ¬missing().

putting each fact of I on at least one node, resulting in a distributed database
instance over N and D. Now, we say that a Dedalus program P (distributedly)
computes query Q if P is consistent and for every input instance I for Q, for
every network N , for every partition H of I over N , we have outInst(P, H) =
Q(I). To compute non-monotone queries, every node needs its own identifier
and the identifiers of the other nodes, or equivalent information [6]. Therefore,
we restrict attention to Dedalus programs P for which {Id(1), Node(1)} ⊆ edb(P),
and each inputH, over a network N , includes for each x ∈ N the facts {Id(x)}∪
{Node(y) | y ∈ N}, which are treated just like any other edb-fact.

In this context, we have looked at the following formalization of the CRON
conjecture:

Conjecture 2. Semantical CRON: A Dedalus program computes a monotone
query if and only if it is SZ-consistent.

Both directions of this conjecture can be refuted by counterexamples, as
we do in the following two subsections. So, contrary to the CALM conjecture
[15, 6, 23], a formalization of the CRON conjecture that is situated purely on
the semantical level does not seem promising.

4.1.1 If Direction

For the if-direction of Conjecture 2, we give an SZ-consistent Dedalus program
computing a non-monotone query.

Algorithm 1 gives a Dedalus program to compute the non-monotone empti-
ness query on a nullary relation S, that is, output “true” (encoded by a nullary
relation T) if and only if S is empty (at all nodes). The asynchronous rule lets
each node broadcast its own identifier if its relation S is empty. The inductive
rule lets a node remember all received node identifiers. The deductive rules let
a node output T () starting at the moment that it has all identifiers (including
its own).3 The program is consistent.

Now we consider SZ-consistency. Intuitively, in an SZ-model for this pro-
gram, even if messages are sent into the past, the inductive rule persists any
received identifier towards the future. If S is empty on all nodes, each node still
has a timestamp after which it has all node identifiers. Thus every SZ-model

3The atom Id(x) is just to have at least one positive body atom (cf. Section 3.2.1).

13

Algorithm 2 Program for non-emptiness query

A() | x← S(), Id(x).
A()• ← A().
B() | x← A(), ¬sentB(), Id(x).
sentB()• ← A().
T ()← A(), B().
T ()• ← T ().

yields the output T () if and only if all nodes have an empty relation S. So, the
program is SZ-consistent. A formal proof can be found in Appendix B.1.

4.1.2 Only-If Direction

For the only-if direction of Conjecture 2, we give a Dedalus program computing
a monotone query and that is not SZ-consistent.

Algorithm 2 gives a (contrived) Dedalus program to compute the monotone
non-emptiness query on a nullary relation S, that is, output “true” if and only
if S is not empty (on at least one node). In the program, a node with nonempty
relation S sends A() to itself. On receipt of A(), the node stores A() and sends
B() to itself if it has not previously done so. Thus, if a node sends A() then it
sends B() precisely once. When the B() is later received, it is paired with the
stored A(), producing the fact T () that is stored by the inductive rule. The
program is consistent.

However, the program is not SZ-consistent, which we now explain. Let H
be the input over singleton network {z} with H(z) = {S()}. On input H,
we can exhibit an SZ-model M in which A()-facts arrive at node z starting
at timestamp 1, which implies that sentB() will exist starting at timestamp
2. This implies that B() is sent precisely once in M , namely, at timestamp
1. Now, the trick is to violate the causal dependency between relations A and
B, by letting B() arrive in the past, at timestamp 0 of z, which is before any
A() is received. Then the arriving B() cannot pair with any stored or arriving
A(). Since B() itself is not stored, we have thus erased the single chance of
producing T (). Hence output(M) = ∅, and the program is not SZ-consistent.
Formal details can be found in Appendix B.2.

4.2 Syntactical Interpretation
Now we look at the CRON conjecture from a syntactical point of view. A
Dedalus program without negation is called positive. Our main result now is
that the following does hold:

Theorem 4.1. Every positive consistent Dedalus program is SZ-consistent.

14

The converse direction of Theorem 4.1, to the effect that every SZ-consistent
Dedalus program is equivalent to a positive program, cannot hold by our coun-
terexample for the if-direction of Conjecture 2 (Section 4.1.1).

The following subsections show Theorem 4.1. In particular, we have to
show for each positive consistent Dedalus program P, and each input H, that
every SZ-model of P on H produces (i) at least outInst(P, H) and (ii) at most
outInst(P, H), respectively shown in Sections 4.2.1 and 4.2.2.

We remark for completeness that a positive program is not automatically
consistent; Appendix D gives a simple example.

4.2.1 First Direction

Let P be a positive and consistent Dedalus program. Let H be an input for P,
over a network N , and let M be an SZ-model of P on H. We have to show
outInst(P, H) ⊆ output(M). We construct a fair run R of P on H such that
output(R) ⊆ output(M). Then, since output(R) = outInst(P, H) by consis-
tency of P, we have outInst(P, H) ⊆ output(M), as desired.

Notations We need some auxiliary notations. For each (x, s) ∈ N × N, let
allM (x, s) be the set of all facts R(ā) for which R(x, s, ā) ∈ M |sch(P), i.e., the
set of all facts over sch(P) in M at node x on timestamp s.

For each (x, s) ∈ N ×N, let rcvM (x, s) be the set of all facts R(ā) for which
there is some y and t such that chosenR(y, t, x, s, ā) ∈ M , i.e., the set of all
messages arriving at (x, s) in M . Note, rcvM (x, s) ⊆ allM (x, s) by rules of the
form (3.6) in pureSZ(P).

For each x ∈ N , let sndM (x) be the set of all pairs (y,R(ā)) for which there
is some s and t such that chosenR(x, s, y, t, ā) ∈M , i.e., the set of all messages
(with addressee) that x ever sends in M .

We define sndFinM (x) ⊆ sndM (x) to be the subset of pairs (y,R(ā)) for
which there are only a finite number of times s such that chosenR(x, s, y, t, ā) ∈
M for some t ∈ N, i.e., there are only a finite number of times s on which x sends
R(ā) to y inM . Now, for each x ∈ N , we define startM (x) = 0 if sndFinM (x) =
∅ and otherwise we define startM (x) to be 1 plus the largest timestamp on
which x sends a pair of sndFinM (x) in M . Intuitively, startM (x) is the first
local timestamp of x at which x no longer sends messages in sndFinM (x), so
the messages that x sends starting from startM (x) are sent infinitely often.

Main Idea We inductively define the transitions of R. More specifically, for
each i = 0, 1, . . ., we define the (partial) arrival function α

(i)
R that contains for

each transition j ≤ i mappings of the form (j, y, R(ā)) 7→ k, where R(ā) is a
message with addressee y sent in transition j, to say that R(ā) is delivered to y
in transition k (with j < k).4 The arrival function is merely a technical aid; it

4To satisfy fairness (Section 2.5.3), all messages sent in transitions j ≤ i will get a mapping
in α(i)

R .

15

helps us make explicit how messages are delivered. For easier notation, we also
write a mapping (j, y, R(ā)) 7→ k simply as (j, y, R(ā), k).

Assuming some arbitrary order onN , consider the following (co-lexical) total
order ≤ on N × N:

(x, s) ≤ (y, t) ⇐⇒ s < t or (s = t and x ≤ y).

For each (x, s) ∈ N × N, let ord(x, s) denote the ordinal of (x, s) in the total
order ≤ on N × N. We define the active node in transition i of R to be the
unique x ∈ N satisfying ord(x, s) = i for some s ∈ N. For each i ∈ N, we write
Di, xi and si to denote respectively the deductive fixpoint, active node and
timestamp (of the active node) during transition i. For each i ∈ N, we want the
following induction properties to be satisfied, for which the intuition is provided
below:

Di ⊆ allM (xi, si) (4.1)

∀(j, y,f , k) ∈ α(i)
R : f ∈ rcvM (xk, sk) (4.2)

∀(j, y,f , k) ∈ α(i)
R : sk ≥ startM (y) (4.3)

Property (4.1) ensures all ultimate facts of R are ultimate facts of M , resulting
in output(R) ⊆ output(M), as desired. Property (4.2) ensures we do not have
more opportunities in R for messages to arrive “together” when compared to
M , so that induction property (4.1) can be satisfied. To explain property (4.3),
note that some messages in M are sent only a finite number of times, even
into the past. Such messages are the result of a coincidence, like the coincident
arrival of messages, and because such messages can not be sent into the past in
R, we would have to deliver them somewhere in the future, risking a violation
of induction property (4.2). Now, induction property (4.3) will ensure that we
only send messages in R that are sent an infinite number of times in M , and
this can be used to satisfy induction property (4.2).

Inductive construction For uniformity, we start with i = −1, and define
α

(−1)
R = ∅ and D−1 = ∅. So, properties (4.1) through (4.3) are trivially sat-

isfied for i = −1. For the induction hypothesis, assume R has been partially
constructed up to and including transition i − 1, where i ≥ 0, and assume the
properties hold for all transitions j = −1, 0, . . ., i − 1. For the inductive step,
we show that property (4.1) is satisfied for i, and we show how to extend α(i−1)

R
to α(i)

R such that properties (4.2) and (4.3) are satisfied. The set mi of (tagged)
messages to be delivered in transition i consists of all pairs 〈j,f〉 for which
α

(i−1)
R contains (j, y,f , i).5 Helper claims are in Appendix C.

Property (4.1) We have to show Di ⊆ allM (xi, si). Using the definition
Di = deducP(sti(xi)∪untag(mi)) with ρi = (sti, bf i) the source-configuration of
transition i, by Claim C.1 it suffices to show sti(xi)∪ untag(mi) ⊆ allM (xi, si).

5This implies y = xi.

16

First, by applying the induction hypothesis for property (4.2) to α(i−1)
R , we

know untag(mi) ⊆ rcvM (xi, si) ⊆ allM (xi, si).
We are left to show sti(xi) ⊆ allM (xi, si). We have sti(xi)|edb(P) ⊆ allM (xi, si)

because sti(xi)|edb(P) = H(xi) by the operational semantics and H(xi)⇑xi,si ⊆
inputSZ(H) ⊆ M by definition of M . Next, if i is the first transition of xi, we
have sti(xi)|idb(P) = ∅ ⊆ allM (xi, si). Otherwise, we consider the last transition
j before i in which xi was also the active node. By the operational semantics,
sti(xi)|idb(P) = inducP〈Dj〉. Because Dj ⊆ allM (xi, sj) by the induction hy-
pothesis for property (4.1), Claim C.2 gives inducP〈Dj〉 ⊆ allM (xi, sj + 1) =
allM (xi, si), as desired.

Properties (4.2) and (4.3) We have to extend α
(i−1)
R to α

(i)
R so that

properties (4.2) and (4.3) are satisfied. Suppose transition i sends a message
R(ā) to an addressee y ∈ N . We have to choose a transition k with i < k in
which to deliver R(ā) to y. We start by showing there are an infinite number of
timestamps s on which xi sends R(ā) to y in M . We differentiate between two
cases.

First, suppose si < startM (xi). The induction hypothesis for property (4.3)
implies xi has only done heartbeats up to and including transition i, i.e., no
messages have been delivered to xi yet. Then by Claim C.3, node xi sends R(ā)
to y on an infinite number of timestamps in M .

Now suppose si ≥ startM (xi). Using Di ⊆ allM (xi, si) (shown above),
R(y, ā) ∈ asyncP〈Di〉, and y ∈ N , by Claim C.4 there is a local timestamp t of
y for which chosenR(xi, si, y, t, ā) ∈ M . So, in M , node xi sends R(ā) to y on
a timestamp at least startM (xi), which by definition of startM (xi) implies that
node xi sends R(ā) to y on an infinite number of timestamps in M .

Now, because xi sends R(ā) to y on an infinite number of timestamps in
M , and y receives only a finite number of messages on each timestamp (Sec-
tion 3.2.2), there must be an infinite number of timestamps t ∈ N on which
y receives R(ā) in M . Among these, we can surely choose some arrival times-
tamp t ∈ N for which ord(y, t) > i and t ≥ startM (y). Then we extend α(i−1)

R
by adding the mapping (i, y, R(ā), k) where k = ord(y, t). Note, this mapping
satisfies properties (4.2) and (4.3).

4.2.2 Second Direction

Let P be a positive and consistent Dedalus program. Let H be an input for
P, and let M be an SZ-model of P on H. We have to show output(M) ⊆
outInst(P, H). We construct a fair run R such that output(M) ⊆ output(R).
Then, using output(R) = outInst(P, H) by consistency of P, we get output(M) ⊆
outInst(P, H), as desired.

Run R proceeds in rounds: in each round we let each node become active
precisely once to receive its entire buffer at the beginning of the round. Messages
sent in each round are accumulated and are delivered only during the next
round. The number of rounds is infinite. Because P is positive, the programs

17

deducP , inducP , and asyncP are monotone. Then, since always the entire buffer
is delivered to each node, the sets of deductively derived facts monotonically
increase on each node.

For each transition i of R, let Di denote the output of deducP during i.
For each fact R(x, s, ā) ∈ M |sch(P) we show there is a transition i of x in R
with R(ā) ∈ Di. This gives output(M) ⊆ output(R) because for each ultimate
fact R(ā) in M at some node x, surely R(x, s, ā) ∈ M for some s ∈ N, and
so if R(ā) ∈ Di for some transition i of x then R(ā) ∈ Dj for all subsequent
transitions j of x by the monotonous nature of R.

Abbreviate GM (P) = groundM (P ′, I) where P ′ = pureSZ(P) and I =
inputSZ(H). Because M = GM (P)(I) by definition of stable model, we can
consider the infinite sequence M0, M1, M2, . . ., such that M =

⋃
lMl; M0 = I;

and, for each l ≥ 1 the instance Ml is obtained from Ml−1 by applying the
immediate consequence operator of GM (P). This implies Ml−1 ⊆ Ml for each
l ≥ 1. By induction on l, we show that for each R(x, s, ā) ∈ Ml|sch(P) there is
a transition i of x in R with R(ā) ∈ Di.

For the base case, R(x, s, ā) ∈ M0|sch(P) implies R(ā) ∈ H(x). Then
R(ā) ∈ Di for any transition i of x because each state of x contains H(x)
by the operational semantics. For the induction hypothesis, assume the prop-
erty holds for Ml−1 where l ≥ 1. Now, let R(x, s, ā) ∈ Ml|sch(P) \Ml−1. Let
ψ ∈ GM (P) be a ground rule responsible for deriving this fact, i.e., posψ ⊆Ml−1
and headψ = R(x, s, ā). Rule ψ must have one of the following three forms: the
deductive form (3.1), the inductive form (3.2), or the delivery form (3.6). We
handle each case in turn.

Deductive Let ϕ ∈ pureSZ(P) be the rule corresponding to ψ, so ϕ is of the
form (3.1). Let V be the valuation for ϕ such that ψ results from applying V
to ϕ. In turn, let ϕ′ ∈ P be the original deductive rule on which ϕ is based.
Note, ϕ ∈ deducP . By the syntactical correspondence between ϕ and ϕ′, we can
apply V to ϕ′. Now, it suffices to show V (posϕ′) ⊆ Di for some transition i of x
in R, resulting in V (headϕ′) = R(ā) ∈ Di by the fixpoint semantics of deducP ,
as desired.

Let S(b̄) ∈ V (posϕ′). By the syntactical correspondence between ϕ′ and ϕ,
we have S(x, s, b̄) ∈ V (posϕ) = posψ. Using posψ ⊆ Ml−1 gives S(x, s, b̄) ∈
Ml−1|sch(P). Then the induction hypothesis implies there is a transition j of x
in R satisfying S(b̄) ∈ Dj . And because deductive facts monotonously grow at
x in R, there is a transition i of x such that S(b̄) ∈ Di for each S(b̄) ∈ V (posϕ′).

Inductive Let ϕ and V be like in the deductive case, but now ϕ is of the form
(3.2). Let ϕ′ ∈ inducP be the rule corresponding to ϕ. Again, we can apply
V to ϕ′. Now, it suffices to show V (posϕ′) ⊆ Di for some transition i of x in
R, causing V (headϕ′) = R(ā) to be stored in the next state of x. Then, with
j being the first transition of x after i, we get R(ā) ∈ Dj by the operational
semantics, as desired. The existence of i is established similarly to the deductive
case.

18

Delivery Rule ψ is of the form (3.6), with body fact chosenR(y, t, x, s, ā) ∈
Ml−1. We show there is a transition i of y in R, in which y sends R(ā) to x.
Then, in the next round of R following i, we deliver R(ā) to x in some transition
j. Then R(ā) ∈ Dj by the operational semantics, as desired.

Now, chosenR(y, t, x, s, ā) ∈Ml−1 implies candR(y, t, x, s, ā) ∈Ml−1. There
is some k ∈ N with 0 < k < l − 1 such that candR(y, t, x, s, ā) ∈ Mk \Mk−1.
Let ψ′ ∈ GM (P) be a rule responsible for deriving the candR-fact. Let ϕ′ ∈
pureSZ(P) be the rule corresponding to ψ′, and let V ′ be the valuation for ϕ′
giving rise to ψ′. In turn, let ϕ′′ ∈ asyncP be the rule corresponding to ϕ′.
By the syntactical correspondence between ϕ′ and ϕ′′, we can apply V ′ to ϕ′′.
Note, V ′(headϕ′′) = R(x, ā). To make y send R(ā) to x in some transition i, we
need V ′(posϕ′′) ⊆ Di. The existence of transition i is again established like in
the deductive case.

5 Discussion
In future work, we may want to understand better the spectrum of causality. We
have seen that for positive programs no causality at all is required, and perhaps
richer classes of programs can tolerate some relaxations of causality as well. We
would also like to investigate how the CRON conjecture can be concretely linked
to crash recovery applications, and the design of recovery mechanisms. It might
also be interesting to look at other local operational semantics for Dedalus,
besides the stratified semantics used here.

References
[1] S. Abiteboul, M. Bienvenu, A. Galland, et al. A rule-based language for

Web data management. In Proceedings 30th ACM Symposium on Principles
of Database Systems, pages 293–304. ACM Press, 2011.

[2] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[3] P. Alvaro, T.J. Ameloot, J.M. Hellerstein, W. Marczak, and J. Van den
Bussche. A declarative semantics for dedalus. Technical Report
UCB/EECS-2011-120, EECS Department, University of California, Berke-
ley, Nov 2011.

[4] P. Alvaro, W. Marczak, et al. Dedalus: Datalog in time and space. Tech-
nical Report EECS-2009-173, University of California, Berkeley, 2009.

[5] P. Alvaro, W.R. Marczak, et al. Dedalus: Datalog in time and space.
In O. de Moor, G. Gottlob, T. Furche, and A. Sellers, editors, Datalog
Reloaded: First International Workshop, Datalog 2010, volume 6702 of Lec-
ture Notes in Computer Science, pages 262–281, 2011.

19

[6] T.J. Ameloot, F. Neven, and J. Van den Bussche. Relational transducers for
declarative networking. In Proceedings 30th ACM Symposium on Principles
of Database Systems, pages 283–292. ACM Press, 2011.

[7] T.J. Ameloot and J. Van den Bussche. Deciding eventual consistency for
a simple class of relational transducer networks. In Proceedings of the 15th
International Conference on Database Theory, pages 86–98. ACM Press,
2012.

[8] K.R. Apt, N. Francez, and S. Katz. Appraising fairness in languages for
distributed programming. Distributed Computing, 2:226–241, 1988.

[9] H. Attiya and J. Welch. Distributed Computing: Fundamentals, Simula-
tions, and Advanced Topics. Wiley, 2004.

[10] A. Deutsch, L. Sui, V. Vianu, and D. Zhou. Verification of communicat-
ing data-driven Web services. In Proceedings 25th ACM Symposium on
Principles of Database Systems, pages 90–99. ACM Press, 2006.

[11] N. Francez. Fairness. Springer-Verlag New York, Inc., New York, NY,
USA, 1986.

[12] M. Gelfond and V. Lifschitz. The stable model semantics for logic pro-
gramming. In Proceedings of the Fifth International Conference on Logic
Programming, pages 1070–1080. MIT Press, 1988.

[13] S. Grumbach and F. Wang. Netlog, a rule-based language for distributed
programming. In M. Carro and R. Peña, editors, Proceedings 12th Interna-
tional Symposium on Practical Aspects of Declarative Languages, volume
5937 of Lecture Notes in Computer Science, pages 88–103, 2010.

[14] J.M. Hellerstein. Datalog redux: experience and conjecture. Video avail-
able (under the title “The Declarative Imperative”) from http://db.cs.
berkeley.edu/jmh/, 2010. PODS 2010 keynote.

[15] J.M. Hellerstein. The declarative imperative: experiences and conjectures
in distributed logic. SIGMOD Record, 39(1):5–19, 2010.

[16] L. Lamport. Fairness and hyperfairness. Distributed Computing, 13:239–
245, November 2000.

[17] B.T. Loo et al. Declarative networking. Communications of the ACM,
52(11):87–95, 2009.

[18] W. Marczak, P. Alvaro, N. Conway, J.M. Hellerstein, and D. Maier. Conflu-
ence analysis for distributed programs: A model-theoretic approach. Tech-
nical Report UCB/EECS-2011-154, EECS Department, University of Cal-
ifornia, Berkeley, Dec 2011.

20

http://db.cs.berkeley.edu/jmh/
http://db.cs.berkeley.edu/jmh/

[19] J.A. Navarro and A. Rybalchenko. Operational semantics for declarative
networking. In A. Gill and T. Swift, editors, Proceedings 11th International
Symposium on Practical Aspects of Declarative Languages, volume 5419 of
Lecture Notes in Computer Science, pages 76–90, 2009.

[20] D. Saccà and C. Zaniolo. Stable models and non-determinism in logic
programs with negation. In Proceedings of the Ninth ACM Symposium on
Principles of Database Systems, pages 205–217. ACM Press, 1990.

[21] M. Vardi. The complexity of relational query languages. In Proceedings
14th ACM Symposium on the Theory of Computing, pages 137–146, 1982.

[22] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art
and research challenges. Journal of Internet Services and Applications,
1:7–18, 2010.

[23] D. Zinn, T.J. Green, and B. Ludaescher. Win-move is coordination-free.
In Proceedings of the 15th International Conference on Database Theory,
pages 99–113. ACM Press, 2012.

Appendix

A Common Lemmas
Lemma A.1. Let P be a Dedalus program. Let H be an input for P, and let
M be an SZ-model of P on H. For each fact candR(x, s, y, t, ā) ∈M there is a
value t′ ∈ N such that chosenR(x, s, y, t′, ā) ∈M .

Proof. Abbreviate GM (P) = groundM (P ′, I) where P ′ = pureSZ(P) and I =
inputSZ(H). Towards a proof by contradiction, suppose there is no such times-
tamp t′. Consider the following ground rule of the form (3.4), after removing
the negative body literal:

chosenR(x, s, y, t, ā)← candR(x, s, y, t, ā).

This rule can not be inGM (P) because otherwise candR(x, s, y, t, ā) ∈M implies
chosenR(x, s, y, t, ā) ∈ M , which is assumed to be false. The absence of the
above ground rule from GM (P) implies otherR(x, s, y, t, ā) ∈M . This otherR-
fact must be derived by a ground rule of the form (3.5):

otherR(x, s, y, t, ā)← candR(x, s, y, t, ā), chosenR(x, s, y, t′, ā), t 6= t′.

So, chosenR(x, s, y, t′, ā) ∈M after all, which is the desired contradiction.

21

B Semantical CRON
B.1 If Direction
Let Q and P be respectively the emptiness query and the Dedalus program from
Section 4.1.1. We show that P is SZ-consistent.

B.1.1 Empty Input

Let H be an input for P over a network N that assigns each x ∈ N an empty
relation S. So, outInst(P, H) = {T ()}. Let M be an SZ-model of P on H. We
have to show that output(M) = {T ()}. Because T is the only output relation, it
suffices to show T () ∈ output(M). Abbreviate GM (P) = groundM (P ′, I) where
P ′ = pureSZ(P) and I = inputSZ(H).

Let y ∈ N be arbitrary. We start by showing there is a timestamp s of y
such that for all timestamps t ≥ s and all x ∈ N we have empty(y, t, x) ∈ M .
Let x ∈ N . We show that x at every local timestamp u sends empty(x) to
y. We have S(x, u) /∈ inputSZ(H) by assumption on H. Hence, S(x, u) /∈ M .
Therefore, GM (P) contains a ground rule of the following form, obtained by
applying transformation (3.3) to the asynchronous rule of P:

candempty(x, u, y, v, x)← Id(x, u, x), Node(x, u, y), all(y), time(v).

Here, v ∈ N is arbitrary. The body facts of this rule are in M by definition of
inputSZ(H). Hence, candempty(x, u, y, v, x) ∈ M because M is stable. Then, by
Lemma A.1, there is a timestamp w ∈ N such that chosenempty(x, u, y, w, x) ∈
M . Then a ground rule of the form (3.6) derives empty(y, w, x) ∈ M , and
inductive ground rules for relation empty will derive empty(y, w′, x) ∈M for all
w′ ≥ w. So, there is a timestamp s on which empty(y, s, x) ∈M for each x ∈ N .

Now we can show T () ∈ output(M). Let y and s be from above. It suffices
to show for each t ≥ s that missing(y, t) /∈ M , because then GM (P) contains
the following ground rule, based on the last deductive rule of P:

T (y, t)← Id(y, t, y).

We show GM (P) contains no rule with head missing(y, t). Towards a contra-
diction, if GM (P) would contain a ground rule with head-fact missing(y, t),
then it has the following form for some arbitrary x ∈ N :

missing(y, t)← Node(y, t, x).

The presence of this rule would imply empty(y, t, x) /∈ M , which is impossible
by selection of s.

B.1.2 Nonempty Input

Let H be an input for P over a network N that assigns S() to some z ∈ N .
So, outInst(P, H) = ∅. Let M be an SZ-model of P on H. We have to show

22

output(M) = ∅. Abbreviate GM (P) = groundM (P ′, I) where P ′ = pureSZ(P)
and I = inputSZ(H).

Towards a proof by contradiction, suppose output(M) 6= ∅, i.e., T () ∈
output(M) since T is the only output relation. We will show z has an empty
relation S, which is the desired contradiction. First, T () ∈ output(M) implies
there is a node x ∈ N and a local timestamp s of x, such that T (x, t) ∈ M for
all t ≥ s. We start by showing empty(x, s, z) ∈ M . The following ground rule
must be in GM (P) to derive T (x, s) ∈M :

T (x, s)← Id(x, s, x).

The existence of this rule implies missing(x, s) /∈M . Now, if empty(x, s, z) /∈M
then the following ground rule would be in GM (P):

missing(x, s)← Node(x, s, z).

But then missing(x, s) ∈ M since Node(x, s, z) ∈ inputSZ(H), which is false.
So, empty(x, s, z) ∈M .

Now we show relation S is empty at z. The fact empty(x, s, z) ∈M can only
be explained by ground rules in GP(P) of the following two forms, where the
first one is obtained by applying transformation (3.6) to the asynchronous rule
of P and the second one is based on the inductive rule of P:

empty(x, s, z)← chosenempty(y, t, x, s, z).

empty(x, s, z)← empty(x, r, z), tsucc(r, s).
Intuitively, the second form is like a chain we can follow backwards in time.
So we must eventually use the first form: there is a value u ∈ N such that
empty(x, u, z) ∈ M and chosenempty(y, t, x, u, z) ∈ M for some y ∈ N and
t ∈ N. We have y = z because the sender sends its own identifier. Now, the
fact chosenempty(z, t, x, u, z) was derived by a ground rule in GM (P) of the form
(3.4):

chosenempty(z, t, x, u, z)← candempty(z, t, x, u, z).
Hence, candempty(z, t, x, u, z) ∈ M . This candempty-fact is derived by a ground
rule in GM (P) obtained by applying transformation (3.3) to the asynchronous
rule of P:

candempty(z, t, x, u, z)← Id(z, t, z), Node(z, t, x), all(x), time(u).

The existence of this rule in GM (P) implies S(z, t) /∈ M and thus S(z, t) /∈
inputSZ(H), which by definition of inputSZ(H) implies S is empty at z.

B.2 Only-if Direction
Let P be the program in Algorithm 2. LetH be the input over singleton network
N = {z} that assigns S() to z. So, outInst(P, H) = {T ()}. We define an SZ-
model M of P on H such that output(M) = ∅, making P not SZ-consistent.

23

In a fair run of P on H, message B() always arrives after message A() at
z, and because A() itself is persisted, this makes the program P consistent. In
M we will not respect this causality: we let node z send B() into the past,
before any A() has arrived, thus erasing the chance of having relations A and
B nonempty simultaneously. Formally, we define

M = inputSZ(H) ∪M snd
A ∪M rcv

A ∪M snd
B ∪M rcv

B ,

where

M snd
A = {candA(z, u, z, v) | u, v ∈ N}

∪ {chosenA(z, u, z, u+ 1) | u ∈ N}
∪ {otherA(z, u, z, v) | u ∈ N, v ∈ N, v 6= u+ 1};

M rcv
A = {A(z, u) | u ∈ N, u ≥ 1};

M snd
B = {candB(z, 1, z, u) | u ∈ N}

∪ {chosenB(z, 1, z, 0)}
∪ {otherB(z, 1, z, u) | u ∈ N, u 6= 0}
∪ {sentB(z, u) | u ∈ N, u ≥ 2};

M rcv
B = {B(z, 0)}.

Intuitively, set M snd
A expresses that A() is sent on every timestamp of z

and this message arrives already on the next timestamp. Set M rcv
A expresses

that A() is available starting at timestamp 1. The inductive rule for relation
A has the same effect as these tight message deliveries. Set M snd

B expresses
that precisely one B() is sent on timestamp 1, which is when the first A()
is delivered. Set M rcv

B expresses that the single B() arrives on timestamp 0,
violating the causal relationship with the message A() on timestamp 1.

Using straightforward arguments, one can verify that M is a stable model
of pureSZ(P) on inputSZ(H). These details are omitted. Note, in M we deliver
only a finite number of messages on each timestamp of z (cf. Section 3.2.2).
Lastly, we have output(M) = ∅ as desired, because M contains no T -facts.

C Syntactical CRON
C.1 First Direction
These claims are in the context of Section 4.2.1.

Claim C.1. Let (x, s) ∈ N ×N and let I be an instance over sch(P). Suppose
I ⊆ allM (x, s). Then deducP(I) ⊆ allM (x, s).

24

Proof. We proceed by induction on the fixpoint computation of deducP . So,
deducP(I) =

⋃
j D

j where D0 = I and for each j ≥ 1 set Dj is obtained by
applying the immediate consequence operator of deducP to Dj−1. For the base
case, we have D0 = I ⊆ allM (x, s) by the given assumption. For the induction
hypothesis, we assume Dj−1 ⊆ allM (x, s) with j ≥ 1.

For the inductive step, let R(ā) ∈ Dj \ Dj−1. We show R(x, s, ā) ∈ M .
We first establish the existence of a ground rule ψ with headψ = R(x, s, ā)
in the ground program GM (P) = groundM (P ′, J) where P ′ = pureSZ(P) and
J = inputSZ(H). Let ϕ ∈ deducP and V be a rule and valuation that have
derived R(ā) ∈ Dj . Let ϕ′ ∈ pureSZ(P) be obtained by applying transformation
(3.1) to ϕ. Let V ′ be V extended to assign x and s to respectively the location
variable and timestamp variable of ϕ′. Let ψ be the ground rule based on ϕ′

and V ′. Note, headψ = R(x, s, ā), and ψ ∈ GM (P) because ψ is positive.
Lastly, we show posψ ⊆ M . Then R(x, s, ā) ∈ M by using M = GM (P)(J)

(definition of stable model). Since V (posϕ) ⊆ Dj−1 ⊆ allM (x, s) by the induc-
tion hypothesis, we have posψ = V (posϕ)⇑x,s ⊆ allM (x, s)⇑x,s ⊆M .

Claim C.2. Let (x, s) ∈ N ×N and let D be an instance over sch(P). Assume
D ⊆ allM (x, s). Then inducP〈D〉 ⊆ allM (x, s+ 1).

Proof. This is similar to the proof of Claim C.1. Let R(ā) ∈ inducP〈D〉. We
show R(x, s+ 1, ā) ∈M . Let ϕ and V be a rule and valuation deriving R(ā) ∈
inducP〈D〉. Let ϕ′ ∈ pureSZ(P) be obtained by applying transformation (3.2)
to ϕ. Let V ′ be the extension of V to assign x to the location variable and
to assign s and s + 1 to the timestamp variable in respectively the body and
head. Let ψ denote the ground rule based on ϕ′ and V ′. Note, headψ =
R(x, s + 1, ā). Abbreviate GM (P) = groundM (P ′, J) where P ′ = pureSZ(P)
and J = inputSZ(H). We have ψ ∈ GM (P) because ψ is positive. We are
left to show posψ ⊆ M . Since V (posϕ) ⊆ D and D ⊆ allM (x, s) by the given
assumption, we have posψ = V (posϕ)⇑x,s ∪ {tsucc(s, s+ 1)} ⊆M .

Claim C.3. Let S be the set of transition ordinals up to and including i in which
xi is the active node. Suppose all transitions in S are heartbeat transitions. Let
R(ā) be a message that xi sends in transition i to a node y ∈ N . In M , the
number of timestamps on which xi sends R(ā) to y is infinite.

Proof. Necessarily, R(y, ā) ∈ asyncP〈Di〉. Suppose we would know Di ⊆
allM (xi, t) for each t ≥ si. Then Claim C.4 would imply that for each t ≥ si
there is a value u such that chosenR(xi, t, y, u, ā) ∈M , as desired.

Now, we show by induction on j ∈ S that

Dj ⊆ allM (xj , t) for all t ≥ sj .

For each j ∈ S, let ρj = (stj , bf j) denote the source configuration of transi-
tion j. Since Dj = deducP(stj(xj) ∪ untag(mj)) by the operational semantics,
Claim C.1 implies it is sufficient to show for each j ∈ S that

stj(xj) ∪ untag(mj) ⊆ allM (xj , t) for all t ≥ sj .

25

Algorithm 3 Positive but not consistent

A() | x← Id(x).
B() | x← Id(x).
T ()← A(), B().
T ()• ← T ().

As additional simplification, stj(xj)∪untag(mj) = stj(xj) because j is a heart-
beat transition. For the base case j = min(S), we have stj(xj) = H(xj) by the
operational semantics. Then inputSZ(H) ⊆M implies stj(xj) ⊆ allM (xj , t) for
all t ≥ sj . For the induction hypothesis, let j ∈ S with j > min(S); we assume
for all k ∈ S with k < j that

stk(xk) ⊆ allM (xk, t) for all t ≥ sk.

For the inductive step, we show stj(xj) ⊆ allM (xj , t) for all t ≥ sj . Let k be
the predecessor of j in S (which exists because j > min(S)). By the operational
semantics, stj(xj) = inducP〈Dk〉. Now, the induction hypothesis on k gives
stk(xk) ⊆ allM (xk, u) for all u ≥ sk. Hence, by Claim C.1 we have Dk ⊆
allM (xk, u) for all u ≥ sk. Then Claim C.2 gives inducP〈Dk〉 ⊆ allM (xk, u+ 1)
for all u ≥ sk. Using stj(xj) = inducP〈Dk〉, xj = xk, and sj = sk + 1, we can
equivalently say stj(xj) ⊆ allM (xj , t) for all t ≥ sj .

Claim C.4. Let (x, s) ∈ N ×N and let D be an instance over sch(P). Suppose
D ⊆ allM (x, s). For each R(y, ā) ∈ asyncP〈D〉 with y ∈ N there exists a value
t such that chosenR(x, s, y, t, ā) ∈M .

Proof. Let R(y, ā) ∈ asyncP〈D〉 with y ∈ N , derived by a rule ϕ and valuation
V . By Lemma A.1, it suffices to show candR(x, s, y, u, ā) ∈M for some u ∈ N.

Let ϕ′ ∈ P be the original rule on which ϕ is based. Let ϕ′′ ∈ pureSZ(P) be
the result of applying transformation (3.3) to ϕ′. Note, ϕ′′ is positive because
ϕ′ is positive. Let V ′′ be the extension of V to assign x and s to respectively the
sender variable and send-timestamp variable of ϕ′′, and to assign some arbitrary
u ∈ N to the arrival-timestamp variable of ϕ′′. Let ψ be the ground rule based
on ϕ′′ and V ′′. Note headψ = candR(x, s, y, u, ā). Because ψ is positive, we have
ψ ∈ groundM (P ′, I) where P ′ = pureSZ(P) and I = inputSZ(H). It remains
to be shown that posψ ⊆ M , so that headψ ∈ M . Transformation (3.3) im-
plies posψ = V (posϕ)⇑x,s ∪ {all(y), time(u)}. First, note {all(y), time(u)} ⊆
inputSZ(H) ⊆M . Second, V (posϕ)⇑x,s ⊆ D⇑x,s ⊆ allM (x, s)⇑x,s ⊆M .

26

D Positive and Not Consistent
Algorithm 3 gives a Dedalus program P that is positive but not consistent.6
This example is inspired by the work of Marczak et al. [18]. Let H be an input
distributed database instance for P with at least one node x. In any fair run, x
will send A() and B() to itself during every transition. But T () is only created
when we deliver A() and B() simultaneously. Some fair runs never do this.
Hence, different fair runs can produce different outputs.

Remark: in the language Webdamlog, every positive program is consistent
(also called convergent) [1]. This apparent paradox can be explained by the
semantics of Webdamlog runs, which differ from the runs as defined here in that
in Webdamlog, messages (called delegations) are always promptly delivered.

6Relation Id(1) is from Section 4.1.

27

