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Relational Transducers for Declarative
Networking

Tom J. Ameloot, Frank Neven, Jan Van den Bussche

Abstract

Motivated by a recent conjecture concerning the expressiveness of
declarative networking, we propose a formal computation model for “even-
tually consistent” distributed querying, based on relational transducers.
A tight link has been conjectured between coordination-freeness of com-
putations, and monotonicity of the queries expressed by such computa-
tions. Indeed, we propose a formal definition of coordination-freeness and
confirm that the class of monotone queries is captured by coordination-
free transducer networks. Coordination-freeness is a semantic property,
but the syntactic class of “oblivious” transducers we define also captures
the same class of monotone queries. Transducer networks that are not
coordination-free are much more powerful.

1 Introduction

Declarative networking [28] is a recent approach by which distributed computa-
tions and networking protocols are modeled and programmed using formalisms
based on Datalog. In his keynote speech at PODS 2010 [24} [25], Hellerstein made
a number of intriguing conjectures concerning the expressiveness of declarative
networking. In the present paper, we are focusing on the CALM conjecture
(Consistency And Logical Monotonicity). This conjecture suggests a strong
link between, on the one hand, “eventually consistent” and “coordination-free”
distributed computations, and on the other hand, expressibility in monotonic
Datalog (without negation or aggregate functions). The conjecture was not fully
formalized, however; indeed, as Hellerstein notes himself, a proper treatment of
this conjecture requires crisp definitions of eventual consistency and coordina-
tion, which have been lacking so far. Moreover, it also requires a formal model
of distributed computation.

In the present paper, we investigate the CALM conjecture in the context of
a model for distributed database querying. In the model we propose, the com-
putation is performed on a network of relational transducers. The relational
transducer model, introduced by Abiteboul and Vianu, is well established in
database theory research as a model for data-centric agents reacting to inputs
[7, 17, 18, 19, B0]. Relational transducers are firmly grounded in the theory of



database queries [5 [6] and also have close connections with Abstract State Ma-
chines [I6]. It thus seems natural to consider networks of relational transducers,
as we will do here. We give a formal operational semantics for such networks,
formally define “eventual consistency”, and formally define what it means for
a network to compute a conventional database query, in order to address the
expressiveness issues raised by Hellerstein.

It is less clear, however, how to formalize the intuitive notion of “coordina-
tion”. We do not claim to resolve this issue definitively, but we propose a new,
non-obvious definition that appears workable. Distributed algorithms requir-
ing coordination are viewed as less efficient than coordination-free algorithms.
Hellerstein has identified monotonicity as a fundamental property connected
with coordination-freeness. Indeed, monotonicity enables “embarrassing paral-
lelism” [25]: agents working on parts of the data in parallel can produce parts
of the output independently, without the need for coordination.

One side of the CALM conjecture now states that any database query ex-
pressible in monotonic Datalog can be computed in a distributed setting in an
eventually consistent, coordination-free manner. This is the easy side of the
conjecture, and indeed we formally confirm it in the following broader sense:
any monotone query Q can be computed by a network of “oblivious” transduc-
ers. Oblivious transducers are unaware of the network extent (in a sense that we
will make precise), and every oblivious transducer network is coordination-free.
Here, we should note that the transducer model is parameterized by the query
language £ that the transducer can use to update its local state. Formally, the
monotone query Q to be computed must be expressible in the while-closure of
L for the above confirmation to hold. If Q is defined in Datalog, for example,
then £ can just be unions of conjunctive queries.

The other side of the CALM conjecture, that the query computed by an
eventually consistent, coordination-free distributed program is always express-
ible in Datalog, is false when taken literally, as we will point out. Nevertheless,
we do give an extended version of the conjecture that holds. More importantly,
we confirm the conjecture in the following more general form: coordination-free
networks of transducers can compute only monotone queries. Note that here we
are using our newly proposed formal definition of coordination-free.

This paper is organized as follows. Preliminaries are in Section[2] Section
introduces networks of transducers. Section [4] investigates the use of transducer
networks for expressing conventional database queries in a distributed fashion.
Section [5] discusses the issue of coordination, and looks into the CALM conjec-
ture and related results. Section [6] contains results about the expressiveness of
transducer networks. Section [7] shortly looks into a variation of the transducer
model, and Section [8|is the conclusion.

This paper is the extended version of our conference paper [I1].

1.1 Related Work

The desire to better understand coordination in the field of declarative net-
working is evidenced by the steadily growing literature on this subject. First,



Alvaro et al. [9] look at coordination as a quantitative property that can be
minimized. They describe a program analysis technique to spot syntactical lo-
cations in the code where coordination is not needed. The goal then, is to help
the programmer iteratively reduce the number of locations where coordination
is used.

The conference paper of this work has also inspired follow-up work by oth-
ers. In particular, Zinn et al. [32] have generalized our results to also include a
“partitioning policy”, which is a strategy to initialize every node of a network
with input data before the computation starts. The basic idea is that each node
is given local relations that provide information about how data is distributed,
and in particular what data each node can autonomously reason about, i.e.,
without coordination with other nodes. This allows a node to sometimes per-
form nonmonotone operations without the need for communication. It even
turns out that in some variations of the model considered, all database queries
are “coordination-free”. It can be expected however, that such a partitioning
policy is quite expensive in terms of how much additional data each node should
have.

One of our results is that a monotone query can in principle be computed
without coordination, but it remains open in what exact way the best perfor-
mance can be achieved in a practical scenario. The work of Loo et al. [27]
and Nigam et al. [29], however, provides concrete algorithms for the case of
distributed Datalog programs. They want to efficiently update the state (i.e.,
the derivations) on nodes of the network whenever some input facts change. It
would be too costly to completely recompute the state of every node when an
update happens. Instead, they propose a technique that propagates only the in-
cremental changes that have to be distributedly applied. This allows for sending
less messages around the network, and does not require needless recomputations
of data. Their algorithms require no coordination, can handle recursive Datalog
rules, and can tolerate messages that are delivered out of order by the network.

2 Preliminaries

2.1 Basic Notions

We first recall some basic notions from database theory [2]. A database schema
is a finite set D of pairs (R, k) where R is a relation name and k € N is the
associated arity of R. A relation name is allowed to occur only once in a database
schema. We often write a pair (R, k) € D as R*). We assume some infinite
universe dom of atomic data values. An arity of zero is also called nullary. We
write () to denote the nullary tuple.

A fact f is a pair (R, a), often denoted as R(a), where R is a relation name
and a is a tuple of values over dom. A database instance I over a database
schema D is a finite set of facts such that for each R(ai,...,ax) € I we have
R®*) € D. Let Z be a subset of relation names in D. We write I|z to denote the
restriction of I to the facts whose predicate is a relation name in Z. For a func-



tion h : dom — dom we define h(I) = {R(h(a1),...,h(ax)) | R(a1,...,ax) €
I}. The active domain of I, denoted adom(I) C dom, is the set of atomic data
values that occur in I.

A query Q over input database schema D and output database schema D’
is a partial function mapping database instances of D to database instances of
D’. A special but common kind of query are those where the output database
schema contains just one relation. A query Q is called generic if for all input
instances I and all permutations h of dom the query Q is also defined on the
isomorphic instance h(I) and Q(h(I)) = h(Q(I)). We recall that a generic query
Q is domain-preserving, in the sense that adom(Q(I)) C adom(I) for all input
instances I. We use the word “query” in this text to mean generic query, unless
explicitly specified otherwise.

We recall the following query languages [2]:

e UCQ: unions of conjunctive queries,

UCQ™: UCQ with negation in the body,

e FO: first order logic (relational calculus),

While: FO with iteration,

Datalog,

NrDatalog: nonrecursive Datalog,

NrDatalog ': NrDatalog with negation on body atoms.

The weakest query language among these is UCQ.

2.2 Transducers

The computation on a single node of a network is formalized by means of re-
lational transducers [7, [111, 17, [I8] 19, B0]. A transducer schema Y is a tuple
(Yin, Youts Tmsgs Tmem, Lsys) of database schemas, called respectively “input”,
“output”, “message”, “memory” and “system”. A relation name can occur in
at most one database schema of T. We fix Yy to always contain two unary
relations Id and All. A transducer state for T is a database instance over
Tin U Tout U Timem U Toys. For a transducer state I we use notations of the
form I |(in,sys) to denote the facts in I whose predicates are in Tj, or Tgys. This
notation is extended to other identifiers among in, out, msg, mem, and sys.
An (epidemic) relational transducer I1 over Y is a collection of queries:

R
out

e for each R%) € Y,y there is a query QF, having output schema {R*®)};
R

e for each R*) € Y o there are queries Q

and QF, both having output
schema {R(®M};

e for each R ¢ Tonse there is a query OF | having output schema {RU)Y;



where each of these queries has the input schema i, UT g4 UT msg U T mem U Lsys.
These queries will form the internal mechanism that a node uses to update its
local storage and to send messages. The transducer model is parameterized
by a generic query language L: this language is used to concretely specify
the above queries, in which case we call IT an L-transducer. We will often
abbreviate “epidemic relational transducer” simply as “transducer”. The term
“epidemic” will become clear in Section [3.1, where the transducer model is used
on a network.

Let IT be a transducer over schema Y. A message instance for T is a database
instance over Tige. A local transition of II is a 4-tuple (I, Licy, J, Jond), also
denoted as I, I,y — J, Jsnda, where I and J are transducer states for T, I,., and
Jsna are message instances for T such that (denoting I' = T U I,y ):

J‘(in,sys) = I|(in,sys);
J|(0ut) = I|(out) U U qut( I);
R €Y ouy
J‘(mem) = U (I|R U R+) \ R~
R®) €T mem
Jond = U led (I’),
R(F) €Y g

where, following the presentation in [32],

RY = Qf.(I")\ Qia(I'); and,
R = Qiu(IN\ Qi)

Intuitively, on the receipt of message facts I,.,, a local transition updates the
old transducer state I to new transducer state J and sends the facts in Jynq.
When compared to I, in J potentially more output facts are produced; and
the update semantics for each memory relation R adds the facts produced by
insertion query Q. removes the facts produced by deletion query Q(Ifél, and
there is no-op semantics in case a fact is both added and removed at the same
time [30]. Output facts can not be removed. Note that local transitions are
deterministic in the following sense: if I, Iiey — J, Jona and I, Liey — J', J. 4
then J = J and Jgng = J!

snd*

3 Transducer Networks

We now formalize a network of computing nodes. In Section [ we give example
programs.

A network N is a finite, connected, and undirected graph whose nodes are
all in dom. We write nodes(N) and edges(N) to denote the nodes and edges
of N respectively. For x € nodes(N'), we write neighbor(x, N') to denote the set

{y | (z,y) € edges(N)}.



A (homogeneous) transducer network is a triple T = (N, T,II) where N
is a network, Y is a transducer schema, and II is a transducer over Y whose
copies will be running at each node of the network. One could also consider
non-homogeneous transducer networks, where each node contains a different
transducer, possibly over a different schema, but these types of networks are
not considered in the present paper. We discuss our design choices in Section
B4

For a query language £, we say that a transducer network is an £-transducer
network if all its transducers are L£-transducers.

We now formalize how data is distributed across a network. A distributed
database instance over a network N' and a database schema D is a total function
that assigns to each node of A/ an ordinary database instance over D.

3.1 Operational Semantics

Let 7 = (N, Y,II) be a transducer network. Any distributed database instance
over N and Tj, can be given as input to 7. Let H be such an instance. A
configuration of T on H is a pair p = (s,b) of functions where

e s maps each x € nodes(N) to a transducer state J = s(z) such that
Jl(iny = H(x) and J|ys) = {Id(x)} U {A11(y) | y € nodes(N')}; and,

e b maps each x € nodes(N') to a finite multiset of facts over Y.

We call s the state function and b the buffer function. Intuitively, the instance
H is used to initialize each node, and for each x € nodes(N') the system relations
Id and A1l in Yy provide the local transducer at x the identity of the node x
it is running on and the identities of the other nodes. Next, the buffer function
maps each z € nodes(N) to the multiset of messages that have been sent to x
but that have not yet been delivered to x. A multiset allows us to represent
duplicates of the same message (sent at different times).

The start configuration of T on H, denoted start(T, H), is the configuration
p = (s,b) of T on H that for each 2 € nodes(N') defines s(x)|(out,mem) = ¥ and
b(z) = 0.

We now describe the actual computation of the transducer network. A global
transition of T on input H is a 4-tuple (p1,x, m, p2), also denoted as p; Zn, 02,
where z € nodes(N), and p; = (s1,b1) and py = (s2,b2) are configurations of T
on H such that

e m is a submultiset of by (z) and there exists a message instance Js,q such
that
81(1’), SEt(m) — 52(x); and

is a local transition of transducer II;
e for each y € nodes(N') \ {x} we have s1(y) = s2(y);

e bo(x) = by(x)\m; for each y € neighbor(x, N') we have ba(y) = b1 (y)UJsnd;
and for all other nodes y we have by(y) = b1(y).



We call = the active node (or recipient) and set(m) the delivered messages.
Intuitively, in a global transition we select an arbitrary node z and allow it to
receive some arbitrary submultiset m from its message buffer. The messages in
m are then delivered at node z (as a set, i.e., without duplicates) and x performs
a local transition, in which it updates its memory and output relations, and
possibly sends some new messages to all its neighborsﬂ The node does not send
messages to itself. If m = (), we call this global transition a heartbeat transition
and otherwise we call it a delivery transition. A heartbeat transition corresponds
to the real life situation in which a node does a computation step when a local
timer goes off and no messages have been received from the network.

A run R of a transducer network 7 on a distributed input database instance
H is an infinite sequence of global transitions p; ——— pig1 fori=1,2,3,...,
where p; = start(T, H), and the i*! transition with i > 2 operates on the
resulting configuration of the previous transition. It follows from the semantics
of local transitions that when a node during one global transition changes its
output or memory, then these changes are visible to that node only starting
from the next global transition in which that node is active. Note also that
several facts can be delivered together during a transition, regardless of whether
they were sent during different earlier transitions or during the same earlier
transition.

We have not defined global transitions that are concurrent, i.e., global transi-
tions in which multiple nodes receive a message multiset and do local transitions
at the same time. The reason for not including this kind of global transition is
that it can be simulated by multiple sequential global transitions: this is done
by letting the previously concurrent nodes become active in some arbitrary or-
der, and in each of those single-node transitions, the active node just reads its
own message buffer like in the concurrent transition. Because local transitions
are deterministic, the nodes will update their state and send out messages in
the same way as during the concurrent transition.

3.2 Fairness

In the literature on process models it is customary to require certain “fairness”
conditions on runs [2I} 14} 26]. Let 7 = (N, Y,II) be a transducer network.
In this paper, a run of 7 on some input distributed database instance is called
fair if (i) every node of N is active in an infinite number of transitions and
(i) if for some node a fact occurs in its message buffer in an infinite number of
configurations, then this fact is delivered to that node during an infinite number
of transitions. Intuitively, the last condition demands that no sent messages are
infinitely delayed. We consider only fair runs.

Note that every transducer network has a fair run for every input because
heartbeat transitions are still possible even when the message buffers have be-
come empty.

1Hence the name “epidemic” [20].



3.3 Message Delivery Constraints

We may want to impose a size-constraint on the delivered message multisets.
Indeed, for a transducer network 7 and a natural number k& > 1, we can restrict
our attention to runs of 7 where the sizes of the delivered message multisets are
of size at most k. This is the k-delivery semantics for 7. In a previous paper
[11], we restricted attention to 1-delivery semantics. In this paper we assume
no such bound, unless explicitly mentioned.

3.4 Discussion

In this section we want to motivate the usefulness of our transducer model by
comparing it with the literature. First, some of the main characteristics of our
model are that (%) the same transducer program is replicated at all nodes; (%) a
node can only send messages to its neighbors; and (%4) messages are never lost.
These three characteristics occur commonly in declarative networking literature
[28, 23, 29].

The aspect where our model deviates, however, is that the sender of a mes-
sage cannot address the message to a particular neighbor. But this can be
simulated in our model by designating a specific component of each message as
the addressee. When a node receives a message, it can verify that it is the valid
addressee by using local relation Id, in which case it will process the message,
and otherwise the node forwards the message to (all) its neighbors. This can
be seen as less efficient: depending on the network topology, some nodes might
receive many messages not addressed to them, and this could lead to some mes-
sages being forwarded forever. But we will not be concerned with such efficiency
issues in this paper. Instead, we believe that sending to all neighbors is sufficient
to reason about distributed algorithms. For completeness, however, in Section 7]
we also briefly consider a transducer variant in which a node can send messages
to a specific neighbor, and we relate this model to our epidemic model.

As a last remark, although the network topology is fixed at the start of a
run, we note that our model can be used to simulate a dynamic network, in
which nodes and edges can be temporarily offline. Indeed, offline nodes can
be simulated by having some nodes not doing local transitions for a while, and
offline edges can be simulated by delaying the messages sent through them. Our
fairness condition however requires that eventually every node keeps on doing
local transitions and that message delays are bounded.

4 Expressing Queries

What does it take for a transducer network to compute some global query? Here
we propose a formal definition based on the two properties of consistency and
network-independence. This is discussed in the following subsections.



4.1 Transducer Kinds

We will use the following terminology for transducers. We call a transducer
oblivious if it does not read the relations Id and All in its queries. Intuitively,
this means that the transducer is unaware of the network context, because it
does not know about the node it is running on, and it does not know about the
other nodes. A transducer is called inflationary if it never deletes facts from its
memory relations. That is, the deletion queries for the memory relations return
the empty set of facts on all inputs. A transducer is called monotone if all its
queries are monotone. The later Example [1.4] describes a transducer that is at
the same time oblivious, inflationary, and monotone.

4.2 Input and Output

Let 7 = (N,Y,II) be a transducer network. Let I be an ordinary (non-
distributed) database instance over schema Y;,. This instance can be given
as input to T by partitioning it across the nodes, where the same fact can be
given to multiple nodes. Formally, a distributed database instance H over N
and Tiy is said to be a horizontal partition of Iif I =, ¢, ogesnr) H (@)

Let p = (s,b) be a configuration of 7 on input H. Naturally, p defines an
output database instance out(p) over the schema Yoy as follows:

out(p) = |J  s(@)loun)-

zE€nodes(N)

Let R be a run of 7 on some input. We denote the sequence of configurations
of R as p1, pe, etc. If there is a number ¢ > 1 such that out(p;) = out(p;) for
all j > i, then we call ¢ a quiescence point for R. We call a configuration p; of
R a quiescence configuration if i is a quiescence point. Only quiescence configu-
rations can follow a quiescence configuration, and all quiescence configurations
define the same output database instance. Only a finite number of distinct
output facts are possible because we only consider finite input instances, and
because the queries of transducers are generic, and hence domain-preserving.
The following property is now clear:

Proposition 4.1. For every transducer network, on every input, every run
contains a quiescence configuration.

The output of run R is now defined as out(p;) where p; is a quiescence con-
figuration of R. Our notion of output does not specify the output at individual
nodes and does not prevent messages from being sent once a quiescence point
is reached.

4.3 Consistency

We say that a transducer network 7 = (N, T, II) is consistent if for all database
instances I over Yj,, on all horizontal partitions of I over A/, all fair runs of T
have the same output, denoted 7 (I).



When T is consistent, this function 7(.) has the characteristic of a query,
except that it need not be generic. For example, the “query” that asks for all
data elements in the input that are not node identifiers, can be computed by a
consistent transducer network. We mainly focus on the computation of generic
queries. Naturally, T is said to compute a query Q over input schema Y;, and
output schema Yo if T is consistent and T (I) = Q(I) for every database
instance I over Y;, on which Q is defined.

Because the individual queries that make up a transducer are generic, we
can make the following observation:

Proposition 4.2. The function 7(.) is generic for each consistent transducer
network 7 in which the transducer is oblivious.

4.4 Examples

First, we explain our notational conventions for specifiying concrete transduc-
ers. Because FO is equivalent to NrDatalog™ [2], we will frequently use the
more readable rule-based syntax of NrDatalog " to specify FO-transducers. The
answer relations of NrDatalog™ programs will be clearly marked. For example,
for a memory-insertion query Qf . the answer relation of the corresponding
NrDatalog™ program is Ri,s; for an output query QI ., the answer relation is
Tout; for a message-sending query stnd, the answer relation is Sg,q. We leave a
blank line between the NrDatalog ™ rules that belong to different queries. Un-
mentioned queries of a transducer are assumed to always return the empty set
of facts.
We now give some examples of transducer networks.

Example 4.3. For a simple example of a consistent transducer network, let the
input be a binary relation R. Each node outputs the identical pairs from its
part of the input. No messages are sent. This network computes the equality
selection ogy_go(R). This is easily programmed on an FO-transducer, which is
specified as follows. The transducer schema is Ty, = {RP}, Tou = {TP)},
Tisg = 0, Tiem = 0, and the single transducer rule is:

Tout(u,u) < R(u,u).
O

Example 4.4. To give an example of a consistent transducer network that
involves communication, we compute the transitive closure of a binary relation R
in a well-known distributed manner [28]. We present here a naive, unoptimized
version. Fach node sends its part of the input to its neighbors. Specifically,
each node also forwards all messages it receives to its neighbors. This way,
the input is flooded to all nodes. Each node accumulates the input facts it
receives in a binary memory relation S. Finally, each node has an output
relation T in which we repeatedly insert R U S U (T o T), where o stands for
relational composition. Thanks to the monotonicity of the transitive closure,

10



this transducer network is consistent. We can implement this idea with an
UCQ-transducer. The transducer schema is Yi, = {R®}, Touw = {T?},
Tisg = (U@}, Tiem = {SP}, and the transducer rules are:

Usnd(u,v) < R(u,v).
Usna(w, v) < Ul(u,v).

Sins(w, v) + U(u, v).

Tous(w, v) < R(u,v).
Tout(u, v) < S(u,v).
Touws(u,v) < T(u,w), T(w,v).

Note that the transducer is oblivious. There is no need to reason explicitly
about node identifiers, because all we need is let the nodes steadily accumulate
all input facts across the network and incrementally produce chunks of output.
The transducer is also inflationary and monotone, reflecting the essential nature
of the transitive closure computation. O

Example 4.5. Let us see a simple example of a transducer network that is not
consistent. Consider a network with at least two nodes. The input is a unary
relation R. Each node sends its part of R to its neighbors. Next, each node
outputs the received messages on condition that the output is still empty. When
there are at least two nodes and at least two different R-facts, different runs may
deliver the messages in different orders, so different outputs can be produced,
even for the same input distributed database instance. We can write an FO-
transducer IT to implement this idea. The transducer schema T is Yi, = {RM},
Tout = {T(l)}, Tinse = {U(l)}, T mem = 0, and the transducer rules are:

Usna(u) < R(u).

block() < T'(u).
Tous(u) < —block(), U(u).
O

Undecidability for testing consistency of a transducer network readily follows
from undecidability of satisfiability of FO. The proof is in Appendix [A]

4.5 Network-Independence

We are mainly interested in the case where a query can be correctly computed
by a transducer regardless of the network.

Let IT be a transducer over a schema Y. We say that IT is network-independent
if for all networks N, the transducer networks (A, T, II) are consistent and com-
pute the same query Q. We say that Q is the query distributedly computed by

11



II. The transducer from Example is network-independent. Now consider
the following example.

Example 4.6. We give a simple example of a transducer that gives rise to
consistent transducer networks but that is not network-independent. Suppose
we have a unary input relation R. Each node sends its own identifier to its
neighbors. This way the edges of the network can be discovered. The discovered
edges are forwarded to every node, and when a node detects that the collected
edges together form a complete graph, then the node outputs its local input for
relation R. If the network is indeed a complete graph, by fairness eventually all
nodes will detect this, and then the transducer network computes the identity
query. But on other network topologies the empty query is computed.

For completeness, we specify an FO-transducer II to implement this idea.
We define the transducer schema Y as Yi, = {RM}, Toue = {TW}, Tinsg =
{AW B@Y T o = {S@}. The rules of the transducer are:

Asna(u) + Id(u).

Bina(u,v) < A(uw), Id(v).
B ,V

snd (1, V) < B(u,v).

Sins(u, v) < B(u,v).

missing() < All(u), A11(v), u # v, =S(u,v).
Tout(u) < R(u), -missing().

O

Testing network-independence for FO-transducers is undecidable. See Ap-
pendix [A] for the proof.

4.6 Preliminary Observations

We now give several preliminary results about expressing queries with trans-
ducers, that are important for deriving later results.

First, we present two lemmas which show that at each node a transducer
can always assemble a local copy of all input facts available on the network.

Lemma 4.7. Let D be a database schema. There is a transducer schema T
with T, = D and an oblivious, inflationary, monotone UCQ-transducer II over
T such that for every transducer network for II, for every instance I of D, on
every horizontal partition of I, every fair run reaches a configuration where
every node has a local copy of the entire instance I in its memory.

Proof. Because the construction is straightforward, we only provide a sketch.
The idea is that all nodes will send out their local input facts and forward any

12



message they receive. The local inputs, together with the received inputs, are
accumulated in local memory relations. In any fair run, eventually all nodes
will have received all input facts. Relations Id and A1l are not needed. We
also do not need deletions on the memory relations. This technique has already
been illustrated by Example [£.4] O

We can refine the technique of Lemma [£.7] to let a node know when it has
collected every input fact in memory:

Lemma 4.8. Let D be a database schema. There is a transducer schema T
with T, = D and an UCQ -transducer II over Y such that for every transducer
network for II, for every instance I of D, on every horizontal partition of I, every
fair run reaches a configuration where every node has a local copy of the entire
instance I in its memory, and an additional flag ‘ready’ is true (implemented
by a nullary memory relation). Moreover, the flag ‘ready’ does not become true
at a node before that node has the entire instance I in its memory.

The transducer II is not oblivious, but can be made inflationary when using
locally the language NrDatalog " instead of UCQﬂE|

Proof. We provide a sketch, and the full construction can be found in Appendix
The idea is that a node x will send its local input facts over relation
R™ € D to every other node, with an additional last component that contains
the identifier of x, to indicate the origin of the fact. We call this last component
the “tag”. Next, when a node y receives a tagged input fact, it removes the tag
and stores the fact in its memory. This already lets each node incrementally
accumulate all inputs across the network. Now, for each fact that y receives
from z, node y also sends an acknowledgment back to x. The node = checks
whether y has (eventually) acknowledged all the input facts of . If yes, then x
sends out done(z,y). From the viewpoint of y, if y has received done(z,y) from
all other nodes x then it knows that it has accumulated all the input facts on
the network, and the ready-flag is created at y. The relations Id and All are
used heavily in this protocol. O

The following theorem indicates that our transducer model has enough ex-
pressive power to study queries in the distributed context:

Theorem 4.9. Let £ be a language containing UCQ . Then every query ex-
pressible in £ can be distributedly computed by an L-transducer. In particular,
if £ is a computationally complete query language, every partial computable
query can be distributedly computed by an L-transducer.

Proof. Let Q be a query expressible in £. Let D and D’ be respectively the
input and output schema of @. We construct an L-transducer II to compute
Q in two steps. In the first step, we use the partial specification of II from
Lemma [£:§] to obtain the entire input instance at every node. The language
UCQ " suffices for this. This transducer has input schema Yj, = D but does

2This is because a NrDatalog™ program allows auxiliary relations to be declared, to which
negation can be applied.
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not produce any output yet. In the second step, we define the output schema
of this transducer to be Yoy = D’. Now, because Q is expressible in £, once
the flag ready becomes true, we can output Q in the next local transition, by
implementing for each output relation an £-query that reads only the collected
input facts. O

In the context of the CALM conjecture, monotone queries will play an im-
portant role. For now, we observe that oblivious transducers are sufficient to
compute them:

Theorem 4.10. Let £ be a query language containing UCQ. Then every
monotone query expressible in £ can be distributedly computed by an oblivious
L-transducer. In particular, if £ is computationally complete, every partial
computable monotone query can be distributedly computed by an oblivious £L-
transducer. Moreover, these oblivious transducers can be made inflationary and
monotone.

Proof. Let Q be a monotone query expressible in £. The idea is the same as in
the proof of Theorem but we now use the oblivious, inflationary, monotone
transducer from Lemma [£.7] to let every node gradually collect all inputs facts
available on the network. Now, because Q is expressible in £, in every local
transition we can execute L-queries for the output relations that read the part
of the input already accumulated in memory. Since Q is monotone, no incorrect
tuples are output this way. Eventually, all nodes have accumulated all the input
across the network, and no new outputs will be produced. O

5 The CALM Conjecture

The following was conjectured by Hellerstein:

Conjecture 1 (CALM Conjecture [25]). A program has an eventually con-
sistent, coordination-free execution strategy if and only if it is expressible in
(monotonic) Datalog.

Before we can rigorously investigate this conjecture, we want to formalize
the notion of “coordination-freeness”. This is presented in Section[5.1] Next, we
will present our formal CALM conjecture and its associated results in Section
(2 Additional results are in Section [5.31

5.1 Coordination-free

The CALM conjecture hinges on an intuitive notion of “coordination” of certain
distributed computations. We illustrate this notion with a few examples.

In the well-known two-phase commit protocol [22], each node is responsible
for executing some part of a distributed transaction. To keep the distributed
database consistent in the face of runtime crashes, either all parts should be
committed or none is. To this purpose, after executing its part of the distributed
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transaction, but before actually committing the results, a node checks that every
node can commit its results. This way, the distributed commit can proceed
only if all individual nodes can commit. Naturally, the nodes have to exchange
messages to determine if they can commit or not.

As another example, the multicast protocol of Lemma[4.8|also relies on heavy
coordination: the nodes exchange many messages, including acknowledgments,
before they all obtain the flag ‘ready’.

Generalizing both examples, the main idea behind coordination is that a
large set of nodes needs to obtain a consensus. For two-phase commit this is
the global decision whether all nodes should commit or not, and for Lemma [1.§]
the consensus is that all nodes have the same data. Reaching a consensus is
known to be difficult in the distributed context [I5]. Because of the complexity
of consensus, the involved nodes sometimes have to wait relatively long before
they can continue with the actual computation. This is called a “global barrier”
[25].

It should be clear that coordination typically decreases the efficiency of dis-
tributed computations, because while the coordination is under way, the nodes
are just waiting. So, it seems useful to understand precisely when coordination
can be avoided, for which we will use the term “coordination-freeness”. This
is what the CALM conjecture is all about. It seems hard to give a definitive
formalization of coordination-freeness. Still, we offer here a nontrivial definition
that appears interesting. A very drastic, too drastic, definition of coordination-
free would be to disallow any communication. Our definition is much less severe
and only requires that the computation can succeed without communication on
“suitable” horizontal partitions. It actually does not matter what a suitable
partition is, as long as it exists. Even under this liberal definition, the only-if
direction of (our formalization of) the CALM conjecture will turn out to holdE|

Formally, let II be a transducer over a schema Y. Let 7 be a transducer
network for II. We call T coordination-free if for every database instance I over
Tin, there exists a horizontal partition H of I and a run of 7 on H in which a
quiescence configuration is already reached by performing only heartbeat tran-
sitions (zero or more). Intuitively, if the horizontal partition is right, then no
communication is required to correctly compute the query. The property of
coordination-freeness is mainly interesting for consistent transducer networks,
because then at the quiescence configuration that was reached with only heart-
beat transitions, the produced output is the same as produced by any other fair
run. We call transducer II coordination-free if for every network its correspond-
ing transducer network is coordination-free.

Example 5.1. Consider again the transitive closure computation from Example
44 When every node already has the full input, they can each individually
compute the transitive closure with only heartbeats. Hence, this transducer is
coordination-free. O

30f course, under the drastic definition of coordination-freeness, the if-direction of the
CALM conjecture (which is the easy direction) as formulated below in Proposition will
no longer hold.
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The transitive closure query is monotone and this example can actually be
generalized in the following proposition. This proposition is implicit in the
literature on embarrasingly parallel computation [25, 27, [29], and our main
result (Theorem [5.9)) will provide a converse to it.

Proposition 5.2. Let £ be a query language containing UCQ. Every monotone
query Q expressible in £ can be distributedly computed by a coordination-free
L-transducer.

Proof. Recall from the proof of Theorem that there is an oblivious L-
transducer that distributedly computes Q. Using the same intuition as in Ex-
ample this transducer is coordination-free. O

The reader should not be lulled into believing that with a coordination-free
program it is always sufficient to give the full input at all nodes, as the following
example shows:

Example 5.3. Consider the following query Q, having as input two nullary
relations A and B, and a nullary output relation 7: create the non-empty
output (representing “true”) if at least one of A and B is nonempty. This query
is monotone. Consider the following (contrived) transducer II to compute Q. If
the network has only one node (which can be tested by looking at the relation
A11), the transducer simply outputs the answer to the query. Otherwise, it first
tests if its local input fragments of A and B are both nonempty. If this is the
case, nothing is output locally yet, but a nullary fact C' is sent out. Any node
that receives the message C' will output it. When precisely one of A and B
is nonempty locally, the transducer simply outputs the correct output directly.
The transducer is network-independent. Also, the transducer is coordination-
free, because on networks with at least two nodes there always is a partition
of the data under which no node has both A and B locally nonempty, and
the query can be computed without communication. Moreover, when A and B
are both nonempty, and every node has the entire input, no run will reach a
quiescence configuration without communication. O

The following two examples show that network-independence for a transdu-
cer does not guarantee coordination-freeness, and vice versa.

Example 5.4. We provide an example of a transducer that is network-independent
but not coordination-free, i.e., requires communication. Let Q be the following
“emptiness” query, having a nullary input relation R, and a nullary output rela-
tion T': create the non-empty output (representing “true”) iff R is empty. This
query is nonmonotone. We now describe a transducer to distributedly compute
Q. Since every node can have a part of the input, the nodes coordinate with
each other to be certain that R is empty at every node. Every node sends out its
identifier (using the relation Id) on condition that its local relation R is empty.
Received messages are forwarded, so that if R is globally empty, eventually all
nodes will have received the identifiers of all nodes, which can be checked using
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the relation A11. When this happens, the transducer at each node outputs a
nullary fact.

For completeness, we specify an FO-transducer II to implement this idea.
The transducer schema T is as follows: Ti, = {RO}, Youe = {TO}, Thee =
{UMY and Tiem = {S@}. The rules are:

Usna(u) < Id(u), ~R().
Usna(w) < U(u).

Sins(n) < Id(u), ~R().
Sins(n) < U(u).

missing() < All(u), =S(u).

Tout() + —missing().
]

Example 5.5. We give a transducer that is coordination-free, and that is con-
sistent on every network, but is not network-independent. The transducer has
two unary input relations R and S, and it has a unary output relation 7. Using
relations Id and All, the transducer can detect if there is only one node, or
if there are more nodes. If there is just one node, the single node outputs the
union of R and S. If there are at least two nodes, then all nodes will copy their
local inputs into their memory; they also broadcast their input facts to each
other, so that all nodes accumulate all inputs of the network; and, the nodes
will continuously output the intersection of the accumulated R-facts with the
accumulated S-facts.

First, we see that on each network this transducer is consistent. Indeed,
on a single-node network the union of R and S is output, and on a multi-
node network the intersection of R and S is output. This different output
behavior prevents the transducer from being network-independent. Finally, the
transducer is coordination-free because on a single-node network the output
is always computed with only heartbeats, and on a multi-node network we
can consider the partition where each node has the entire input, and then the
intersection of R and S can already be computed with only heartbeats. O

Coordination-freeness seems a useful property for a transducer to have. How-
ever, it cannot be decided automatically in general:

Proposition 5.6. Coordination-freeness is undecidable for FO-transducers.

Proof. We reduce the finite satisfiability problem for FO to deciding coordination-
freeness for FO-transducers. Let ¢ be an FO-sentence over a database schema
D. We construct an FO-transducer II that is coordination-free iff ¢ is not finitely
satisfiable.
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Consider the transducer II in Example that is over schema Y. We may
assume without loss of generality that the relation names of T do not occur in D.
We obtain a new transducer schema Y’ from Y by adding D to Yi,; by adding
new message relations {(C™8 k) | C*¥) € D}; and, by adding new memory
relations {(C™™ k) | C®) € D}. We obtain a new transducer I’ over Y’ by
modifying II to let all nodes gradually accumulate all input facts by means
of message forwarding. Moreover, besides keeping the old output condition
“-missing”, we will only produce an output if additionally ¢ is satisfied on the
accumulated D-facts so far (in memory).

For the first direction, suppose that ¢ is finitely satisfiable on a database
instance I over D. We show that II’ is not coordination-free. We can regard I
as a database instance over Y, , where relation R is empty. Let A/ be a network
containing two nodes x and y. Let T denote the transducer network based on
N and II'. Suppose that there is some horizontal partition H of I over N and
a run R of 7 on input H in which a first quiescence configuration is already
reached by doing only heartbeat transitions. Because I does not contain R(),
the nodes send the messages U(z) and U (y). Because of fairness, these messages
must be delivered to y and x respectively, which can happen only after the first
quiescence point because before the quiescence point there are only heartbeat
transitions. Eventually, every node will find -missing() to be true. The same
reasoning can be applied to the relations of D: whether I is empty or not, there
must be a configuration after the first quiescence point, in which all nodes have
accumulated I in the memory relations. Then ¢ also becomes true, and thus
we know that every node eventually outputs T'(). Note that this fact cannot be
in the first quiescence configuration because it requires the delivery of at least
one of the messages U(x) or U(y). So, the initial quiescence configuration that
was reachable by only heartbeat transitions cannot exist. Thus, the network A
and input I are a proof that II’ is not coordination-free.

For the other direction, suppose that ¢ is not finitely satisfiable. Then
no transducer network based on II' can produce output, no matter what the
input instance over Y or horizontal partition of that instance is. Hence, the
start configuration of every run is already a quiescence configuration, and IT’ is
coordination-free. O

Although coordination-freeness is undecidable for FO-transducers (and by
extension more powerful transducers), we can identify a syntactic class of trans-
ducers that is guaranteed to be coordination-free, and that will prove to have
the same expressive power as the class of coordination-free transducers. Im-
portantly, the syntactic restriction does not guarantee network-independence.
Recall from Section that an oblivious transducer does not read the system
relations Id and All. For now we observe:

Proposition 5.7. Let £ be a query language. Every network-independent,
oblivious L-transducer is coordination-free.

Proof. Let II be a network-independent, oblivious L-transducer over a schema
T. Let Q be the query distributedly computed by II.
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First, on a single-node network, the single node is always given the entire
input and there can only be heartbeat transitions. Then, for an input instance I
over Ti,, a quiescence configuration containing Q(7) is always reached by doing
only heartbeat transitions.

Now consider any other network N, any instance I over Yj,, and the hori-
zontal partition H that places the entire instance I at every node. Since II is
oblivious, nodes cannot detect that they are on a network with multiple nodes
unless they receive a message. So, by doing only heartbeat transitions initially,
every node will act the same as if in a single-node network and will already
output the entire Q(I). Because II is network-independent, the nodes cannot
output more than Q(I) when they receive messages afterwards. O

5.2 Main Results

Now we can formalize the original Conjecture [l We will take the terms “pro-
gram” and “to have an execution strategy” to mean “query” and “to be distribut-
edly computed by a transducer”, respectively. The term “eventually consistent”
is then formalized by our notions of consistency and network-independence.
Under this interpretation, the conjecture becomes:

Conjecture 2. A query can be distributedly computed by a coordination-free
transducer if and only if it is expressible in Datalog.

Let us immediately get the if-side of this conjecture out of the way. It holds,
because a query in Datalog is monotone, and then by Theorem there exists
an oblivious transducer to compute the query, but we have seen in Proposition
that oblivious transducers are coordination-free.

As to the only-if side, the explicit mention of Datalog is a bit of a nuisance
because Datalog is limited to polynomial time whereas there certainly are mono-
tone queries outside PTIME. We also mention the celebrated paper [8] where
Afrati, Cosmadakis and Yannakakis show that even within PTIME there exist
queries that are monotone but not expressible in Datalog.

But Datalog aside, however, the true emphasis of the CALM Conjecture
clearly lies in the monotonicity aspect. Indeed, we confirm it in this sense:

Theorem 5.8. Let £ be a query language. Every query that is distributedly
computed by a coordination-free L£-transducer is monotone.

Proof. Let II be a coordination-free L-transducer over a schema Y that dis-
tributedly computes a query Q. Let I and J be two database instances over
the schema Ty, such that I C J. We must show that Q(I) C Q(J). Consider
a fact f € Q(I). Consider a network A with at least two nodes. Let 7 denote
the transducer network based on A and II. Since II is coordination-free and
network-independent, there exists a horizontal partition H of I and a run R of
7 on input H in which a quiescence configuration, containing the facts Q(I),
is already reached by letting the nodes do only heartbeat transitions. Let x be
a node where f is output in the quiescence configuration. Let y be a node dif-
ferent from x and consider a horizontal partition H' of J where H'(x) = H(x)
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and H'(y) = H(y)U(J\I). Let n be the number of initial heartbeat transitions
with recipient x in run R that were needed to output f at x. Consider a prefix
of a run of 7 on input H' in which we initially do n heartbeat transitions, all
with active node z. Because local transitions are deterministic, the node x goes
through the same state changes as in run R before f is output and therefore
f is output again in this prefix. The prefix can be extended to a full fair run
R’ of T on input H’. Since T is consistent, the fact f will be output on any
partition of J, during any fair run. Hence, f belongs to the query computed by
T applied to J. Moreover, II is network-independent, so f belongs to Q(J). O

We can now obtain the following result:

Theorem 5.9. Let £ be a query language containing UCQ. For every query
Q that is expressible in £, the following are equivalent:

1. Q can be distributedly computed by a coordination-free L-transducer;
2. @ can be distributedly computed by an oblivious £-transducer; and,

3. Q is monotone.

Proof. Theorem yields (3) = (2); Proposition [5.7] yields (2) = (1); Theo-
rem [5.8] yields (1) = (3). O

In particular, if £ is computationally complete, then the previous equiv-
alences hold for any computable query. As a small remark, now it is of no
surprise that Example [5.4] required coordination; indeed, there we distributedly
compute a non-monotone query.

5.2.1 Discussion

Theorem can be used as follows in practice. Essentially, by restricting a
language, its execution can in general be optimized more thoroughly than the
unrestricted language. A well-known example is SQL versus a Turing-complete
programming language. For our situation, the programmer of a distributed
(query) algorithm can write a program in a high-level declarative formalism,
like the transducer model presented in this paper, or a Datalog-variant like
e.g. [27, [10, I]. Suppose that the query is monotone. Then we know by Theo-
rem [5.9] that it can be implemented in a coordination-free manner. Moreover,
we can prevent the programmer from abusing coordination using the syntactic
restriction of obliviousness. The main idea is that the programmer is given only
a few communication primitives, like sending a message to its neighbors, and a
syntactic restriction is imposed to prevent the programmer from using network
relations like Id or A1l (or equivalent information). Next, the programmer,
or a software tool, needs to assert that the program is network-independent,
i.e., on every network, all fair runs produce the desired outcome. Then, using
Theorem [5.9] if the runtime is told that the program is oblivious and network-
independent, the runtime can execute the program without any coordination.
By contrast, if the programmer uses Id and All, then this semantic property
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is no longer guaranteed, and one would have to resort to a general execution
strategy that has built-in coordination, which seems a waste if the program
expresses a monotone computation. This way, obliviousness could be a useful
guiding principle for distributed query evaluation. The works of Loo et al. [27]
and Nigam et al. [29] provide coordination-free distributed execution engines
for Datalog.

5.3 Further Results

It is natural to wonder about variations of our model. One question may be
about the system relations Id and A11l. Without them (the oblivious case), we
know that we are always coordination-free and thus monotone.

What if we would read precisely one system relation; only Id or only A117
As to coordination-freeness, the argument given in the proof of Proposition [5.7]
still works when the transducer reads only Id, because then nodes still cannot
detect that they are on a network with multiple nodes. However, the argument
fails when the transducer reads only All, and indeed we have the following
counterexample.

Example 5.10. We describe a transducer that is network-independent, reads
only All, but that is not coordination-free. The query expressed is simply the
identity query on a unary relation R. The transducer can observe the difference
between a single-node and a multi-node network by looking at the relation
A11. If it is a single-node network, the node simply outputs the result directly.
If it is a multi-node network, every node sends out a message. Only upon
receiving a message will a node then output the result. Thus on a multi-node
network, regardless of the horizontal partition, communication is needed for the
transducer network to produce the required output. O

So, coordination-freeness is not guaranteed when reading only A11l, but yet,
monotonicity is not lost.

Theorem 5.11. Let £ be a query language. Every query distributedly com-
puted by an L-transducer that reads only relation A11, is monotone.

Proof. Let II be a network-independent transducer that reads only All. As a
technical convenience, we assume that runs can use concurrent global transi-
tions, in which multiple nodes can be active at the same time, each receiving
messages from their own message buffer. At the end of such a concurrent global
transition, for each node, its message buffer is extended with the multiset union
of all messages sent to it by its neighbors. These concurrent transitions can be
simulated by a sequence of ordinary single-node transitions, as remarked at the
end of Section 311

Let Y be the schema of II. Let Q be the query distributedly computed by II.
Let I and J be two database instances over Yy, such that I C J. Let f € Q(I).
We have to show that f € Q(J). The main trick used in this proof is that
although II can count the number of nodes of a network (using relation A1l),
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it cannot directly observe the edges of the network. So, when f is output on
input [ in one network, we can fool the transducer to output f on input J in
another network that has only slightly different edges.

Run on I Consider a network N; in the form of a ring, containing at least
four nodes. See Figure[I] for an example. Let 7 denote the transducer network
based on Ni and II. Let H; be the horizontal partition of I that places I on
every node of N.

We show now that there exists a run R of 7 on input H; with sequence of
configurations p; = (s1,b1), p2 = (82,b2), ..., such that for each ¢ > 1 and each
z,y € nodes(N7) we have s;(z) = s;(y) and b;(z) = b;(y). In words: in every
configuration, all nodes have the same transducer state and the same message
buffer. We inductively construct R;. For the base case (i = 1), configuration
p1 satisfies the property because it is the start configuration: all nodes are
given the entire input I, and all message buffers are empty. For the induction
hypothesis, assume that the property holds for ¢. For the inductive step, we
show how to continue the partially constructed run R; so that the property
holds for ¢4 1. Denote m = b;(x) for some node x. Possibly m = (). We next do
a concurrent global transition in which each node is the recipient of delivered
message multiset m. This is possible by using the induction hypothesis. So,
we are delivering the entire message buffer at once to each node. Again by the
induction hypothesis, all nodes have the same state in configuration p;, and
since local transitions are deterministic, all nodes will have the same state in
configuration p; 1. Also, if one node sends a message set Js,q on delivery of m,
then all nodes will send this set on delivery of m. Hence, because N is a ring,
for each node, the messages of Js,q will have been added twice to its message
buffer at the end of the concurrent global transition. Since all nodes emptied
their message buffer at the beginning of the concurrent transition, we see that
in p;1+1 the nodes again have the same message buffer.

The run Ry can be converted to a fair run R} with only non-concurrent
global transitions and that produces the same output as Ri. Moreover, because
IT is network-independent, we know that R} outputs Q(I), and thus R; outputs
Q(I). Therefore, we can consider a node u of N7 and an index k > 1 such that
u outputs f during the k&*® concurrent global transition of R;.

Run on J Let u be the node as previously defined. Let z be a node of N;
that is not a neighbor of u. We obtain a new network N5 from N7 by adding
an edge between the two neighbors of z. Because N is a ring with at least four
nodes, we know that this edge was not previously there and thus N3 contains
a smaller ring without node z. Let 7’ denote the transducer network based on
Nz and II. Importantly, note that A7 and N2 have precisely the same nodes.
Let Hy be the horizontal partition of J that places I on every node except z
and that places J \ I on z.

Let us abbreviate N = nodes(N2)\{z}. Recall the sequence of configurations
P1, P2, - - -, of run Ry from above. We now show that there exists an (unfair) run
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Figure 1: Ring network topology

Ro of T on input Hs with sequence of configurations p} = (s7,0}), ph = (sh, bh),

.., such that for each ¢ > 1 and each y € N we have si(y) = s;(y) and
bi(y) = bi(y). In words: the smaller ring of nodes N follows exactly the states
and message buffers of run R;. We inductively construct Rs. For the base case
(i = 1), the property is satisfied because input partition Hs initializes the nodes
of N in the same way as input partition H;. For the induction hypothesis, we
assume that the property holds for index i. For the inductive step, we show
that the property holds for index i + 1. As in the construction of R;, we next
do a concurrent global transition in which we deliver to every node of N the
contents of its entire message buffer. Using the induction hypothesis, this causes
each node of NV to send the same message instance Jg,q to their neighbors. This
message instance was also sent during the corresponding global transition of R;.
Let y1 and yo denote the two neighbors of node z in 7. We have {y1,y2} C N.
Because we have added the extra edge between 1, and v in N3, node y; sends
Jsnd to z and to yo. This is similar for y. Node z does not send anything
because it is ignored. So, like in R4, both y; and y, have Jg,q added precisely
twice to their message buffer at the end of the concurrent global transition.
The rest of the reasoning is the same as in the inductive step for constructing
R1. We obtain that the nodes of N have the same state and message buffers in
configuration pj, ; as in configuration p;;1.

Consider again the run Rs. Because u € N, the fact f is eventually output
at u during Re, during some global transition k. But Rq is clearly not fair
because the node z is ignored. However, we can make a new run R/, by copying
only the first k global transitions of Rs, converting each of them to a sequence
of ordinary (non-concurrent) global transitions and then extending this prefix
arbitrarily to a full fair run. Thus, we obtain that f is output in a fair run of
T’ on input Hs. Since II is network-independent, we obtain that f € Q(J), as
desired. O

As a corollary, we can add two more statements to the three equivalent
statements of Theorem

Corollary 5.12. Let £ be a query language containing UCQ. The following
statements are equivalent for any query Q expressible in L:

1. Q can be distributedly computed by an oblivious £-transducer;
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2. Q can be distributedly computed by an L-transducer that is given only
Id; and,

3. Q can be distributedly computed by an L-transducer that is given only
All1.

Proof. The directions (1) = (2) and (1) = (38) are immediate because an
oblivious transducer is given neither of Id or A1l. For (2) = (1), when only Id
is read, the query @ is monotone as argued above. Then, by also using that Q
is expressible in £, we can apply Theorem to know that Q is computable
by an oblivious L-transducer. The direction (3) = (1) is similar, but this time
Theorem [E.11] is used. O

To conclude this section, we note that distributed algorithms involving a
form of coordination typically require the participating nodes to have some
knowledge about the other participating nodes [I5]. This justifies our modeling
of this knowledge in the form of the system relations Id and All. Importantly,
we have shown that these relations are only necessary if one wants to compute
a nonmonotone query in a distributed fashion.

6 Expressiveness Analysis

In this section we want to better understand the transducer model itself. The
main question we would like to address is how the transducer model can be
combined with a local query language to express a global query. It is not
obvious what peculiarities of the model can be exploited in the local queries,
and how. It will turn out actually that the global query language expressed by
the transducer is the while-closure of its local query language. Intuitively, this
is because each node can do multiple local transitions in a run, which can be
seen as iterations of an implicit while-loop. This is very natural, and we believe
this shows that our (distributed) transducer model is relatively elegant, because
it respects previous results about well-known query languages [2].
Table [I] summarizes the expressiveness results.

6.1 While versus FO

We first show the following property, and although the result might not sound
very surprising, writing out the details turned out to be rather intricate.

Lemma 6.1. A query is expressible in While if and only if it is computable by
an FO-transducer on a single-node network.

(sketch). For the only-if direction, we have to simulate a While-program on
a single-node FO-transducer network. A While-program can be simulated by
iterated heartbeats using well-known techniques [4]. The main idea is that the
loops in the while-program are rewritten with explicit “goto” statements. The
statements of this rewritten program can then be simulated by an FO-transducer
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Queries expressible in While
= queries computable by FO-transducers
= queries computable by UCQ -transducers

Monotone queries expressible in While
= queries computable by oblivious FO-transducers

Queries expressible in Datalog
= queries computable by inflationary NrDatalog-transducers

Queries in PSPACE
= queries computable by multi-node FO-transducer networks
under 1-delivery semantics

Table 1: Expressiveness Summary

that keeps track of which statement is to be executed next, and goto-statements
can make the simulation jump back to a previous statement (simulating a loop).
We illustrate this technique in Appendix

For the if-direction, let IT be an FO-transducer over a schema Y that com-
putes a query Q on a single-node network 7. A While-program that computes
the query Q has to use exactly the same input and output schema as II, namely,
Tin, and Yoy respectively. The While-program is however allowed to declare
any number of temporary relations. We may assume that IT does not read mes-
sage relations in its internal queries, because no messages can be received on a
single-node network. As a first case, let us additionally assume that the internal
FO-queries of II do not read relations Id and A1l (the oblivious case). Now, be-
cause the memory relations of II start empty, and temporary relations declared
in the While-program also start empty, we can easily construct a While-program
P that consists of one big loop, of which one iteration performs the same state
changes as II during one heartbeat transition. We provide an example in Ap-
pendix[B-2] In order to terminate, P must detect repetition of transducer states,
because this implies that II has repeated a state and will output no new output
facts. Detecting such a repetition is possible by using the technique of Abiteboul
and Simon [3].

Let us now consider the second case where II reads Id or A1l (or both) in its
internal queries. These relations can not be simulated by the While-program.
Indeed, these relations are always non-empty from the perspective of II, and a
While-program can not create temporary relations to represent them: when the
input is empty, the While-program can not invent a value to store in Id and
A11, and when the input is nonempty, the While-program can in general not
choose one value to store in Id and All. Therefore, we will first eliminate the
use of Id and A1l from the queries of II. Once this is done, we can apply the
above translation for the oblivious case.
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Remove relation A1l Note that in the FO-queries of IT we can replace the
use of relation A1l by Id because, on a single-node network, both relations have
the same contents. Formally, in a transducer state there is a fact Id(a) iff there
is a fact A11(a).

Remove relation Id Assume that relation A1l is not used in II. Next, we
remove the use of relation Id from II. We will only sketch the approach, and
the details can be found in Appendix[B.3] We use the work of Van den Bussche
and Cabibbo [31], who have shown how to convert an ordinary (untyped) FO-
formula to a typed formula that computes the same query. In typed formulas,
each variable is of a specific sort, meaning that it ranges over an isolated domain
of values. In our case, we distinguish between two sorts: (i) values in the active
domain of an input database instance over Yi,; and, (%) the identifier x of
the single node in 7 (with 7 as defined above). We will denote these sorts as
respectively adom and id. A type 7 is a tuple of sort symbols, like (adom, id, id).

Based on II, we construct a second transducer IT? as follows. For each
relation R%) € Yoy U Y imem of II and each type 7 of arity k, transducer II2 has
a relation R, . Transducer II2 also has a memory relation Adom in which it
stores all values from its input. We now describe how IT? updates such a relation
R.® . Let  denote the FO-formula used by II to insert tuples in relation R
(deletion is similar). If for example 7 = (adom, adom, ..., id), then transducer
I1? will use a formula of the form

P(uy,...,ux) A Adom(us) A Adom(uz) A ... A Id(uy)

to insert into R, the tuples of type 7 that are computed by . The formula
is basically the formula ¢, but modified to cope with the separation of tuples
by their type: each time ¢ reads a tuple from a relation S®), formula 1 reads
a tuple from the union (J, ., ST(Z), where « is all types of arity I. This way, II?
also computes the same query as II.

Now, we can apply Proposition 1 of [31] to the formulas in IT? to obtain new
formulas in which there is no explicit reference to relations Adom and Id. Instead,
the converted formulas use variables of two sorts (the adom and id sorts). In
a last step, we can syntactically eliminate any reference to id variables, and
obtain back normal FO-formulas. These can be used in a new transducer II3,
which is oblivious, to compute the same query as II. O

Now we can obtain the following result:

Theorem 6.2. A query is expressible in While if and only if it can be distribut-
edly computed by an FO-transducer.

Proof. For the if-direction, let IT be an FO-transducer that distributedly com-
putes a query Q. Because II is network-independent, the query Q@ must also be
computed when executing II on a single-node network. Then, by using Lemma
there is a While-program that computes Q.

For the only-if direction, let Q be a query that can be computed by a While-
program. We specify an FO-transducer to compute Q in two steps. First we
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use Lemma to obtain the entire input instance at every node. Every node
can then act as if it was alone, ignoring any further messages, and simulate the
While-program again using Lemma U

For monotone queries we have the following, more specific result:

Theorem 6.3. Every monotone query expressible in While can be distributedly
computed by an oblivious FO-transducer.

Proof. Let Q be a monotone query expressible in While. We construct an obliv-
ious FO-transducer to compute Q. Note that Theorem [£.10] is not applicable,
because that would give us an oblivious While-transducer, and not an oblivious
FO-transducer. But the proof idea of the theorem can still be used.

First, we use the simple UCQ-protocol of Lemma [4.7] to let all nodes accu-
mulate all input facts in memory. This does not require Id or A11l. Next, every
time a node receives a new input fact, it starts or restarts a simulation of the
While-program for Q. The simulation uses the techniques of the proof of Lemma
(only-if direction), where specifically the output facts are first computed in
temporary memory relations before being officially output. Checking whether a
new input fact is received is done by comparing a received input fact with the
previously accumulated input facts in memory. The restarting of the simulation
of the While-program is done by emptying all memory relations, and restarting
the program counter. The restart can happen at the moment a simulation is
busy, in which case the temporary output is discarded. The restart can also
happen after a simulation was already successfully ended. Since the query Q is
monotone, no incorrect facts were output by previous simulations.

Eventually, every node will have accumulated all input facts, so the simu-
lation can surely run to completion on all input facts. We also do not need
relations Id and All to simulate the While-program. Hence, the transducer is
oblivious. O

Note that the converse of Theorem to the effect that every query dis-
tributedly computed by an oblivious FO-transducer is monotone and expressible
in While, holds by combining Theorems [5.9] and [6.2] that give respectively the
monotonicity of the query and the expressibility in While.

For our next result, we will use that FO is equivalent to NrDatalog™ [2].
Basically, a program in NrDatalog " is a sequence of UCQ™ statements. The
following proposition shows that transducers can simulate this sequential com-
position of simpler statements:

Proposition 6.4. (i) Every query that can be distributedly computed by an
FO-transducer can be distributedly computed by an UCQ -transducer.

(ii) Every monotone query that can be distributedly computed by an FO-
transducer can be distributedly computed by an oblivious UCQ "-transducer.

Proof. First, we make a general observation. For every query Q that is dis-
tributedly computed by an FO-transducer, we can apply Theorem to know
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that Q is expressible with a While-program P. Moreover, since the language
FO is equivalent to NrDatalog™ [2], every FO-statement in P can be replaced
by a sequence of UCQ -statements, to obtain a new program P’. Then, it is
clear that program P’ can be simulated by an UCQ  -transducer on a single-
node network using iterated heartbeats, very similar to the proof of the only-if
direction for Lemma [6.11

For result (), we let each node first collect a local copy of the entire input by
using the protocol of Lemma which can be done with a UCQ -transducer.
After collecting the input, each node can simulate the program P’ is isolation.

For result (i), where Q is monotone, we use instead Lemma to let each
node gradually accumulate all input, and we restart the simulation of P’ when
new inputs arrive. O

6.2 Datalog versus NrDatalog

What if we are only interested in Datalog? Between the languages Datalog and
NrDatalog, a similar relation exists as between While and FO:

Theorem 6.5. A query is expressible in Datalog if and only if it can be dis-
tributedly computed by an inflationary NrDatalog-transducer.

Proof. First we consider the only-if direction. We construct an oblivious, infla-
tionary transducer to simulate a Datalog program. The basic idea is the same
as in the proof of Theorem [£.10} The input tuples are sent out and accumulated
on every node. During every transition, we apply the immediate consequence
operator of the Datalog program [2], that can be expressed by NrDatalog. The
relations Id and All are not needed, and the transducer can be made oblivious.
Also, by the monotone nature of Datalog evaluation, deletions are never needed,
and the transducer can be made inflationary.

Now we consider the if-direction. Let Q be a query distributedly computed
by an inflationary NrDatalog-transducer IT over a schema Y. We show that Q
can be expressed in Datalog. Because of network-independence, it is sufficient to
look at the behavior of Il on a single-node network. We simulate this behavior
with a Datalog program P as follows. We assume that the logical “and” and the
universal quantifier are not core primitives of FO, since these can be simulated
by negation together with respectively the logical “or” and the existential quan-
tifier. We call an FO-formula positive if each atom and existential quantifier
occurs under an even number of negation symbols. The language NrDatalog is
equivalent to positive FO. So, II is just an inflationary FO-transducer, in which
the internal FO-queries are positive. Now, the same transformation as in the
proof of the if-direction for Lemma [6.1| can be applied to transform II into a
new FO-transducer IT' that computes Q without reading relations Id and A1l.
Moreover, this transformation preserves the positivity of the formula. Hence, IT’
can be immediately seen as an inflationary NrDatalog transducer that does not
read Id and A11. Next, we unite all NrDatalog rules of II’ in a Datalog program
P. Because P by the nature of Datalog can only accumulate its generated facts,
P has at least the opportunities of TI’ to join facts, and P outputs at least the
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output of II'. Moreover, because II’ is inflationary itself, II' eventually has the
same opportunities to join facts as P. In conclusion, P computes exactly the
original query Q. U

It remains open if we can drop the word “inflationary” from Theorem

6.3 Restrict Delivery

It is well-known that providing an order on the active domain increases the
expressiveness of a query language [2]. This result transfers nicely to our trans-
ducer model. By guaranteeing that only one message is delivered during every
global transition, referred to as 1-delivery semantics (cf. Section , an order
can be established on each node:

Proposition 6.6. Under 1-delivery semantics, every PSPACE query can be
computed by an FO-transducer network with at least two nodes.

Proof. In a network with at least two nodes, under 1-delivery semantics, each
node can establish a linear order on the active domain by cooperating with the
other nodes as follows. When a node has collected all inputs of the network
(by means of Lemma , it sends out the elements of the active domain, that
get forwarded by other nodes. Eventually, all these elements arrive back at the
node, and the order can be established because at most one value is received at
once. Then, each node can simulate a While-program on the collected input,
that uses the established order. The transducer involved is not truly network-
independent, as this only works when there are at least two nodes. O

6.4 Specialized CALM Properties

Using our previous results about expressivity, we obtain the following variants
of Theorem Especially, the second variant, which deals with Datalog, may
come closest to the CALM conjecture as originally imagined by Hellerstein [25].

Corollary 6.7. Within each of the following two groups, the statements are
equivalent, for any query Q:
1. (a) Q can be distributedly computed by a coordination-free FO-transducer.
(b) Q can be distributedly computed by an oblivious FO-transducer.

(c) Q is monotone and expressible in the language While.

2. (a) Q can be distributedly computed by a coordination-free, inflationary
NrDatalog-transducer.

(b) Q can be distributedly computed by an oblivious, inflationary NrDatalog-
transducer.

(c) Q is expressible in Datalog.
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Proof. Regarding (1), for (¢) = (b) use Theorem for (b) = (a) use Propo-
sition for (a) = (c¢) use Theorems and 0 obtain respectively the
properties of “Q is monotone” and “expressible in the language While”.
Regarding (2), for (c) = (b) use (proof of if-direction in) Theorem [6.5} for
(b) = (a) use Proposition [5.7} for (a) = (c) use Theorem O

7 Variation of the Model

In the literature on declarative networking, a seemingly common language fea-
ture seems to be that nodes do not simply send each message to all of their
neighbors, but instead to a specifically addressed neighbor [28] 23] [0} 29]. We
call this the addressing model. One could argue that this model lies closer to
how real networks operate, and that is why we devote a small section to this
model.

7.1 Addressing Transducers

Recall our original epidemic transducer model that was presented in Sections[2.2]
and[3] An addressing transducer II over a transducer schema T is the same as an
epidemic transducer over T with the only difference that for a message relation
R®) ¢ Thsg, the sending query will produce facts of arity k + 1 instead of k.
The extra component will contain the addressee of each message, which is by
convention the first component. Now we look at how the operational semantics
must be changed accordingly. With II as above, consider a transducer network
T = (N,T,II). We define how an active node x € A/ does a global transition.
Similarly to the original definition of global transition (in Section , we let x
receive some messages from its message buffer. Then, = does a local transition in
which it generates a set of newly sent messages Jsnq, each having the addressee
specified as their first component. Now, the messages that are effectively added
to the message buffer of another node y, denoted K'Y, is defined as: if y is a
neighbor of z then K7Y = {R(a) | R(y,a) € Jsxma} and otherwise K—¥ = (),
i.e., we select precisely the messages that are sent to y when y is a neighbor.
An addressee value that is not a neighbor of x will result in the loss of the
corresponding message. Note that the message buffers contain facts without
an explicit addressee-component, like in the operational semantics for epidemic
transducers.

As a special case, if N forms a complete graph, every node can send a
message to every individual other node.

7.2 Properties

First, all our previous results that do not explicitly restrict Id or A1l still hold
for addressing transducers because, when there is no restriction on using Id or
A11, addressing transducers and epidemic transducers are equivalent in terms
of what queries they can compute. Indeed, it was already noted in Section
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that the epidemic model can simulate the addressing model by manually adding
an addressee-component to every message relation in the transducer schema,
and by comparing for each received message the addressee component with the
value in the local relation Id. The other direction is also possible, namely
that an addressing transducer can simulate an epidemic one. It suffices for the
addressing transducer to send each message explicitly to every neighbor.

Interestingly, a notion of obliviousness can also be defined for addressing
transducers. Formally, we say that an addressing transducer is oblivious if the
relations Id and A1l are only used in the message sending qucricsﬁ

Now, most of our results involving oblivious epidemic transducers also hold
for oblivious addressing transducers, because of the following reasons. First,
the proof techniques frequently use that every node sends out its local input
facts, and these are forwarded so that eventually all nodes accumulate all in-
puts. This can be done with an oblivious addressing transducer as well. Sec-
ond, these results are mostly about network-independent transducers, and a
frequently occurring idea in those proofs is that we only focus on the behaviour
of a single node: an oblivious epidemic transducer can not distinguish between
a single-node network and a multi-node network unless it receives a message,
so on a single-node network it should exhibit predictable behaviour if it wants
to be network-independent. This trick is also applicable to oblivious address-
ing transducers, because they too can not distinguish between single-node and
multi-node networks unless they receive a message. We now explicitly give the
results that are not transferable to addressing transducers, and why this is the
case.

First, Proposition 2] does not hold for oblivious addressing transducer net-
works, because this result talks about a concrete transducer network. The
transducer may now exploit the number of nodes. In particular, if there are
multiple nodes, the transducer may assume messages are eventually delivered.
So, it is possible to construct a multi-node transducer network in which the
oblivious addressing transducer smuggles node identifiers in the sent messages
(by reading A11), and when these arrive, it is possible to only output the input
facts whose active domain is contained in the set of node identifiers. This would
prevent the transducer network from computing a generic query.

Although not purely about obliviousness, the result of Theorem [5.11] is also
not transferable to addressing transducers, as illustrated by the following ex-
ample, where relation A1l is used to make the nodes dependent on message
arrival.

Example 7.1. We give an addressing transducer that reads only relation A1l
and that computes the nonmonotone emptiness query on a nullary input relation
R (see also Example . Reading relation A1l in output or memory queries,
a node can know from the start if it is alone or not. If the node is alone, then
it can immediately output the desired result by looking at the local relation R.
But if there are multiple nodes, every node x sends each local fact A11(y) as a

4Note, we can not completely forbid the use of node relations because we need to indicate
addressees.
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message A(y) to node y. Although the operational semantics drops the message
when y is not a neighbor of z, because each network is connected, y has at least
one neighbor from which it will receive A(y). This way, each node can establish
its own identity. Next, the same protocol as in Example [5.4] can be followed. O

8 Conclusion

Encouraged by Hellerstein [24], 25], we have tried in this paper to formalize and
prove the CALM Conjecture. We do not claim that our approach is the only
one that works. Yet, we believe our approach is natural because it is firmly
grounded in previous database theory practice, and delivers solid results. Much
further work is possible; we list a few obvious topics:

e Look at Hellerstein’s other conjectures (e.g. the CRON conjecture [13]);

e Investigate the expressiveness of variations or extensions of the basic dis-
tributed computation model presented here; and,

e Identify special cases where essential semantic notions such as monotonic-
ity, consistency [12], network-independence, coordination-freeness, etc, are
decidable.

APPENDIX

A Expressing Queries

A.1 Undecidability

Proposition A.1. Consistency for FO-transducer networks is undecidable.

Proof. We reduce the finite satisfiability problem for FO to deciding consistency
for FO-transducer networks. Let ¢ be an FO-sentence over a database schema
D. We construct a transducer network 7 that is consistent iff ¢ is not finitely
satisfiable.

Consider the transducer II from Example that is over transducer schema
T. We may assume without loss of generality that the relation names of T do
not occur in D. We obtain a new transducer schema Y’ from Y by adding D
to YTin. We obtain a new transducer II’ from IT by modifying the send rule for
relation U to only send facts when ¢ is satisfied on the local input over D.

Suppose that ¢ is finitely satisfiable. Consider a network N with two (con-
nected) nodes z and y. Let 7 denote the transducer network with IT on both
nodes. Let I be a database instance over D on which ¢ is true. Consider
the input distributed database instance H with H(z) = I U{R(1), R(2)} and
H(y) = 0. Consider the prefix of a fair run of 7 on H where first z does a
heartbeat transition: because ¢ is true on I, node x sends messages U(1) and
U(2) to y. In the second transition, we can deliver message U(1) to y or message

32



U(2), or both. Each choice results in a different output at y, which results in
a different global output because x never outputs anything (x does not receive
messages from y). Hence, the transducer network is not consistent.

For the other direction, suppose that ¢ is not finitely satisfiable. Then there
is no input distributed database instance for 7 on which messages will be sent,
in which case T is consistent because on every input, every run produces the
empty output. O

Proposition A.2. Network independence for FO-transducers is undecidable.

Proof. We reduce the finite satisfiability problem of FO to deciding network-
independence of FO-transducers. Let ¢ be an FO-sentence over a database
schema D. We construct a transducer II that is network-independent iff ¢ is
not finitely satisfiable.

Consider the transducer II in Example [4.6] that is over schema T. We may
assume without loss of generality that the relation names of T do not occur in
D. We obtain a new transducer I’ by modifying IT as follows:

e using the protocol of Lemma[4.8] we let all nodes collect all the input facts
of D available on the network; and,

e the output query is modified so that output can only be produced if the
formula ¢ is satisfied on the (fully) collected instance over D in memory,
in addition to detecting a complete network-topology (as before).

It is possible to construct II’ so that its output, message, and memory relations
are not in D. Note that on any network, the transducer network resulting from
IT' is consistent: this is because before the output can be produced at a node, it
should have obtained the entire input over D, and it should have detected that
the network topology is complete.

Suppose that ¢ is finitely satisfiable. Let I be a database instance over D on
which ¢ is true. Denote I’ = TU{R(1)}. Then, on a complete network-topology,
the transducer network resulting from IT" outputs 7'(1) on any horizontal parti-
tion of I’. Indeed, the nodes forward all facts of I to each other and in any run
there will be a moment when all nodes have these facts and have detected that
the network-topology is complete. On any other network-topology, for every in-
put partition of I’, the resulting transducer network outputs nothing. Therefore
IT is not network-independent.

For the other direction, suppose that ¢ is not finitely satisfiable. Then
every transducer network for II' computes the empty query and II’ is therefore
network-independent. O

33



A.2 Proof of Lemma [4.§]

First, we specify the parts of the transducer-schema Y that we need: T;, = D;
Tisg = {(R™8, k + 1), (R**, k4 2) | R® € D} U {done?}; and,

Y nem = {(Rmem, k), (RackMem’ k+ 2) | R(k) c D}
U {doneMen®  notDone) missing(®} U {started®, ready®}.

We have not specified the database schema Y, because this schema is not
used in the transducer construction. The idea is that a node = will send its local
input facts over relation R®) € T, as facts with predicate R™3, with as the
last component its own node identifier to indicate the origin of the fact (hence
the increased arity of k4 1). We call this last component the “tag”. Next, when
a node y receives a tagged R™®8-fact, it removes the tag and stores the fact in
its relation R™°™ and it sends an R**-fact to acknowledge the receipt of it.
These acknowledgments have the contents of the received R™®8-fact (including
the tag), with an additional last component containing the identifier of y. The
node = checks whether y has (eventually) acknowledged all input facts of . If
yes, then x sends out done(z,y). From the viewpoint of y, if y has received
done(z,y) from all other nodes x then it knows that it has accumulated all the
input facts on the network.

Some further details are as follows. Let x be a node. For a relation R in
Yin, node x uses the relation R*(Mem to store all received acknowledgments
for its local input facts over relation R. The relation notDone is used by x to
remember all the other nodes that have not yet acknowledged all input facts of
2. The relation doneMem is used by z to remember all done-messages having
as the second component its own identifier. The relation missing is nonempty
at x as long as = has not received a done-message from all other nodes. The
relation started helps x to differentiate between its first local transition and
all the following local transitions. This makes sure that other memory relations
have been correctly initialized before they are read.

Now we specify the transducer II over T. We describe the queries with the
language UCQ™, which is contained in FO. As usual, unions are then expressed
by having multiple rules with the same head. As a general remark about message
sending, for each message relation, we always have a “forwarding” rule that just
resends all received messages, so that eventually all nodes can receive those
messages.

First, for each R*) € D we have the following rules to let all nodes forward
their (tagged) input R-facts to each other, and to store the received facts in
memory (including acknowledgments):
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R;rrllsdg(ula ce auk,X) — R(u1, R ,uk), Id(X).
RIS (ug,. .., u, x) < R™8(uy, ..., uy, x).
Rirﬁ(s)m(uly e ,uk) — R(U1, e ,uk).
R{Egm(ul, . ,uk) — RmSg(ul, . ,uk,x).

Rk (uy, ... uy, x,y) ¢ R™8(uy, ..., uy, %), Id(y).

snd
Rk (uy, ... u, x,y) < R (uy, ..., u, %, y).
RackMem(y, 0wy, %, ¥) < R (uy, ... uy, x,y), Id(x).

We also specify rules for the other relations in Y. For convenience, let us
denote D = {ngl), Rgl@), o Rglk")}. First, we need to remember that the first
local transition has already happened, using the following rule:

startedins() + .

Next, on each node x, the relation notDone contains all nodes that have not
yet acknowledged the receipt of all local input facts of z. A node does not have
to acknowledge its own input facts, so notDone will not contain x itself. This
relation is recomputed during every local transition, using the following rules:

notDoneiys(y) + Ry (us, ..., ), Id(x), Al1l(y), —Id(y),

ackMem
_‘Rl (ula"'vukmxay)'

notDoneiys(y) Ry (us, ..., 0, ), Id(x), Al1l(y), -Id(y),

_‘R?leMem(ul’ ceey Uk, X y)

notDonegq(y) < notDone(y).

Note that if a node was initialized with no local input tuples over some rela-
tion RZ(-ki) € D, then the corresponding insertion rule for notDone will not fire.
In that case, the node will not consider any other nodes “responsible” for ac-
knowledging the receipt of its input facts over relation R;. This is the desired
behavior. Also, the deletion rule for notDone allows for the recomputation of
notDone during every local step: only the nodes that have not confirmed every
local input fact are reinserted again. Thus, after a while, relation notDone will
become (and remain) empty.

When a node z notices that another node y has acknowledged all local input
facts of , node = sends out done(x,y). This is accomplished by the following
rules:

donegnd(x,y) « started(), Id(x), A11l(y), —Id(y), -notDone(y).

donegnq(x,y) < done(x,y).
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These done-messages are stored at the addressed node:
doneMem;s(x,y) < done(x,y), Id(y).

Finally, when a node y has received done from all other nodes , it can output
the ready flag. This is accomplished by the following rules:

missing; () < Id(y), A11l(z), -Id(z), ~doneMen(z,y).
missing,, () < missing().

ready; .() < started(), -missing().

Note that in a single-node network, the missing-fact is never created. In
that case, the ready-fact is already produced in the second transition (thus after
started() is created).

The transducer II above can actually be made inflationary as well. In par-
ticular, using the equivalence FO = NrDatalog ™, we can write a NrDatalog -
transducer where relations notDone and missing do not appear in the memory
schema Yo but are computed locally: one would locally compute notDone in
the sending query for the done-relation, and one would locally compute missing
in the insertion query for the ready-relation.

B Expressiveness Analysis

B.1 Proof of Lemma (While to FO-transducer)

We show how to simulate a While-program on a single-node FO-transducer
network. A While-program can be simulated by iterated heartbeats using well-
known techniques [4]. Because this is not entirely obvious, we will illustrate
the technique. Consider the simple While-program in Algorithm [I] over input
schema D = {R?), SM} and output schema D’ = {T()}. Intuitively, if R repre-
sents a graph then the While program collects all edges that are reachable from
the nodes in relation S. By introducing a temporary relation U, we can rewrite
this program so that 7" is only modified at the very end. See Algorithm[2] Next,
any While-program can be translated to a list of statements in which explicit
control flow is represented by conditional and unconditional “goto” statements.
This also works for nested while-loops. When translating Algorithm [2] to this
form, we obtain Algorithm [3] There, V' holds the result of the expression that is
tested for non-emptiness by the while-loop condition. Let us refer to this form
as a “list program”.

We will now simulate Algorithm [3] with an FO-transducer. First, we define
a transducer schema Y with Ti, =D, Toue = D', Trneg = 0 and

Tmem = {(U) 2)7 (Uprev7 2)’ (Step15 0)7 ttt (Step870)}
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Algorithm 1 A While-program.

T :={T(u,v) | R(u,v) A S(u)};

Tprev = (Z);
while (T'\ TP # () do
TP = T

T:=TU{T(v,w) | Ju(T(u,v)AR(v,w))};

end

Algorithm 2 Rewritten version of Algorithm

U:={U(u,v)| R(u,v) A S(u)};
Uprev .= ;
while (U \ UP™¥ # ) do
Pty U;
U:=UU{U(v,w) | Fu(U(u,v) A R(v,w))};
end

T:=U,;

Algorithm 3 List program for Algorithm

stepl: U :={U(u,v) | R(u,v) A S(0)};

step?: UP™ := ();

step®: V :i={V ()| U(u,v) A =UP™ (u,v)};
step?: if (V = 0) goto (step®);

step®: UP™ :=U;

step®: U :=UU{U(v,w) | Ju(U(u,v) A R(v,w))};

7

step’: goto (step?);

step®: T :=U,
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Relations step! to step® model the program counter of the list program. The
idea is that at any moment in time at most one of these relations is active
(nonempty) and that they activate each other in the correct way in order to
represent the desired control flow. We now specify a transducer II over T
that simulates Algorithm [3] on a single-node network. As a general remark,
some step’-relations with i € {1,...,8} are read inside the queries that update
relations U and UP™V, to make sure that U and UP™' are updated only at
the moment when the original list program updates them. We will also specify
the deletion queries for U and UP™ because assignment in a While-program is
destructive in the sense that previous facts can only stay in the relation if they
are on the right hand side of the assignment. The queries are as follows:
stepj,,() < —step'(), ~step®(), ..., ~step®().

Uins(4, v) < step!(), R(u,v), S(u).
Utns (1, v) < step®(), U(u,v).
Upns(v,w) < step®(), U(u,v), R(v,w).

Ugel(u,v) < step®(),U(u, v).
stepi, () « step!().

stepi () < step?().

step} () « step”().

Vi)  step*(), Ulu,v), -UP**(a,v).
Vael() + step?().

stephs() ¢ step’().

step,() < step’(), V().

UP™V(u,v) + step®(), U(u,v).
ULy (u,v)  step®(), UP™(u,v).
stepi,() = step’().

step],() « step®().

stepl,() < stept(),~V().
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Tous (0, v) + step®(), U(u,v).

Fori e {1,...,7}: step},() + step’().

We never delete step®() because we do not want to accidentally restart the
simulation of the While program: indeed, when step’() for each i € {1,...,8}
is missing, a new step!() fact is created. Note that the queries for inserting
into relations step® and step® together simulate the if-goto statement at line 4
of Algorithm [3]

B.2 Proof of Lemma (FO-transducer to While)

Let 7 be a single-node transducer network, running an oblivious FO-transducer
IT that does not read message relations. Let Q denote the query computed by
T. We describe a While-program P to compute Q. Intuitively, P consists of one
big loop that during one iteration performs the same state changes as II during
one heartbeat transition. Also, in order to terminate, the While-program must
detect repetition of transducer states.

To illustrate, consider the transducer given in Algorithm [ that computes
the query of Section intentionally in a more complex way. Specifically, the
memory relation A continuously alternates between being empty and nonempty.
The insertion queries for relations U and T only produce a nonempty output
when A is nonempty.

For two sets S; and Ss, let diff(S1,S2) abbreviate the expression ((51 \
S3) U (S2\ S1)). Consider now the While-program P in Algorithm [5[ to explic-
itly simulate the transducer of Algorithm [4] The program P keeps simulating
the updates to the relations A, U and T until no more changes occur to all
of them. Surely, if the transducer state stops changing, no more output facts
can be produced because only heartbeat transitions can occur and because local
transitions are deterministic. However, because of the alternating behavior of
relation A, the program P never stops if it uses only this test. For the trans-
ducer itself, the alternating behavior of relation A is no problem because its
output is defined on infinite runs anyway. But program P needs to halt because
otherwise its output is undefined. Using the technique of Abiteboul and Simon
[3], however, P can be modified to detect that it is in an infinite loop. This
implies that the transducer has repeated a state and will output no new output
facts. After detecting the infinite loop, the program P then breaks the loop and
the final contents of relation T is the output.

B.3 Proof of Lemma (eliminate Id)

Let T be a single-node transducer network, with FO-transducer II over transdu-
cer schema Y. Let x denote the single node. Let Q denote the query computed
by 7. We assume that II does not read relation A11 and does not read message
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Algorithm 4 A simple FO-transducer.

Schema: Yy, = {R®), SWY: Yo = {TP}; Tinge = 0 Tinem = {AQ, UP].
Queries:

Auus() ¢ = A().

Aga()  AQ).

Uins(v,w) < A(), T(uw,v), R(v,w).
Ugel(u,v) < A(), U(u,v).

Tout (u, v
Tous(u,v) < A(), U(u,v).

relations. Here we will show how to rewrite II to eliminate the use of relation
Id as well. We thus obtain an oblivious transducer.

B.3.1 Definitions and Notations

Van den Bussche and Cabibbo [31] have shown how to convert an untyped FO-
formula to a typed one that computes the same query (over a typed relation
schema). We will use that result here. We distinguish between two sorts of
values:

e values in the active domain of an input over Y;,; and,
e the single node x of T.

For these sorts we use the symbols adom and id respectively. The technique of
[31] requires that each sort has a completely separated domain of values. Hence,
we will assume that  does not occur in the adom values. We will see later that
this assumption has no undesired consequences.

The definitions below are specifically tailored for the two sorts above and
therefore less general as in the paper [3I]. A type 7 is a tuple of sort symbols.
An example is (adom, id, adom, adom). A k-type is a type with arity k.

A typed database schema F is a finite set of pairs (R,7) with R a relation
name and 7 the associated type of R, such that no relation name occurs twice.
This corresponds to an ordinary database schema untyped(F) that consists of

e a relation R for each (R, 7) € F with k the arity of 7; and,
e the relations Id™") and Adom) (assumed not to be in F already).

We define a typed database instance I over F as a normal database instance
over untyped(F) such that
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Algorithm 5 While-program based on the transducer of Algorithm

[All auziliary relations start empty]
while (ﬁstarted() V (diff (A, AP*V) U diff (U, UPV) U diff (T', TP*®V) # (Z))) do
started := {started()};

APV = A;
uprey .= U;
Trrev =T
Ains == {A() | 2AP™Y()};

Uins := {U(v,w) | Ju(AP™Y() ATP™(u,v) A R(v,w)) };

0

Ager = {A() | APV() };
(

Udel := {U(u,v) | AP"V() AUP™(u,v)};

[We explicitly simulate the updating of memory relations]
A= (Aprev U (Ajns \ Adel)) \ (Adel \ Ains);
U := (Uprev U (Uins \ Udel)) \ (Udel \ Uins);

T:= TU{T(u,v)|AP"Y() A R(u,v) A S(u)}
UAT (w, v) [ APV () AUP™ (u, ) };

end

o Il = {Id()},

o [|pson = {Adom(a) | a € adom(I), a # x},

e for each fact R(ai,...,ar) € I, where R is not Id or Adom, and 7 =
(s1,-..,8k) is the type of R in F, we require for each i € {1,...,k} that

a; # z if s; = adom and a; = x if s; = id. We say that this fact has type
T.

Also, we will specify the queries of FO-transducers with relational calculus
to make a better connection with the previous work [31]E We assume that the
active domain semantics is used to evaluate these queries [2].

B.3.2 Split tuples by type

We now construct an intermediate transducer II? to compute on the single-node
network x the same query Q as II, when we restrict attention to input instances

5For easier technical presentation, we assume that relational calculus queries produce tuples
instead of facts. These tuples can be easily turned into facts by prepending the correct
predicate.
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I over Yy, with x ¢ adom(I). We define the schema Y2 of I1? as follows. First,
T2 = Tin; Y20 = YTous; Tige = 0; and Y7, consists of

e relation Adom(®);

e relation started(®; and,

e the relations RT(k) for each R*) € Ynem U Yous and each k-type .

Concerning Y2 the idea is that in IT2 the facts over relation R*) € Y em U

mem?
Yout of IT are represented by all the disjoint relations {R(Tk) | 7 is a k-type}.
We now describe the FO-queries of TI2. To start, in the first transition, we
initialize relation Adom to contain the active domain of the input over Yj,, and
we also compute the fact started( ) so that other queries can know that relation
Adom has been initialized. We omit the details of these relatively simple queries.
Next, we define the queries for the other memory relations of II?. Consider

R¥ ¢ 12 with R*®) € Y em. Let the insertion query for R in II be the

mem?
following relational calculus query:

{(ug,...,u) | (ug,...,u)}.

The FO-formula ¢ is over Yin U Tout U Timem U {IdM}. We write ¢*Plit to
denote the modification of ¢ that is obtained by replacing for each R*) e
Yiem U Yout, €ach occurrence of an atomic subformula R(uj,...,ux) by the
non-atomic formula (\/TE& R, (uy,... ,uk)) where « is the set of all k-types.
Now, denoting 7 = (s1,..., sk), we define the insertion query for relation R, in
II2 to be the following relational calculus query:

{(ug, .. we) | @ (uy, .o w) A S (us) AL .. A Sk(ug) A started()}

where for each i € {1,...,k} we define S; = Adom if s; = adom and S; = Id if
s; = id. The deletion query for R, in II? can be defined in a similar way, based
on the deletion query of R in II. Again, this is similar for a relation R, with
R™) € Y., but with the difference that the deletion query in II? will always
return empty (because output only accumulates).

Finally, for R*) e T2, = Yout we define the output query of R in I12 to copy
the contents of memory relation R, where 7 is the k-type (adom, ..., adom).
This way, the value x can not be output on input instances that do not con-
tain z in their active domain (see our earlier assumption). This completes the
description of transducer IT2. N

As for notation, for a fact f = R.(aq,...,ax) we write f to denote R(a,...,ax),
i.e., to drop the type subscript. The following lemma can now be shown by in-
duction on the structure of FO-formulas.

Lemma B.1. Let I be an input instance over Yy, = Y2, such that = ¢ adom(I).

n
On input I, on the single-node network z, let J; and Js be transducer states
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for I and TI? respectively. This implies Id(z) € Ji|(sys) and Id(z) € Jo|sys)-
Suppose for each R® € Thom U Yous that

Jilr = U{? | f € Lalr.}

TEQ

where « is the set of all k-types. In words: the relation R in J; is represented
exactly by the split R-relations in Js.
Consider some relational calculus query over input schema Y, U Tou U
T mem U {TdM}:
Cr={(ug,...,u) | p(us,..., )}

Consider the modified relational calculus query:

CQ = {(1.117 - ,uk) | g@sPlit(ul, Ce 711};)}.
‘We have C(Jl) = CQ(J2) O

Let 72 denote the transducer network where we run I12 on z. Now we have
the following property:

Lemma B.2. 72 computes the query Q when restricted to inputs not contain-
ing x.

Proof. Let I be a database instance over Y, with z ¢ adom(I). Let R and R?
denote the unique runs of 7 and 72 on input I respectivelyﬂ Let p1, p2, ...,
and p!, ph, ..., denote the sequences of configurations of R and R? respectively.
For i > 1 we denote p; = (s;,b;) and p} = (s},b}). Using Lemma [B.1] it can be

shown by induction on ¢ > 1 that for each relation R*) € T\,om U Toue we have

si@)|r = J{F| f€sia@)]r, }-

TEQ

In words: although in IT? the tuples are divided by their type, they still represent
exactly the same tuples as in II. In this expression, the configuration-index for
run R?2 is offset by 1 because the queries of II? first have to wait until relation
started becomes nonempty.

We are left to show that II? outputs Q(I). Let R®) e YTou. Let f =
R(aq,...,ar) be an output fact produced in run R. Because by assumption
x ¢ adom(I) and because the query Q is generic, we must have that f has
k-type 7 = (adom,...,adom). Using the above property, the memory fact

R.(ay,...,a;) is produced in run R? (and is never deleted). By specification
of the output queries in 112, the fact R(a1,...,ax) is output in R? as well. The
other direction is similar. O

6The runs are unique because there are only heartbeat transitions.
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B.3.3 Well-typed formulas

Consider the typed database schema £ that consists of:

e the relation (R, 7) for each R*®) € Ty, where 7 is k-type (adom, . .., adom);
and

3

e the relation (R,,7) for each R™ € Yem U You and each k-type 7.

Let ¢ be an FO-formula used in a query of IT2. Formula ¢ is over the schema
T2 U2, U{IdM}. When we would ignore the (simple) usage of relation
started in ¢, formula ¢ is over the schema untyped(£). Now we can apply
Proposition 1 of [31] to ¢, to obtain ™', which is a well-typed formula over &.
Formula ¢"°!! computes the same query as ¢ when applied to a typed database
instance over &£, but importantly, "' does not read the relations Adom and
I4d directly. Instead, it has variables with the sort adom or id that range over
the active domain of the input instance and {z}, respectively. Since ¢! does
not read relation Adom anymore, we can also safely remove the occurrence of
relation started from it.

Because formula ¢"°!! uses two sorts of variables, it is not directly usable for
a (normal) FO-transducer. We now explain how to remove the id-variables from
Vel 50 that only the adom-variables remain, giving us again a (normal) formula
with a single sort of variable. So, let ¢ be an FO-formula used for a memory
relation in IT2, either for insertion or deletion. Abbreviate 1 = @"°!l. Let us
also define the following sentences: true := Vu(u = u) and false := Ju(u # u),
where u is an adom-variable not yet occurring in ¥. By structural induction, we
now convert 1) to a normal FO-formula 1+, by keeping only the adom variables
as follows:

e Suppose ¥ is (u = v) with u an adom-variable and v an id-variable. We
define 1+ as (u = u) A false, because adom- and id-variables can never
point to the same value (using our assumption that inputs do not contain
value z).

e Suppose 1 is (v; = v,) with v; and v, being id-variables. We define 1
as true, because id-variables can only point to the same value z.

e Suppose ¥ is (w3 = uy) with u; and u, being adom-variables. We define
’l/)”L as (111 = UQ).

e Suppose 1 is R(wy, ..., wy) with R*%) € Ti,. Then R has type (adom, ..., adom)
in £. Hence, each variable w; is an adom-variable. We define " as
R(Wl, PN 7Wk).

e Suppose ¢ is R.(wy,...,w) with ng) € Tmem U Yout. Denote 7 =
(81,...,8k). Let uy,...,u, be the adom-variables of wy,...,wy in order.
By construction of 1, for each i € {1,...,k}, the sort of w; is s;. We
define ¥* as R, (uy,...,uy).
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e Suppose 1 is Y1 V . Let wlL and ’lﬁzi denote the conversions of 7 and
1o respectively. We define 9+ as it v wgi.

e Suppose ¥ is Jw(v1). If wis an adom-variable then we define ¢+ as Jw (e ")
and otherwise we define ¢+ as %,

e Suppose ¢ = —¢p;. We define 1)+ as ﬂ(z/)ﬁ).

In 9, there are no id-variables and all adom-variables have been preserved.
In conclusion, to remove relation Id from an FO-formula ¢ of II?, we use the

transformation (gawe“)i. We will use this below.

B.3.4 Construct new transducer

We construct a third and last FO-transducer II? that computes the query Q.
For a type 7, we write #7 to denote the number of adom-components. We
now define the schema Y3 of II3 as

()

° T?n = Tin; T3ut — Tout; T?nsg = (2)7 and,
o Tdom = {R(T#T) | R®) € T em U Yous, 7 is a k-type}.

Note that T3 is very similar to schema Y2, with the difference that (i) the
memory relations in Y2 in general have a lower arity to store just the adom-
values, and (%) relation started is omitted because the relation Adom does not
need to be computed anymore.

Now we define the queries of II3. First, let R, € 13

| = #7. Let k be the arity of 7. We have R, e Y2 . Let the insertion
query for R, in II2 be

By definition,

{(w1y .o ywi) | (e, .. )}

We define the insertion query for RT(l) in II® to be:

we ‘L
{(ag, o oyua) | (@) (ur, o un)}
where uy,...,u, are the adom-variables of wy,...,wx (in order). The deletion
query for R.® in 113 is defined similarly. For R®®) € T2 .. we define the output

query in II? as the one that copies the memory relation R, to R with 7 the
k-type (adom, ..., adom).
Before we can look at the properties of IT?, we need some additional notation.

Consider RY) € T3 .- Let k be the arity of 7. We have R ¢ T2 ., Let AC
{1,...,k} be the component indices of T corresponding to an adom-variable. Let

f : A — N be the strictly increasing function that maps A to contiguous integers
starting at 1. For example, if A = {3,6,7} then f = {3 +— 1,6 — 2, 7 +— 3}.
Let ¢ be a tuple (ay,...,a;). We write /(") to denote the tuple (b,...,bx)
where for each i € {1,...,k} we have b; = ay(;) if i € A and b; = x otherwise.
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Intuitively, we insert the single id-value x back to obtain a k-tuple. We use this
notation for facts as well.

Let 72 denote the transducer network obtained by putting IT® at node x.
The following lemma can again be shown by structural induction on the (well-
typed) FO-formulas.

Lemma B.3. Let I be a database instance over Tj, = Y2 = T3 with z ¢
adom(I). On input I, on the single-node network x, let Jo and J3 be transducer
states for I1? and II? respectively. Suppose for each R.® €12 that

Jolr, = {17 | f € J3|r. }-

Let o be a type. Consider some relational calculus query over input schema
Tin U2, U{Id®} that produces only tuples of type o:

Co = {(wa, -y w0) | @, s}

Consider the following transformed query, which is over input schema Yj, U

T3
welly
Cs = {(uh e ’un) | ((,0 ell) (ulv R 7un)}
where uy,...,u, are the free adom-variables of (™)', in the same relative
order as they occur in wy,...,w,. We have Ca(Jo) = {t7(9) | t € C3(J5)}. O

We now have the following property:
Lemma B.4. 73 computes the query Q.

Proof. Similarly to the proof of Lemma we can show by using Lemma
that 72 computes the same query as T2 when restricted to inputs not containing
x, which (by Lemma is the original query Q restricted to those inputs. At
this point, we cannot say yet that 72 computes the full query Q, i.e., for all
inputs on which Q is defined. We will show now that this is actually the case.
First, observe that transducer II% is oblivious. Indeed, II does not use All,
and we have further eliminated the use of Id from transducer II to obtain II3.
Then, Lemma tells us that 72 computes a generic query Q’. Let I be an
instance over Y;, with possibly € adom(I). There is another instance J over
Ti, and a permutation h of dom such that h(J) = I and « ¢ adom(J). As
seen above, we have Q'(J) = Q(J) and thus h(Q'(J)) = h(Q(J)). By genericity
of both @ and Q we then have Q'(h(J)) = Q(h(J)) and thus Q'(I) = Q(I).
In conclusion, the transducer network 73 computes the same query Q as the
original transducer network 7 but without reading the relations Id and A11.0J
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