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Deciding Eventual Consistency for a Simple Class
of Relational Transducer Networks

Tom J. Ameloot and Jan Van den Bussche

Abstract
Networks of relational transducers can serve as a formal model for

declarative networking, focusing on distributed database querying appli-
cations. In declarative networking, a crucial property is eventual con-
sistency, meaning that the final output does not depend on the message
delays and reorderings caused by the network. Here, we show that even-
tual consistency is decidable when the transducers satisfy some syntac-
tic restrictions, some of which have also been considered in earlier work
on automated verification of relational transducers. This simple class of
transducer networks computes exactly all distributed queries expressible
by unions of conjunctive queries with negation.

1 Introduction
Declarative networking [16] is an approach by which distributed computations
and networking protocols, as occurring in cloud computing, are modeled and
programmed using formalisms based on Datalog. Recently, declarative network-
ing formalisms are enjoying attention from the database theory community, so
that now a number of models and languages are available with a formally defined
semantics and initial investigations on their expressive power [5, 18, 13, 1, 6].

A major hurdle in using declarative methods for cloud computing is the
nondeterminism inherent to such systems. This nondeterminism is typically due
to the asynchronous communication between the compute nodes in a cluster or
network. Accordingly, one of the challenges is to design distributed programs
so that the same outputs can eventually be produced on the same inputs, no
matter how messages between nodes have been delayed or received in different
orders. When a program has this property, we say it is eventually consistent
[22, 14, 15, 4]. Of course, eventual consistency is undecidable in general, and
there is much recent interest in finding ways to guarantee it [4, 1].

In the present paper, we view eventual consistency as a confluence notion.
On any fixed input, let J be the union of all outputs that can be produced
during any possible execution of the distributed program. Then in our definition
of eventual consistency, we require that for any two different outputs J1 ⊆ J
and J2 ⊆ J resulting from two (partial) executions on the same input, the
same output J can be produced in an extension of either partial execution. So,
intuitively, the prior execution of the program will not prevent outputs from
being produced if those outputs can be produced with another execution (on
the same input).
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In this paper, we consider clusters of compute nodes modeled as relational
transducers, an established formal model for data-centric agents [3, 21, 11, 10,
12]. In particular, we consider relational transducers where the rules used by
the nodes to send messages, to update their state relations, and to produce
output, are unions of conjunctive queries with negation. This setting yields a
clear model of declarative networking, given the affinity between conjunctive
queries and Datalog. We thus believe our results also apply to other declarative
networking formalisms, although in this paper we have not yet worked out these
applications.

Our first main result is the identification of a number of syntactic restrictions
on the rules used in the transducers, not so that eventual consistency always
holds, but so that checking it becomes decidable. Informally, the restrictions
comprise the following.

• The cluster must be recursion-free: the different rules among all local pro-
grams cannot be mutually recursive through positive subgoals. Recursive
dependencies through negative subgoals are still allowed.

• The local programs must be inflationary: deletions from state relations
are forbidden.

• The rules are message-positive: negation on message relations is forbidden.

• The state-update rules must satisfy a known restriction which we call
“message-boundedness”. This restriction is already established in the ver-
ification of relational transducers: it was first identified under the name
“input-boundedness” by Spielmann [21] and was investigated further by
Deutsch et al. [11, 12].

• Finally, the message-sending rules must be “static” in the sense that they
cannot depend on state relations; they can still depend on input relations
and on received messages.

The last two restrictions are the most fundamental; in fact, even if just the
last restriction is dropped and all the others are kept in place, the problem is
already back to undecidable. The first three restrictions can probably be slightly
relaxed without losing decidability, and indeed we just see our work as a step
in the right direction. Consistency is not an easy problem to analyze.

The second result of our paper is an analysis of the expressive power of
clusters of relational transducers satisfying our above five restrictions; let us call
such clusters “simple”. Specifically, we show that simple clusters can compute
exactly all distributed queries expressible by unions of conjunctive queries with
negation, or equivalently, the existential fragment of first-order logic, without
any further restrictions. So, this result shows that simple clusters form indeed
a rather weak computational model, but not as weak as to be totally useless.

Related work The work most closely related to ours is that by Deutsch et
al. on verification of communicating data-driven Web services [12]. The main
differences between our works are the following. (i) In their setting, message
buffers are ordered queues; in our setting, message buffers are unordered mul-
tisets. Unordered buffers model the asynchronous communication typical in
cloud computing [15] where messages can be delivered out of order. (ii) In their
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setting, to obtain decidability, message buffers are bounded and lossy; in our
setting, they are unbounded and not lossy. (iii) In their setting, transducers
are less severely restricted than in our setting. (iv) In their setting, clusters of
transducers are verified for properties expressed in (first-order) linear temporal
logic;1 in our setting, we are really focusing on the property of eventual consis-
tency. It is actually not obvious whether eventual consistency (in the way we
define it formally) is a linear-time temporal property, and if it is, whether it is
expressible in first-order linear temporal logic.

Also, this paper is a follow-up on our previous paper [6]. In our previous
paper, we did not consider the problem of deciding eventual consistency; we
simply assumed eventual consistency and were focusing on expressiveness is-
sues. Moreover, while the distributed computing model used in our previous
paper is also based on relational transducers, there are differences in the mod-
els. In the previous model, we were focusing on standard queries to databases,
computed in a distributed fashion by distributing the database in an arbitrary
way over the nodes of the network. In the present model, we directly consider
distributed queries, i.e., the input to the query is a distributed database, and
different distributions of the same dataset may yield different answers to the
query. Furthermore, in the previous model, transducer programs are considered
to be network-independent, and nodes communicate in an epidemic manner by
spreading messages to their neighbors, who read them one at a time; in the
present model, the network is given, different nodes can run different programs,
and nodes can directly address their messages to specified nodes. The perspec-
tive taken in our previous paper is equally interesting but different; we have
simply chosen here to focus on the present perspective because it is the one
mostly assumed by other authors in the area of declarative networking.

This paper extends our conference paper [7] by detailing all proofs, and by
fully characterizing the computational complexity of the decision problem.

Organization We start in Section 2 by giving preliminaries about common
database constructs, relational transducers, and their networks. Section 3 for-
malizes consistency for networks, along with syntactic restrictions leading to
so-called “simple” networks; related (un)decidability results are also presented.
Section 4 shows that consistency of a simple network with multiple nodes can be
reduced to consistency of a simple single-node network. Next, Section 5 estab-
lishes a small model property for simple single-node networks. This is used in
Section 6 to give a procedure for deciding whether a simple single-node network
is inconsistent, along with a NEXPTIME-completeness result for the complexity.

The expressiveness of simple networks, not necessarily single-node, is ana-
lyzed in Section 7. We conclude in Section 8.

2 Preliminaries
2.1 Database Concepts
We first recall some basic notions from database theory [2]. A database schema
is a finite set D of pairs (R, k) where R is a relation name and k ∈ N is the

1Deutsch et al. can also verify branching-time temporal properties, but only when trans-
ducer states are propositional.
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associated arity ofR. A relation name is allowed to occur only once in a database
schema. We often write a pair (R, k) ∈ D as R(k). An arity of zero is also called
nullary.

We assume some infinite universe dom of atomic data values. A fact f is
a pair (R, ā), often denoted as R(ā), where R is a relation name – also called
predicate – and ā is a tuple of values over dom. A database instance I over a
database schema D is a finite set of facts such that for each R(a1, . . . , ak) ∈ I
we have R(k) ∈ D. Let Z be a subset of relation names in D. We write I|Z
to denote the restriction of I to the facts whose predicate is a relation name
in Z. For a function h : dom → dom we define h(I) = {R(h(a1), . . . , h(ak)) |
R(a1, . . . , ak) ∈ I}. The active domain of I, denoted adom(I) ⊆ dom, is the
set of atomic data values that occur in I. We also use this notation for facts.

A query Q over input database schema D and output database schema D′ is
a partial function mapping database instances over D to database instances over
D′. A special but common kind of query are those where the output database
schema contains just one relation. A query Q is called generic if for all input
instances I and all permutations h of dom, the query Q is also defined on the
isomorphic instance h(I) andQ(h(I)) = h(Q(I)). We recall that a generic query
Q is domain-preserving, in the sense that adom(Q(I)) ⊆ adom(I) for all input
instances I. We use the word “query” in this text to mean generic query.

2.2 Multisets
A multiset m over a universe U is a function that maps each element e of U to
a natural number m(e) that represents the number of times that e occurs in m.
The set operators ∩, ∪, and \ can be defined for multisets in a natural way. For
two multisets m1 and m2, we write m1 v m2 to denote that m1(e) ≤ m2(e) for
each e ∈ U . For a multiset m, we write set(m) to denote the collapse of m to a
set in which we put only the elements of U with multiplicity at least 1. Lastly,
when m is given by a more complicated expression, we will write num(e,m) to
denote the count of e in m.

2.3 Unions of Conjunctive Queries
We now recall the query language unions of conjunctive queries with (safe) nega-
tion, abbreviated UCQ¬. This language is equivalent to the existential fragment
of first-order logic [2]. It will be convenient to use a slightly unconventional for-
malization of conjunctive queries.

We assume an infinite universe var of variables. We will use typewriter font
for variables. An atom is of the form R(u1, . . . , uk) where ui ∈ var for each
i ∈ {1, . . . , k}. A literal is an atom, or an atom with “¬” prepended; these
literals are respectively called positive and negative.

A conjunctive query (or simply rule) ϕ is a four-tuple (headϕ, posϕ,negϕ,nonϕ)
where headϕ is an atom, and posϕ and negϕ are sets of atoms, and nonϕ is a set
of nonequalities of the form (u 6= v) with u, v ∈ var. Note that negϕ is a set of
atoms, and not negative literals. We call headϕ, posϕ, and negϕ respectively the
“head atom”, the “positive body atoms”, and the “negative body atoms”. Let
var(ϕ) denote all variables that occur in ϕ. Let free(ϕ) denote all free variables
of ϕ (occurring in the head), and let us abbreviate bound(ϕ) = var(ϕ)\ free(ϕ).
Bound variables can be thought of as being existentially quantified. As a safety
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restriction, we require that all variables of headϕ, negϕ and nonϕ occur in posϕ.
Note, nonequalities can be simulated by applying negation to an equality rela-
tion = that would have to be provided in every context where the rule is used,
but for technical convenience we will immediately consider 6= to be a primitive
in our language.

A rule ϕ may be written in the conventional syntax. For example, if headϕ =
T (u, v), posϕ = {R(u, v)}, negϕ = {S(v)}, and nonϕ = {u 6= v}, then we may
write ϕ as

T (u, v)← R(u, v), ¬S(v), u 6= v.

The ordering of atoms and nonequalities in the body is immaterial. We will
often refer to the literals of the body more directly, by prepending the symbol
“¬” to the negative body atoms. For the previous example, the body literals
are R(u, v) and ¬S(v).

A rule ϕ is said to be over a database schemaD if for each atomR(u1, . . . , uk) ∈
{headϕ} ∪ posϕ ∪ negϕ we have R(k) ∈ D. A valuation for ϕ is a total func-
tion V : var(ϕ) → dom. The application of V to an atom R(u1, . . . , uk) of ϕ,
denoted V (R(u1, . . . , uk)), results in the fact R(a1, . . . , ak) with ai = V (ui) for
each i ∈ {1, . . . , k}. We will also use this notation for applying V to a set of
atoms, which results in a set of facts. Let I be a database instance over D. The
valuation V is said to be satisfying for ϕ on I if V (posϕ) ⊆ I, V (negϕ)∩ I = ∅,
and V (u) 6= V (v) for each (u 6= v) ∈ nonϕ. In that case, ϕ is said to derive the
fact V (headϕ). The result of ϕ applied to I, denoted ϕ(I), is defined as the set
of facts derived by all possible satisfying valuations for ϕ on I. Note that rules
can only define generic queries.

A union of conjunctive queries is a finite set Φ of conjunctive queries that
all have the same predicate and arity for the head atom. The resulting language
is denoted as UCQ¬, and Φ will also be called a UCQ¬-program. Let I be a
database instance. The result of Φ applied to I, denoted Φ(I), is defined as⋃
ϕ∈Φ ϕ(I). If Φ = ∅ then always Φ(I) = ∅.

2.4 Distributed Databases and Queries
We now formalize how input data is distributed across a network and define
a notion of queries over this data. A network N is a finite, nonempty set of
nodes, which are values in dom. A distributed database schema E is a pair
(N , η) where N is a network, and η is a function that maps each x ∈ N to an
ordinary database schema. A distributed database instance H over schema E is
a function that assigns to each node x ∈ N an ordinary database instance over
the local schema η(x).

Let F be another distributed database schema over the same network as E .
A distributed query Q over input schema E and output schema F is a function
that maps instances over E to instances over F .

2.5 Transducers
The computation on a single node of a network is formalized by means of re-
lational transducers [3, 21, 12, 11, 10, 6, 23]. First, a transducer schema Υ is
a tuple (Υin,Υout,Υmsg,Υmem,Υsys) of database schemas, called respectively
“input”, “output”, “message”, “memory”, and “system”. A relation name can
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occur in at most one database schema of Υ. We fix Υsys to always contain two
unary relations Id and All. A transducer state for Υ is a database instance over
Υin ∪Υout ∪Υmem ∪Υsys.

An relational transducer Π over Υ is a collection of queries, where each query
has the input schema Υin ∪Υout ∪Υmsg ∪Υmem ∪Υsys:

• for each R(k) ∈ Υout there is a query QRout having output schema {R(k)};

• for each R(k) ∈ Υmem there are queries QRins and QRdel both having output
schema {R(k)};

• for each R(k) ∈ Υmsg there is a queryQRsnd having output schema {R(k+1)};

These queries will form the internal mechanism that a node uses to update its
local storage and to send messages. The reason for the incremented arity in
the message queries is that the extra component will be used to indicate the
addressee, as will be explained in the next section.

Let Π be a transducer over schema Υ. A local transition of Π is a 4-tuple
(I, Ircv, J, Jsnd), also denoted as I, Ircv → J, Jsnd, where I and J are transducer
states for Υ, Ircv is an instance over Υmsg and Jsnd is an instance over Υmsg but
where each fact has one extra component, such that (denoting I ′ = I ∪ Ircv):

J |Υin,Υsys = I|Υin,Υsys ;

J |Υout = I|Υout ∪
⋃

R(k)∈Υout

QRout(I ′);

J |Υmem =
⋃

R(k)∈Υmem

(I|R ∪R+(I ′)) \R−(I ′)

Jsnd =
⋃

R(k)∈Υmsg

QRsnd(I ′),

where, following the presentation in [23],

R+(I ′) = QRins(I ′) \ QRdel(I ′); and,
R−(I ′) = QRdel(I ′) \ QRins(I ′).

Intuitively, on the receipt of message facts Ircv, a local transition updates the
old transducer state I to new transducer state J and sends the facts in Jsnd.
When compared to I, in J potentially more output facts are produced; and
the update semantics for each memory relation R adds the facts produced by
insertion query QRins, removes the facts produced by deletion query QRdel, and
there is no-op semantics in case a fact is both added and removed at the same
time [21]. Output facts can not be removed. Note that local transitions are
deterministic in the following sense: if I, Ircv → J, Jsnd and I, Ircv → J ′, J ′snd
then J = J ′ and Jsnd = J ′snd.

For the current paper, we immediately restrict attention to transducers
whose queries are specified with UCQ¬. This results in a rule-based formalism
to express the computations, following the idea behind declarative networking
[16].
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2.6 Derivation Trees
We want to formally describe how a fact is derived by a transducer, i.e., we
want to make visible what rules and valuations are used. To explain a fact, in
some cases it suffices to give a so-called derivation pair (ϕ, V ), consisting of a
rule ϕ and a satisfying valuation. In other cases, we want to explain all facts
that are recursively needed by the satisfying valuation, i.e., the facts V (posϕ).
For this purpose, we use derivation trees, and this is formalized below.

Let Π be a transducer over a schema Υ. A (full) derivation tree T of Π is a
tuple (nodesT , edgesT , ruleT , valT , litT ) where

• nodesT and edgesT are respectively the nodes and parent-child edges that
together form a tree;

• ruleT is a function that maps each internal node x ∈ nodesT to a rule
ruleT (x) of Π;

• valT is a function that maps each internal node x ∈ nodesT to a valuation
valT (x) for ruleT (x) such that the nonequalities are satisfied; and,

• litT is a function that maps each non-root node x ∈ nodesT to a literal
litT (x) in the body of ruleT (y) where y is the parent of x,

subject to the additional constraints:

• for each internal node x ∈ nodesT , for each literal l in the body of rule
ruleT (x), there is precisely one child y of x such that litT (y) = l;

• for each non-root node x ∈ nodesT , if litT (x) is a database literal, or if
litT (x) is negative, then x must be a leaf; and,

• for all non-root internal nodes x ∈ nodesT , having a parent y, applying
valuation valT (x) to the head of rule ruleT (x) results in the same fact as
applying the parent valuation valT (y) to the (positive) atom inside literal
litT (x).

For each internal node x of T , we write factT (x) to denote the fact valT (x)(a),
where a is the head of ruleT (x). For a leaf node y with parent x, we write
factT (y) to denote the fact valT (x)(a), where a is the atom inside the literal
litT (y). We write intT to denote the set of internal nodes of T .

From nodesT and edgesT we can always uniquely identify the root node of
T , which we denote as rootT . Let f be a fact over a relation R(k) ∈ Υout ∪
Υmsg ∪Υmem. A derivation tree T is said to be for fact f if applying valuation
valT (rootT ) to the head of rule ruleT (rootT ) results in the fact f .

2.6.1 Schedulings

To relate derivation trees to runs, we use the concept of schedulings. Formally,
a scheduling for a derivation tree T is a function κ that assigns to each internal
node x of T a nonzero natural number κ(x), subject to the constraint that
nodes always get strictly lower numbers than their ancestors. Intuitively, κ(x)
represents the transition number of a run in which the rule ruleT (x) should fire
under valuation valT (x).
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The canonical scheduling of T , denoted κT , is the (unique) scheduling for
which there is at least one internal node x such that κT (x) = 1, and for all
parent-child edges (x, y) we have κT (x) = κT (y) + 1. Intuitively, the canonical
scheduling executes the derivations of T as tightly as possible at the beginning
of a run.

2.7 Transducer Networks
We now formalize a network of compute nodes. A transducer network N is a
triple (N ,Υ,Π) where N is a network, Υ is a function that maps each node
x ∈ N to a transducer schema, and Π is a function that maps each node
x ∈ N to a transducer over the schema Υ(x). For technical convenience, we
assume that all transducer schemas use the same message relations. This is not
really a restriction because the transducers are not obliged to use all message
relations. We make no further assumptions about how names for input, output
and memory relations might be shared by several nodes.

2.7.1 Distributed Schemas

Naturally, we can define the distributed input database schema inN for N that
maps each node x to the input schema of Υ(x). The distributed schemas outN

and memN can be defined similarly.

2.7.2 Operational Semantics

Any distributed database instance over inN can be given as input to N . Let
H be such an instance. Let Υmsg denote the shared message schema of N . A
configuration of N on H is a pair ρ = (s, b) of functions s and b where for each
x ∈ N ,

• letting D1 = Υ(x)in and D2 = Υ(x)sys, function s maps x to a transducer
state s(x) for Υ(x) such that s(x)|D1 = H(x) and s(x)|D2 = {Id(x)} ∪
{All(y) | y ∈ N}; and,

• b maps x to a finite multiset of facts over the shared message schema of
N .

We call s the state function and b the buffer function. Intuitively, the instance
H is used to initialize each node, and for each x ∈ N , the system relations
Id and All provide the local transducer Π(x) the identity of the node x it is
running on and the identities of the other nodes. Next, the buffer function maps
each x ∈ N to the multiset of messages that have been sent to x but that have
not yet been delivered to x. A multiset allows us to represent duplicates of the
same message (sent at different times).

The start configuration of N on H, denoted start(N , H), is the unique
configuration ρ = (s, b) where for each x ∈ N , letting D = Υ(x)out ∪Υ(x)mem,
we have s(x)|D = ∅ and b(x) = ∅.

We now describe the actual computation of the transducer network. A global
transition of N on inputH is a 4-tuple (ρ1, x,m, ρ2), also denoted as ρ1

x,m−−→ ρ2,
where x ∈ N , and ρ1 = (s1, b1) and ρ2 = (s2, b2) are configurations of N on H
such that
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• m v b1(x) and there exists a Jsnd such that

s1(x), set(m)→ s2(x), Jsnd

is a local transition of transducer Π(x);

• for each y ∈ N \ {x} we have s1(y) = s2(y);

• for y ∈ N \ {x} we have b2(y) = b1(y) ∪ J→ysnd (multiset union) and for x
we have b2(x) = (b1(x) \m) ∪ J→xsnd (multiset union and difference) where
J→zsnd = {R(ā) | R(z, ā) ∈ Jsnd} for each z ∈ N .

We call x the active node and m the delivered messages. Intuitively, in a global
transition, we select an arbitrary node x and allow it to receive some arbitrary
submultiset m from its message buffer. The messages in m are then delivered
at node x (as a set, i.e., without duplicates) and x performs a local transition,
in which it updates its memory and output relations, and possibly sends some
new messages addressed to specific nodes (possibly itself). The first component
of each message fact in Jsnd is regarded as the addressee, and this component is
projected away during the transfer of the message to the buffer of that addressee.
Messages having an addressee outside the network are lost. If m = ∅, we call
this global transition a heartbeat transition and otherwise we call it a delivery
transition. A heartbeat transition corresponds to the real life situation in which
a node does a computation step when a local timer goes off and no messages
have been received from the network.

A run R of a transducer network N on distributed input database instance
H is a finite sequence of global transitions ρi

xi,mi−−−−→ ρi+1 for i = 1, 2, 3, . . . , n,
with n ∈ N, where ρ1 = start(N , H), and the ith transition with i ≥ 2 operates
on the resulting configuration of the previous transition i− 1. We write last(R)
to denote the last configuration reached by R.

Note, when a node changes its output or memory relations during one global
transition, then these changes are visible to that node only starting from the
next global transition in which that node is active. Also, several facts can
be delivered together during a transition, regardless of whether they were sent
during different earlier transitions or during the same earlier transition.

We have not defined global transitions that are concurrent, i.e., global tran-
sitions in which multiple nodes simultaneously receive messages from their own
message buffer and do a local transition. This can be simulated by multiple se-
quential global transitions: let the nodes become active in some arbitrary order,
and each active node just reads its own message buffer. Because local transi-
tions are deterministic, the nodes will update their state and send messages in
the same way as they would during a concurrent transition.

2.7.3 Example

Here we give an example transducer network.

Example 2.1. Let N = {x, y} be a network of two nodes. We define a trans-
ducer network N = (N ,Υ,Π). There are no memory relations in this example.

First, define Υ(x)in = {A(1)}, Υ(x)out = {T (1)}, Υ(x)msg = {A(1)
msg, B

(2)
msg},

and Υ(x)mem = ∅. Transducer Π(x) is given as
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Amsg(y, u)← A(u), All(y), ¬Id(y).
T (u)← Bmsg(x, u), Id(x).

Next, define Υ(y)in = {B(2)}, Υ(y)out = {T (1)}, Υ(y)msg = Υ(x)msg
(shared messages), and Υ(y)mem = ∅. Transducer Π(y) is given as

Bmsg(y, u, v)← B(u, v), All(y), ¬Id(y).
T (u)← Amsg(u).

On any input distributed database instance H for N , node x sends its local
A-facts as Amsg-facts to y. Similarly, y sends its local B-facts as Bmsg-facts to
x. For a received Bmsg-fact, node x outputs the second component in relation
T if the first component is its identifier. Node y simply outputs all received
Amsg-facts. �

2.8 Encoding
We specify how a transducer network can be given as input to a decision proce-
dure. Let N be a transducer network. The encoding is a sequence of transducers
(and their schemas), one for each node of N . For each node, (i) the transducer
schema is represented by a sequence of (relname,type)-pairs, where relname is a
relation name and the type indicates whether the relation is input, output, etc;
and, (ii) the transducer itself is given by a sequence of rules that are written in
full, like in Example 2.1.2 We assume that the transducer schema only mentions
relations effectively used by the rules. To represent the relation names and vari-
ables, binary numbers must be used, so that the number of bits is logarithmic in
the total number of relations and variables respectively. Moreover, some small
fixed alphabet of auxiliary characters needs to be used, to represent the type
of relations in the transducer schema, and to separate the different components
(schemas, transducers, rules, etc).

We write |N | to denote the size of the encoding of N .

3 Consistency
Let N = (N ,Υ,Π) be a transducer network. Let H be an input distributed
database instance for N . By the asynchronous nature of message delivery,
different runs of N on H can deliver messages in different orders. So, if a
transducer at some node x ∈ N applies negation too quickly, without having
seen some crucial messages, we could accidentally produce a wrong output.
Worse, output facts can never be retracted once they are produced. By contrast,
transducer networks where such problems are not possible are called consistent.

Formally, we call N consistent on H if for any two runs R1 and R2 of N
on H, for every node x ∈ N , for every output fact f available at x in the last
configuration of R1, there exists an extension R′2 of R2 such that f is available
at x in the last configuration of R′2. To rephrase, if during one run some node
can produce an output, then for any run there exists an extension in which that

2The components of the body atoms have to specified in full, because we need to describe
which variables are used, and how they are potentially shared between atoms.
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fact can be produced on that node too. Naturally, we call N consistent if N is
consistent on all input distributed database instances. If N is not consistent,
we say that N is inconsistent . Our definition of consistency is a formalization
of the notion of “eventual consistency” [4, 15], but see also Section 8 for a
discussion.

The transducer network given in Example 2.1 is consistent. Indeed, say,
node x outputs a fact T (a) during a run. This means that x has received
Bmsg(x, a), which was sent by node y based on an input fact B(x, a). On the
same input distributed database instance, consider now any run where x has not
yet output T (a). We can extend this run as follows. We do a global transition
with active node y, so that y sends its input B-facts as Bmsg-facts to x. One of
these messages is Bmsg(x, a). Then, in a following global transition, we deliver
Bmsg(x, a) to x, and x again outputs T (a). Similarly, we can argue that if the
node y outputs a T -fact in one run, then any other run on the same input can
be extended so that y outputs again this fact. Therefore the transducer network
is consistent.

By contrast, consider the following example of a transducer network that is
inconsistent.

Example 3.1. Let N = {x, y} be a network. We define a transducer network
N = (N ,Υ,Π) as follows. In this example, we do no deletions on memory
relations, and we will only explicitly specify the insertions.

First, define Υ(x)in = {A(1), B(1)}, Υ(x)out = ∅, Υ(x)msg = {A(1)
msg, B

(1)
msg},

and Υ(x)mem = ∅. The node x sends its local A- and B-facts to the other node
y. Transducer Π(x) is given as

Amsg(y, u)← A(u), All(y), ¬Id(y).
Bmsg(y, u)← B(u), All(y), ¬Id(y).

Next, define Υ(y)in = ∅, Υ(y)out = {T (1)}, Υ(y)msg = Υ(x)msg (shared
messages), and Υ(y)mem = {B(1)}. Transducer Π(y) is given as:

B(u)← Bmsg(u).
T (u)← Amsg(u), ¬B(u).

Now we show why N is inconsistent. Let H be the following instance over
inN : H(x) = {A(1), B(1)} and H(y) = ∅. There are two quite different runs
possible, that we describe next. Suppose that both runs start with a global
transition with active node x. This causes x to send both Amsg(1) and Bmsg(1)
to y. For the first run, in the second transition we deliver only Amsg(1) to y,
which causes y to output T (1). For the second run, in the second transition we
deliver only Bmsg(1) to y, which causes y to only create the memory fact B(1).
Now, the output fact T (1) can not be created in any extension of the second
run because each time we deliver Amsg(1) to y, the presence of B(1) prevents
T (1) from being created. These two runs show that N is not consistent. �

3.1 Decision Problem
Since output facts can not be retracted once they are produced, it seems useful
to know if a transducer network could be inconsistent. Formally, we have the
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following inconsistency decision problem: given a transducer network N , decide
if N is inconsistent (for some input). One can expect this problem to be unde-
cidable in general. For this reason, we consider possible syntactical restrictions
on transducer networks in Section 3.2, and Section 3.3 investigates their effect
on decidability.

3.2 Syntactical Restrictions
We introduce several syntactical restrictions on individual transducers and on
transducer networks as a whole.

Let Π be a transducer over a schema Υ. For an individual rule ϕ of Π, we
consider the following possible restrictions:

• We say that ϕ is message-positive if there are no message atoms in negϕ.
Note, this seems to be a natural constraint in our model because message
delivery is asynchronous.

• We say that ϕ is static if posϕ and negϕ do not contain output or memory
atoms.

• We say that ϕ is message-bounded if bound(ϕ) ⊆ A and bound(ϕ)∩B = ∅,
where A and B are respectively the set of variables of ϕ occurring in
positive message atoms, and the set of variables of ϕ occurring in output
or memory atoms. In words: every bound variable occurs in a positive
message atom, and does not occur in output or memory atoms (positive
or negative). This is an application of the more general notion of “input-
boundedness” [21, 12, 11].3

We consider the following restrictions for transducer Π:

• We say that Π is recursion-free if there are no cycles in the positive de-
pendency graph of Π, which is the graph having as vertices the relations
of Υout ∪Υmsg ∪Υmem and there is an edge from relation R to relation S
if S occurs positively in a rule for R in Π.

• We say that Π is inflationary if there are no rules for the deletion queries
of memory relations. This means that Π can not delete memory facts once
they are produced.

We call Π simple (for lack of a better name) if

• Π is recursion-free and inflationary;

• all send rules are message-positive and static;4 and,

• all insertion rules for output and memory relations are message-positive
and message-bounded.

3We have replaced the term “input-boundedness” by “message-boundedness” because the
word “input” has a different meaning in our text, namely, as the input that a transducer is
locally initialized with.

4The restrictions considered by Deutsch et al. [11] for “input-rules”, which are closely
related to our send rules, are a bit less restrictive. Roughly speaking, they still allow the
use of nullary output and memory facts. It seems plausible that our results can be similarly
extended.
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Because input facts are never changed, note that static send rules always produce
the same result on receipt of the same messages, independently of what output
or memory facts might have been derived. Also, if Π is inflationary, memory
and output relations basically behave in the same way. However, we preserve
the difference between these two kinds of relations to retain the connection to
the unrestricted transducer model and because memory relations are useful as
a separate construct, namely, as relations used for computation but that don’t
belong to the final result.

Let N be a transducer network. We present a restriction that we can im-
pose on N as a whole. Note that messages are the only way to introduce a
dependency between different nodes of N . Now, we say that N is globally
recursion-free if there are no cycles in the positive message dependency graph of
N , which is the graph having as vertices the (shared) message relations of N
and there is an edge from relation R to relation S if S occurs positively in a
rule for R in some transducer of N .

We call N simple if

• all transducers of N are simple; and,

• N is globally recursion-free.

The Examples 2.1 and 3.1 are simple transducer networks.

3.3 Results on Decidability
One of the difficulties of the inconsistency decision problem is that we need to
verify a property of an infinite state system. Intuitively, there are infinitely
many inputs and even for a fixed input there are infinitely many configurations
because there is no bound on the size of the message buffer. As the following
two propositions show, inconsistency for transducer networks is undecidable,
even under several restrictions:

Proposition 3.2. Inconsistency is undecidable for transducer networks that
are simple, except that send rules do not have to be static.

Proof. Inspired by the proof technique of Deutsch et al. [12], we reduce the
the finite implication problem for functional and inclusion dependencies to the
inconsistency decision problem [8]. We sketch the proof; the technical details
are in Appendix A.1. An instance of the finite implication problem is a triple
(D,Σ, σ), where D is a database schema, Σ is a set of functional and inclusion
dependencies over D, and σ is a functional or inclusion dependency over D. We
call (D,Σ, σ) valid if I |= Σ implies I |= σ for each instance I over D.5 We have
to check validity of (D,Σ, σ).

For the instance (D,Σ, σ), we construct a single-node transducer network N
that is simple except that send rules are not static, and so that N is inconsistent
iff (D,Σ, σ) is not valid. Let Π denote the single transducer of N . We let the
input schema of Π contain D. Transducer Π sends a special marker message
to itself, and when the marker is received, Π checks whether the input over D
satisfies Σ and σ. For each violated dependency τ ∈ Σ ∪ {σ}, transducer Π

5We write I |= σ to denote that σ holds in I. We write I |= Σ to denote that I |= σ for
each σ ∈ Σ.
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sends a violτ ( )-message to itself. Non-static send rules are needed for checking
the inclusion dependencies.

Upon receiving violσ( ), the transducer can do something inconsistent, by
blocking a rule for output relation T as was done in Example 3.1, so that
an incoming Amsg(a)-fact is ignored when memory fact B(a) was previously
created. But when some violτ ( ) message with τ ∈ Σ is received, we can repair
the inconsistencies. Concretely, we fill a nullary memory relation repair, that
is tested positively in another output rule for relation T . This second rule for
T can henceforth output all received Amsg-facts.

Now, if (D,Σ, σ) is not valid, there is an instance I over D such that I |= Σ
and I 6|= σ. Instance I can be extended to an input J for N , and we make two
runs as follows. In the first run, an output T (a) is produced by first delivering
some fact Amsg(a) and by postponing the marker message (to postpone the
dependency checking). In the second run, we do the converse, i.e., we deliver
the marker first. Then, dependency σ turns out to be violated, and upon delivery
of violσ( ), we can block the output. No repairs are possible because only σ is
violated.

Conversely, if N is not consistent on some input J , this can only be explained
by σ being violated and no dependency of Σ, so that the input of N gives rise
to an instance I over D for which I |= Σ and I 6|= σ. Hence, (D,Σ, σ) is not
valid. �

Proposition 3.3. Inconsistency is undecidable for transducer networks that
are simple, except that messages may participate in cycles in the local positive
dependency graphs of individual transducers.

Proof. Inspired by the proof technique of Deutsch et al. [12], we reduce the
Post correspondence problem to the inconsistency decision problem [19]. We
sketch the proof; the technical details are in Appendix A.2. An instance of
the Post correspondence problem is a pair (U, V ) where U = u1, . . . , un and
V = v1, . . . , vn are two nonempty equal-length sequences of nonempty words
over some alphabet with at least two symbols. A match for U and V is a
sequence E = e1, . . . , em of indices in {1, . . . , n} such that the words ue1 . . . uem

and ve1 . . . vem are equal. Sequence E may contain the same index multiple
times. The problem is to check whether a match exists.

For the instance (U, V ), we construct a single-node transducer network N
that is simple except that messages can have cyclic dependencies, and so that
N is inconsistent iff (U, V ) has a match. Let Π denote the single transducer
of N . First, we provide Π with input relations to encode a word-structure: a
binary relation R represents a chain, and a binary relation L assigns a label to
each element of the chain.

The idea is to use messages to align the words of U and V to the input
word-structure, to discover a match for (U, V ). Concretely, we use messages
of the form align[i, k, l](a, b), with i ∈ {1, . . . , n}, k ∈ {1, . . . , |ui|} and l ∈
{1, . . . , |vi|}, expressing that we have already successfully aligned a sequence of
(uj , vj)-pairs with j ∈ {1, . . . , n} to the word-structure, where (ui, vi) is the
last pair tried, and the alignment of ui and vi has progressed partially up to
respectively symbols k and l, arriving at respectively elements a and b of the
word-structure. After a message align[i, |ui|, |vi|](a, b) is sent, indicating that
(ui, vi) is fully aligned, we have sending rules to align a next pair (uj , vj), by
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sending message align[j, 1, 1](a′, b′), where a′ and b′ are the successor-elements
of respectively a and b on the word-structure. Adding unrestricted message
recursion adds some notion of “iteration” to the transducer model: because
message relations are allowed to participate in cycles, the alignment to the word-
structure can repeatedly use the same pair (ui, vi), allowing us to consider all
candidate sequences E like above (but restricted to the input word structure).

If there is indeed a match for (U, V ) then we can encode the resulting word
as an input word-structure for N . So, the above alignment process can even-
tually send a message of the form align[j, |uj |, |vj |](a, a), i.e., we can align a
sequence of (ui, vi)-pairs fully to the word-structure, where the implied concate-
nation of U -words ends at the same element of the word-structure as the implied
concatenation of V -words. Then we do something inconsistent, like Example
3.1.

For the other direction, when N is inconsistent on some input, we can at-
tribute that to the sending of a message align[j, |uj |, |vj |](a, a), whose derivation
history reveals a match for (U, V ) against a valid word-structure contained in
the input of N . �

By disallowing the syntactical liberties of the previous two propositions, we
obtain decidability:

Theorem 3.4. Inconsistency for simple transducer networks is decidable in
NEXPTIME; the problem is NEXPTIME-complete.

Theorem 3.4 is proven in Sections 4, 5, and 6.

4 Simulation on Single Node
Let N be a simple transducer network. We construct a simple single-node
transducer network M that simulates N , and so that M is consistent iff N is
consistent. This will be made more precise below. The transformation can be
done in PTIME for reasonable encodings of a transducer network, and so |M| is
polynomial in |N | (cf. Section 2.8). The merit of this section lies in reducing
the technical complexity for the decidability result (Sections 5 and 6) and the
expressivity analysis (Section 7).

First, Section 4.1 gives syntactical simplifications for single-node networks.
Next, Section 4.2 formalizes the notion of simulation and formulates the result.
The sections thereafter show the result: Sections 4.3 and 4.4 respectively define
the transducer schema and transducer of M, and Section 4.5 shows that M
satisfies the desired properties.

4.1 Syntactical Simplifications
For a single-node transducer network M, we use the following syntactical sim-
plifications. It will be sufficient to view M as consisting of only a transducer
schema Υ and a transducer Π over Υ; the actual node of M is immaterial.
The schemas inM, outM and memM (Section 2.7.1) are regarded as ordinary
(non-distributed) database schemas. Accordingly, an input for M is an ordi-
nary database instance I. A configuration of M on I is a pair (s, b) where s is
a transducer state of Π and b is a multiset of facts over Υmsg. Because there is
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only a single node, sending rules of Π have no explicit addressee variable in the
head. Hence, schema Υsys will not be used.

4.2 Simulation Concept and Result
To formalize the notion of “simulation”, we introduce some auxiliary notations.
Let N denote the network of N . For a distributed database schema E over N ,
we view each node x ∈ N as a namespace containing the relations E(x): we use
symbol “x.R” to denote relation R at x. Let 〈E〉 denote the (ordinary) database
schema

{x.R(k) | x ∈ N , R(k) ∈ E(x)}.

For each distributed database instance H over E , let 〈H〉 be the following ordi-
nary database instance over 〈E〉:

{x.R(ā) | x ∈ N , R(ā) ∈ H(x)}.

Let schN denote the database schema {x.Id(1) | x ∈ N}∪{Node(1)}. Let instN
be the following instance over schN :

{x.Id(x), Node(x) | x ∈ N}.

We abbreviate 〈E〉N = 〈E〉 ∪ schN and 〈H〉N = 〈H〉 ∪ instN . We say that
an instance I over 〈E〉N is well-formed if I is isomorphic to an instance J over
〈E〉N for which J |schN = instN .6 An instance that is not well-formed is called
ill-formed.

For a configuration ρ = (s, b) of N , we write out(ρ) to denote the following
distributed instance H ′ over outN : for each x ∈ N , instance H ′(x) consists of
all output facts in s(x). If N is a single-node network, we consider out(ρ) to be
an ordinary database instance.

Now, we say that a single-node transducer network M simulates N if (i)
inM = 〈inN 〉N ; (ii) outM = 〈outN 〉; and, (iii) for each input H for N , the
following holds:

• for every run R of N on H, there is a run S of M on 〈H〉N such that
〈out(last(R))〉 = out(last(S)),

• for every run S of M on 〈H〉N , there is a run R of N on H such that
〈out(last(R))〉 = out(last(S)).

We use inM = 〈inN 〉N instead of inM = 〈inN 〉 because M needs the iden-
tifiers of the nodes to simulate message sending and the nodes’ comparisons of
their identifier to input values, and because we do not use values from dom
directly in rules (cf. Section 2.3).

Now we are ready to present the result:

Proposition 4.1. For each simple transducer network N , there exists a simple
single-node transducer network M such that (i) M simulates N , and (ii) M
is consistent iff N is consistent.

Note, the simulation property says nothing about consistency and vice versa.
The following subsections define M so that the desired properties are satisfied.

6I is isomorphic to J if there is an injective function f : dom → dom such that f(I) = J .
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4.3 Transducer Schema
We define the single transducer schema Υ of M. Denote N = (N ,Υ,Π). We
write DN

msg to denote the shared message schema of N . We define Υ as follows:

• Υin = 〈inN 〉N ; Υout = 〈outN 〉; Υmem = 〈memN 〉; and,

• Υmsg consists of (i) the relations R(k+1)
→x for which x ∈ N and R(k) ∈ DN

msg,
(ii) a relation do(0)

x for each x ∈ N , (iii) relation error(0), and (iv) relation
adom(1).

Relations of the form dox allow us to explicitly simulate a transition of node x.
Next, a relation R→x is used to send R-facts specifically to node x. The latter
relations have an incremented arity when compared to DN

msg, for the following
reason. Each transition of the transducer Π in M can simulate multiple nodes
simultaneously, and these simulated nodes could send the same message to the
same addressee. But the transition of Π can only send a set of messages. So, by
letting Π additionally put the simulated sender node in each simulated message,
we can avoid that these distinct simulated sending events would all be collapsed.
Lastly, the relations error and adom allow Π to be consistent on ill-formed
inputs; see below.

4.4 Transducer Rules
We now describe the single transducer Π of M. Essentially, the UCQ¬ queries
of Π are unions of modified UCQ¬ queries of the original transducers in N .
Some extra rules deal with ill-formed inputs.

4.4.1 Output and Memory

We do the following for each node x ∈ N . Let T (k) be an output or memory
relation in Υ(x). All rules for relation T in Π(x) are message-positive and
message-bounded. An insertion rule ϕ for relation T in transducer Π(x) is
modified to insertion rule ϕ′ for relation x.T in Π as follows:
• input, output and memory atoms R(ū) in ϕ become x.R(ū) in ϕ′, including
the head;

• atoms of the form Id(u) and All(u) in ϕ become respectively x.Id(u) and
Node(u) in ϕ′;

• (positive) message atoms R(ū) in ϕ become R→x(z, ū) in ϕ′ where z is a
new variable that is unique per message atom;

• the nonequalities in ϕ are the nonequalities in ϕ′;

• ϕ′ additionally contains the positive body atom dox( ).
Intuitively, because relation All always contains N on every node of N , it is
replaced by the shared relation Node in M. For a message atom R→x(z, ū), the
new variable z represents the extra sender-component (cf. Section 4.3). This
component is not used elsewhere in the rule and is basically projected away.

The resulting output and memory insertion rules are message-positive and
message-bounded. Because Π(x) is simple, there are no deletion rules for mem-
ory relations, so we don’t have to translate these.
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4.4.2 Messages

We do the following for each node x ∈ N . Let T (k) be a shared message relation
of N . All rules for relation T in Π(x) are message-positive and static. To let
simulated node x send messages in M, we add to Π all rules ϕ′y obtained by
combining a sending rule ϕ for T in Π(x) and a node y ∈ N . Intuitively, rule
ϕ′y models the sending of T -messages by x to the specific addressee y. Denote
headϕ = T (n0, ū), where n0 is the addressee variable. Let n1 be a new variable.
Rule ϕ′y is obtained as follows:

• the head T (n0, ū) of ϕ becomes the head T→y(n1, ū) in ϕ′y;

• ϕ′y contains positive body atoms y.Id(n0) and x.Id(n1);

• input atoms R(ū) in ϕ become x.R(ū) in ϕ′y;

• atoms of the form Id(u) and All(u), and message atoms, are transformed
as in the output and memory rules above;

• the nonequalities of ϕ are the nonequalities of ϕ′y;

• ϕ′y additionally contains the positive body atom dox( ).

Variable n0 is not removed because it might occur on several places in ϕ, and
by adding the atom y.Id(n0), we fix the addressee y. Variable n1 represents the
sender x by addition of the body atom x.Id(n1), and n1 replaces n0 in the head.

Denote N = {x1, . . . , xn}. For each x ∈ N , we also add the following rule
to Π, to send simulation messages for x:

dox( )← x1.Id(u1), . . . , xn.Id(un).

The above rule has the effect that a message doy( ) for any y ∈ N can only be
sent if all relations z.Id with z ∈ N are nonempty. And because the simulated
output, memory, and sending rules are guarded by message atoms of the form
doy( ), the entire simulation requires that these relations z.Id are nonempty.

The above message rules of Π are all message-positive and static.

4.4.3 Ill-formed Inputs

We indicate how M can be made consistent on ill-formed instances. First, using
message-positive and static send rules, it is possible to send a message error( ) if
the following constraints are violated: some relation x.Id contains two different
values; two relations x.Id and y.Id with x 6= y share a value; relation Node is
not the union of all x.Id relations.

We also add new output rules that on receipt of error( ) can produce all
possible output facts in Υout. Technically, this is done by adding rules to send all
values a from the input active domain as an adom(a)-message, and the additional
output rules combine these values upon delivery when error( ) is also jointly
delivered.
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4.4.4 Check Simple

We verify that Π is simple: (i) Π is inflationary by construction; (ii) Π is
recursion-free because the transducers of N are recursion-free and because there
are no cycles in the positive message dependency graph of N ; and, (iii) the
desired constraints on output, memory and sending rules hold, as remarked
above. Moreover, because Π is the only transducer of M and Π is recursion-
free, there are no cycles in the positive message dependency graph of M, and
thus M is simple.

4.5 Simulation and Consistency Equivalence
We now show that (i) M simulates N and (ii) M is consistent iff N is consis-
tent. First we need some additional concepts and notations. Let ρ = (s, b) be a
configuration of N on input H and let σ = (s′, b′) be a configuration of M on
input 〈H〉N . We say that σ and ρ are output-equivalent if for each x ∈ N and
each output relation R at x, we have R(ā) ∈ s(x) iff x.R(ā) ∈ s′. The notions
of input-, memory-, and system-equivalence can be similarly defined, where the
latter is about relations Id and All. By definition of 〈H〉N , configuration σ is
always input- and system-equivalent to ρ.

We say that σ is message-equivalent to ρ if for each x ∈ N , for each fact
R(ā), the cardinality of R(ā) in b(x) equals the number of messages of the form
R→x(z, ā) in b′ (each may have a different sender component). Similarly, we
say that σ has its messages included in ρ when for each x ∈ N the number of
messages of the form R→x(z, ā) in b′ is less than or equal to the cardinality of
R(ā) in b(x).

Claims 4.2 and 4.3 show that M simulates N , but they are phrased slightly
more general for later use in the consistency equivalence:

Claim 4.2. Every run R of N on an input H can be converted to a run S of
M on 〈H〉N such that last(S) and last(R) are output-, memory-, and message-
equivalent.

Proof. Let n be the number of transitions in R, and let x1, . . ., xn be the active
nodes in order. Run S will consist of n+ 1 transitions: for each i = 1, . . . , n, we
deliver doxi( ) in transition i+ 1 of S (and no other doy-messages). We start S
by doing one heartbeat transition, so that at least dox1( ) is sent. This message
is delivered in the second transition of S, to simulate the behaviour of node x1.
By input- and system-equivalence of the second configuration of S and the first
configuration of R, the third configuration of S and the second configuration of
R are output-, memory-, and message-equivalent. We can now repeat the same
for nodes x2, x3, etc. Moreover, the message-equivalence allows us to deliver
k messages of the form R→x(z, ā) in a transition of S when the corresponding
transition in R would deliver k instances of (the same) message R(ā) to an
active node x. �

Claim 4.3. Let H be an input for N . Every run S of M on 〈H〉N can be
converted to a run R of N on H such that last(R) and last(S) are output- and
memory-equivalent, and last(S) has its messages included in last(R).

Proof. First, some transitions of S might deliver a message of the formR→x(z, ā)
without jointly delivering dox( ). Because node x is only simulated when dox( )
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is delivered, message R→x(z, ā) is effectively lost. So, we can refrain from deliv-
ering R→x(z, ā) in this case, without compromising future message deliveries.
After doing this modification for all deliveries of S, we also drop any resulting
(or preexisting) heartbeat transitions except the first transition, because they
do not simulate nodes.7 This results in a new run S ′ such that last(S) and
last(S ′) have the same output and memory facts, and such that the buffer of
last(S) is included in the buffer of last(S ′) when ignoring the dox-messages.

Next, some transitions i of S ′ might deliver two messages dox( ) and doy( )
with x 6= y. Such a transition i simulates multiple nodes in parallel. But in
M, the simulated rules of each node x are guarded by dox( ), and these rules
can only access relations of x itself. Hence, transition i can be converted to a
sequence of transitions in which only one node is simulated at a time (in some
arbitrary order), and in which each node receives the same messages that it
received in i. This results in a new run S ′′, where last(S ′) and last(S ′′) are
exactly the same when ignoring the dox-messages.

Starting from the second transition, run S ′′ simulates precisely one node in
each transition. In the opposite fashion as in Claim 4.2, we can now convert
S ′′ to a run R of N on input H so that last(S ′′) and last(R) are output-,
memory-, and message-equivalent. Note, last(S) and last(R) are output- and
memory-equivalent, and last(S) has its messages included in last(R). �

Now we are ready for the actual consistency equivalence between N and
M, where each direction is shown in a separate claim:

Claim 4.4. If M is consistent then N is consistent.

Proof. Let H be an input for N . Let R1 and R2 be two runs of N on H,
where last(R1) contains an output fact R(ā) at some node x ∈ N . We have to
show that R2 can be extended to a run R′2 such that last(R′2) also contains fact
R(ā) at x. Using Claim 4.2, we can make two runs S1 and S2 of M on 〈H〉N
such that for each i ∈ {1, 2}, configurations last(Si) and last(Ri) are output-,
memory-, and message-equivalent. In particular, last(S1) contains output fact
x.R(ā). By consistency of M, run S2 can be extended to a run S ′2 such that
last(S2) also contains x.R(ā). Lastly, extension S ′2 gives rise to an extension
R′2 such that last(R′2) is output- and memory-equivalent to last(S ′2), and so
last(R′2) contains R(ā) at x: the proof is similar to that of Claim 4.3, with
the exception that the configurations in S ′2 have their messages included in the
corresponding configurations of R′2. This is sufficient to guarantee that R′2 can
mimick the behaviour of S ′2. �

Claim 4.5. If N is consistent then M is consistent.

Proof. Let I be an input for M. We have to show that M is consistent on I.
First, suppose that I is ill-formed. If I does not contain a value for each

relation x.Id with x ∈ N then no output can ever be produced. Indeed, no
message dox( ) for any x ∈ N can be sent (and delivered), so no inconsistency
could arise because the nodes are not simulated. Otherwise, if I contains a value
for each relation x.Id, because I is still ill-formed, it will be possible to send
error( ). Then any run can be extended to produce all possible output facts,
so potential inconsistencies can always be corrected.

7This does not compromise the supply of dox-messages because they are sent in each
transition.
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Now suppose that I is well-formed, which means there is an instance J
isomorphic to I with J |schN = instN (cf. Section 4.3). Because transducer rules
of M only express generic queries, it is sufficient to show that M is consistent
on J . Let H be the (unique) input for N for which 〈H〉N = J . Let S1 and
S2 be two runs of M on J , where last(S1) contains an output fact x.R(ā). We
have to show that there is an extension of S2 for which the last configuration
also contains x.R(ā).

First, applying Claim 4.3 to run S1, we can construct a run R1 of N on
input H such that last(S1) and last(R1) are output- and memory-equivalent.
In particular, output fact R(ā) is at node x in last(R1).

Next, suppose we can construct an extension S ′′2 of S2 and a run R′′2 of N on
input H such that last(S ′′2 ) and last(R′′2) are output-, memory-, and message-
equivalent. If by chance last(S ′′2 ) already contains x.R(ā) then we are ready.
Otherwise, by output-equivalence of last(S ′′2 ) and last(R′′2), fact R(ā) will not
be at x in last(R′′2). But, by consistency of N , because R(ā) can be derived
at x in R1 (see above), there is an extension of R′′2 to derive R(ā) at x. By
message-equivalence of last(S ′′2 ) and last(R′′2), this extension can be simulated
at the end of S ′′2 to derive x.R(ā), in a similar vein as in the proof of Claim 4.2.

We are left to construct the runs S ′′2 and R′′2 .

Message saturation Because transducer Π of M is recursion-free, we can
consider the maximum height n amongst derivation trees of Π, where the height
is the largest number of edges on any path from a leaf to the root. Now, we
extend S2 to a run S ′2 by doing n additional transitions: each transition delivers
the entire message buffer, and thus simulates all nodes in parallel where each
node receives its entire (simulated) message buffer.8 Because the sending rules
of Π are message-positive and static, the message buffer of M — degenerated
to a set — will monotonously grow. Because n is the maximum height of a
derivation tree, last(S ′2) contains all messages that could possibly be sent on
input J .

Run of N Applying Claim 4.3 to S ′2 (not to S2), we can construct a run
R′2 of N on input H such that last(S ′2) and last(R′2) are output- and memory-
equivalent, and such that the messages of last(S ′2) are included in last(R′2). We
now show that actually all messages in the buffers of last(R′2) are simulated in
the (single) buffer of last(S ′2), except for maybe their precise cardinalities.

Let S(b̄) be a message in the buffer of some node y in last(R′2). We can
extract from R′2 a “global” derivation tree T to explain how S(b̄) was sent to
y: this is like a normal derivation tree, except that we also say at which node a
message was derived. Letting Π be the single transducer of M, and letting x be
the node in the root of T (i.e., x sends S(b̄) to y), the natural correspondence
between Π and N allows us to convert T into a derivation tree T ′ of Π, to
explain how to send the message S→y(x, b̄). Because sending rules are message-
positive and static, this tree T ′ is successfully executed in the last n transitions
of S ′2, so that S→y(x, b̄) is in the message buffer of last(S ′2), as desired.

8We assume run S2 contains at least one transition, so that all dox-messages are available
in the buffer of last(S2).
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Obtain message-equivalence Consider the extension R′′2 of R′2 that is ob-
tained by letting each node, in some arbitrary order, receive its entire message
buffer from configuration last(R′2). Similarly, consider the extension S ′′2 of S ′2
obtained by letting each simulated node, in the same order as in R′′2 , receive its
entire message buffer as it is simulated by configuration last(S ′2).

As we have seen above, last(R′2) and last(S ′2) essentially represent the same
messages in the buffer of each node, except that the cardinalities might be
different. But since duplicate messages are collapsed upon delivery, the nodes
do not observe the difference in cardinalities when the above two extensions
are performed. Hence, configurations last(R′′2) and last(S ′′2 ) are output- and
memory-equivalent. But they are also message-equivalent as we now explain.
First, for a node y ∈ N , the extensions deliver equivalent message sets to y.
Hence, in both extensions, node y in turn sends equivalent message sets. And
because node y has its entire message buffer (of configurations last(R′2) and
last(S ′2)) emptied during the delivery, the cardinalities of messages in last(R′′2)
and last(S ′′2 ) are the same. �

5 Small Model Property
Let N be a simple single-node transducer network. We establish a small model
property: if N is inconsistent, then N is inconsistent on an input whose active
domain size is upper bounded by an expression purely over syntactical properties
of N . For this result, we use all syntactical restrictions of simple transducer
networks.

Let Π and Υ denote respectively the transducer and its schema in N . Like
in Section 4, an input for N is an instance I over Υin, and a configuration of
N is a pair (s, b) where s is a transducer state and b is a multiset of facts over
Υmsg. Moreover, the sending rules have no explicit addressee variable in their
head, and Υsys will not be used in any rule. Such a network can always be
obtained by applying the simulation in Section 4.

5.1 Syntactical Quantities
Consider the following syntactically defined quantities about N :

• the length P of the longest path in the positive dependency graph of Π
(defined in Section 3.2), where the length of a path is measured as the
number of edges on this path;

• the largest number B of positive body atoms in any rule of Π;

• the largest arity I among input relations;

• the largest arity O among output relations;

• the number C of different output and memory facts that can be made with
values in A, where A ⊆ dom is an arbitrary set with |A| = O.

Now, let sizeDom(N ) abbreviate the expression 2ICBP. We have the following
small model property:
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Proposition 5.1. If N is inconsistent, then N is inconsistent on an instance
J over Υin for which |adom(J)| ≤ sizeDom(N ).

The rest of this section is devoted to showing this result.

5.2 Proof Outline
Here we sketch the proof of Proposition 5.1. The details are provided by the
following subsections. The proof technique is inspired by pseudoruns from
Deutsch et al. [11], although it was adapted to deal with the inconsistency
problem and to deal with message buffers (multisets). Let N , Π and Υ be like
above, and recall the syntactical quantities of N from Section 5.1.

First we give some additional terminology and notations. Let A ⊆ dom.
We call a fact g an A-fact if the values in g are a subset of A. For a set of facts
H, we write H [A] to denote the subset of all A-facts in H. Note, nullary facts
of H are always in H [A].

Let I be an input for N . Suppose N is inconsistent on I, i.e., there are two
runs R1 and R2 of N on I such that last(R1) contains an output fact f that is
not in last(R2), and there is no extension R′2 of R2 such that last(R′2) contains
f . Let C ⊆ dom be the set of values in f . Note, |C| ≤ O.

In Section 5.3, for i = 1, 2, we will select a subset of input facts Ki ⊆ I that
are needed to make all output and memory C-facts of run Ri, with the property
|Ki| ≤ CBP. This gives the instances K1 and K2. Note, C ⊆ adom(K1) because
f is created in R1. Define

J = I [adom(K1)∪adom(K2)].

Note, |adom(J)| ≤ 2ICBP = sizeDom(N ).
Next, in Section 5.4, for i = 1, 2, we will construct a run Si on input J with

the following properties:

• last(Si) and last(Ri) contain precisely the same output and memory C-
facts;

• every extension S ′i of Si gives rise to an extension R′i of Ri such that
last(S ′i) and last(R′i) again contain precisely the same output and memory
C-facts.

This gives the runs S1 and S2 on J . The focus on output and memory C-facts is
mainly the result of the message-boundedness constraint. Since f is an output
C-fact, the first property above tells us that last(S1) contains f and last(S2)
does not. Moreover, if S2 can be extended to a run S ′2 such that last(S ′2) contains
f , then the second property above would tell us that R2 can be extended to
a run R′2 such that last(R′2) also contains f . But the latter is not possible
by assumption on R2. Hence, S ′2 does not exist, and N is inconsistent on
the instance J , whose active domain size is upper bounded by sizeDom(N ), as
desired.

5.3 Input Selection
Consider the symbols defined in Sections 5.1 and 5.2. Let R be either R1 or R2.
In this section, we select an instance K ⊆ I that is needed to make all output
and memory C-facts of R, and such that |K| ≤ CBP.
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We construct a derivation history of each output and memory C-fact in R:
this includes the rules and valuations that derive the C-facts, and it also includes
the derivation histories of messages recursively needed to make those C-facts.

5.3.1 Derivation History

Let g be an output or memory C-fact derived during R. By inflationarity of
Π, the derivation of g happens in some unique transition i. We choose one
pair (ϕ, V ) of a rule ϕ and satisfying valuation V such that g is derived during
transition i by applying V to ϕ. Let us call (ϕ, V ) a derivation pair. If ϕ
contains a (positive) body message atom a, the message h = V (a) is required
by (ϕ, V ) to derive g. Similarly as we did for g, we can go to a transition in
which h was derived and select there also one pair (ϕ′, V ′) to derive h. We can
again recursively repeat the selection of derivation pairs for any message facts
needed by (ϕ′, V ′).

Formally, after the selection of derivation pairs, we obtain a function histR
that maps each pair (i, g) to a derivation pair for g, where g is an output or
memory C-fact or a recursively needed message derived in transition i. We
also have a set msgR containing triples (k,h, l) to indicate that a valuation in
transition l needs the message h to arrive, and that h itself is sent in (an earlier)
transition k. These triples indicate the timing of the required messages.

Now, let K denote the subset of all input facts h ∈ I for which there exists
a pair (i, g) in the domain of histR, denoting histR(i, g) = (ϕ, V ), such that
h ∈ V (posϕ). In words: K contains the (positive) input facts needed by the
derivation history of all output and memory C-facts in R (and any needed
messages). We now show |K| ≤ CBP. First, let us fix one output or memory
C-fact g. Any chain of messages recursively needed by g has length at most P by
recursion-freeness of Π. Moreover, in the worst case, each message recursively
requires B other messages. Therefore, the number of input facts needed by g
alone is bounded by BP. And since at most C different output and memory
C-facts are created in R, we overall have that |K| ≤ CBP, as desired.

5.3.2 Natural Properties

Section 5.3.1 allows much liberty in which histR and msgR may be chosen.
We now demand that some natural properties hold on msgR, upon which the
construction in Section 5.4 crucially depends.

First, based on msgR, for each transition i of R, we define the message
multisets βi, γi, and Ei as follows, with the intuition provided below:

• the multiplicity of a message h in βi is the number of triples (k,h, l) ∈
msgR for which l = i;

• the multiplicity of a message h in γi is the number of triples (k,h, l) ∈
msgR for which k < i and i ≤ l;

• the multiplicity of a message h in Ei is the number of triples (k,h, l) ∈
msgR for which k = i.

Let ρ1, . . ., ρn, ρn+1 denote the sequence of configurations of R, where n is the
number of transitions. Intuitively, βi contains the messages needed in transition
i; γi contains the needed messages that are sent before configuration ρi and that

24



travel through configuration ρi to be delivered in transition i (when l = i) or
later (when i < l); and, Ei contains the needed messages that should be sent in
transition i.

In Appendix B.1, we show that histR and msgR can be chosen so that the
following properties are satisfied, with the intuition provided below:

1. γi v bRi for each transition i of R, where ρi = (sRi , bRi );

2. βi is a set for each transition i of R, i.e., for each (k,h, i) and (k′,h, i) in
msgR, we have k = k′;

3. Ei = γi+1 ∩ δRi , where δRi is the set of messages sent in transition i of R.

Intuitively, property 1 means that all needed messages whose transmission over-
laps in time, also jointly occur in the message buffer, with the correct cardinal-
ities. Property 2 means that if multiple derivation pairs in the same transition
need the same message, the same origin of this message is used. Lastly, property
3 implies that for each needed message, its origin transition is chosen as late as
possible: whenever for some needed message h ∈ γi+1 we have the opportunity
to explain its origin in transition i (i.e., h ∈ δRi ), we take this opportunity (i.e.,
h ∈ Ei).

5.4 Run Projection
Consider the symbols defined in Section 5.2. Let R be either R1 or R2. We
construct a run S on input J with the following properties:

• last(S) and last(R) contain the same output and memory C-facts;

• every extension S ′ of S gives rise to an extensionR′ ofR such that last(S ′)
and last(R′) again contain precisely the same output and memory C-facts.

To improve the readability of this section, helper claims are placed in Appendix
B.2. First, Claim B.4 tells us that the second property above holds when the
first property holds and when the message buffer of last(S) is included in the
message buffer of last(R). Intuitively, this inclusion allows every extension S ′
of S to be converted to an extension R′ of R so that the buffer of S ′ remains
included in the buffer of R′, allowing R′ to make precisely the same message
deliveries as S ′.

We first sketch the main idea in the construction of S. For run R, let histR,
msgR, βi, γi, and Ei be as defined in Section 5.3. We assume that msgR satisfies
the properties given in Section 5.3.2. Run S will be a projected version of R:
we do the same number of transitions as R, and perform the message deliveries
selected by msgR, so that the output and memory C-facts of R are faithfully
created. One caveat, however, is that some transitions of S should sometimes
deliver more messages than just those of msgR because we want the message
buffer of S to be included in the corresponding message buffer of R (see above).

Let n be the number of transitions in R. For each i ∈ {1, . . . , n + 1},
we denote the ith configuration of R and S respectively as ρi = (sRi , bRi ) and
σi = (sSi , bSi ). We inductively specify the message deliveries of S so that the
following properties are satisfied for each i ∈ {1, . . . , n+ 1}:

1. sSi and sRi have the same output and memory C-facts;
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2. message buffer bSi a submultiset of message buffer bRi ; and,

3. γi is a submultiset of the message buffer bSi .

The need for the first two properties was already explained above, and property 3
helps in proving them. For the base case (i = 1), properties 1 and 2 are satisfied
because ρ1 and σ1 are start configurations, in which there are no output or
memory facts and the message buffers are empty; and, property 3 is satisfied
because γ1 = ∅, which follows from bR1 = ∅ and the property γ1 v bR1 of msgR.
For the induction hypothesis, we assume that the properties are satisfied for
ρi and σi. For the inductive step, we show that they are satisfied for ρi+1 and
σi+1. In transition i of S, which transforms σi into σi+1, we deliver the following
message multiset:

mSi =
(
bSi \ (γi \ βi)

)
∩mRi ,

wheremRi denotes the message multiset delivered in transition i ofR, and where
we use multiset difference and intersection. Intuitively, the set βi of messages
needed in transition i, is delivered, but we have to protect the messages in γi\βi,
because they are needed after transition i. All remaining facts can be delivered,
on condition that they are delivered in R.

The following subsections show the properties 1 to 3.

5.4.1 Property 1

We show that sSi+1 and sRi+1 contain the same output and memory C-facts.
First, because mSi v mRi , Claim B.6 tells us that the output and memory C-
facts of sSi+1 are a subset of those in sRi+1. For the other direction, let g be
an output or memory C-fact in sRi+1 \ sRi . Because g is a C-fact, the mapping
histR(i, g) = (ϕ, V ) is defined, where valuation V is satisfying for ϕ during
transition i of R and derives g. We show that this is also true during transition
i of S, so that g ∈ sSi+1. We look at the different components in the body of ϕ:

• Consider the input atoms. Let h ∈ V (posϕ)|Υin . We have to show h ∈ J .
First, because V is satisfying for ϕ during transition i of R, we have
h ∈ I. Moreover, because h is an input fact needed in histR, we have
h ∈ K (Section 5.3). Hence, h ∈ I [adom(K)] ⊆ I [adom(K1)∪adom(K2)] = J .
Let h ∈ V (negϕ)|Υin . We have to show h /∈ J . This follows from h /∈ I
(because V is satisfying in R) and J ⊆ I.

• Consider the message atoms. Recall that ϕ is message-positive. Let h ∈
V (posϕ)|Υmsg . We have to show that h is delivered in transition i of S,
i.e., h ∈ set(mSi ). Because h is a message needed in histR, there is a
triple (k,h, i) ∈ msgR for some k < i. Hence, h ∈ βi. Finally, Claim B.3
applied to γi v bSi (induction hypothesis) gives βi ⊆ set(mSi ).

• Consider the output and memory atoms. Let h ∈ V (posϕ)|Υout∪Υmem . We
have to show h ∈ sSi . First, because V is satisfying in R, we have h ∈ sRi .
Moreover, because g is a C-fact, the message-boundedness of ϕ implies
that h is a C-fact. Hence, h ∈ sSi by the induction hypothesis. Similarly,
for each h ∈ V (negϕ)|Υout∪Υmem we can show h /∈ sSi .

• The nonequalities of ϕ are satisfied under V in R, hence in S as well.

We conclude that V is satisfying for ϕ in transition i of S.
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5.4.2 Property 2

We show bSi+1 v bRi+1. By the operational semantics, bSi+1 = (bSi \ mSi ) ∪ δSi
and bRi+1 = (bRi \mRi ) ∪ δRi , where δSi and δRi denote the set of messages sent
in transition i of S and R respectively. Because δSi ⊆ δRi by Claim B.6, it is
sufficient to show bSi \ mSi v bRi \ mRi . Let g be an arbitrary fact. We show
num(g, bSi \mSi ) ≤ num(g, bRi \mRi ).

Because mSi v bSi , we have num(g, bSi \ mSi ) = num(g, bSi ) − num(g,mSi ).
Applying the definition of mSi further gives

num(g, bSi \mSi ) = num(g, bSi )−min{num(g, bSi \ (γi \ βi)), num(g,mRi )}
= max{e1, e2},

where

e1 = num(g, bSi )− num(g, bSi \ (γi \ βi)), and
e2 = num(g, bSi )− num(g,mRi ).

We show that both e1 ≤ num(g, bRi \mRi ) and e2 ≤ num(g, bRi \mRi ).

• We show e1 ≤ num(g, bRi \mRi ). First, rewriting e1 = num(g, bSi \ (bSi \
(γi \ βi))) and applying γi \ βi v bSi (follows from induction hypothesis
γi v bSi ), we obtain e1 = num(g, γi \ βi).
Now, since γi+1 = (γi \ βi) ∪ Ei (Claim B.2), we further have e1 =
num(g, γi+1 \ Ei). If we can show num(g, γi+1 \ Ei) = num(g, γi+1 \ δRi )
then γi+1 v bRi+1 (property of msgR) implies e1 ≤ num(g, bRi+1 \ δRi ) =
num(g, bRi \mRi ), as desired.
To show num(g, γi+1 \ Ei) = num(g, γi+1 \ δRi ), it suffices to show that
if g ∈ γi+1 then num(g, δRi ) = num(g, Ei). This equality holds, because
msgR satisfies Ei = γi+1 ∩ δRi .

• We show e2 ≤ num(g, bRi \ mRi ). We have bSi v bRi by the induction
hypothesis. Hence, e2 ≤ num(g, bRi )− num(g,mRi ). But since mRi v bRi ,
we may write e2 ≤ num(g, bRi \mRi ), as desired.

5.4.3 Property 3

We show γi+1 v bSi+1. First, Claim B.2 tells us that γi+1 = (γi \ βi) ∪ Ei.
It is sufficient to show γi \ βi v bSi \ mSi and Ei ⊆ δSi because then γi+1 v
(bSi \mSi ) ∪ δSi = bSi+1, as desired.

We show that γi \ βi v bSi \mSi . First, from the definition of mSi , we get
mSi v bSi \ (γi \ βi). By adding γi \ βi to both sides of this inclusion, and using
γi \ βi v bSi (by induction hypothesis γi v bSi ), we obtain mSi ∪ (γi \ βi) v bSi .
Hence, γi \ βi v bSi \mSi .

We show that Ei ⊆ δSi . Let g ∈ Ei. By definition of Ei, there is a triple
(i, g, l) ∈ msgR for some l > i, i.e., g is a needed message that should be sent
in transition i. By construction of histR, the mapping histR(i, g) = (ϕ, V ) is
defined, where valuation V is satisfying for rule ϕ during transition i of R and
derives g. We show that V is also satisfying for ϕ in transition i of S, which
gives g ∈ δSi . This goes similarly as in property 1, where we showed that the
C-facts of sRi+1 are in sSi+1, except that this time we only have to consider input
atoms, message atoms and nonequalities of ϕ (because sending rules are static).
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6 Decidability
Note, Proposition 5.1 does not immediately give decidability of inconsistency
for simple transducer networks because even on a fixed input instance, we still
have an infinite state system since the message buffers have no size limit. In
this section we show that inconsistency of simple single-node transducer net-
works is decidable. In Section 6.1, we give a nondeterministic exponential
time (NEXPTIME) decision procedure. In Section 6.2, we give a NEXPTIME lower
bound, thus making the problem NEXPTIME-complete. This also makes incon-
sistency for multi-node networks NEXPTIME-complete: (i) the NEXPTIME upper
bound follows from the PTIME reduction to a single-node network (Section 4),
and (ii) the NEXPTIME lower bound is because single-node networks are a special
case of multi-node networks.

6.1 Decision Procedure
In Section 6.1.1 we give the description of the decision procedure. Next, Sections
6.1.2 and 6.1.3 investigate the correctness, and Section 6.1.4 investigates the
complexity.

Let N be a simple single-node transducer network. Let Π and Υ respectively
denote the transducer and transducer schema of N . We use the syntactical
simplifications for single-node networks (Section 4.1).

6.1.1 Procedure

We give a nondeterministic procedure for checking whether N is inconsistent.
We say that the procedure accepts N if at least one computation branch has
found evidence that N is inconsistent, in which case that branch executes the
accept-statement. A branch can also stop early by executing reject.

Let P, B, C, and sizeDom(N ) be as defined in Section 5.1. Consider the
expression runLen = CBP + C. For A ⊆ dom, we say that a fact f is a A-fact
if adom(f) ⊆ A. The procedure does the following steps, in order:

1. [Input] Guess an input instance I for N with |adom(I)| ≤ sizeDom(N ).

2. [Two runs] Guess two runs S1 and S2 of N on input I, such that both runs
do at most runLen transitions. Concretely, such a run is guessed by first
choosing how much transitions are done (≤ runLen), and by choosing
for each transition which submultiset of the message buffer should be
delivered. For simulating these runs, it is sufficient to store only the last
configuration, and not all previous configurations.

3. [Output] Choose an output fact f in last(S1) that is not in last(S2). If no
such fact can be chosen, then reject.

4. [Extension] Denote C = adom(f). We extend S2 by doing P + 1 more
transitions, and in each transition we deliver the entire message buffer. If
no output or memory C-fact is created in this extension, then accept and
else reject.
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6.1.2 Correctness Part 1

Suppose that N is inconsistent. We show that the procedure accepts. Helper
claims can be found in Appendix C.1.

First, by the small model property (Section 5), there is an input I for N
such that |adom(I)| ≤ sizeDom(N ) and N is inconsistent on input I. Thus,
there are two runs R1 and R2 of N on input I such that last(R1) contains an
output fact f that is not in last(R2), and there is no extension of R2 in which
f can be output. The procedure can guess an instance I ′ that is isomorphic to
I, but for notational simplicity we may assume that simply I ′ = I.

Denote C = adom(f). By inflationarity of Π, we can always extend R2
to a run R′2 such that no more output or memory C-facts can be created in
any extension of R′2. By assumption on R2, configuration last(R′2) does not
contain f . We now convert R1 and R′2 to runs that the procedure can guess: by
Claim C.1, there exists two runs S1 and S2 of N on input I with at most runLen
transitions such that last(S1) and last(S2) contain exactly the same output and
memory C-facts as respectively last(R1) and last(R′2). Hence, last(S1) contains
f and last(S2) does not. So, the procedure can choose f as the output fact to
focus on.

Next, let S ′2 denote the extension of S2 as performed by the procedure: we
do P + 1 additional transitions, in each of which we deliver the entire message
buffer. We show that no more output or memory C-facts are created in this
extension, so that the procedure accepts, as desired. Towards a proof by con-
tradiction, suppose that there is some new transition i ∈ {1, . . . ,P + 1} that
derives an output or memory C-fact g, with the assumption that i is the first
such transition. Let (ϕ, V ) be a derivation pair for g in transition i. We show
that R′2 can be extended to output g as well, giving the desired contradiction.

Extend R′2 to a run R′′2 by doing P + 1 more transitions in each of which we
also deliver the entire message buffer. We show that V is satisfying for ϕ in the
last transition of R′′2 . We consider the different body components of ϕ:

• The input literals of ϕ are satisfied under V in the last transition of R′′2
because S ′2 and R′′2 have the same input I.

• Let h ∈ V (posϕ)|Υmsg . Because V is satisfying for ϕ in S ′2, message h can
be sent, and then Claim C.2 can be applied to know that h is delivered
in the last transition of R′′2 .

• Let h ∈ V (posϕ)|Υout∪Υmem . We have to show that h is available in the last
transition of R′′2 . First, because g is a C-fact, the message-boundedness of
ϕ implies that h is a C-fact. Because g is assumed to be the first output or
memory C-fact to be created in the extension of S2, fact h is in last(S2).
Thus h is in last(R′2) by construction of S2, so h can be read in the last
transition of R′′2 .

• Let h ∈ V (negϕ)|Υout∪Υmem . We have to show that h is not read in the last
transition of R′′2 . Like in the previous case, h is a C-fact. It is sufficient
to show that h is not in last(R′2) because no output or memory C-fact
can be created in an extension of R′2, including R′′2 . Now, because V is
satisfying for ϕ in S ′2, the inflationarity of transducer Π implies that h is
not in last(S2). Thus h is not in last(R′2) by construction of S2.
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• Also, the nonequalities of ϕ are satisfied under V in R′′2 .

6.1.3 Correctness Part 2

Suppose that the procedure accepts. We show that N is inconsistent.
Because the procedure accepts, there is a computation branch that has done

the following. The branch has guessed an input instance I for N such that
|adom(I)| ≤ sizeDom(N ). Next, the branch has guessed two runs S1 and S2 of
N on input I, and has been able to choose an output fact f in last(S1) that
is not in last(S2). Denote C = adom(f). Lastly, the branch has extended S2
to a run S ′2 by doing P + 1 additional transitions in which the entire message
buffer is delivered each time, and the procedure has observed that no output or
memory C-facts were created in this extension, including f .

To show that N is inconsistent, it is sufficient to show that no output or
memory C-facts (including f) can be created in any extension of S ′2. Towards
a proof by contradiction, suppose that an output or memory C-fact g can be
created in an extension S ′′2 of S ′2. Let us assume that g is the first such output
or memory C-fact. Let ϕ and V be a rule and valuation that are responsible
for deriving g. We show that V is satisfying for ϕ in the last transition of S ′2
itself, so that g would already have been created in S ′2, which is the desired
contradiction. To show that V is satisfying in S ′2, we proceed similarly as in the
first correctness proof above. We note the differences:

• Let h ∈ V (posϕ)|Υout∪Υmem . We have to show that h is available in the
last transition of S ′2. Like before, h is a C-fact by message-boundedness.
Because g is assumed to be the first output or memory C-fact to be cre-
ated in the extension of S ′2, it must be that h is in last(S ′2). Moreover,
because the decision procedure has not observed the creation of an out-
put or memory C-fact in the transitions of S ′2 after last(S2), fact h is in
last(S2). Hence, h can be read in the last transition of S ′2.

• Let h ∈ V (negϕ)|Υout∪Υmem . We have to show that h is not present in the
last transition of S ′2. Because V is satisfying for ϕ in S ′′2 , fact h must be
absent there. Hence, by inflationarity, h is not in last(S2).

6.1.4 Time Complexity

Here we analyze the time complexity of each computation branch of the decision
procedure. We sketch how the procedure might be implemented in an imperative
programming language where blocks of code can be guarded by a nondetermin-
istic choice, that could either execute the corresponding block or skip it. In
this framework, we show that each branch uses at most single-exponential time,
making the decision procedure be in NEXPTIME.

Encoding We use the encoding of transducer neworks from Section 2.8. Let
|N | denote the input size. Now, consider the syntactical quantities defined in
Section 5.1. The quantities I and O are upper bounded by |N | because all input
and output relations are used in rules (whose atoms are written in full). The
quantities B and P are also upper bounded by |N |. Letting n denote the number
of different transducer relations, again upper bounded by |N |, the number C is
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upper bounded by nOO = n2O log O, which is single-exponential in |N |. Hence,
sizeDom(N ) is single-exponential in |N |.

Let numFc denote the number of different facts that can be created with
sizeDom(N ) unique domain values (across all relations). Note that numFc is
single-exponential in |N |.

Input For each input instance I ′ for N with |adom(I ′)| ≤ sizeDom(N ), the
procedure can guess an isomorphic instance I. Because sizeDom(N ) is single-
exponential in |N |, an active domain value of I can be represented as a number
encoded by p bits, where p is polynomial in |N |. We omit the algorithmic details
to guess I.

Two runs Next, the procedure needs to guess two runs S1 and S2 of N on I,
such that each run does at most runLen transitions. We describe how to guess
one run S ∈ {S1,S2}; the other run can be guessed similarly after the first one.

To guess S, we do a for-loop with runLen iterations in which we incremen-
tally modify a configuration, starting with the start configuration. Note that
runLen is single-exponential in |N |. In each iteration, we choose whether or not
we do a transition. To do a transition, we select a submultiset m of the message
buffer to deliver. The size of the message buffer is at most runLen · numFc,
so this selection can be done in single-exponential time. We are left to show
that simulating the subsequent local transition can be done in single-exponential
time. Let J denote the transducer state in the last configuration obtained. Now,
for all transducer rules ϕ, for all valuations V for ϕ, if V is satisfying for ϕ with
respect to J ∪ set(m) then derive g = V (headϕ). The number of rules is linear
in |N |. For one rule, the number of variables is also linear in |N |. Hence, the
number of valuations for one rule, using values in adom(I), is single-exponential
in |N |. Finally, checking whether a valuation V is satisfying for a rule ϕ is
done by (i) checking that the nonequalities are satisfied, which can be done in
polynomial time; and, (ii) going over all body literals l of ϕ, applying V , and
checking whether J ∪ set(m) |= V (l), which can be done in single-exponential
time because |J ∪ set(m)| ≤ numFc.

Output The procedure then selects an output fact f in last(S1) that is not
in last(S2). Because the number of output facts in last(S1) is at most numFc,
we can select f in single-exponential time. Possibly last(S2) has at least the
output facts of last(S1), in which case the procedure does reject. Otherwise, we
continue.

Extension In the last step, the procedure extends S2 with P + 1 transitions,
in each of which we deliver the entire message buffer. The message buffer
in last(S2) contains at most runLen · numFc facts, and all the subsequent
buffers in the extension contain at most numFc facts because the buffer has
degenerated to a set. Hence, we can apply the same time complexity analysis
for simulating the local transitions as above.

Letting C = adom(f), checking whether a newly derived output or mem-
ory fact is a C-fact can be done in polynomial time. Overall, simulating the
additional P + 1 transitions can be done in single-exponential time.
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6.2 Complexity Lower Bound
In Section 6.1 we gave a NEXPTIME upper bound on the time complexity for
deciding inconsistency for simple single-node transducer networks. In this sec-
tion, we complement this result by giving a NEXPTIME lower bound, making the
decision problem NEXPTIME-complete. Concretely, we show that any problem
in NEXPTIME is polynomial time reducible to this decision problem.

Let A be a problem from NEXPTIME. Formally, A is a set of words over some
alphabet Σ, and there exists a nondeterministic Turing machine M such that
(i) for each word w over Σ, M accepts w iff w ∈ A; and, (ii) every computation
trace of M on an input w over Σ eventually halts and uses at most O(2|w|k )
steps, where k is a constant specific to M [20].

Fix some word w over Σ. We construct a simple single-node transducer
network N for w such that N is inconsistent iff M accepts w. We use the
syntactical simplifications of single-node networks (Section 4.1).

6.2.1 Turing Machine

First, following the conventions in Sipser [20], the Turing machine M is given
as a tuple

(Q,Σ,Γ, δ, q0, qaccept, qreject),

where Q is the set of states, Σ is the alphabet of the language A, Γ is the tape-
alphabet (satisfying Σ ⊆ Γ), δ is the transition function, q0 ∈ Q is the start
state, qaccept ∈ Q is the accept state, and qreject ∈ Q is the reject state. Function
δ has the signature Q×Γ→ P(Q×Γ×{L,R}), where L and R indicate whether
the tape head moves left or right after performing a transition.

6.2.2 Construction

We define the transducer schema Υ and transducer Π of N . The main idea is
as follows. We provide Υ with input relations to encode a computation trace
of the Turing machine M on input w. By simulating the Turing machine M ,
transducer Π checks that the input contains a valid and accepting computation
trace. If so, Π sends a special message accept( ) to itself, whose delivery is a
trigger for inconsistent behaviour. On a more technical note, the sending rules
might sometimes send accept( ) when the trace is actually partially incorrect.
To solve this, like in Section 4, we also check explicitly for errors in the input:
when an error is detected, a message error( ) is sent, and this acts as a signal
to correct any inconsistent behavior.

Inconsistency Independently of w orM , we add the following relations to Υ:
input relation A(1); memory relation B(1); output relation T (1); and, message
relations A(1)

msg, B(1)
msg, accept(0) and error(0). The following rules implement

the basic idea of making Π inconsistent when accept( ) is received; we can vary
the delivery order of Amsg-facts and Bmsg-facts. The purpose of relation error
was explained above.
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Relation Purpose

state(2) configuration state
head(1+nk) configuration head position
tape(1+nk+1) configuration tape cell contents

Table 1: Computation trace input relations

Amsg(u)← A(u), accept( ).
Bmsg(u)← A(u), accept( ).
B(u)← Bmsg(u).
T (u)← Amsg(u), ¬B(u).
T (u)← Amsg(u), error( ).

Computation trace We represent a computation trace of M on w with new
input relations. Henceforth we write n to denote the length of w. We can select
a k ∈ N such that for each string w′ over Σ, if M accepts w′ then M has an
accepting computation trace on w′ with at most 2nk transitions. Note, k is
considered a constant in the construction of the transducer.

A number a in the interval [0, 2nk ] indicates a (zero-based) configuration
ordinal in the trace. Moreover, since time usage upper bounds space usage, a
can also be used to indicate an individual tape cell. The number a has a binary
representation with nk bits, which is polynomial in n. Now, Table 1 gives the
input relations, with their precise arities, to represent a computation trace. The
first component in relations state, head, and tape, is an identifier of a Turing
machine configuration. This identifier only serves to join the different aspects
of one configuration across all three relations: relation state gives the current
state symbol; relation head gives the head position; and, relation tape gives the
contents of each tape cell.

Sending accept We now provide rules to send accept( ). Newly mentioned
relations are assumed to be added to Υmsg. The idea is as follows: in the
relations of Table 1, we look for a path of length at most 2nk configurations
that connects the start configuration to an accepting configuration, and such
that each pair of subsequent configurations is allowed by a valid transition of
M .

Suppose we could send a message of the form reach0(i, j) to say that con-
figuration j can be reached from configuration i by a valid transition of M .
The subscript 0 indicates that the distance between i and j is 20 = 1. Since
the desired path is of length at most 2nk , the following recursion-free rules can
consider all such paths:9

9We use that any length between 0 and 2nk can be represented by a sum of unique powers
of two.
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reachm(i, j)← reachm−1(i, l), reachp(l, j)

for each m = 1, . . ., nk, and each p = 0, . . ., m− 1.

Suppose too we could send a message of the form start(i) to say that
configuration i satisfies the properties of the start configuration of M on w. We
send accept( ) with these rules:

accept( )← start(i), reachm(i, j), state(j, q), qaccept(q)

for each m = 0, . . ., nk.

Here, q(1)
accept is an extra input relation containing the symbol of the start state.

Note, the number and size of the above sending rules is polynomial in n.
Appendix C.2 fills in the missing details regarding the messages reach0, start,
error, and argues the correctness.

7 Expressivity
We investigate the expressivity of simple transducer networks. First we define
how a transducer network can compute a distributed query. We consider only
consistent transducer networks because otherwise the output might vary de-
pending on the run. Let N = (N ,Υ,Π) be a consistent transducer network,
not necessarily simple. Let inN and outN be the distributed schemas for N
as defined in Section 2.7. We say that N computes the following distributed
query Q, that is over input schema inN and output schema outN : Q maps each
instance H over inN to the instance Q(H) = J over outN such that J(x) for
each x ∈ N is the set of all output facts that can be produced at x during any
run of N on H. The instance Q(H) could be defined even if N is inconsistent,
but when N is consistent, all runs on H can be extended to obtain Q(H). We
call Q(H) the output of N on input H.

We now define how UCQ¬ can express distributed queries in a more direct
way, i.e., without transducer networks. This will provide insight in the expres-
sivity of simple transducer networks. First, for a distributed database schema E
over a network N , and an instance H over E , let 〈E〉N and 〈H〉N be as defined
in Section 4.2. Intuitively, a UCQ¬-program over 〈E〉N can directly access all
relations of all nodes. To make such a program generic, node identifiers are
provided in the relations x.Id with x ∈ N and Node. Let Q be a distributed
query over an input schema E and an output schema F , where both schemas
are over the same network N . We say that Q is expressible in UCQ¬ if for each
pair x ∈ N and R(k) ∈ F(x) we can give a UCQ¬ program Φx,R over input
schema 〈E〉N and output schema {R(k)} such that for all instances H over E
we have

Q(H)(x)|R = Φx,R(〈H〉N ).

Now we can present the expressivity result:

Theorem 7.1. Consistent simple transducer networks capture the distributed
queries expressible in UCQ¬.
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This result requires showing a lower and upper bound on the expressivity of
simple transducer networks. These directions are given in the following subsec-
tions. Currently, this result depends on our definition of UCQ¬ as a language
with built-in nonequalities (or equivalently by having a built-in equality rela-
tion). In particular, for showing the upper bound, we do a nontrivial simulation
of runs of transducer networks with UCQ¬, and there we depend on the avail-
ability of nonequalities. It remains open whether the result really needs this
feature.

7.1 Lower Bound
Let Q be a distributed query over input distributed schema E and output dis-
tributed schema F , and that is expressible in UCQ¬. Let N be the network of
E and F . Over N , we define a simple transducer network N = (N ,Υ,Π) to
compute Q. We assume E(x) and F(x) have disjoint relation names for each
x ∈ N ; that E(x) and F(x) do not contain Id or All; and, that that any rela-
tions we add to N do not yet occur in E and F . Any conflicts can always be
resolved with appropriate renamings.

7.1.1 Transducer Schemas

First, we give the shared message relations of N , where relation names contain-
ing “¬” indicate the absence of a fact:

• the relations x.R(k) and x.R
(k)
¬ for each x ∈ N and R(k) ∈ E(x), to

broadcast local inputs;

• the relations x.Id(1) and x.Id(k)
¬ for each x ∈ N , to broadcast identifiers;

• the relations x.T (k) for each x ∈ N and T (k) ∈ F(x), to compute local
outputs; and,

• the relation Adom(1), to share active domain values.

For each x ∈ N , we define Υ(x)in = E(x); Υ(x)out = F(x); Υ(x)mem = ∅;
and, Υ(x)msg is the set of message relations from above.

7.1.2 Transducer Rules

Let x ∈ N . We incrementally specify the rules of Π(x). First, to send the active
domain of the input, for each R(k) ∈ Υ(x)in ∪ {Id(1)} and each i ∈ {1, . . . , k},
we add the following rule:

Adom(n, ui)← All(n), R(u1, . . . , ui, . . . , uk).

Also, for each R(k) ∈ Υ(x)in ∪ {Id(1)}, we add the following rules to send the
presence or absence of local facts at x:

x.R(n, u1, . . . , uk)← All(n), R(u1, . . . , uk).

x.R¬(n, u1, . . . , uk)← All(n), Adom(u1), . . . , Adom(uk), ¬R(u1, . . . , uk).
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Now we let Π(x) produce output. Let T (k) ∈ Υ(x)out. To satisfy the
message-boundedness restriction for the output rules, we add sending rules for
message relation x.T (k) and copy any received x.T -messages to output relation
T . Because Q is expressible in UCQ¬, there is a UCQ¬ program Φ over 〈E〉N
that expresses the T -facts at x. For each ϕ ∈ Φ, we transform ϕ into a sending
rule ϕ′ for relation x.T (k), as follows:

• the head T (u1, . . . , uk) of ϕ becomes the head x.T (n, u1, . . . , uk) of ϕ′,
where n is a new variable;

• the positive body atoms of ϕ′ are (i) Id(n), with n as defined previ-
ously; (ii) the atoms All(m) for which Node(m) ∈ posϕ; (iii) the atoms
y.R(v1, . . . , vl) ∈ posϕ, which are now messages; (iv) the (positive) mes-
sage atoms y.R¬(v1, . . . , vl) for which y.R(v1, . . . , vl) ∈ negϕ;

• the negative body atoms of ϕ′ are the atoms All(m) for which Node(m) ∈
negϕ; and,

• the nonequalities of ϕ′ are those of ϕ.

The positive body atom Id(n) has the effect that x.T -messages are sent only to
x. Now, the final output for T (k) is created by adding this rule:

T (u1, . . . , uk)← x.T (u1, . . . , uk).

This completes the specification of Π(x). Note that transducer Π(x) is
simple: all message rules are message-positive and static; all output rules are
message-positive and message-bounded; Π(x) is inflationary (there are no mem-
ory relations); and, Π(x) is recursion-free.

Following the above instructions, we can build the transducer at each node
of N . There are also no cycles through message relations in N . Hence, N is
simple.

7.1.3 Example

The following example illustrates the construction of the transducer network.

Example 7.2. Let N = {x, y}. Consider the following distributed schemas E
and F , that are over N : E(x) = {A(2)}, E(y) = {B(1)}, F(x) = {S(1)} and
F(y) = {T (1)}. Consider the following distributed query Q with input schema
E and output schema F , expressed in UCQ¬:

S(u)← x.A(u, v), ¬y.B(u), u 6= v.

T (u)← x.A(u, v), x.Id(u).

Each rule corresponds to one of the output relations.
We construct a transducer network N = (N ,Υ,Π) to compute Q. To

save space, we will not literally follow the general construction from above, but
instead restrict attention to the relations and rules that affect the output. Also,
the sending rules for Adom are clear, so we do not explicitly give them.

First, the shared message relations of N are: x.A(2), x.Id(1), y.B(1)
¬ and

Adom(1). For node x, we define Υ(x)in = {A(2)}, Υ(x)out = {B(1)}, and
Υ(x)mem = ∅. Transducer Π(x) contains the rules:
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x.A(n, u, v)← All(n), A(u, v).
x.Id(n, u)← All(n), Id(u).
x.S(n, u)← Id(n), x.A(u, v), y.B¬(u), u 6= v.

S(u)← x.S(u).

For node y, we define Υ(y)in = {B(1)}, Υ(y)out = {T (1)}, and Υ(y)mem = ∅.
Transducer y contains the rules:

y.B¬(n, u)← All(n), Adom(u), ¬B(u).
y.T (n, u)← x.A(u, v), x.Id(u).
T (u)← y.T (u).

This completes the network N . �

7.2 Upper Bound
Let N = (N ,Υ,Π) be a consistent simple transducer network. Let Q denote
the distributed query computed by N . Let x ∈ N and let R(k) be a local
output relation of x. We have to construct a UCQ¬-program Φ over input
schema 〈inN 〉N and output schema {R(k)}, such that Q(H)(x)|R = Φ(〈H〉N )
for each input distributed database instance H over inN .

The basic idea is to describe the computation of N with UCQ¬-program Φ,
for output relation R at x. To make this technically easier, we first convert N to
a single-node network in Section 7.2.1. Some common notations are introduced
in Section 7.2.2, and program Φ is described in Section 7.2.3. The correctness
is shown in Appendix D.

7.2.1 Reduction to Single-node

Consider the concepts from Section 4.2. Using Proposition 4.1, let M be the
simple single-node transducer network that simulates N , and that is consistent
because N is consistent. By the syntactical simplications of single-node net-
works (Section 4.1), the query Q′ computed by M is regarded as an ordinary
database query over input schema 〈inN 〉N and output schema 〈outN 〉. If for
every input H for N we would know that Q′(〈H〉N ) = 〈Q(H)〉, because x.R is
in 〈outN 〉, it will be sufficient to construct the UCQ¬-program Φ as a descrip-
tion of the computation of M for relation x.R. To keep the notation simpler,
we may assume without loss of generality that output relation R only occurs at
x. So, we will write “R” instead of “x.R”.

Now we are left to show Q′(〈H〉N ) = 〈Q(H)〉 for every input H over inN .
Abbreviate J = Q′(〈H〉N ). We show J ⊆ 〈Q(H)〉. By consistency of M,
there is a run S of M on 〈H〉N such that out(last(S)) = J . Next, because
M simulates N , there is a run R of N on H such that 〈out(last(R))〉 =
out(last(S)). So, J = 〈out(last(R))〉 ⊆ 〈Q(H)〉. Now we show 〈Q(H)〉 ⊆ J .
By consistency of N , there exists a run R of N on H such that Q(H) =
out(last(R)). Because M simulates N , there exists a run S of M on 〈H〉N
such that out(last(S)) = 〈out(last(R))〉. Hence, 〈Q(H)〉 = out(last(S)) ⊆ J .
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7.2.2 Common Concepts and Notations

A ground literal is a fact or a fact with “¬” prepended. For a database instance
I and a ground literal l, we write I |= l to mean l ∈ I if l is a fact and otherwise
we mean f /∈ I, where l = ¬f . For a derivation tree T , for each internal node
x, we write bodyT (x) to denote the set of ground literals obtained by applying
valT (x) to the body literals of ruleT (x).

Two derivation trees T and S are said to be structurally equivalent if (i)
the trees (nodesT , edgesT ) and (nodesS , edgesS) are isomorphic under a node
bijection b : nodesT → nodesS ; and, (ii) for every edge (x, y) ∈ edgesT , we
have ruleT (x) = ruleS(b(x)) and litT (y) = litS(b(y)). We call b the structural
bijection.

7.2.3 Building the UCQ¬-Program

In this section, we construct the required UCQ¬-program Φ. We gradually build
up the different parts of this program, and introduce auxiliary definitions and
notations along the way. Using the equivalence between UCQ¬ and existential
FO with nonequalities, abbreviated ∃FO, some parts are specified in ∃FO for
technical convenience.

Let Υ and Π respectively denote the transducer schema and transducer of
single-node transducer network M.

General derivation trees Let T be a derivation tree of Π. We define the
active domain of T to be the set of all values assigned by valuations in T . We
say that T is general if there is no structurally equivalent derivation tree S with
a strictly larger active domain. Intuitively, a general derivation tree assigns a
different value to each variable of a rule if possible.

All output strategies Let forestR be a maximal set of general derivation
trees of transducer Π for output relation R, such that no two trees are struc-
turally equivalent, and such that no two trees have an overlap of their active
domains. Because Π is recursion-free, there are only a finite number of struc-
turally different trees, and thus forestR is finite. Intuitively, forestR represents
all possible strategies of Π to derive facts over R, using as much different values
as possible. For each subset G ⊆ forestR, we write adom(G) to denote the union
of all active domains of trees in G.

Canonical runs Intuitively, for any particular input for Π, we can make a
selection G ⊆ forestR of all trees that “work” on that input, i.e., for all trees
T ∈ G there is a substitution of the values in T by values in the input so that
the new valuations are true. If we regard values in adom(G) as variables (as we
will do later), this substitution of values looks very much like a valuation. Next,
for G, we can formally define a canonical run RG. The idea is that in RG we
execute all trees of G concurrently, with as few transitions as possible, i.e., by
using their canonical schedulings. The run RG will do n transitions, where n is
the largest height of a tree in G.10 Hence, the length of RG is bounded by the
syntactical properties of Π.

10The height of a derivation tree is the largest number of edges on any path from a leaf to
the root.
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Note, for an internal node of a derivation tree T , by message-positivity,
bodyT (x)|Υmsg contains only facts. Now, for each transition i ∈ {1, . . . , n} of
RG, we (want to) deliver the following message set

MG
i =

⋃
T ∈G

⋃
x ∈ intT ,
κT (x) = i

bodyT (x)|Υmsg .

In words: for each transition i, set MG
i is the union across all trees of G of

the messages needed by rules scheduled at transition i. We now make an ∃FO-
formula sndMsgG to express that these message sets can be sent. For notational
simplicity, the symbols of adom(G) represent variables. For a derivation tree
T ∈ G, let msgT ⊆ intT denote the set of internal nodes x where litT (x) is
over a message relation. Because sending rules are message-positive and static,
it suffices to demand that all involved input literals are satisfied (both positive
and negative):

sndMsgG :=
∧
T ∈G

∧
x∈msgT

bodyT (x)|Υin .

This is a quantifier-free formula, where we write sets of literals in the conjunc-
tion, with the understanding that such a set is written using some arbitrary
ordering on its elements.

Canonical runs: output succeeds Let G be as above. Fix some T ∈ G. In
the following, we specify an ∃FO-formula to express that T succeeds in deriving
its root fact inRG. Here, a possible “danger”, is that the concurrent execution of
T with another tree S might make certain valuations in T become unsatisfying.
This could for instance happen when S derives a memory fact that T later tests
for absence. We formalize this below.

The alpha nodes of T , denoted αT , are all internal nodes x of T for which
litT (x) is a (positive) output or memory literal.11 Note, rootT ∈ αT . The
valuations of these alpha nodes have to be satisfiable to make T succeed. For
each x ∈ αT , the beta nodes of x, denoted βT (x), are the child-nodes y of x for
which litT (y) is a negative output or memory literal. By definition of derivation
tree, βT (x) contains only leafs. For each x ∈ αT , a node y ∈ βT (x) is a potential
danger: if the fact in the ground literal valT (x)(litT (y)), henceforth referred to
as “beta fact”, is accidentally derived before transition κT (x), then valT (x) is
unsatisfying in transition κT (x) (by inflationarity of Π). The derivation of beta
facts could happen when the message deliveries of RG accidentally trigger some
rules of Π.

To represent these unwanted derivations, we consider truncated derivation
trees that are like normal derivation trees, except that message nodes are also
leafs. We only consider truncated derivation trees for deriving output and mem-
ory facts. We say that a truncated derivation tree S can be aligned to RG if
there is a scheduling λ : intS → {1, . . . , n} such that for each x ∈ intS , message
set MG

λ(x) contains bodyS(x)|Υmsg , i.e., for each valuation in S, the necessary
messages occur in some well-chosen transitions. Possibly multiple alignments
exist for S. For an output or memory fact f , we write alignG(f) to denote the

11This literal is always positive because x is an internal node.

39



set of all pairs (S, λ) where S is a truncated derivation tree for f having align-
ment λ to RG, and such that no two pairs in alignG(f) differ only in the values
for representing tree-nodes. This set is finite, as we now argue. First, because
Π is recursion-free, there are only a finite number of structurally different (trun-
cated) derivation trees for f . Second, only a finite number of valuations can be
used in the rules of such trees: because these rules are output or memory rules,
by message-boundedness, assigned values must either be in f or must occur in
a message, and RG contains only a finite number of messages.

Now we specify the formula to express that a derivation tree T derives its
root fact in RG. To obtain a general construction for later use, we take T to
be a truncated derivation tree for an output or memory relation, that has an
alignment κ to RG. Note, αT = intT . The formula is as follows:

succeedG,T ,κ := succeed in
G,T ,κ ∧ succeeddeny

G,T ,κ

with
succeed in

G,T ,κ :=
∧
x∈αT

bodyT (x)|Υin ; and,

succeeddeny
G,T ,κ :=

∧
x∈αT

∧
y ∈ βT (x),

let f = factT (y)

∧
(S, λ) ∈ alignG(f),
λ(rootS) < κ(x)

¬succeedG,S,λ.

Intuitively, for each x ∈ αT , we express (i) that the input literals in bodyT (x) are
satisfied; and, (ii) we consider all possible truncated derivation trees for beta
facts, and their alignments, and demand that these alignments fail to derive
the root (beta) fact. The second requirement is expressed with a recursive
construction through negation: intuitively, to protect the alpha facts, we must
deny the beta facts, which in turn (recursively) requires letting the alpha facts of
trees for these beta facts fail, and so on. This recursion ends because each time
we pass a truncated derivation tree to the recursive step, the root of this tree is
scheduled strictly closer to the beginning of RG. The final formula succeedG,T ,κ
is quantifier-free, with variables in adom(G).

Combining everything Let G ⊆ forestR and T ∈ G be as above. We write
T ↓ to denote the truncated version of T , by making the nodes that derive
messages into leaf nodes. Note, the canonical scheduling κT , when restricted
to the internal nodes of T ↓, is an alignment of T ↓ to RG. We can combine our
previous formulas to express that the messages of RG can be sent and that T ↓
successfully derives its root fact when its internal nodes are scheduled by κT :

deriveG,T := ∃z̄
(
diffValG ∧ sndMsgG ∧ succeedG,T ↓,κT

)
,

where z̄ is an arbitrary ordering of the values in adom(G) that do not occur in
the root fact of T , and where

diffValG =
∧

a, b ∈ adom(G),
a 6= b

(a 6= b).

The subformula diffValG demands that a valuation is injective, which we need
in the correctness proof to convert concrete derivation trees to abstract ones
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(i.e., to features of formula deriveG,T ). By the equivalence of ∃FO and UCQ¬,
we may consider deriveG,T to be a UCQ¬-program, having as free variables the
tuple x̄ in the root fact of T .12 We can create such a UCQ¬-program for every
G ⊆ forestR and T ∈ G.

Before we can give the final UCQ¬-program Φ, we need to consider the fol-
lowing. Although deriveG,T considers alignments of beta facts, an input for Π
possibly has not as many different values as adom(G). For this reason, we might
overlook some alignments that could occur on a real input. For example, an
undesirable beta fact might be derivable by a rule S(x, x) ← Amsg(x, x) where
A

(2)
msg ∈ Υmsg. But because G contains general trees, in run RG we might de-

liver only (abstract) Amsg-facts with two different components, preventing an
alignment of this rule. To solve this problem, we consider equivalence relations
E on adom(G). Assuming a total order on dom, we can replace each value
a ∈ adom(G) by the smallest value in its equivalence class under E, giving a set
of derivation trees E(G) with a smaller active domain. Using E(G) instead of
G, and a tree T ∈ E(G), the variables in UCQ¬-program deriveE(G),T can rep-
resent more specific inputs. We write Eq(G) to denote all equivalence relations
of adom(G) under which the nonequalities of rules in G are still satisfied.

Now, we define the final program Φ as

Φ :=
⋃

G⊆forestR

⋃
E∈Eq(G)

⋃
T ∈E(G)

deriveE(G),T .

The correctness of Φ is shown in Appendix D.

8 Discussion and Future Work
We have shown that under five restrictions: recursion-freeness; inflationarity;
message-positivity; static message sending; and message-boundedness, one ob-
tains decidability in NEXPTIME of inconsistency of relational transducer networks
implemented by unions of conjunctive queries with negation (and nonequalities).
In fact, the problem turns out to be complete for NEXPTIME.

As already mentioned in the Introduction, a topic for further work is to
investigate whether decidability can be retained while (slightly) relaxing the
restrictions of recursion-freeness, inflationarity, and message-positivity. Also,
we have only considered concrete transducer networks, i.e., networks with a
particular nodeset. It might be interesting to decide if for a given transducer
Π, all transducer networks are consistent where Π is replicated on all nodes [6].

Regarding expressivity, the techniques of the upper bound can transform
a given consistent simple transducer network to a query-description in UCQ¬.
When the techniques of the lower bound are applied to this query-description,
we obtain a simple transducer network that does not use memory relations
anymore, but still expresses the same query as the original network. This can
be considered to be some normal form. It might be interesting to describe the
smallest size that the normal form could have in relationship to the original
network.

There seem to be several reasonable ways to formalize the intuitive notion
of eventual consistency. In contrast to our current formalization, a stronger

12A variable may occur multiple times in x̄.
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view of eventual consistency [1, 6] is to require that on every input, all infinite
“fair” runs produce the same set of output facts. Again, a number of reasonable
fairness conditions could be considered here; a rather standard one would be to
require that every node performs a transition infinitely often, and that every
sent message is eventually delivered. When a transducer network is consistent
in this stronger sense, it is also in the confluence sense of this paper, but the
other implication is not obvious. Indeed, our notion of eventual consistency only
guarantees that outputs can still be produced when messages are delivered in the
“right” way. For example, we might have to deliver two messages simultaneously.
But this might never happen in some particular fair run. Clearly, the choice
of fairness notion plays an important role. Since eventual consistency is indeed
meant to be a very weak guarantee [22], it deserves further research to better
understand the relation between consistency and fairness requirements.

There also seems to be a pragmatic lesson: although consistency is an inter-
esting property to guarantee for a network, the cost of automatically deciding it
might be too high. Indeed, we have to severely restrict the expressiveness of the
language and still the resulting decision problem has high intrinsic complexity.
For this reason, other approaches might be more viable, such as providing suffi-
cient syntactic guarantees on consistency without unduly limiting the expressive
power (e.g. [4, 17]) and without imposing too much distributed coordination
(e.g. [6, 23]).
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Appendix

A Undecidability Results
A.1 Proof of Proposition 3.2
Inspired by the work of Deutsch et al. [12, 9], we reduce the finite implication
problem for functional and inclusion dependencies to the inconsistency decision
problem. Section A.1.1 provides notations for dependencies. Next, Section A.1.2
contains the technical description of the reduction. The correctness is shown in
Section A.1.3.

A.1.1 Dependencies

We introduce notations for dependencies. Let D be a database schema, and
let R(k) ∈ D. A functional dependency σ over R is a tuple (R, ā, b), where ā
is a subsequence of [1, . . . , k] and b ∈ {1, . . . , k}. This dependency holds for a
database instance I over D if for any pair of facts in I, if they have the same
values on components ā then they have the same value on component b.

Let R(k) and S(l) be relations in D. An inclusion dependency σ from R to S
is a tuple (R, ā, S, b̄), where ā and b̄ are subsequences of [1, . . . , k] and [1, . . . , l]
respectively, and ā and b̄ have the same length. Denoting ā = [a1, . . . , am] and
b̄ = [b1, . . . , bm], this dependency holds for a database instance I over D if

{(ua1 , . . . , uam
) | R(u1, . . . , uk) ∈ I} ⊆ {(vb1 , . . . , vbm

) | S(v1, . . . , vl) ∈ I}.

A.1.2 Transducer Network Construction

Let (D,Σ, σ) be an instance of the finite implication problem. We create a
single-node transducer network N that is simple except that send rules don’t
have to be static and such that N is inconsistent iff (D,Σ, σ) is not valid.

The syntactical simplifications of Section 4.1 are applied.
Abbreviate Σ′ = Σ ∪ {σ}. Let Υ be the transducer schema of Π. We define

Υin = D ∪ {A(1)} where A is a new relation name not yet occurring in D.
Relation A is used to cause inconsistencies. We define Υout = {T (1)}. We
introduce the message and memory relations of Υ while we describe the rules
of Π below.

We construct Π to be recursion-free; so N is also globally recursion-free.
Moreover, the output and memory rules will be message-bounded and all rules
are message-positive. We only add rules to insert memory facts, making Π
inflationary.

Send input First, Π sends all input facts to itself. This helps satisfy the
message-boundedness restriction. So, for each relation R(k) ∈ D, we have a
rule:

Rmsg(u1, . . . , uk)← R(u1, . . . , uk).
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Projecting To check violations of Σ′, received input messages are projected
onto auxiliary memory relations.

Let τ ∈ Σ′ be a functional dependency. Denote τ = (R, ā, b). We add a
memory relation R

(l)
τ where l is the length of ā plus 1 (for b). On receipt of

an Rmsg-fact, we project components ā and b to Rτ , with ā placed (in order)
before b. This can be done in a message-bounded manner (details omitted).

Let τ ∈ Σ′ be an inclusion dependency. Denote τ = (R, ā, S, b̄). We add two
memory relations R(m)

τ and S(m)
τ , where m is the length of ā and b̄. On receipt

of an Rmsg- and Smsg-fact, we project the components ā and b̄ (in order) to the
relations Rτ and Sτ respectively. Again, this can be done in a message-bounded
manner.

Checking The above auxiliary memory relations depend on message delivery,
but we don’t know when all input facts have been delivered. For this purpose
we introduce a special marker message datadone(0). We unconditionally send
it in every transition, with the rule

datadone( )← .

On receipt of datadone( ), we create a snapshot of the input facts. We check de-
pendencies only once in this snapshot, by using the memory relation checkdone(0),
which is filled by the rule

checkdone( )← datadone( ).

To actually check dependencies, we proceed as follows. Let τ ∈ Σ′ be a
functional dependency. Denote τ = (R, ā, b). We send message violτ ( ) if τ is
violated in the snapshot, where k = |ā|:

violτ ( )←Rτ (a1, . . . , ak, b), Rτ (a1, . . . , ak, b′), b 6= b′,

datadone( ), ¬checkdone( ).

Now, let τ ∈ Σ′ be an inclusion dependency. Denote τ = (R, ā, S, b̄). We
send message violτ ( ) if τ is violated in the snapshot, where m = |ā| = |b̄|:

violτ ( )←Rτ (a1, . . . , am), ¬Sτ (a1, . . . , am),
datadone( ), ¬checkdone( ).

Inconsistent behavior We cause inconsistent behavior if σ is violated and Σ
is not. First, we (unconditionally) send Amsg-facts, based on the input A-facts:

Amsg(u)← A(u).

Received Amsg-facts are copied to output relation T while new memory relation
blocked(0) is empty:

T (u)← Amsg(u), ¬blocked( ).

Blocking is triggered by the violation of σ:

blocked( )← violσ( ).
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So, if σ is violated, inconsistency can be caused by varying the delivery order of
Amsg-facts and violσ( ). But we want to remove the inconsistency if any τ ∈ Σ
turns out to be violated as well, by adding this output rule:

T (u)← Amsg(u), repair( ).

Here, repair(0) is a new memory relation that becomes enabled when Σ is
violated, denoting Σ = {τ1, . . . , τn}:

repair( )← violτ1( ).
...

repair( )← violτn( ).

A.1.3 Correctness

Let (D,Σ, σ) be as above. Let N denote the constructed transducer network.

First direction Suppose (D,Σ, σ) is not valid. There is an instance I over
D such that I |= Σ and I 6|= σ. We give N the input J = I ∪ {A(a)} and we
obtain inconsistency as follows.

In a first run R1, the message Amsg(a) is sent during the first transition, and
in the second transition we deliver only this message, causing the output fact
T (a) to be derived.

In a second run R2, we do not deliver Amsg(a). Instead, in R2 we send and
deliver all input facts of I, after which we deliver datadone( ). Now, message
violσ( ) is sent because I 6|= σ. We deliver this message, causing blocked( )
to be derived. This completes the construction of R2. Run R2 produces no
output because Amsg(a) is not delivered. Next, no extension of R2 can deliver
violτ ( ) for some τ ∈ Σ because I |= Σ. Hence, repair( ) can not be derived.
So, blocked( ) prevents T (a) from being derived whenever Amsg(a) would be
delivered.

Second direction For the other direction, suppose that N is inconsistent.
There is an input J for N , and two runs R1 and R2 of N on J , such that R1
derives an output fact T (a) and R2 does not, and neither can T (a) be derived
in any extension of R2. We show there is a subset I ⊆ J |D such that I |= Σ
and I 6|= σ, so that (D,Σ, σ) is not valid.

First, the derivation of T (a) in R1 implies that Amsg(a) can be sent in R1.
Hence, Amsg(a) can be sent in R2 and in extensions thereof. Therefore, what
is preventing T (a) from being derived in extensions of R2 is the presence of
blocked( ) and the absence of repair( ). The fact blocked( ) was derived by
the delivery of violσ( ). This delivery must have happened inside R2 because
otherwise in some extension of R2 we could postpone the delivery of violσ( )
until after Amsg(a) was delivered, deriving T (a), which is impossible in any
extension of R2.

The sending of violσ( ) implies that datadone( ) was delivered in some tran-
sition i of R2, and at moment the transducer had received a snapshot I ⊆ J |D
such that I 6|= σ. Also, because repair( ) was not derived in R2 and can not be
derived in an extension, it must be that no violτ ( )-fact was ever sent for any
τ ∈ Σ. So, in transition i of R2, we have I |= Σ.
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A.2 Proof of Proposition 3.3
Let (U, V ) be an instance of the Post correspondence problem. Denote U =
u1, . . . , un and V = v1, . . . , vn. We construct a single-node transducer network
N that is simple except that local message recursion is allowed, such that (U, V )
has a match iff N is inconsistent.

A.2.1 Notations

For a word w and an index k ∈ {1, . . . , |w|}, we write w[k] to denote the symbol
of w at position k.

A.2.2 Transducer Network Construction

We now define the single transducer Π of N and its transducer schema Υ. The
syntactical simplifications of Section 4.1 are applied.

Represent words For each i ∈ {1, . . . , n}, we add to Υin unary relations
U ik and V il with k ∈ {1, . . . , |ui|} and l ∈ {1, . . . , |vi|}. Now, the words ui
and vi can be encoded. To illustrate, ui = aba is represented by the facts
{U i1(a), U i2(b), U i3(a)}.

To represent a word-structure with arbitrary length, we provide Υin with
the input relations R(2), L(2) and F (1). Here, L and F respectively stand for
“label” and “first”. For instance, the word abc might be represented as the facts
{R(1, 2), R(2, 3), L(1, a), L(2, b), L(3, c), F (1)}. The word a can be represented
by {F (1), L(1, a)}.

We send error( ) whenever the previous input relations violate the following
natural constraints:

• all relations U ik and V jl contain at most one symbol; for each pair ui and
vj , and each k ∈ {1, . . . , |ui|} and l ∈ {1, . . . , |vj |}, the relations U ik and
V jl contain a different symbol iff ui[k] 6= vj [l]; similarly for pairs of two
U -words or two V -words;

• relation R contains only chains; relation F designates at most one start
element; each element on the chain has at most one label.

We omit the details of the rules to check these constraints.

Alignment We search a match for (U, V ) by aligning (ui, vi)-pairs against the
input word-structure. Let i ∈ {1, . . . , n}. To align the single pair (ui, vi), we
use the following binary message relations:

• relations align[i, k, k] with 1 ≤ k ≤ min(|ui|, |vi|) to represent simultane-
ous alignment, one character at a time;

• relations align[i, k, |vi|] with |vi| + 1 ≤ k ≤ |ui| to continue aligning ui
when vi has reached its end;

• relations align[i, |ui|, k] with |ui| + 1 ≤ k ≤ |vi| to continue aligning vi
when ui has reached its end.

47



Next, we have the start rule, to start aligning at the beginning of the word-
structure:

align[i, 1, 1](a, a)← F (a), L(a, c), U i1(c), V i1 (c).
Then we have simultaneous continuation rules for each k satisfying 1 ≤ k ≤
min(|ui|, |vi|)− 1:

align[i, k + 1, k + 1](a′, b′)← align[i, k, k](a, b), R(a, a′), R(b, b′),
L(a′, c1), L(b′, c2), U ik+1(c1), V ik+1(c2).

We have separate continuation rules for ui, for each k satisfying |vi| ≤ k ≤
|ui| − 1:

align[i, k + 1, |vi|](a′, b)← align[i, k, |vi|](a, b), R(a, a′), L(a′, c), U ik+1(c).

Similarly, we have separate continuation rules for vi, for each k satisfying |ui| ≤
k ≤ |vi| − 1:

align[i, |ui|, k + 1](a, b′)← align[i, |ui|, k](a, b), R(b, b′), L(b′, c), V ik+1(c).

Lastly, once ui and vi are both fully aligned, for each pair (uj , vj) with j ∈
{1, . . . , n} we have the switch rule from pair i to pair j (with possibly i = j):

align[j, 1, 1](a′, b′)← align[i, |ui|, |vi|](a, b), R(a, a′), R(b, b′),
L(a′, c1), L(b′, c2), U j1 (c1), V j1 (c2).

Inconsistent behavior Inconsistency is obtained in a similar fashion as in
Section A.1. We add input relation A(1) and message relation A

(1)
msg, and a

sending rule:
Amsg(u)← A(u).

We also have an output relation T (1) to which received Amsg-facts are copied
while a memory relation blocked( ) is nonempty:

T (u)← Amsg(u), ¬blocked( ).

Now, whenever we receive a message of the form align[i, |ui|, |vi|](a, a), we
have been able to successfully align a sequence of (ui, vi)-pairs to the input word-
structure, so that the U - and V -side end at the same position. This corresponds
to a match for (U, V ). For each i ∈ {1, . . . n}, add the memory insertion rule:

blocked( )← align[i, |ui|, |vi|](a, a).

Note, these rules are message-bounded. So, inconsistency is obtained by varying
the delivery order of Amsg-facts and such alignment-messages. Inconsistencies
are repaired when error( ) is received (together with Amsg-facts):

T (u)← Amsg(u), error( ).

A.2.3 Correctness

Let (U, V ) be an instance of the Post correspondence problem. Let N be the
constructed transducer network.
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First direction Suppose (U, V ) has a match E = e1, . . . , em. Inconsistency
of N is obtained as follows. Denote w = ue1 . . . uem

(or equivalently w =
ve1 . . . vem

). We can naturally encode (U, V ) and w (as the word-structure) over
the input relations. This results in an instance J on which error( ) can not be
sent. We give I = J ∪ {A(a)} as input to N .

In a first run R1 on I, we immediately send and deliver Amsg(a), causing
T (a) to be derived. In a second run R2, we do not deliver Amsg(a), but, fol-
lowing sequence E, we send messages to align pairs of (U, V ) to the encoding
of w. Abbreviating z = em, and assuming the chain in the word-structure
consists of consecutive natural numbers starting at 1, at some point we send
align[z, |uz|, |vz|](|w|, |w|). Upon delivering this message in R2, we derive
blocked( ). Because error( ) can not be sent, T (a) can not be derived in any
extension of R2.

Second direction Suppose that N is inconsistent. We show that (U, V ) has
a match. There is an input I for N and two runs R1 and R2 such that R1
derives an output fact T (a) that is not derived in R2 or any extensions thereof.
The presence of T (a) in R1 implies that Amsg(a) can be delivered in R1. So,
Amsg(a) can also be delivered in extensions of R2. The reason why T (a) can not
be derived in such extensions is the presence of blocked( ) and because error( )
can never be sent. Fact blocked( ) must have been derived in R2 itself, by
delivering a message of the form align[i, |ui|, |vi|](a, a).13

By going over the derivation history of align[i, |ui|, |vi|](a, a) in a forward
manner, we obtain a sequence E = e1, . . . , em of indices in {1, . . . , n} by looking
at the used start- or switch-rules. Sequence E is a match, because the absence
of error( ) implies that the alignment of the U -words “sees” the same word-
structure as the alignment of the V -words. This would not be the case, for
instance, when an element of the word-structure could have two labels or when
the other natural constraints on the input are violated.

B Small Model Property
B.1 Details of Section 5.3
Let R be a run of N on input I. We construct histR and msgR such that
the properties 1, 2, and 3 of Section 5.3 are satisfied. Let n be the number of
transitions of R. For each i ∈ {1, . . . , n + 1}, we denote the ith configuration
of R as ρi = (sRi , bRi ). For a transition i, we denote the multiset of delivered
messages and the set of sent messages respectively as mRi and δRi .

We will perform the construction backwards, starting in the last transition
of R. Inductively, for each transition j = n, n − 1, . . ., 1, we define histjR
and msgjR, where, intuitively, histjR and msgjR say something about the C-facts
and their needed messages for transition j and later. In the end, we define
histR = hist1

R and msgR = msg1
R. For each pair of transitions j and i, histjR

and msgjR give rise to the (multi)sets γji , β
j
i , and E

j
i , defined as in Section 5.3.2.

By induction on j, we want the following properties to be satisfied:
13If blocked( ) would not be derived in R2 itself, we could simply extend R2 by delivering

Amsg(a), upon which T (a) would be derived.
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1. γji v bRi for each transition index i;

2. βji is a set for each transition index i;

3. Eji = γji+1 ∩ δRi for each transition index i; and,

4. histjR contains only derivation pairs for transitions j and later.

To allow for a simple base case, we start the inductive construction at
j = n + 1 and we define histn+1

R = ∅ (no mappings) and msgn+1
R = ∅. The

induction properties are satisfied for the base case. For the induction hypothe-
sis, we assume that histj+1

R and msgj+1
R are defined such that the properties are

satisfied.

B.1.1 Extend derivation history

We define histjR to be histj+1
R extended with an assignment of a derivation pair

(ϕ, V ) to each pair (j, g) where g is either (i) an output or memory C-fact
created during transition j of R, or (ii) a needed message such that (j, g, l) ∈
msgj+1

R for some l. Note, histjR is a function because there are no derivation
pairs for transition j in histj+1

R .
Now we define msgjR as an extension of msgj+1

R . Let β be the set of all
messages positively needed by the selected derivation pairs in histjR for transition
j. For each g ∈ β, we will select an origin transition k of g, and the resulting
triple (k, g, j) is added to msgjR. There are two cases:

• If there is no triple (k0, g, l) ∈ msgj+1
R with k0 < j then we define k to be

the largest transition index of R for which k < j and g ∈ δRk ;

• Otherwise, let k0 be the smallest transition of R for which (k0, g, l) ∈
msgj+1

R and k0 < j. Then we can apply Claim B.1 to know num(g, γj+1
k0

) <
num(g, bRk0

). So, intuitively, we have some instance of g in bRk0
that is not

yet used in msgj+1
R . We now define k as the largest transition index of R

for which k < k0 and g ∈ δRk .

B.1.2 Show induction properties

We show that the induction properties are satisfied. First, histjR by construction
only contains derivation pairs for transitions j and later. Now we show the
properties for msgjR. Because we have added triples only for facts in β to msgjR
with respect to msgj+1

R , it is sufficient to focus on one g ∈ β. Let k be the
transition index such that (k, g, j) ∈ msgjR. Let i ∈ {1, . . . , n} be an arbitrary
transition index. We consider each of the properties:

Inclusion We have to show num(g, γji ) ≤ num(g, bRi ). If i ≤ k then num(g, γji ) =
0, because index k by choice is the smallest transition index of R for which
(k, g, l) ∈ msgjR for some l. If j < i, then num(g, γji ) = num(g, γj+1

i ) since
(k, g, j) is only a delivery for transition j; thus the property is satisfied by
applying the induction hypothesis.

Lastly, we consider the case k < i ≤ j. If there is no triple (k0, g, l) ∈ msgj+1
R

with k0 < j then by choice of k we have num(g, γji ) = 1. And because g is
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not sent between k and j and yet num(g, bRj ) ≥ 1 (since g ∈ β), it must be
num(g, bRi ) ≥ 1; hence, num(g, γji ) ≤ num(g, bRi ).

Now suppose that k0 exists. We consider the subcases k < i ≤ k0 and
k0 < i ≤ j. If k < i ≤ k0 then num(g, γji ) = 1, and since g is not sent between
k and k0 and yet num(g, bRk0

) ≥ 1 (Claim B.1), it must be num(g, bRi ) ≥ 1; hence,
num(g, γji ) ≤ num(g, bRi ). If k0 < i ≤ j, we have num(g, γji ) = num(g, γj+1

i )+1
because (k, g, j) ∈ msgjR is new (and k < k0) and num(g, γj+1

i ) < num(g, bRi )
(Claim B.1); hence, num(g, γji ) ≤ num(g, bRi ).

Set We have to show num(g, βji ) ≤ 1. If i < j then num(g, βji ) = 0 and
if j < i then num(g, βji ) = num(g, βj+1

i ) ≤ 1. If i = j then the property is
satisfied because we have selected only one k such that (k, g, j) ∈ msgjR.

Equality We have to show num(g, Eji ) = num(g, γji+1 ∩ δRi ). Let k be as
defined above. If i < k then num(g, Eji ) = 0 and num(g, γji+1) = 0 because k is
the smallest origin transition of g registered in msgjR. If j ≤ i then Eji = Ej+1

i

and γji+1 = γj+1
i+1 because in msgjR \ msgj+1

R we do not register the sending
of messages in j. Next, we consider the case k ≤ i < j. A first observation
is that by choice of k, we have num(g, γji+1) ≥ 1. Hence, it suffices to show
num(g, Eji ) = num(g, δRi ). If i = k then both num(g, δRi ) = 1 and num(g, Eji ) =
1 hold. Now only the more specific case k < i < j remains, which we divide in
two subcases.

If there is no triple (k0, g, l) ∈ msgj+1
R with k0 < j, then because k < i < j,

by choice of k, the message g is not sent in transition i. This gives num(g, δRi ) =
0. Consequently g was never registered as being sent from transition i, giving
num(g, Eji ) = 0, as desired.

Now suppose that k0 exists. If k < i < k0 then, again like the previous case,
we have num(g, δRi ) = 0 and num(g, Eji ) = 0. Suppose k0 ≤ i < j. We have
num(g, γj+1

i+1 ) ≥ 1 because (k0, g, l) ∈ msgj+1
R for some l with j < l. Moreover,

since num(g, Ej+1
i ) = num(g, γj+1

i+1 ∩ δRi ) by the induction hypothesis, we ob-
tain num(g, Ej+1

i ) = num(g, δRi ). Lastly, we have num(g, Eji ) = num(g, Ej+1
i )

because k < i. Hence, num(g, Eji ) = num(g, δRi ).

B.1.3 Claims

Claim B.1. Suppose we are in transition j of the inductive construction, with
histj+1

R and msgj+1
R already defined, satisfying the induction properties. Let

g ∈ β. Suppose there is a transition index k0 of R such that (k0, g, l) ∈ msgj+1
R

and k0 < j. Assume that k0 is the smallest such index. For each transition
i ∈ {j, j − 1, . . . , k0}, we have num(g, γj+1

i ) < num(g, bRi ).

Proof. We show this by backward induction on i = j, j− 1, . . ., k0. To increase
readability, we will abbreviate j + 1 as the prime symbol ′. So, γj+1

i , Ej+1
i , and

msgj+1
R become respectively γ′i, E ′i , and msg′R.

Base case For the base case, i = j, we have to show num(g, γ′i) < num(g, bRi ).
If we can show num(g, γ′i) ≤ num(g, γ′i+1 \ δRi ), then by applying the induction
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property γ′i+1 v bRi+1 on msg′R, we obtain num(g, γ′i) ≤ num(g, bRi+1 \ δRi ). And
using bRi+1 \ δRi = bRi \mRi (by the operational semantics), we get num(g, γ′i) ≤
num(g, bRi \ mRi ). Lastly, because mRi v bRi and num(g,mRi ) > 1 (indeed,
g ∈ β v mRj = mRi ), we obtain num(g, γ′i) < num(g, bRi ), as desired.

We are left to show num(g, γ′i) ≤ num(g, γ′i+1 \ δRi ). Because in msg′R
no needed messages are registered for transition j (and smaller), it must be
num(g, γ′i) = num(g, γ′i+1 \ E ′i). If we can show num(g, E ′i) = num(g, δRi ), then
we are ready. It actually suffices to show g ∈ γ′i+1, because then num(g, E ′i) =
num(g, δRi ) follows from the induction property E ′i = γ′i+1 ∩ δRi of msg′R.

We show g ∈ γ′i+1. By definition of k0, there is a triple (k0, g, l) ∈ msg′R for
some l. Again, because in msg′R no needed messages are registered for transition
j and smaller, it must be j < l or equivalently j+1 = i+1 ≤ l. Hence, g ∈ γ′i+1
by definition of γ′i+1.

Inductive step For the induction hypothesis, suppose that num(g, γ′i+1) <
num(g, bRi+1). We show num(g, γ′i) < num(g, bRi ). We proceed similarly as in
the base case, but the strictness “<” is obtained differently.

First, by definition of k0, we have (k0, g, l) ∈ msgj+1
R for some l. Like

above, we have j < l. Hence, k0 ≤ i < l or equivalently k0 < i + 1 ≤ l
and thus num(g, γ′i+1) ≥ 1. Because δRi is a set, if we can show num(g, γ′i) ≤
num(g, γ′i+1\δRi ), then the induction hypothesis gives num(g, γ′i) < num(g, bRi+1\
δRi ). By the operational semantics we would further obtain num(g, γ′i) <
num(g, bRi \mRi ) ≤ num(g, bRi ), as desired.

Showing num(g, γ′i) ≤ num(g, γ′i+1 \ δRi ) is like in the base case. �

Claim B.2. Let R be a run of N on I. Let histR and msgR be as defined in
Section 5.3. Let i be a transition index of R. We have γi+1 = (γi \ βi) ∪ Ei
(multiset difference and union).

Proof. Let g be a fact. We show num(g, γi+1) = num(g, (γi \ βi) ∪ Ei).
First, num(g, γi+1) is, by definition of γi+1, the number of triples (j, g, k) ∈

msgR for which j < i+ 1 and i+ 1 ≤ k. Hence, num(g, γi+1) = e1 + e2, where

• e1 is the number of triples (j, g, k) ∈ msgR for which j < i and i+ 1 ≤ k,
and,

• e2 is the number of triples (j, g, k) ∈ msgR for which j = i and i+ 1 ≤ k.

Regarding e2, since always j < k, the equality j = i already implies i + 1 ≤ k.
So, e2 simplifies to the number of triples (i, g, k) ∈ msgR, or equivalently e2 =
num(g, Ei). If we would know that e1 = num(g, γi \ βi) then overall we would
obtain, as desired:

num(g, γi+1) = num(g, γi \ βi) + num(g, Ei)
= num(g, (γi \ βi) ∪ Ei).

Now we show e1 = num(g, γi \ βi). Using that i+ 1 ≤ k is equivalent to i < k,
we have e1 = f1 − f2, where

• f1 is the number of triples (j, g, k) ∈ msgR for which j < i and i ≤ k, and,

• f2 is the number of triples (j, g, k) ∈ msgR for which j < i and i = k (or
simply i = k because always j < k).
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By definition of γi and βi, we have f1 = num(g, γi) and f2 = num(g, βi). Lastly,
because num(g, βi) ≤ num(g, γi), we obtain

e1 = num(g, γi)− num(g, βi)
= num(g, γi \ βi).

�

B.2 Details of Section 5.4
Claim B.3. Let the transitions of S be defined up to and including transition
i. If γi v bSi then βi ⊆ set(mSi ).

Proof. By definition, mSi =
(
bSi \ (γi \ βi)

)
∩mRi . Let g ∈ βi. It is sufficient to

show that num(g, bSi \ (γi \ βi)) ≥ 1 and num(g,mRi ) ≥ 1.
We show that num(g, bSi \(γi\βi)) ≥ 1. It is sufficient to show num(g, bSi ) ≥ 1

and num(g, γi \βi) < num(g, bSi ). First, because βi is a set (property of msgR),
and g ∈ βi, we have num(g, βi) = 1. Also, the given assumption γi v bSi implies
num(g, γi) ≤ num(g, bSi ).

• We show num(g, bSi ) ≥ 1. From the definition of βi and γi, we have
num(g, βi) ≤ num(g, γi). And since num(g, βi) = 1 and num(g, γi) ≤
num(g, bSi ), we obtain num(g, bSi ) ≥ 1.

• We show num(g, γi\βi) < num(g, bSi ). Since num(g, βi) = 1 and num(g, βi) ≤
num(g, γi), we have num(g, γi\βi) < num(g, γi). Combined with num(g, γi) ≤
num(g, bSi ), we obtain num(g, γi \ βi) < num(g, bSi ).

We are left to show that num(g,mRi ) ≥ 1. By definition of g ∈ βi, there is
a triple (k, g, l) ∈ msgR with l = i. Hence, by construction of msgR, we have
num(g,mRi ) ≥ 1. �

Claim B.4. Let R be a run of N on input I. Suppose a run S of N on J has
the properties that (i) last(S) and last(R) contain the same output and memory
C-facts, and, (ii) the message buffer of last(S) is a submultiset of the message
buffer in last(R). Then, for every extension S ′ of S, there is an extension R′ of
R such that last(S ′) and last(R′) again contain precisely the same output and
memory C-facts.

Proof. Let S ′ be an extension of S that does m new transitions after those of S,
with m ≥ 1. The idea is to extend R by also doing m new transitions, in each
of which we do the same message deliveries as in the corresponding transition
in the extension of S. This results in run R′.

For each i ∈ {1, . . . ,m + 1}, let ρi = (sRi , bRi ) and σi = (sSi , bSi ) denote the
ith configuration in the extension of respectively R and S, with ρ1 = last(R)
and σ1 = last(S). We show by induction on i ∈ {1, . . . ,m + 1} that (i) σi and
ρi contain the same output and memory C-facts, and, (ii) the message buffer
of σi is a submultiset of the message buffer of ρi. This second property helps us
deliver the same messages in the extension of R as done in the extension of S.

For the base case, these properties hold because ρ1 = last(R) and σ1 =
last(S). Assuming the properties hold for configuration i with i ≥ 1, for the
inductive step we show that they can be satisfied in configuration i+ 1. Recall
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that transition i is responsible for transforming configuration i into configuration
i + 1. Now, in transition i of R′ we deliver the same message multiset as in
transition i of S ′, which is possible by induction property (ii).

Output and memory We show that σi+1 and ρi+1 have the same output
and memory C-facts. To show that the C-facts of σi+1 are a subset of those in
ρi+1, we can apply Claim B.6 (property 1). To show the reverse inclusion, let g
be a newly derived C-fact in transition i of R′. We show that g is also created
in transition i of S ′. Let (ϕ, V ) be a derivation pair for g in transition i of R′.
We show that V is also satisfying for ϕ in transition i of S ′.

• Let h ∈ V (posϕ)|Υin . We have to show h ∈ J . Suppose we would know
that adom(h) ⊆ adom(J). Then, since h ∈ I (because V is satisfying for
ϕ in R′) and J = I [adom(J)] (Claim B.5), we have h ∈ J , as desired.
Now we show that adom(h) ⊆ adom(J). Let a ∈ posϕ|Υin be an atom such
that V (a) = h. A variable u in a is either free or bound. If u is free then
V (u) ∈ C because g is a C-fact, and thus V (u) ∈ adom(J) because C ⊆
adom(K1) ⊆ adom(J). Next, if u is bound then by message-boundedness
of ϕ, value V (u) occurs in a delivered message during transition i of R′.
But this message is also delivered during transition i of S ′, and because
values in messages of S ′ are restricted to adom(J), value V (u) occurs in
adom(J).

• Let h ∈ V (negϕ)|Υin . We have to show h /∈ J . This follows from h /∈ I
(since V is satisfying for ϕ in R′) and J ⊆ I.

• Recall that ϕ is message-positive. Because V is satisfying for ϕ during
transition i of R′, each message h ∈ V (posϕ)|Υmsg is delivered during that
transition. By definition of the message deliveries in R′, these messages
are also delivered in transition i of S ′.

• Let h ∈ V (posϕ)|Υout∪Υmem . We have to show that h is in σi. Because
g is a C-fact, the message-boundedness of ϕ implies that h is a C-fact.
And because V is satisfying for ϕ in R′, h is in ρi. By the induction
hypothesis, ρi and σi have the same output and memory C-facts. Hence,
h is in σi. Similarly we can show for each h ∈ V (negϕ)|Υout∪Υmem that h
is not in σi.

• Because the nonequalities of ϕ are satisfied under V in R′, they are also
satisfied in S ′.

We conclude that V is satisfying for ϕ during transition i of S ′. Hence, g ∈ σi+1.

Message buffer We show bSi+1 v bRi+1. Let m denote the message multiset
delivered in transition i. Let δRi and δSi denote the message sets sent in new
transition i of R′ and S ′ respectively. The operational semantics implies that
bRi+1 = (bRi \m) ∪ δRi and bSi+1 = (bSi \m) ∪ δSi (multiset difference and union).
The desired inclusion bSi+1 v bRi+1 follows from (bSi \ m) v (bRi \ m) (by the
induction hypothesis) and δSi ⊆ δRi (by Claim B.6, property 2). �

Claim B.5. The instance J satisfies J = I [adom(J)].
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Proof. This is because (i) J ⊆ I implies J ⊆ I [adom(J)], and (ii), since adom(J) ⊆
adom(K1) ∪ adom(K2), we have

I [adom(J)] ⊆ I [adom(K1)∪adom(K2)] = J.

�

Claim B.6. Let R be a run of N on I and let S be a run of N on J . Let
i and j be a transition index of respectively R and S. For transition i of R,
let ρi, mRi , and ρi+1, respectively denote the begin-configuration, the delivered
messages, and the end-configuration. For transition j of S we similarly define
σj , mSj , and σj+1.

Suppose that (i) ρi and σj have the same output and memory C-facts, and,
(ii) mSj v mRi . The following properties hold:

1. The output and memory C-facts of σj+1 are a subset of those in ρi+1.

2. The messages sent in transition j of S are a subset of those sent in tran-
sition i of R.

Proof. The two properties are shown below.

Property 1 Let g be an output or memory C-fact that is newly derived during
transition j of S, by means of a derivation pair (ϕ, V ). We show that V is also
satisfying for ϕ during transition i of R.
• Let h ∈ V (posϕ)|Υin . We have to show h ∈ I. This follows from h ∈ J

(since V is satisfying for ϕ in S) and J ⊆ I (by construction of J).

• Let h ∈ V (negϕ)|Υin . We have to show h /∈ I. Since V is satisfying for ϕ
in S, we have h /∈ J . Since V can only assign values from adom(J), we
have adom(h) ⊆ adom(J). So, if h ∈ I then h ∈ I [adom(J)] = J (Claim
B.5), which is false. Hence, h /∈ I.

• Recall that ϕ is message-positive. Let h ∈ V (posϕ)|Υmsg . We have to show
that h ∈ mRi . Because V is satisfying for ϕ in S, we have h ∈ mSj v mRi .

• Let h ∈ V (posϕ)|Υout∪Υmem . We have to show that h is in ρi. Because
g is a C-fact, the message-boundedness of ϕ implies that h is a C-fact.
Moreover, because V is satisfying for ϕ, fact h is a C-fact in σj and thus
by assumption also in ρi.
We can similarly show for each h ∈ V (negϕ)|Υout∪Υmem that h /∈ ρi.

• Lastly, because the nonequalities of ϕ are satisfied under V in S, they are
also satisfied under V in R.

We obtain that V is satisfying for ϕ during transition i of R. Hence, g is in
ρi+1.

Property 2 Let g be a message sent in transition j of S, by means of a
derivation pair (ϕ, V ). We show that V is also satisfying for ϕ during transition
i of R. Because send rules are static, we only have to reason about input
and message body atoms of ϕ. For these body atoms, the proof of property 1
above can actually be applied verbatim to show (i) for each h ∈ V (posϕ)|Υin

and h ∈ V (negϕ)|Υin that respectively h ∈ I and h /∈ I; and (ii) for each
h ∈ V (posϕ)|Υmsg that h is delivered in transition i of R. �
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C Decidability
C.1 Details of Section 6.1.2
Claim C.1. Let f be an output fact created in some run of N on an input
I. Denote C = adom(f). Let R be an arbitrary run of N on input I. There
exists a run S of N on input I with at most runLen transitions and such that
last(S) contains precisely the same output and memory C-facts as last(R).

Proof. We start by sketching the approach. Like in Section 5.3, we can “mark”
the transitions where the output and memory C-facts are created, and also the
transitions where any message is sent that is recursively needed by such a C-fact.
This gives us the function histR and the set msgR as defined there (satisfying
the properties of Section 5.3.2). Since each C-fact requires at most BP messages
by recursion-freeness, at most CBP + C = runLen transitions are marked this
way. The maximum would be reached if each C-fact requires a unique set of
messages. Let M denote the marked transition indices of R. Intuitively, the
new run S does only the marked transitions, so |M| in total.

We also need some extra notations. We write ρi = (sRi , bRi ) and σi = (sSi , bSi )
to denote the begin-configuration of transition i in R and S respectively. For
transition i of R, let γi be as defined in Section 5.3.2, based on msgR. Denote
n = |M|. We can order the transitions ofM in ascending order, and we write
M(i) to denote the transition index of M at ordinal i in this ordering, with
i ∈ {1, . . . , n}. For uniformity, we define M(n + 1) = n′ + 1, with n′ the last
transition index of R.

Now, by induction on the configurations, we construct S so that each con-
figuration index i ∈ {1, . . . , n+ 1} satisfies the following properties:

• sSi contains the same output and memory C-facts as sRM(i); and,

• γM(i) is a submultiset of bSi .

Then, the last configuration sSn+1 contains the same output and memory C-facts
as sRM(n+1) = sRn′+1, which is the last configuration of R, as desired. The second
induction property helps in showing the first induction property.

For the base case (i = 1), we have sS1 = ∅ because σ1 is the start configuration
of S. Moreover, sRM(1) can not contain any output and memory C-facts because
M(1) is the first marked transition, and thus the C-facts are created in or after
transition M(1). A similar reasoning applies to needed messages: γM(1) = ∅,
which is a submultiset of bS1 .

For the induction hypothesis, we assume that the properties hold for config-
uration σi of S, with i ≥ 1 (and i ≤ n). Abbreviate j =M(i) and let βj be as
in Section 5.3.2. We define transition i of S to deliver precisely set βj . Note, we
can deliver βj because γj v bSi (induction hypothesis) and βj v γj (follows from
their definition).14 We now show that the induction properties are satisfied for
configuration σi+1.

Output and memory Abbreviate k =M(i+ 1). We have to show that sSi+1
and sRk contain the same output and memory C-facts. We have j < k (because
M(i) <M(i+ 1)). Also, there are no other marked transitions between j and

14We deliver no more than βj to avoid unwanted fact derivations.

56



k, so no new output and memory C-facts are created between j and k. Finally,
inflationarity implies that sRj+1 and sRk contain precisely the same output and
memory C-facts. Hence, it is sufficient to show that sSi+1 and sRj+1 contain the
same output and memory C-facts.

First, let g be an output or memory C-fact in sSi+1. We show that g ∈ sRj+1.
If g ∈ sSi then by the induction hypothesis g ∈ sRj ⊆ sRj+1. Now suppose
g ∈ sSi+1 \sSi . Let (ϕ, V ) be a derivation pair for g in transition i of S. We show
that V is also satisfying for ϕ in transition j of R.

• Since S and R are given the same input, the input literals in the body of
ϕ are satisfied under V in transition j of R as well.

• Let h ∈ V (posϕ)|Υmsg . Since V is satisfying for ϕ in transition i of S,
it must be h ∈ βj . By construction of msgR, the set βj is delivered in
transition j of R, as desired.

• Since sSi and sRj contain the same output and memory C-facts (induc-
tion hypothesis), message-boundedness of ϕ implies that the output and
memory literals of ϕ are satisfied under V in transition j of R.

• Finally, the nonequalities of ϕ under V are also satisfied in transition j of
R because they are satisfied in transition i of S.

Let g be an output or memory C-fact in sRj+1. Similarly to the above, if g ∈ sRj
then by the induction hypothesis g ∈ sSi ⊆ sSi+1. Because g is an output or
memory C-fact, the mapping histR(j, g) = (ϕ, V ) is defined. We show that
V is also satisfying for ϕ in transition i of S. The reasoning for nonequalities
and input, output, and memory literals of ϕ is the same as above for the case
g ∈ sSi+1 \ sSi . Let h ∈ V (posϕ)|Υmsg . Then h is a message needed by (ϕ, V ),
and thus g ∈ βj by construction of msgR. Hence, h is delivered in transition i
of S.

Buffer We have to show γM(i+1) v bSi+1. Abbreviate j = M(i) and k =
M(i + 1). We have j + 1 ≤ k because j < k. We start by showing γj+1 = γk,
so it becomes sufficient to show γj+1 v bSi+1.

Let g be a fact. We show num(g, γj+1) ≤ num(g, γk). By definition of γj+1,
expression num(g, γj+1) is the number of triples (a, g, b) ∈ msgR for which
a < j + 1 ≤ b. Let (a, g, b) be such a triple. It is sufficient to show that
a < k ≤ b. We have a < k because a < j + 1 and j + 1 ≤ k. Secondly, if b < k
then a needed message is delivered at transition b of R, implying b ∈M, which
is impossible because j < b < k and there are no marked transitions between j
and k. Hence, k ≤ b.

Let g be a fact. We show num(g, γk) ≤ num(g, γj+1). This is similar to
the previous direction, but there are also some differences. By definition of
γk, expression num(g, γk) is the number of triples (a, g, b) ∈ msgR for which
a < k ≤ b. Let (a, g, b) be such a triple. It is sufficient to show that a < j+1 ≤ b.
We have j + 1 ≤ b because j + 1 ≤ k and k ≤ b. Secondly, if j + 1 ≤ a then
a needed message would be sent at transition a of R, implying a ∈ M, which
is impossible because j < a < k and there are no marked transitions between j
and k. Hence, a < j + 1.
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Lastly, we show that γj+1 v bSi+1. Using Claim B.2, we have γj+1 = (γj \
βj) ∪ Ej . Let δSi denote the set of messages sent during transition i of S. The
operational semantics implies bSi+1 = (bSi \ βj) ∪ δSi . It is sufficient to show
γj \ βj v bSi \ βj and Ej ⊆ δSi . The first inclusion follows from the induction
hypothesis γj v bSi . Now, let g ∈ Ej . We show g ∈ δSi . By definition of Ej ,
there is a triple (j, g, b) ∈ msgR. So, g is a needed message that should be sent
in transition j of R. Hence, histR(j, g) = (ϕ, V ) is defined. We show that V
is satisfying for ϕ during transition i of S, so that g ∈ δSi . Because ϕ is static,
we only consider the input and message literals, where the latter are positive by
message-positivity. The input literals of ϕ are satisfied under V in transition
i of S, because they are satisfied in transition j of R and because both runs
have the same input. Now, let h ∈ V (posϕ)|Υmsg . We have to show that h is
delivered in transition i of S. Because h is delivered in transition j of R (since
V is satisfying for ϕ), h is a needed message for transition j; hence, h ∈ βj and
this set is delivered in transition i of S. �

Claim C.2. Let I be an input for N . Let R be a run of N on I. Let R′ be R
extended by doing P + 1 additional transitions in each of which we deliver the
entire message buffer. Let g be a message that is sent in some run S of N on
I. Message g is delivered in the last transition of R′.

Proof. Recall the definitions and notations regarding derivation trees from Sec-
tion 2.6. Let T be a derivation tree for g extracted from S. Let κT be the
canonical scheduling of T . Let n denote the height of T , measured as the num-
ber of edges on the longest path from the root to a leaf. For i ∈ {1, . . . , n},
define the following message set Mi:

Mi =
⋃

x ∈ intT ,
κT (x) = i

bodyT (x)|Υmsg .

Because the rules of Π are message-positive, bodyT (x)|Υmsg contains only facts.
Intuitively, Mi is the union of all message facts needed by rules scheduled at
transition i by κT . Since n ≤ P, we can consider the transition index j of R′
such that j+1, . . ., j+n, j+n+1 are the last n+1 transitions of R′. If we can
show that g is sent in transition j + n, then g is delivered in the last transition
j + n+ 1 (because the entire buffer is delivered), as desired.

Because sending rules are static and message-positive, and R′ and S have
the same input I, it is sufficient to show that Mn is delivered in transition
j + n, so that the root rule and valuation of T derive g. Specifically, we show
by induction on i ∈ {1, . . . , n} that Mi is delivered in transition j + i of R′.
The property holds for the base case because M1 = ∅.15 For the induction
hypothesis, we assume that Mi can be delivered in transition j + i of R′. We
now show thatMi+1 can be delivered in transition j+i+1 of R′. Let h ∈Mi+1.
By definition of Mi+1, there is an internal node x of T with κT (x) = i+ 1 and
h ∈ bodyT (x)|Υmsg . We show that h is sent in transition j + i of R′, so that h

is delivered in transition j + i+ 1. By message-positivity of ruleT (x), there is a
child node y ∈ intT of x such that factT (y) = h. By definition of κT , we have

15Indeed, if an internal node x needs child messages then the corresponding child nodes are
scheduled earlier, making κT (x) > 1.
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Relation Purpose

s(1) with s ∈ Γ one relation for each tape symbol
q(1) with q ∈ Q one relation for each state symbol
0(1), 1(1), 01(1) relations providing the numbers 0 and 1

Table 2: Input relations for M

κT (y) = i. We show that valT (y) is satisfying for ruleT (y) during transition
j + i of R′. Like above, because sending rules are static and message-positive,
and R′ and S have the same input I, it is sufficient to show thatMi is delivered
in transition j + i, which holds by the induction hypothesis. �

C.2 Complexity Lower Bound
Here we complete the specification of transducer Π over schema Υ from Section
6.2. We assume that Υin contains the additional relations of Table 2. All rules
we specify below are sending rules.

Let w denote the input word forM under consideration, and let n = |w|. We
can select a constant k ∈ N such that if M accepts w then M has an accepting
computation trace on w with at most 2nk transitions.

C.2.1 Binary addresses

Abbreviate z = nk. Note, z is polynomial in n. Because we are only concerned
with accepting computation traces of length at most 2nk , the address of a reach-
able tape cell can be represented as a binary number with z bits. We denote
such a number as (a1 . . . az) where each ai is 0 or 1 and az is the least significant
bit. Note, z bits actually allow us to represent addresses larger than 2nk , but
the accepting computation trace will never reach these tape cells, hence, we will
ignore those addresses in the following.

We will use messages of the form succ(a1, . . . , az; b1, . . . , bz) to say that
address (b1 . . . bz) is the successor of address (a1 . . . az), i.e., (b1 . . . bz) is ob-
tained from (a1 . . . az) by adding 1.16 Similarly, we use messages of the form
less(a1, . . . , az; b1, . . . , bz) and diff(a1, . . . , az; b1, . . . , bz) to say respectively
that (a1 . . . az) is smaller than (b1 . . . bz) and that (a1 . . . az) and (b1 . . . bz)
are different. To specify these messages, we add the following rules for each
p = 1, . . . , z:

16The semicolon in the fact only serves to better separate the two binary numbers visually.
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succ(a1, . . . , ap−1, ap, . . . , az; a1, . . . , ap−1, bp, . . . , bz)←
01(a1), . . . , 01(ap−1), 0(ap), 1(bp),
1(ap+1), . . . , 1(az), 0(bp+1), . . . , 0(bz).

less(a1, . . . , ap−1, ap, . . . , az; a1, . . . , ap−1, bp, . . . , bz)←
01(a1), . . . , 01(ap−1), 0(ap), 1(bp),
01(ap+1), . . . , 01(az), 01(bp+1), . . . , 01(bz).

diff(a1, . . . , ap−1, ap, . . . , az; b1, . . . , bp−1, bp, . . . , bz)←
01(a1), . . . , 01(az), 01(b1), . . . , 01(bz), ap 6= bp.

Here, if p = 1 then the variables a1 to ap−1 are nonexistent, and if p = z then the
variables ap+1 to az and bp+1 to bz are nonexistent. Note, the number and size
of these above rules is polynomial in n, and they have no cyclic dependencies
(leads to recursion-freeness).

C.2.2 Sending error

The message error is sent when some crucial properties of the input relations
are violated.

First, we demand that for each configuration at most one state and head
position is specified, and also that each tape cell has at most one symbol:

error( ) ← state(i, q1), state(i, q2), q1 6= q2.

← head(i, h1, . . . , hz), head(i, k1, . . . , kz),
diff(h1, . . . , hz; k1, . . . , kz).

← tape(i, a1, . . . , az, s1), tape(i, a1, . . . , az, s2),
s1 6= s2.

For the relations providing the binary numbers, we demand that relations 0
and 1 are disjoint, contain at most one value, and that relation 01 is the union
of 0 and 1:

error( ) ← 0(v), 1(v).
← 0(v), 0(w), v 6= w.

← 1(v), 1(w), v 6= w.

← 0(v), ¬01(v).
← 1(v), ¬01(v).
← 01(v), ¬0(v), ¬1(v).

For the relations providing symbols of Γ, we demand that they are pairwise
disjoint and that each contains at most one symbol. We demand the same
properties of the relations providing symbols of Q. Formally, for each (s1, s2) ∈
(Γ× Γ) ∪ (Q×Q) with s1 6= s2, we add the rule

error( )← s1(v), s2(v).

And for each s ∈ Γ ∪Q, we add the rule

error( )← s(v), s(w), v 6= w.
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C.2.3 Sending accept

We give the rules to send messages of the form reach0(i, j) and start(i), where
reach0(i, j) indicates that configuration j can be reached by a valid Turing
machine transition from configuration i, and where start(i) indicates that con-
figuration i has the properties of the start configuration.

Sending reach0 We will send messages of the form tapeCOK(i, j, a1, . . . , az)
to say that in configuration j, the tape cell at address (a1 . . . az) can be ex-
plained by a Turing machine transition applied to configuration i.17 To send
reach0(i, j), we have to check that such messages can be sent for all tape cells.
We will simultaneously enforce that the state and head position of j can follow
from the state and head position of i.

To send tapeCOK(i, j, a1, . . . , az), we consider three cases, where (h1 . . . hz)
denotes the head position of configuration i:

• (a1 . . . az) < (h1 . . . hz), in which case the cell contents at (a1 . . . az) should
be unaltered in j with respect to i;

• the symmetric case (h1 . . . hz) < (a1 . . . az), with the same constraint;

• (a1 . . . az) = (h1 . . . hz), in which case a transition of Turing machine M
has to explain the symbol at cell (a1 . . . az) in j.

The first case is implemented by the following rule:

tapeCOK(i, j, a1, . . . , az)← head(i, h1, . . . , hz), less(a1, . . . , az; h1, . . . , hz),
tape(i, a1, . . . , az, s), tape(j, a1, . . . , az, s).

The second case is done with a similar rule, except that less(a1, . . . , az; h1, . . . , hz)
is replaced by less(h1, . . . , hz; a1, . . . , az).

The third case is split further depending on whether the head moves left
or right. Let δ denote the transition function of Turing machine M . For each
mapping (q1, s1 7→ q2, s2,L) ∈ δ, add the rule:

tapeCOK(i, j, h1, . . . , hz)← head(i, h1, . . . , hz), head(j, k1, . . . , kz),
succ(k1, . . . , kz; h1, . . . , hz),
state(i, q1), tape(i, h1, . . . , hz, s1),
state(j, q2), tape(j, h1, . . . , hz, s2),
q1(q1), s1(s1), q2(q2), s2(s2).

Regarding relations q1, s1, q2 and s2, it does not matter what precise values they
contain by genericity of the rules (as long as the conditions enforced in Section
C.2.2 hold). A similar rule is added for each mapping (q1, s1 7→ q2, s2,R) ∈ δ, ex-
cept that succ(k1, . . . , kz; h1, . . . , hz) is replaced by succ(h1, . . . , hz; k1, . . . , kz).
Note, the nondeterminism of Turing machine M is implemented by having mul-
tiple rules in Π of these last two forms. Also, the number of rules for relation
tapeCOK is constant because M is fixed, but their size is polynomial in n.

17The name tapeCOK stands for “tape cell ok”.
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Next, we send messages of the form tapeOKm(i, j, a1, . . . , az; b1, . . . , bz), with
m = 0, . . . , z and (a1 . . . az) ≤ (b1 . . . bz), to say that interval [(a1 . . . az), (b1 . . . bz)]
contains 2m tape cells and that the message tapeCOK(i, j, c1, . . . , cz) can be sent
for all addresses (c1 . . . cz) in this interval. The goal is to eventually send a mes-
sage tapeOKz(i, j, a1, . . . , az; b1, . . . , bz) where (a1 . . . az) is the first tape cell. To
start, we generate tapeOK0-messages:

tapeOK0(i, j, a1, . . . , az; a1, . . . , az)← tapeCOK(i, j, a1, . . . , az).

And we add the following rule for each m = 1, . . . , z:

tapeOKm(i, j, a1, . . . , az; b1, . . . , bz)←
tapeOKm−1(i, j, a1, . . . , az; c1, . . . , cz),
tapeOKm−1(i, j, d1, . . . , dz; b1, . . . , bz),
succ(c1, . . . , cz; d1, . . . , dz).

Note, the number and size of such rules is polynomial in n.
Finally, the reach0-messages are sent with the following rule:

reach0(i, j)← tapeOKz(i, j, a1, . . . , az; b1, . . . , bz),
0(a1), . . . , 0(az).

Note, we constrain attention to the range [0, 2z].

Sending start To send a message start(i), we have to check that configu-
ration i has the properties of the start configuration: (i) the tape contains the
input word w starting at the first tape cell, with the other tape cells blank; (ii)
the state is q0; and, (iii) the head is at tape cell 0. The last two properties are
easily checked.

To check property (i), we send messages of the form startTapeCOK(i, a1, . . . , az)
to indicate that the contents of tape cell (a1 . . . az) in configuration i is as re-
quired by the start configuration. We add the following rule for all addresses
a ∈ [0, n − 1], where (a1 . . . az) is the binary representation of a and wa is the
symbol of word w at (zero-based) index a:

startTapeCOK(i, a1, . . . , az)←
a1(a1), . . . , az(az), tape(i, a1, . . . , az, s), wa(s).

We also add one rule to demand that the other tape cells contain blanks, where
t ∈ Γ denotes the blank symbol and (b1 . . . bz) is the binary representation of
n− 1:

startTapeCOK(i, a1, . . . , az)←
b1(b1), . . . , bz(bz), less(b1, . . . , bz; a1, . . . , az),
tape(i, a1, . . . , az, s), t(s).

Note, the number and size of rules for relation startTapeCOK is polynomial
in n.
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Next, similarly to the relations tapeOKm above, we send messages of the form
startTapeOKm(i, a1, . . . , az; b1, . . . , bz), with m = 0, . . . , z and (a1 . . . az) ≤
(b1 . . . bz), to say that the interval [(a1 . . . az), (b1 . . . bz)] contains 2m tape cells
and that message startTapeCOK(i, c1, . . . , cz) can be sent for all addresses (c1 . . . cz)
in this interval. We do not explicitly give the rules, because they are very similar
to the rules of the relations tapeOKm. The number and size of the added rules
is also polynomial in n.

Finally, we can send the start-messages:

start(i)← startTapeOKz(i, a1, . . . , az; b1, . . . , bz),
0(a1), . . . , 0(az), head(i, a1, . . . , az),
state(i, q), q0(q).

C.2.4 Correctness

Here we argue the correctness of the reduction.

First Direction Suppose that M has an accepting computation trace on
input word w. We have to show that the transducer network N for w is incon-
sistent.

The accepting computation trace of M is a sequence of configurations, and
we identify each configuration by their (one-based) ordinal. We always have
i ≤ 2z. Let I be the input instance for N consisting of the following facts:

• facts state(i, qi) and head(i, h1, . . . , hz) for each configuration i, where qi
and (h1 . . . hz) are respectively the state and head position of i;

• fact tape(i, a1, . . . , az, s) for each configuration i and each address (a1 . . . az) ∈
[0, 2z], where s ∈ Γ is the contents of cell (a1 . . . az) in configuration i;

• fact s(s) for each s ∈ Γ; fact q(q) for each q ∈ Q; facts 0(0), 1(1), 01(0),
and 01(1); and, fact A(a).

Note, no error-message can be sent on this instance (cf. Section C.2.2). Hence,
it is sufficient to show that accept( ) can be sent, so that input fact A(a) gives
rise to the messages Amsg(a) and Bmsg(a). Then there exist two runs R1 and
R2 so that T (a) is created in R1 and not in R2 or any extension thereof.

Let e denote the last configuration of the computation trace. The state of e
is qaccept. Looking at the rules for sending accept-messages (Section 6.2), since
I contains state(e, qaccept) and qaccept(qaccept), we are left to show that the fol-
lowing messages can be sent: start(1) and reachm(1, e) for some m ∈ [0, z].
Because configuration 1 is the start configuration of the computation trace, and
because we have accurately described this configuration in the input relations,
we can see that start(1) can be sent. Similarly, we can see that for each pair
(i, j) of subsequent configurations in the trace, the message reach0(i, j) can be
sent. And because the reachm-rules with m ∈ [0, z] allow us to connect config-
urations over arbitrary distances within [1, 2z], we can also send reachm(1, e)
for some m ∈ [0, z].

63



Second Direction Suppose that the transducer network N for w is incon-
sistent. We have to show that M has an accepting computation trace on w.

First, because N is inconsistent, there exists an input instance I for N , and
two runs R1 and R2 of N on I, such that last(R1) contains an output fact T (a)
that is not in last(R2), and T (a) can not be created in any extension of R2.

We first show that accept( ) can be sent on input I and that error( ) can
not. The presence of T (a) in last(R1) implies that the message Amsg(a) can be
sent. This in turn implies that accept( ) can be sent. Now, since by static send
rules the message Amsg(a) can also be sent in an extension of R2, the reason
why T (a) can not be created in that extension is that the memory fact B(a) is
present and that the message error( ) can never be delivered, and hence can
never be sent.

Looking at the sending rules for relation accept, the sending of accept( )
in R1 must have been caused by the joint occurrence of the following four facts
during some transition of N : the message facts start(x) and reachm(x, y)
for some x, y ∈ adom(I) and m ∈ [0, z], and the input facts state(y, q) and
qaccept(q). The input facts together already imply that y could describe an
accepting configuration. Now we have to look at the derivation histories of the
two messages to construct a full accepting computation trace.

As a general remark, because error( ) can never be sent, the input satisfies
the restrictions enforced in Section C.2.2. In particular, each configuration has
at most one state and at most one head position in relations state and head
respectively, and each configuration has at most one symbol for each tape cell
in relation tape. So, the presence of the message start(x) implies that x not
only has precisely one state, one head position and one symbol in each tape cell,
but also that x satisfies the additional properties of a valid start configuration.
Hence, x is a fully specified start configuration.

The presence of the message reachm(x, y) implies there is a sequence of con-
figurations c1, . . ., ce in the input with c1 = x and ce = y and such that the
message reach0(i, j) can be sent for each pair (i, j) of subsequent configurations.
Again using the absence of error( ), the presence of the message reach0(i, j)
implies that configurations i and j each have precisely one state, one head po-
sition, and one symbol in each tape cell, and that there exists a valid transition
rule of Turing machineM to explain how configuration j follows from configura-
tion i. Finally, using that y is accepting (see above), we have found an accepting
computation trace of M on w.

D Expressivity Upper Bound
D.1 Correctness Part 1
Let Φ be as constructed in Section 7.2.3. Let H be an arbitrary distributed
database instance over inN . Abbreviate I = 〈H〉N . Let f ∈ Φ(I). We have to
show that f is output at node x when N is run on H. It is sufficient to show
that f is output by M on input I.

We remind that Section 7.2.2 contains common concepts and notations.
Helper claims can be found in Section D.3.
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D.1.1 Satisfying valuation

Since f ∈ Φ(I), program Φ contains a UCQ¬-program deriveG,T0 such that
f ∈ deriveG,T0(I). Hence, there exists a subset G0 ⊆ forestR and an equivalence
relation E on adom(G0) such that G = E(G0) and T0 ∈ G.

Like before, we regard deriveG,T as an ∃FO-formula, where T is the trun-
cated version of T0 and κ is the canonical scheduling of T0:

deriveG,T0 := ∃z̄ (diffValG ∧ sndMsgG ∧ succeedG,T ,κ) .

Here, free variables are constituted by the tuple x̄ of values occurring in the
root fact of T0, and z̄ are the values in adom(G) that are not in x̄. Since
f ∈ deriveG,T0(I), there exists a valuation Val : adom(G) → adom(I) that
makes the following quantifier-free formula true:

diffValG ∧ sndMsgG ∧ succeedG,T ,κ.

The part diffValG makes Val injective.

D.1.2 Concrete run

For each tree T ′ ∈ G, for each internal node x of T ′, we can apply the function
Val after valuation valT (x). The resulting valuations still satisfy the nonequal-
ities of the rules, because these nonequalities are satisfied under valT (x) and
Val is injective. Let F denote the forest of (structurally equivalent) derivation
trees obtained from G in this way. Following the principle of canonical runs
of Section 7.2.3, we will concurrently execute all trees in F by their canonical
scheduling. This results in a run R, whose length is the largest height of any
tree in F . We now show that f is derived in R.

Let T0 be as above. Let S0 ∈ F be the structurally equivalent tree. We first
show that factS0(rootS0) = f . The tuple of values in factT0(rootT0) are the free
variables of deriveG,T0 . Thus Val(factT0(rootT0)) = f . And by construction of
F , we have factS0(rootS0) = Val(factT0(rootT0)).

Henceforth, we will focus on the truncated trees T and S of T0 and S0
respectively. The canonical scheduling κ of T0 is also defined on S. Now, using
the order implied by κ, we show by induction on x ∈ αS that factS(x) is derived
in transition κ(x) of R. So, let x ∈ αS be a node such that for all alpha child
nodes y of x, the fact factS(y) is derived in transition κ(y) of R.18 We show
that valS(x) is satisfying for ruleS(x) in transition κ(x). The nonequalities of
ruleS(x) are satisfied because they are satisfied under valT (x) and because Val
is injective. Next, we differentiate between the different kinds of atoms in the
body of ruleS(x).

Input Let l ∈ bodyS(x)|Υin . We have to show I |= l. Let l′ ∈ bodyT (x)|Υin be
such that l = Val(l′). By construction, l′ occurs in the conjunction succeed in

G,T ,κ,
and since this formula is true under Val with respect to I, we have I |= Val(l′)
or equivalently I |= l, as desired.

18This property is automatically satisfied in the base case, where x has no alpha child nodes.
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Messages Let l ∈ bodyS(x)|Υmsg . Abbreviate i = κ(x). We have to show that
l is delivered in transition i of R. Because ruleS(x) is message-positive, l is a
fact. Let g ∈ bodyT (x)|Υmsg be such that l = Val(g). Because κ is an alignment
for T with respect to the abstract canonical run RG, we have g ∈ MG

i . By
Claim D.1, the fact l = Val(g) is delivered during transition i of R, as desired.

Positive output and memory Let l ∈ bodyS(x)|Υout∪Υmem be such that l is
positive. There is an alpha child y of x such that factS(y) = l. By assumption
on x, factS(y) is derived during transition κ(y) of R, and thus l is available
during transition κ(x), as desired.

Negative output and memory Let l ∈ bodyS(x)|Υout∪Υmem be such that l
is negative. Denote l = ¬g. We show that g is not derived before transition
κ(x) of R. To relate back to T , there is also a fact h such that g = Val(h) and
¬h ∈ bodyT (x).

Towards a proof by contradiction, suppose that g is derived in some transi-
tion j < κ(x) of R. Then it is possible to extract a truncated derivation tree S ′

from R with factS
′
(rootS′) = g, together with an alignment κ′ of S ′ such that

for all alpha nodes z of S ′, the fact factS
′
(z) is derived during transition κ′(z)

of R because valS
′
(z) is satisfying for ruleS

′
(z). Note that Val−1 is defined

because Val is injective. Let T ′ be the truncated derivation tree obtained from
S ′ by applying for each alpha node z, the function Val−1 after the valuation
valS

′
(z). The tree T ′ has root fact Val−1(g) = h.

There exists y ∈ βT (x) with factT (y) = h. Suppose we would also know
that (T ′, κ′) ∈ alignG(h) (shown below). Then the subformula succeeddeny

G,T ,κ
contains the subformula ¬succeedG,T ′,κ′ , which is true under Val. Equivalently,
succeedG,T ′,κ′ is false under Val. We will use this information to show that at
least one alpha node z of T ′ exists for which valuation Val ◦ valT

′
(z) is not

satisfying for ruleT
′
(z) during transition κ′(z) of R, or equivalently, valuation

Val ◦Val−1 ◦ valS
′
(z) = valS

′
(z) is not satisfying for ruleS

′
(z) during transition

κ′(z). This gives the desired contradiction.
Since succeedG,T ′,κ′ is false under Val, it must be that either succeed in

G,T ′,κ′

is false or succeeddeny
G,T ′,κ′ is false. In the first case, there is an alpha node z of

T ′ and a literal l ∈ bodyT
′
(z)|Υin such that I 6|= Val(l). This immediately gives

that Val ◦ valT
′
(z) is not satisfying for ruleT

′
(z) during any transition of R,

hence, not in transition κ′(z), as desired.
Now suppose that succeeddeny

G,T ′,κ′ is false under Val. Thus, succeeddeny
G,T ′,κ′

contains a subformula ¬succeedG,T ′′,κ′′ where succeedG,T ′′,κ′′ is true under Val.
Hence, there is an alpha node z of T ′, with a beta child u, letting i = factT

′
(u),

and there is a pair (T ′′, κ′′) ∈ alignG(i) with κ′′(rootT ′′) < κ′(z). Let S ′′
be the (truncated) derivation tree obtained from T ′′ by applying Val after all
valuations. Now, using the natural recursion on succeedG,T ′′,κ′′ , it is possible to
show that (S ′′, κ′′) derives Val(i) during earlier transition κ′′(rootT ′′) < κ′(z).
This reasoning ends, because in each recursive step we come strictly closer to the
beginning of R, and eventually we only use formulas of the form succeed in

G,_,_.
Since valuation Val ◦ valT

′
(z) requires the absence of Val(i) during κ′(z), and
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Val(i) is present in κ′(z), this valuation is not satisfying during transition κ′(z)
of R, as desired.

Let T ′ and κ′ be as above. We are left to show that (T ′, κ′) ∈ alignG(h).
First, because κ′ is an alignment for S ′, and because T ′ and S ′ are structurally
equivalent, κ′ is a scheduling for T ′. Next, let z be an internal (alpha) node of T ′.
Let l ∈ bodyT

′
(z)|Υmsg , where l is a fact by message-positivity of ruleT

′
(z). We

have to show that l ∈MG
j where j = κ′(z). Since valT

′
(z) = Val−1◦valS

′
(z), we

can consider the fact i ∈ bodyS
′
(z)|Υmsg such that l = Val−1(i). Now, since κ′ is

an alignment for S ′ with respect to R, we know that i is delivered in transition
j of R. Then, by Claim D.1, there is a fact l′ ∈MG

j such that Val(l′) = i. But
by injectivity of Val, this means l′ = Val−1(i) = l, as desired.

D.2 Correctness Part 2
Let H be an arbitrary input over inN . Abbreviate I = 〈H〉N . Let f be an
R-fact output at node x when N is run on H. This implies that M outputs f
on input I. We have to show that f ∈ Φ(I), with Φ as constructed in Section
7.2.3.

Let Π denote the transducer of M. We remind that Section 7.2.2 contains
common concepts and notations. Additionally, for two structurally equivalent
derivation trees T and S, we write mapT ,S to denote the structural bijection
from nodes of T to nodes of S. Lastly, helper claims can be found in Appendix
D.3.

D.2.1 Collecting trees

On input I, from each run of M in which f is output, we can extract a derivation
tree for f . Now, let F be a maximal set of derivation trees for f extracted from
all possible runs of M on I, such that no two trees are structurally equivalent.
Set F is finite because Π is recursion-free.

D.2.2 Canonical run

Following the principle of canonical runs from Section 7.2.3, we can concurrently
execute all trees of F . This results in a run R whose length is the height of the
largest tree in F .

We now show that f is derived in R. Because M outputs f on input I,
consistency of M implies that R can always be extended to a run R′ in which f
is output. From R′, we can extract a pair (T , κ) of a concrete derivation tree for
f and a scheduling for this tree, such that for each x ∈ intT the fact factT (x)
is derived during transition κ(x) of R′ by applying valT (x) to ruleT (x). There
is some tree S ∈ F structurally equivalent to T . Using the order implied by
canonical scheduling κS , we show by induction on the alpha nodes x ∈ αS that
factS(x) is derived during transition κS(x) by applying valuation valS(x) to
ruleS(x). Let x ∈ αS , assuming for each descendant y ∈ αS of x that factS(y)
is derived during transition κS(y).

Input Since S ∈ F , the tree S was extracted from a run, and hence, the input
literals of ruleS(x) must be satisfied under valS(x).
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Messages Moreover, because sending rules are message-positive and static, it
can be shown that the messages needed by ruleS(x) under valS(x) are delivered
in R during transition κS(x) (details omitted).

Output and memory Using the assumption on descendant alpha nodes of
x, the positive output and memory facts required by valS(x) are also satisfied.

As the last step, we show that the negative output and memory literals under
valS(x) are absent during transition κS(x). Let us abbreviate n = mapS,T
(defined in Section 7.2.2). Since S and T are structurally equivalent and both
derive the root fact f , we can apply Claim D.2 to know that the valuations
valS(x) and valT (n(x)) assign the same values to the free variables of ruleS(x).
By selection of (T , κ), the output and memory facts that rule ruleS(x) tests for
absence under valT (n(x)), are effectively absent during transition κ(n(x)) of R′.
Now, because Π is inflationary, if we would know κS(x) ≤ κ(n(x)), then these
same output and memory facts must also be absent during transition κS(x), as
desired. We are left to show that κS(x) ≤ κ(n(x)). By definition of canonical
scheduling κS , transition κS(x) is the earliest transition of R in which the rule
ruleS(x) can be executed if the derivation strategy represented by S must be
followed.19 Now, since the subtree under x in S is structurally equivalent to the
subtree under n(x) in T , we have κS(x) ≤ κ(n(x)).

D.2.3 Create valuation

From Section 7.2.3, recall the set forestR, in which no two trees are structurally
equivalent. For each tree T ∈ F , there is a unique tree S ∈ forestR that is
structurally equivalent to T . Let G0 ⊆ forestR be all these trees. We define a
function Val0 : adom(G0)→ adom(F ), giving rise to an equivalence relation on
adom(G0).

First, let S ∈ G0. We can uniquely identify a component of a positive atom
in S by a triple (p,a, i), where p is a path followed from the root towards an
internal node x of S; a is the head or a positive body atom of ruleS(x); and, i
is a component index in a. Here, p can be uniquely specified as the sequence
of atoms litS(x) labelling the encountered internal nodes x. Two components
(p1,a1, i1) and (p2,a2, i2) belong to the same rule if p1 = p2. Now, we define
an equivalence relation over the components in a bottom-up way, as follows.
Starting at an internal node x without other internal nodes as children, two
components in ruleS(x) are equivalent if they contain the same variable. Going
to the parent y of x, two components c1 and c2 in ruleS(y) are equivalent if (i)
they contain the same variable; or (ii) they occur together in a positive body
atom a of ruleS(y), and for the child x of y with litS(x) = a, the components in
the head of ruleS(x) corresponding to c1 and c2 are equivalent. The equivalence
relation on the components of S is unique, and its number of equivalence classes
upper bounds the active domain size of S.

Now we define function Val0 : adom(G0) → adom(F ). Let S ∈ G0 and let
T ∈ F denote the structurally equivalent tree. Because S and T are structurally
equivalent, the equivalence classes on components of S transfer naturally to
equivalence classes on the components of T . Because S is general, its valuations

19Indeed, for each subtree, the minimum number of transitions required to derive its root
fact is precisely the height of this tree, and this is expressed in the canonical scheduling.
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assign a different value to each equivalence class, so we can define a function
VS : adom(S) → adom(T ) that contains for each equivalence class e of S the
mapping (a 7→ b), where a and b are the values assigned to e by S and T
respectively. For the entire set G0, we take the union of all mappings VS with
S ∈ G0. The result is denoted Val0, and this is a function because each tree in
G0 has a disjoint active domain. We can now define an equivalence relation E
on adom(G0): two values are equivalent if their image under Val0 is the same.
Assuming an order on dom (the same order as in Section 7.2.3), we can replace
each value in adom(G0) by the smallest value in its equivalence relation. This
results in a set G of derivation trees, in which still as many structurally different
trees occur as in G0, and with adom(G) ⊆ adom(G0).20

Let Val denote the restriction of Val0 to adom(G); this function is injective.

D.2.4 Satisfying valuation

Let F , G, and Val be as previously defined. For each tree S ∈ G, if we would
apply Val after each valuation in S, we obtain a tree in F . So, if we would
consider adom(S) to be variable symbols, then we can see Val as an assignment
to these variables. This will be used below to show that f ∈ Φ(I).

As shown above, there is a derivation tree T ∈ F that derives f in R, when
executed according to its canonical scheduling. Let S0 ∈ G be the tree that is
structurally equivalent to T . As remarked above, applying Val to S0 gives T .
Let S denote the truncated version of S0, and let κ denote the restriction of the
canonical scheduling of S0 to the remaining nodes. Recalling the construction
in Section 7.2.3, we have added to the UCQ¬-program Φ the UCQ¬-program
deriveG,S , given by the following equivalent ∃FO-formula:

deriveG,S := ∃z̄ (diffValG ∧ sndMsgG ∧ succeedG,S,κ) ,

where z̄ is an ordering of the values in adom(G) not occurring in the tuple x̄
in the root fact of S. So, x̄ are the free variables. Now, denoting f = R(ā),
to show f ∈ Φ(I), it suffices to show that if x̄ is assigned ā then the resulting
sentence is true with respect to I. This amounts to showing that the following
quantifier-free formula is true under Val with respect to I:

diffValG ∧ sndMsgG ∧ succeedG,S,κ.

Diffval and sndMsg The subformula diffValG is true because Val is injective
on adom(G). Next, the subformula sndMsgG is a large conjunction of input
literals from the sending rules in G. Let l be such a literal. We have to show
I |= Val(l). There exists a tree S ′ ∈ G and an internal node x of S ′ such
that ruleS

′
(x) is a sending rule and l ∈ bodyS

′
(x)|Υin . Let T ′ ∈ F be the tree

structurally equivalent to S ′, and abbreviate n′ = mapS′,T ′ . By construction
of Val, we have Val(l) ∈ bodyT

′
(n′(x)). Since valT

′
(n′(x)) was satisfied during

some run, which follows from T ′ ∈ F , and all runs have the same input facts,
we obtain I |= Val(l).

20Nonequalities in rules of G are satisfied under their valuations because they are satisfied
in F .
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Succeed input Now consider the subformula succeedG,S,κ. This formula is
specified as

succeedG,S,κ := succeed in
G,S,κ ∧ succeeddeny

G,S,κ.

Let S0 and T ∈ F be as above: S is the truncated version of S0 and T is
structurally equivalent to S0. Abbreviate n = mapS0,T .

Similarly to sndMsgG, the subformula succeed in
G,S,κ is a conjunction of input

literals. Let l be such a literal. We have to show I |= Val(l). There exists
a node x ∈ αS such that l ∈ bodyS(x)|Υin . By construction of Val, we have
Val(l) ∈ bodyT (n(x)). And similarly to our reasoning for sndMsgG, we can now
obtain that I |= Val(l).

Succeed deny Consider the subformula succeeddeny
G,S,κ. Let x ∈ αS , y ∈ βS(x),

denoting g = factS(y), and (S ′, λ) ∈ alignG(g) with λ(rootS′) < κ(x). We have
to show that ¬succeedG,S′,λ is true under Val, which amounts to showing that
succeedG,S′,λ is false under Val. The main strategy will be to use that S ′
extended with Val fails in R when executed according to λ. The reasons for
failure make (parts of) formula succeedG,S′,λ false.

First, we show that the fact Val(g) has to be absent during (and before)
transition κ(x) of R. By definition of y, we have ¬g ∈ bodyS(x). Let S0,
T ∈ F , and mapping n, be as above for the case “succeed input”. We have
¬Val(g) ∈ Val(bodyS(x)) = bodyT (n(x)). Now, because valuation valT (n(x))
is satisfying during transition κT (n(x)) = κ(x), Val(g) must be absent during
κ(x). By inflationarity of the transducer, Val(g) is thus also absent before κ(x).

Let (S ′, λ) be as above. There must be an alpha node z of S ′ such that
fact Val(factS

′
(z)) is not derived during transition λ(z) of R because otherwise

Val(factS
′
(rootS′)) = Val(g) would be derived in transition λ(rootS′) < κ(x),

which is false. Let z be the first of such failed nodes with respect to λ. Valuation
Val ◦valS

′
(z) is not satisfying for ruleS

′
(z) during transition λ(z) of R, and each

reason is used to show that some part of formula succeedG,S′,λ is false under
Val. We consider the different kinds of literal in ruleS

′
(z):

[Input] Suppose there is a literal l ∈ bodyS
′
(z)|Υin such that I 6|= Val(l).

Then the conjunction succeed in
G,S′,λ, and hence the entire formula succeedG,S′,λ,

is false under Val because succeed in
G,S′,λ contains l.

[Messages] Recall that ruleS
′
(z) is message-positive. Suppose that there

is a fact l ∈ bodyS
′
(z)|Υmsg such that Val(l) is not delivered in transition λ(z)

of R. We argue that this is actually not possible, so this case can not occur.
First, because λ is an alignment of S ′ to the abstract canonical run RG, fact l is
delivered in transition λ(z) of RG. Hence, by Claim D.1, fact Val(l) is delivered
in transition λ(z) of R.

[Positive output and memory] Suppose there is a positive literal l ∈
bodyS

′
(z)|Υout∪Υmem (i.e., l is a fact) such that Val(l) is not available during

transition λ(z) of R. We will again show that this case can not occur. The
existence of l implies that z has an alpha child-node z′ in S ′ with factS

′
(z′) = l.

This implies λ(z′) < λ(z). Since z is the first failed alpha node of S ′ with respect
to λ, it must be that the fact Val(factS

′
(z′)) = Val(l) is derived in transition

λ(z′). Hence, Val(l) is available in transition λ(z) by inflationarity of Π.
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[Negative output and memory] Suppose there is a negative literal ¬i ∈
bodyS

′
(z)|Υout∪Υmem , such that h = Val(i) is present during transition λ(z) of

R. From R, we can extract a pair (T ′′, λ′′) with T ′′ a truncated derivation tree
for h, and λ′′ an alignment of T ′′ to R according to which T ′′ derives h. Note
that Val−1 exists because Val is injective. Now, let S ′′ denote the tree obtained
from T ′′ by applying for each internal node u of T ′′ the function Val−1 after
valT

′′
(u). Note, adom(S ′′) ⊆ adom(G).

Because in S ′ there is a beta child node z′ of z with factS
′
(z′) = i, if

we could show (S ′′, λ′′) ∈ alignG(i), then formula succeeddeny
G,S′,λ contains the

subformula ¬succeedG,S′′,λ′′ . Then, we can recursively show that succeedG,S′′,λ′′

is true under Val, making succeeddeny
G,S′,λ, and by extension succeedG,S′,λ, false

under Val, as desired. This is similar to our current proof where we show that
succeedG,S,κ is true under Val, but we would replace (S, κ) by (S ′′, λ′′). This
recursive step always ends, as we argued at the end of Section 7.2.3.

We are left to show that (S ′′, λ′′) ∈ alignG(i). First, S ′′ derives the fact
Val−1(h) = Val−1(Val(i)) = i. Next, alignment λ′′ for S ′′ schedules nodes
before their ancestors because it also does this for T ′′. For the last step, let
u be an internal node of S ′′. We have to show that each e ∈ bodyS

′′
(u)|Υmsg

is delivered during transition λ′′(u) of RG. By construction of S ′′ from T ′′,
there is some e′ ∈ bodyT

′′
(u)|Υmsg that is delivered in transition λ′′(u) of R and

e = Val−1(e′). But by Claim D.1, we have e′ ∈ Val(MG
j ) with j = λ′′(u).

Hence, e ∈ Val−1 ◦Val(MG
j ) = MG

j , as desired.

D.3 Claims
Claim D.1. Consider the symbols defined in Section 7.2.3. Let G ⊆ forestR.
Let F be a set of derivation trees of Π such that (i) no two trees are structurally
equivalent; (ii) for each T ∈ F there is a structurally equivalent tree S ∈ G; and,
(iii) there is an injective function Val : adom(G) → adom(F ) such that when
Val is applied after the valuations of a tree S ∈ G, we obtain the structurally
equivalent tree T ∈ F . Finally, let I be an input for M such that formula
sndMsgG is satisfied under Val with respect to I.

Let RG and R denote the canonical runs based on G and F respectively,
that both have the same length n. Let i ∈ {1, . . . , n} and let MG

i denote the
(abstract) message set delivered in transition i of RG. In transition i of R, we
deliver precisely Val(MG

i ).

Proof. We show this by induction on i. For the base case (i = 1), the property
holds because MG

i = ∅ and no messages are delivered in the first transition of
R (as no messages were previously sent).

For the induction hypothesis, assume the propery holds for transitions j =
1, . . . , i − 1 with i > 1. For the inductive step, we show that the property is
satisfied for transition i. First, note that at most Val(MG

i ) can be delivered in
transition i of R, because this transition only delivers the messages needed by
rules in F scheduled at i, and because the trees in F are obtained from those
in G by concatenating Val to their valuations.

For the second direction, let g ∈ MG
i and denote h = Val(g). We show

that h is delivered in transition i of R. Since g ∈ MG
i , there is a tree S ′ ∈ G,

and an internal node x of S ′, such that κS′(x) = i and g ∈ bodyS
′
(x)|Υmsg . By
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message-positivity of ruleS
′
(x), there is a child y of x such that factS

′
(y) = g.

From the definition of the canonical scheduling, we have κS′(y) = κS
′(x) − 1.

Denoting j = κS
′(y), we have j = i−1. We show that Val ◦valS

′
(y) is satisfying

for ruleS
′
(y) during transition j, such that Val(g) = h is sent in transition j,

and can be delivered in (the next) transition i. The nonequalities of ruleS
′
(y)

are satisfied because they are satisfied under valS
′
(y) (by construction of G)

and because Val is injective. Next, because ruleS
′
(y) is static, we only have to

consider input and message atoms:

• Let l ∈ bodyS
′
(y)|Υin . We have, I |= Val(l), as desired, because l is added

to sndMsgG, which is true under Val with respect to I.

• Let l ∈ bodyS
′
(y)|Υmsg . Because ruleS

′
(y) is message-positive, l is a fact.

Moreover, we have l ∈MG
j . By applying the induction hypothesis to tran-

sition j, we know that Val(l) is delivered during transition j, as desired.

�

Claim D.2. Let T and S be two structurally equivalent derivation trees of Π,
that derive the same output or memory fact f . Abbreviate n = mapS,T . For
each x ∈ αS , the valuations valS(x) and valT (n(x)) assign the same values to
the free variables of the rule ruleS(x) = ruleT (n(x)).21

Proof. We show the property by induction on the length of the path from the
root to the node x ∈ αS in question. In the base case, simply x = rootS
and n(x) = rootT . We are given that factS(rootS) = factT (rootT ). Hence,
valuations valS(rootS) and valT (rootT ) assign the same values to free variables.
Moreover, because f is an output or memory fact, ruleS(rootS) is message-
bounded, and thus any variable occurring in an output or memory literal in the
body must be a free variable. Hence, for every alpha child y of rootS , we have
factS(y) = factT (n(y)). The reasoning can now be repeated for y. �

21Node x and n(x) have the same rule by structural equivalence.
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