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Abstract
The language Dedalus is a Datalog-like language in which distributed

computations and networking protocols can be programmed, in the spirit
of the Declarative Networking paradigm. Whereas recently formal opera-
tional semantics for Dedalus-like languages have been developed, a purely
declarative semantics has been lacking so far. The challenge is to capture
precisely the amount of nondeterminism that is inherent to distributed
computations due to concurrency, networking delays, and asynchronous
communication. This paper shows how a declarative semantics can be ob-
tained by simply using the well-known stable model semantics for Datalog
with negation. This semantics is applied to the Dedalus rules after they
are modified to account for nondeterministic arrival times of messages,
and augmented with control rules which model causality. The main result
then is that, as far as fair operational runs are concerned, the proposed
declarative semantics matches exactly the previously proposed formal op-
erational semantics.

1 Introduction
In recent years, logic programming has been proposed as an attractive foun-
dation for distributed and cloud programming, building on work in declarative
networking [26]. In recent years we are also seeing a more general resurgence
of interest in Datalog, e.g., [12, 20]. A notable promising property of Datalog
is that it allows complex distributed algorithms and protocols to be expressed
in relatively few lines of code [21, 19]. One of the latest languages proposed in
declarative networking is Dedalus [5, 6, 19], a Datalog-inspired language that
has influenced other recent language designs for distributed and cloud comput-
ing such as Webdamlog [1] and Bloom [4]. Moreover, issues related to Dedalus
and data-oriented distributed computing are recently receiving some attention
at database theory conferences [18, 7, 1, 8, 32].

It is well understood how an operational semantics for Dedalus-like languages
can be defined formally [13, 28, 17, 7]. Such a formal semantics is typically
defined as a transition system. The transition system is infinite even if the
distributed computation is working on a finite input database, because compute
nodes can run indefinitely; moreover, they can keep on sending messages so that

1



an unbounded number of messages can be floating around in the network.1 In
addition, the transition system is highly nondeterministic, because nodes work
concurrently, communication is asynchronous, and messages can be delayed and
eventually be delivered out of order by the network.

On the other hand, it remains unclear how (and if) a purely declarative
formal semantics can be given for the languages used in declarative (!) network-
ing. This has been lacking so far, and the purpose of this paper is to contribute
towards filling this gap. Concretely, our work can be summarized as follows.

1. We begin by presenting a formal operational semantics for Dedalus. As
mentioned above, this part is quite standard. Our definition leads to
the notion of fair runs of a Dedalus program P on an input distributed
database instance H. Runs represent distributed computations and, due
to the nondeterminism mentioned above, there are typically many fair
runs of P on H.

2. Each run respects a causal order (which is a partial order) that relates the
local steps of the different compute nodes through chains of local steps
and communicated messages. This order indicates what events “happened
before” which other events [11]. Now, the computation of each run can
be described by a structure which we call a trace, which includes for each
compute node in the network the detailed information about the local
steps it has performed and about the messages it has sent and received.
The trace conforms to the causal order.

3. The main idea now is that the traces of runs can be obtained precisely as
the set of stable models [15] of P on H. A few manipulations are needed
before we can aim for such a result, however, because the Dedalus program
P is not really a Datalog¬ program. Indeed, the language Dedalus pro-
vides special “inductive rules” and “asynchronous rules” that are used for
persisting memory across local computation steps and sending messages
respectively. First, we will transform these rules into Datalog¬ rules that
simulate their effect, where asynchronous rules will nondeterministically
choose the arrival times of messages [22, 30]. Furthermore, P is augmented
with a fixed, instance- and network-independent set of rules that express
causality on the messages. Applying the stable model semantics to such
transformed Dedalus programs constitutes the declarative semantics.

We believe that our result is interesting because it shows the equivalence between
two quite different ways to define the semantics of a Dedalus program.

Perhaps most importantly, the result is of interest for grounding a rep-
resentative database language for distributed and cloud computing in a well-
motivated model-theoretic semantics. Indeed, our characterization provides a
purely declarative axiomatization of fair distributed program behaviors in terms

1We use the common term “node” as a synonym for an individual “computer” in a network
or cluster.
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of the stable models of a logical theory (finite set of Datalog¬ rules). Specif-
ically, we have succeeded in capturing in Datalog¬ the operational notion of
causality, which focuses on just the key features of the distributed computation:
the state of each compute node at each local time, and at what local times the
nodes send and receive messages. Hence our declarative semantics reasons from
the perspective of the local times of each node, which is a justified approach
since there is no common “global clock” in a distributed environment [11].

It should be noted that the declarative semantics studied in the current
work perhaps can not directly be used in practical applications, because in the
semantics there is a reference to an infinite number of local computation steps of
the nodes. But we hope our work can provide insights for the design of a more
intuitive declarative semantics, used by developers of distributed applications.

As mentioned, many Datalog-inspired languages have been proposed to im-
plement distributed applications [26, 28, 17, 1], and they contain several features
such as aggregation and non-determinism (choice), that result in powerful lan-
guages. But the essential features that all these languages possess, are reasoning
about distributed state and representing message passing. We think of the lan-
guage Dedalus, as we define it here, as a minimalistic extension of Datalog to
provide just these essential features. For this reason, we expect that the current
work can serve as a theoretical base that can be extended to more powerful
language features as well.

An area of artificial intelligence that is closely related to declarative network-
ing is that of programming multi-agent systems in declarative languages. The
knowledge of an agent can be expressed by a logic program, which also allows for
non-monotone reasoning, and agents update their knowledge by modifying the
rules in these logic programs [25, 29, 24]. The language LUPS [3] was designed
to specify such dynamic updates to logic programs, and LUPS is also a declara-
tive language itself. After applying a sequence of updates specified in LUPS, the
semantics of the resulting logic program can be defined in an inductive way. But
an interesting connection to this current work, is that the semantics can also be
given by first syntactically translating the original program and its updates into
a single normal logic program, after which the stable model semantics is applied
[3]. This has also lead to a practical implementation of LUPS. It should be
noted however that in this second semantics, there is no modeling of causality
or the sending of messages.

This paper is organized as follows. In Section 2 we give preliminaries, in-
cluding the language Dedalus. In Section 3 we give the operational semantics
for Dedalus and some example programs. In Section 4 we define the declarative
semantics for Dedalus. In Section 5 we give our main result that relates the
operational and declarative semantics. The proof of this result is given in two
parts, in Sections 6 and 7. We finish with the conclusion in Section 8.
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2 Preliminaries
2.1 Databases and Facts
A database schema D is a set of pairs (R, k) where R is a relation name and
k ∈ N its associated arity. A relation name occurs at most once in a database
schema. We often write (R, k) as R(k).

We assume some infinite universe dom of atomic data values. A fact f is a
pair (R, ā), often denoted as R(ā), where R is a relation name and ā is a tuple
of values over dom. For a fact R(ā), we call R the predicate. We say that a fact
R(a1, . . . , ak) is over a database schema D if R(k) ∈ D. A database instance
I over a database schema D is a set of facts over D. For a database schema
D′ ⊆ D, we write I|D′ to denote the subset of facts in I that are over D′.

For a set of facts I, we write adom(I) to denote the set of all values that
occur in the facts of I.

2.2 Datalog with Negation
Below we recall the language Datalog with negation [2], which we abbreviate as
Datalog¬.

Let var be a universe of variables, disjoint from dom. We will use typewriter
font for variables, to better distinguish them from values in dom. An atom is
of the form R(u1, . . . , uk) where R is a relation name and ui ∈ var ∪ dom for
i = 1, . . . , k. We call R the predicate. If an atom contains no data values, then
we call it constant-free. A literal is an atom or a negated atom. A literal that
is an atom is called positive and otherwise it is called negative.

A Datalog¬ rule ϕ is a triple

(headϕ, posϕ, negϕ)

where headϕ is an atom, and posϕ and negϕ are sets of atoms. The components
headϕ, posϕ and negϕ are called respectively the head, the positive body atoms
and the negative body atoms. The union of the last two sets is called the body
atoms. Note that in our formalization, the set negϕ contains just atoms, not
negative literals. Every Datalog¬ rule ϕ must have a head, whereas posϕ and
negϕ may be empty. If negϕ = ∅ then ϕ is called positive. If all atoms comprising
ϕ are constant-free, then ϕ is called constant-free.

A rule ϕ may be written in the conventional syntax. For instance, if headϕ =
T (u, v), posϕ = {R(u, v)} and negϕ = {S(v)}, with u, v ∈ var, then we can write
ϕ as

T (u, v)← R(u, v), ¬S(v).

The specific ordering of literals to the right of the arrow is arbitrary.
We call ϕ safe if the variables occurring in headϕ and negϕ also occur in

posϕ. The set of variables of ϕ is denoted vars(ϕ). If vars(ϕ) = ∅ then ϕ is
called ground, in which case we will consider {headϕ} ∪ posϕ ∪ negϕ to be a set
of facts.
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Let D be a database schema. A rule ϕ is said to be over schema D if for each
atom R(u1, . . . , uk) ∈ {headϕ} ∪ posϕ ∪ negϕ we have R(k) ∈ D. A Datalog¬
program P over D is a set of safe Datalog¬ rules over D. We call P constant-
free if all rules in P are constant-free. We will write sch(P ) to denote the
database schema that P is over. We define idb(P ) ⊆ sch(P ) to be the database
schema consisting of all relations occurring in rule-heads of P . We abbreviate
edb(P ) = sch(P ) \ idb(P ).2

An input for P is a database instance over sch(P ). Note that we allow
inputs to already contain facts over idb(P ), and the reason for this slightly
unconventional input definition will become clear in Section 3.

Let P be a Datalog¬ program. Let I be an instance over sch(P ). Let
ϕ ∈ P . A valuation for ϕ is a total function V : vars(ϕ) → dom. Note that
there is only one valuation for ground rules, namely, the one having an empty
domain. Now, we define the application of V to an atom R(u1, . . . , uk) of ϕ,
denoted V (R(u1, . . . , uk)), as the fact R(a1, . . . , ak) where for i = 1, . . . , k we
have ai = V (ui) if ui ∈ var and ai = ui otherwise. In words: the application of
valuation V replaces the variables by data values and leaves the old data values
unchanged. This notation is naturally extended to a set of atoms, which results
in a set of facts. Now, the valuation V is said to be satisfying for ϕ on I if
V (posϕ) ⊆ I, V (negϕ) ∩ I = ∅. If this is so, then ϕ is said to derive the fact
V (headϕ).

Remark: note that our definition of Datalog¬ is general enough to allow for
the simulation of nonequalities like u 6= v in rule bodies, because a Datalog¬
program can compute a binary idb-relation equal in which identical tuples like
(a, a) appear, and then negation can be applied to this relation in rule bodies.

2.2.1 Positive and Semi-positive

Let P be a Datalog¬ program. We say that P is positive if it has only positive
rules. We say that P is semi-positive if for each rule ϕ ∈ P , all predicates
used in atoms of negϕ are contained in edb(P ). Naturally, positive programs
are semi-positive.

Let P be a semi-positive Datalog¬ program. We now give the semantics
of P [2]. We define the immediate consequence operator TP that maps each
instance J over sch(P ) to the instance J ′ = J ∪ A where A is the set of facts
derived by all possible satisfying valuations for the rules of P on J . Note that
adom(J ′) ⊆ adom(J).

Let I be an instance over sch(P ). Consider the infinite sequence I0, I1, I2,
etc, that is inductively defined as follows: I0 = I and Ii = TP (Ii−1) for each
i ≥ 1. We define the output of P on input I, denoted P (I), as

⋃
j Ij ; this is the

minimal fixpoint of the TP operator. Note that I ⊆ P (I). When I is finite, the
fixpoint is finite and can be computed in polynomial time.

2The abbreviation “idb” stands for “intensional database schema” and “edb” stands for
“extensional database schema” [2].
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2.2.2 Stratified Semantics

We now recall the notion of stratified semantics for a Datalog¬ program [2]. Let
P be a Datalog¬ program. To improve readability, as a slight abuse of notation,
here we will treat idb(P ) as a set of only relation names (without associated
arities). The program P is called syntactically stratifiable if there is a function
σ : idb(P )→ {1, . . . , |idb(P )|} such that for each rule ϕ ∈ P , having some head
predicate T , the following conditions are satisfied:

• σ(R) ≤ σ(T ) for each R(v̄) ∈ posϕ|idb(P );

• σ(R) < σ(T ) for each R(v̄) ∈ negϕ|idb(P ).
For R ∈ idb(P ), we call σ(R) the stratum number of R. For technical conve-
nience, we may assume that if there is an R ∈ idb(P ) with σ(R) > 1 then there
is an S ∈ idb(P ) with σ(S) = σ(R)− 1.

Intuitively, the function σ partitions P into a sequence of semi-positive
Datalog¬ programs P1, . . . , Pk with k ≤ |idb(P )| such that for each i = 1, . . . , k,
the program Pi is the set of rules of P whose head predicate has stratum number
i. Rules with the same head predicate are always in the same semi-positive pro-
gram. This sequence of semi-positive programs is called a syntactic stratification
of P . We can now apply the stratified semantics to P : for an input I over sch(P ),
we first compute the fixpoint P1(I), then the fixpoint P2(P1(I)), etc. The out-
put of P on input I, denoted P (I), is then defined as Pk(Pk−1(. . . P1(I) . . .)).
It is well known that the output of P does not depend on the chosen syntactic
stratification (in the case that more than one exists).

Not all Datalog¬ programs are syntactically stratifiable.

2.2.3 Stable Model Semantics

We now recall the notion of stable model semantics [15, 30]. Let P be a Datalog¬
program and let I be a database instance over sch(P ). Let ϕ ∈ P . Let V be
a valuation for ϕ whose image is contained in adom(I). Valuation V does not
have to be satisfying for ϕ on I. Together, V and ϕ give rise to a ground rule
ψ, that is precisely ϕ except that each u ∈ vars(ϕ) is replaced by V (u). We call
ψ a ground rule of ϕ with respect to I. Let ground(ϕ, I) denote the set of all
ground rules of ϕ that we can make with respect to I. The ground program of
P on input I, denoted ground(P, I), is defined as

⋃
ϕ∈P ground(ϕ, I).

Let M be a set of facts over the schema sch(P ). We write groundM (P, I) to
denote the program obtained from ground(P, I) as follows:

1. remove every rule ψ ∈ ground(P, I) for which negψ ∩M 6= ∅;

2. remove the negative (ground) body atoms from all remaining rules.
Note that groundM (P, I) is a positive program. We say thatM is a stable model
of P on input I if M is the output of groundM (P, I) on input I. This implies
that I ⊆ M and adom(M) ⊆ adom(I) by the semantics of positive Datalog¬
programs.

Not all Datalog¬ programs have stable models on every input.
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2.3 Network and Distributed Databases
A (computer) network is a nonempty finite set N of nodes, which are values in
dom. Intuitively, N represents a set of identifiers of compute nodes involved in
a distributed system. We do not explicitly represent communication channels
(edges) because we will work in a model where any node x can send a message
to any other node y, as long as x knows about y. This knowledge can come from
local input relations of x or from messages that x has received itself. When using
Dedalus for general distributed or cluster computing, the delivery of messages is
handled by the network layer, which is abstracted away. But Dedalus programs
can also be used to describe the network layer itself [26, 19]. In that case, we
would restrict attention to programs where nodes only send messages to nodes
to which they are explicitly linked; these nodes would again be provided as
input.

A distributed database instance H over a network N and a database schema
D is a function that maps every node ofN to an ordinary finite database instance
over D. This represents how data over the same schema D is spread over the
nodes of a network.

2.4 Dedalus Programs
We now recall the language Dedalus, that can be used to describe distributed
computations [5, 6, 19]. Essentially, Dedalus is an extension of Datalog¬ to
represent updatable memory for the nodes of a network and to provide a mech-
anism for communication between these nodes. In the current work, we present
Dedalus as Datalog¬ extended with a simple annotation mechanism, which keeps
the notations simpler.3

Let D be a database schema. We write B{v̄}, where v̄ is a tuple of variables,
to denote any sequence β of literals over database schema D, such that the
variables in β are precisely those in the tuple v̄. Let R(ū) denote any atom over
D. There are three types of Dedalus rules over D:

• A deductive rule is a normal Datalog¬ rule over D.

• An inductive rule is of the form

R(ū)• ← B{ū, v̄}.

• An asynchronous rule is of the form

R(ū) | y← B{ū, v̄, y}.

For inductive rules, the annotation ‘•’ can be likened to the transfer of “tokens”
in a Petri net from the old state to the new state. For asynchronous rules, the
annotation ‘| y’ with y ∈ var means that the derived head facts are transferred
(“piped”) to the node represented by y. Deductive, inductive and asynchronous

3These annotations correspond to syntactic sugar in the previous presentations of Dedalus.
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rules will express respectively local computation, updatable memory, and mes-
sage sending (cf. Section 3). Like in Section 2.2, a Dedalus rule is called safe if
all its variables occur in at least one positive body atom.

To illustrate, if D = {R(2), S(1), T (2)}, then the following three rules are
examples of, respectively, deductive, inductive and asynchronous rules over D:

T (u, v)← R(u, v), ¬S(v).

T (u, v)• ← R(u, v).

T (u, v) | y← R(u, v), S(y).

Now consider the following definition:

Definition 2.1. A Dedalus program over a schema D is a set of deductive,
inductive and asynchronous Dedalus rules over D, such that all rules are safe,
and the set of deductive rules is syntactically stratifiable.

In the current work, we will additionally assume that Dedalus programs
are constant-free, as is common in the theory of database query languages,
and which is not really a limitation, since constants that are important for the
program can always be indicated by unary relations in the input.

Let P be a Dedalus program. We write sch(P) to denote the schema that
P is over. Because P is a set of rules, the definitions of idb(P) and edb(P) are
like for Datalog¬ programs.

An input for P is a distributed database instance H over some network N
and the schema edb(P).

3 Operational Semantics
In this section we give an operational semantics for Dedalus. We describe how
a network executes a Dedalus program P when an input distributed database is
given. This operational semantics is in line with earlier formal work on declar-
ative networking [13, 28, 17, 7, 1].

The essence of the operational semantics is as follows. By definition, the
input distributed database is over a certain network. Every node of the network
runs the same Dedalus program, and a node has access only to its own local state
and any received messages. The nodes are made active one by one in some arbi-
trary order, and this continues an infinite number of times. During each active
moment of a node x, called a local (computation) step, node x receives message
facts and applies its deductive, inductive and asynchronous rules. Concretely,
the deductive rules, forming a stratified Datalog¬ subprogram, are applied to
the incoming messages and the previous state of x. Next, the inductive rules
are applied to the output of the deductive subprogram, and these allow x to
store facts in its memory: these facts become visible in the next local step of x.
Finally, the asynchronous rules are also applied to the output of the deductive
subprogram, and these allow x to send facts to the other nodes or to itself.
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These facts become visible at the addressee after some arbitrary delay, which
represents asynchronous communication, as occurs for instance on the Internet.
We assume that all messages are eventually delivered (and are thus never lost).
We will refer to local steps simply as “steps”.

In the next subsections, we make the above sketch more concrete. We will
start by giving some illustrative example programs.

3.1 Example Programs
In this section we give some example Dedalus programs that help illustrate the
language. For the purposes of this section, we assume that every node always has
at least the local unary input relations Id and Node, that contain respectively
the identifier of the local node and the identifiers of all nodes (including the local
node). Additional input relations will use a different name, and for the sake of
simplicity, we will assume that the relations Id and Node are automatically
initialized correctly when we define the inputs for the Dedalus programs below.

We also briefly mention that it is possible to define the output of Dedalus
programs based on so-called ultimate facts, which are the facts on every node
that are eventually derived (by the deductive subprogram) during every step
[27]. The examples below follow this principle.

Example 3.1. Suppose that each node has a binary input relation R that
represents a graph. We want to compute at each node the transitive closure of
the global graph that is obtained by uniting the local input graphs of all nodes.
This output should be stored in a relation T (2) at each node.

For any network N , for any distributed database instance over N and rela-
tion R(2), the following Dedalus program computes the required output at each
node, in a well-known way [26]:

T (u, v) | y← R(u, v), Node(y).
T (u, v) | y← R(u, w), T (w, v), Node(y).
T (u, v)• ← T (u, v).

The first asynchronous rule lets each node broadcast all of its local input R-
facts as T -facts to every node, including itself. The second asynchronous rule
lets each node take an incoming T -fact, join it with local R-facts, and broadcast
the resulting transitive edges again to every node. The last rule is inductive,
and it continuously persists all received T -facts to the next step, so that the
relation T steadily grows at each node. After a while, every node will have
accumulated all original graph edges and the transitive edges in relation T . �

The previous example showed how a recursive, monotone computation can
be expressed. The next example illustrates how Dedalus can also be used to do
a nonmonotone computation in a distributed setting.

Example 3.2. In this example, nullary relations are used as booleans: true is
represented by the nonempty relation and false by the empty relation. Suppose
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that each node has a nullary input relation S. We want to compute at each
node a nullary fact T ( ) if and only if the relation S is empty at all nodes. This
is a nonmonotone computation. Indeed, if all nodes have an empty relation S
then we produce T ( ) on all nodes, and if at least one node has a nonempty
relation S then we should not output T ( ) on any node.

For every network N , the following Dedalus program computes the desired
output at each node:

empty(x) | y← Id(x), ¬S( ), Node(y).
empty(x)• ← empty(x).
missing( )← Node(x), ¬empty(x).
T ( )← ¬missing( ).

The first asynchronous rule lets a node broadcast its own identifier to every
node (including itself) if its local input relation S is empty. The second rule
is inductive and it persists the received node identifiers. The third rule is de-
ductive, and it checks whether the identifiers of all nodes have been received
(missing is false) or not (missing is true). Because the rule is deductive, the
relation missing is recomputed during every local step of a node. The last rule,
which is also deductive, produces a T ( )-fact at every node that has received all
node identifiers.

If indeed every node has an empty S-relation, after a while, all nodes have
received all node identifiers, and from that moment onwards, all nodes produce
T ( ) in every step. In the other case, when at least one of the nodes does not
have an empty S-relation, no node will receive the identifier of that node and
thus no node will ever produce T ( ). �

We present the formal operational semantics in the next subsections.

3.2 Configurations
A configuration describes the network at a certain point in its evolution. Let H
be an input distributed database instance for P, over a network N . We define
a configuration ρ of P on H to be a pair (stρ,bfρ) where

• stρ is a function that maps each node of N to a set of facts over sch(P);

• bfρ is a function that maps each node of N to a set of pairs of the form
〈i,f〉, where i ∈ N and f is a fact over idb(P).

We call stρ the state and bfρ the (message) buffer respectively. The state stρ
says for each node what facts it has stored in its memory, and the message
buffer bfρ says for each node what messages have been sent to it but that are
not yet received. So, bfρ represents the contents of the transmission channels
between the nodes. The reason for having numbers i, called send-tags, attached
to facts in the image of bfρ is merely a technical convenience: these numbers
help separate multiple instances of the same fact when it is sent at different
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moments (to the same addressee), and these send-tags will not be visible to the
Dedalus program.4

The start configuration of P on input H is the configuration ρ defined by

• stρ(x) = H(x) for each x ∈ N ;

• bfρ(x) = ∅ for each x ∈ N .

In words: for every node, the state is initialized with its local input fragment in
H, and there are no sent messages. We denote this configuration as start(P, H).

3.3 Subprograms
We look at the operations that are executed locally during each step of a node.
We have mentioned that the three types of Dedalus rules each have their own
purpose in the operational semantics. For this reason, we split the program P
into three subprograms, that contain respectively the deductive, inductive and
asynchronous rules. In Section 3.4, we describe how these subprograms are used
in the operational semantics.

• First, we define deducP to be the Datalog¬ program consisting of precisely
all deductive rules of P.

• Secondly, we define inducP to be the Datalog¬ program consisting of all
inductive rules of P after the annotation ‘•’ in their head is removed.

• Thirdly, we define asyncP to be the Datalog¬ program consisting of pre-
cisely all rules

T (y, ū)← B{ū, y}

where
T (ū) | y← B{ū, y}

is an asynchronous rule of P. So, we basically put the variable y as the first
component in the (extended) head atom. The intuition for the generated
head facts is that the first component will represent the addressee.

Note that the programs deducP , inducP and asyncP are just Datalog¬ programs
over the schema sch(P), or a subschema thereof. Moreover, deducP is syntac-
tically stratifiable because the deductive rules in every Dedalus program must
be syntactically stratifiable. It is possible however that inducP and asyncP are
not syntactically stratifiable. Now we define the semantics of each of these three
subprograms.

Let I be a database instance over sch(P). During each step of a node, the
intuition of the deductive rules is that they “complete” the available facts by
adding all new facts that can be logically derived from them. This calls for a
fixpoint semantics, and for this reason, we define the output of deducP on input

4We could have equivalently modeled message buffers with multisets, where messages are
not tagged. The tags however are technically easier to work with.
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I, denoted as deducP(I), to be given by the stratified semantics. This implies
I ⊆ deducP(I). Importantly, I is allowed to contain facts over idb(P), and the
intuition is that these facts were derived during a previous step (by inductive
rules) or received as messages (as sent by asynchronous rules). This will become
more explicit in Section 3.4.

During each step of a node, the intuition behind the inductive rules is that
they store facts in the memory of the node, and these stored facts will become
visible during the next step. There is no notion of a fixpoint here because facts
that will become visible in the next step are not available in the current step
to derive more facts. For this reason, we define the output of inducP on input
I to be the set of facts derived by the rules of inducP for all possible satisfying
valuations in I, in just one derivation step. This output is denoted as inducP〈I〉.
Possibly I ∩ inducP〈I〉 = ∅.

During each step of a node, the intuition behind the asynchronous rules is
that they generate “message” facts that are to be sent around the network. The
output for asyncP on input I is defined in the same way as for inducP , except
that we now use the rules of asyncP instead of inducP . This output is denoted
as asyncP〈I〉. The intuition for not requiring a fixpoint for asyncP is that a
message fact will arrive at another node, or at a later step of the sender node,
and can therefore not be read during sending.

Regarding data complexity [31], for each subprogram the output can be
computed in PTIME with respect to the size of its input.

3.4 Transitions and Runs
We will now define how we can go from one configuration ρa to another config-
uration ρb. This is formalized by means of transitions, and they describe how
one active node does a local computation step to update its state and to send
messages around the network. Such transitions can be chained to form a run
that describes a full execution of the Dedalus program on the given input.

As a small notational aid, for a set m of pairs of the form 〈i,f〉, we define
untag(m) = {f | ∃i ∈ N : 〈i,f〉 ∈ m}.

A (delivery) transition with send-tag i ∈ N is a five-tuple (ρa, x,m, i, ρb),
also denoted as

ρa
x,m−−−→
i

ρb,

such that ρa and ρb are configurations of P on input H, x ∈ N , m ⊆ bfρa(x),
and, letting

I = stρa(x) ∪ untag(m),
D = deducP(I),
δi→y = {〈i, R(ā)〉 | R(y, ā) ∈ asyncP〈D〉} for each y ∈ N ,

for x we have

stρb(x) = H(x) ∪ inducP〈D〉,
bfρb(x) = (bfρa(x) \m) ∪ δi→x,
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and for each y ∈ N \ {x} we have

stρb(y) = stρa(y)
bfρb(y) = bfρa(y) ∪ δi→y.

We say that this transition is of the active node x. Intuitively, the transition
expresses how the active node x reads its old state in stρa(x) together with
the received facts in untag(m) (thus without the tags), and then completes
this information with subprogram deducP . Next, the state of x is changed to
stρb(x), which always contains the input facts of x, over schema edb(P), and
it also includes all facts derived by subprogram inducP , which is applied to
the deductive fixpoint. The state stρb(x) represents that input facts are never
lost, and that relations in idb(P) have mutable state, where only the facts that
are explicitly derived by inducP are remembered. Only the state of the active
node x changes. Lastly, the subprogram asyncP is also applied to the deductive
fixpoint. The facts that it generates are called messages, and by the syntax
of asyncP , these have an additional location specifier as their first component
that indicates the addressee of the message. For each y ∈ N , we make the
set δi→y that contains all messages addressed to y: we drop the addressee-
component because all facts are destined for y, and we attach the send-tag i
to the resulting facts. The set δi→y is then added to the buffer of y. Messages
with an addressee outside the network are ignored. This way of defining local
computation closely corresponds to that of the language Webdamlog [1].

A run R of P on input H is an infinite sequence of transitions, such that
(i) the very first configuration is start(P, H), (ii) the output configuration of
each transition is the input configuration of the next transition, and (iii) the
transition at ordinal i of the sequence uses send-tag i. The resulting transition
system is highly non-deterministic because in each transition we can choose the
active node and also what messages from its buffer we want to deliver. An
infinite number of transitions is always possible because the set of delivered
messages may be empty. If R is clear from the context, we will typically refer
to transitions by their ordinal, and these ordinals start at 0 for technical conve-
nience. Then, for transition i ∈ N, we write ρi to denote its input configuration,
xi to denote the active node and mi to denote the delivered messages, where
mi ⊆ bfρi(xi).

A nice aspect of the operational semantics given here is that every message
is just a fact over idb(P). This allows the local Dedalus rules of a recipient
node to treat received message facts in the same way as facts in its old state,
i.e., there is no noticeable difference. From this viewpoint, communication is
in some sense transparent to the nodes, which is one of the design principles of
Dedalus.

As a final remark, transitions as they are defined here can simulate parallel
transitions in which multiple nodes are active at the same time and receive
messages from their respective buffers. Indeed, if we would have multiple nodes
active during a parallel transition, they would receive messages from their buffers
in isolation, and this can be represented by a chain of transitions in which these
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nodes receive one after the other precisely the messages that they received in
the parallel transition. For this reason, we limit our attention to transitions
with single active nodes.

3.5 Fairness and Arrival Function
In the literature on process models it is customary to require certain “fairness”
conditions on the execution of a system, for instance to exclude some extreme
situations that are expected not to happen in reality [14, 10, 23].

Let P be a Dedalus program. Let H be an input distributed database
instance for P, over a network N . A run R of P on H is called fair if:

• every node is the active node in an infinite number of transitions; and,

• for every transition i ∈ N, for every y ∈ N , for every pair 〈j,f〉 ∈ bfρi(y),
there is a transition k with i ≤ k in which 〈j,f〉 is delivered to y, or more
formally: 〈j,f〉 ∈ mk.

Intuitively, the fairness conditions disallow starvation: every node does an in-
finite number of local computation steps and every sent message is eventually
delivered. We consider only fair runs in this paper.

In the second condition about message deliveries, it is possible that k =
i, and in that case 〈j,f〉 is delivered in the transition immediately following
configuration ρi. Because the pair 〈j,f〉 can be in the message buffer of multiple
nodes, this k is not unique for the pair 〈j,f〉 by itself. But, when we also consider
the addressee y, it follows from the operational semantics that this k is unique
for the triple (j, y,f). This reasoning gives rise to a function αR, called the
arrival function for R, that is defined as follows: for every transition i, for
every node y, for every fact 〈i,f〉 ∈ δi→y (i.e., f is sent to addressee y during
i), the function αR maps (i, y,f) to the transition ordinal k in which 〈i,f〉 is
delivered to y. We always have αR(i, y,f) > i. Indeed, the delivery of a message
can only happen after it was sent. So, when the delivery of one message causes
another to be sent, then the second one is delivered in a later transition. This
is related to the topic of “causality”, which is discussed in Section 4.3.

4 Declarative Semantics
Let P be a Dedalus program. Throughout this section, we fix P and give a
declarative semantics for this program. In this semantics, we want to abstract
away details that are specific to the operational semantics. First, Sections 4.1
and 4.2 will provide additional notations and definitions about runs. These will
be used in Section 4.3 to investigate an abstraction of the operational semantics
and some of the properties involved. Next, the declarative semantics is given by
the stable model semantics applied to a pure Datalog¬ program pure(P) that is
obtained from Dedalus program P. In Sections 4.4 up to 4.8, we describe how
to construct pure(P) and we define its semantics. Intuitively, this new program
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will simulate the entire distributed computation (of all nodes together) and its
construction is centered around the insights obtained in Section 4.3.

4.1 Timestamps
We will assign local time values to the steps of a node in the operational se-
mantics. Let R be a run of P on some input distributed database instance H,
which is over a network N . For each transition i ∈ N of R, we define locR(i) to
be the number of transitions in R with active node xi that come strictly before
transition i. Note that locR(i) is the (zero-based) ordinal of the local step of
xi during transition i. We call such step ordinals of a node the timestamps of
that node, and these can be regarded as local clock values. So, per node, we
can identify the local computation steps by their timestamps. We would like to
stress that the timestamps are relative to each node. For instance, timestamp
0 for a node x indicates the first step of x, and timestamp 0 for another node y
indicates the first step of y.

As a counterpart to function locR(·), for each (x, s) ∈ N × N we define
globR(x, s) to be the transition ordinal i of R such that xi = x and locR(i) = s.
In words: we find the transition i in which node x does its local computation
step with timestamp s. It follows from the definition of locR(·) that globR(x, s)
is uniquely defined.

4.2 Extended Schema and Trace
We want to associate a location specifier and a timestamp to facts over sch(P).
Let R(k) ∈ sch(P). The intuition of a fact R(x, s, a1, . . . , ak) with location
specifier x and timestamp s will be that the fact R(a1, . . . , ak) is present at node
x during its local step with timestamp s, after the program deducP is executed
(see Section 3.4). For using timestamps in facts, we require that N ⊆ dom.

Formally, we write sch(P)LT to denote the database schema obtained from
sch(P) by incrementing the arity of every relation by two. The two extra compo-
nents will contain the location specifier and timestamp, which are by convention
the first and second components of a fact.5

For a database instance I over sch(P), x ∈ dom and s ∈ N, we write I⇑x,s to
denote the facts over sch(P)LT that are obtained by prepending location specifier
x and timestamp s to every fact of I. For the reverse operation, for an instance
J over sch(P)LT, we write J⇓ to denote the facts over sch(P) obtained by
removing the location specifier and timestamp from every fact of J . Lastly, we
write J |x,s to denote the facts of J that have location specifier x and timestamp
s, without removing the location specifier and timestamp.

When I and J are sets of atoms over schemas sch(P) and sch(P)LT respec-
tively, and x, s ∈ var, we will also apply the notations I⇑x,s and J⇓, with the
same meaning as for facts (except that now the location specifiers and times-
tamps are variables). Also, if L is a sequence of literals over schema sch(P),

5The abbreviation “LT” stands for “location specifier and timestamp”.
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and x, s ∈ var, we write L⇑x,s to denote the sequence of literals over schema
sch(P)LT that is obtained by adding location specifier x and timestamp s to the
literals in L (negative literals stay negative).

We will now capture the computed data during a run as a set of facts that
we call the trace. Let R be a run of P on some input H, over a network N . For
each transition i ∈ N, let xi denote the active node, and letDi denote the output
of subprogram deducP during i. Let locR(i) be as defined in Section 4.1. The
operational semantics implies that Di consists of (i) the input edb-facts at xi;
(ii) the inductively derived facts during the previous step of xi (if locR(i) ≥ 1);
(iii) the messages delivered during transition i; and, (iv) all facts deductively
derived from the previous ones. Intuitively, Di contains all local facts over
sch(P) that xi has during transition i. Now, the trace of R is the following
instance over sch(P)LT:

trace(R) =
⋃
i∈N

D
⇑xi, locR(i)
i .

In words: the trace represents all locally computed facts during each transition,
additionally carrying the location specifier and timestamp of the active node.
The trace shows in detail what happens in the run, in terms of what facts are
available on the nodes during which of their steps.

4.3 Messages and Causality
In the declarative semantics, we want to represent the same computations as
in the operational semantics. We believe that the trace of a run represents in
detail the computation of that run (see Section 4.2). So, our goal will be to rep-
resent in the declarative semantics exactly the traces of runs. In the operational
semantics, we order the actions of the nodes on a fine-grained global time axis,
by ordering the transitions in the runs. For representing the trace, we will see
below that it is actually sufficient to focus on the direct and indirect relation-
ships between just the local steps of the nodes, ignoring the global ordering of
the transitions. This forms the main ingredient for the declarative semantics.

Let R be a run of P. From R, we extract the message sending and receiving
events, or simply called the “message events”. Formally, we define mesg(R)
to be the set of all tuples (x, s, y, t,f), with f = R(ā) a fact, and denoting
i = globR(x, s) and j = globR(y, t), such that αR(i, y,f) = j, i.e., node x
during step s sends message f to y that arrives at the step t of y, with possibly
x = y. Note that in mesg(R) there is no mention of transitions since it only
contains relationships between local steps. The following lemma says mesg(R)
is sufficient for representing the trace:

Lemma 4.1. Let H be an input for P. For any two runs R1 and R2 of P on
H, if mesg(R1) = mesg(R2) then trace(R1) = trace(R2).

Proof. This result is perhaps not really surprising, and we will only give a proof
sketch. Let x be a node of the network that H is over. We will see by inductive
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reasoning on the local steps of x that x will produce during each step exactly
the same deductive facts in R1 as in R2. In the first step of x, the previous
state of x in both R1 and R2 consists of just the local input H(x), since there
was no previous step of x to derive inductive facts. Also, the given assumption
mesg(R1) = mesg(R2) implies that x receives exactly the same messages during
its first step in R1 and R2. Once the previous state and the received messages
are known, the execution of the subprograms deducP and inducP during the
first step of x is completely determined. Hence, in runs R1 and R2 the node x
produces exactly the same deductive and inductive facts during the first step.
This implies that also the second stored state of x is the same in both runs.
Our reasoning can now be repeated for the second step of x, the third step, etc.
Generalized to all nodes, we see that trace(R1) = trace(R2). �

Consider now the following example, that illustrates how the pairs in N ×N
might be related by a run.

Example 4.2. Suppose we have a run R, in which the following events take
place, where we assume that x, y and z are three distinct nodes:

1. Node x during step s sends a message A to node z.

2. This message A arrives at node z during step u.

3. The node z during step u+ 5 sends a message B to node y.

4. This message B arrives at node y during step t.

There is a chain of events that connects (x, s) to (y, t):

(x, s) send A−−−−−→ (z, u) step−−−→ (z, u+ 1) . . . step−−−→ (z, u+ 5) send B−−−−−→ (y, t).

We say that the step s of node x (causally) happens before the step t of node
y because we can follow a forward chain of local steps and sent messages to
connect step s of x to step t of y. And such a path can make a “detour” to
other nodes and some of their steps as well; in this case node z and its steps u
up to u+ 5. �

For a runR, the intuition of Example 4.2 can be formalized with the happens-
before relation [11] on the set N × N, which is defined as the smallest relation
≺R on N × N that satisfies the following three conditions:

• for each (x, s) ∈ N × N, we have (x, s) ≺R (x, s+ 1);

• (x, s) ≺R (y, t) whenever for some fact f we have (x, s, y, t,f) ∈ mesg(R);

• ≺R is transitive, i.e., (x, s) ≺R (z, u) ≺R (y, t) implies (x, s) ≺R (y, t).

We call these three cases respectively local edges, message edges and transitive
edges. Naturally, the first two cases express a direct relationship, whereas the
third case is more indirect. Note that the relation ≺R does not say how the
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messages are used. For instance, in Example 4.2, we cannot say for sure if z at
step u reads the data in message A, or that it is “necessary” for z to first receive
A before it can send B. Also, even if two runs on the same input have the same
happens-before relation, it is not guaranteed that they have the same trace.
This is because the happens-before relation does not talk about the specific
messages that arrive at the nodes (whereas Lemma 4.1 does).

Consider the following property:

Lemma 4.3. For every run R, the happens-before relation ≺R contains no
cycles.

Proof. If there would be a cycle in ≺R that contains transitive edges, then we
can substitute each transitive edge in this cycle with a path consisting of non-
transitive edges. Therefore it is sufficient to show the absence of cycles consisting
of only non-transitive edges. We show this with a proof by contradiction. So,
suppose that there is a chain in N × N without transitive edges

(x1, s1) ≺R (x2, s2) ≺R . . . ≺R (xn, sn)

with n ≥ 2 and (x1, s1) = (xn, sn). Because there are no transitive edges, for
each i ∈ {1, . . . , n − 1}, the edge (xi, si) ≺R (xi+1, si+1) falls into one of the
following two cases:

• xi = xi+1 and si+1 = si + 1 (local edge);

• xi during step si sends a message to xi+1 that arrives in step si+1 of xi+1
(message edge).

In the first case, it follows from the definition of locR(·) that

globR(xi, si) < globR(xi+1, si+1).

For the second case, by our operational semantics, every message is always
delivered in a later transition than the one in which it was sent. So, again we
have

globR(xi, si) < globR(xi+1, si+1).

Since this property holds for all the above edges, by transitivity we thus have
globR(x1, s1) < globR(xn, sn). But that is a contradiction because (x1, s1) =
(xn, sn) and thus globR(x1, s1) = globR(xn, sn). �

Corollary 4.4. For every run R, the relation ≺R is a strict partial order on
N × N.

Proof. From its definition, we immediately have that ≺R is transitive. Secondly,
irreflexivity for ≺R follows from Lemma 4.3. �

In Example 4.2, the happens-before relation is indeed partial because (x, s)
does not happen before (y, t − 1) and (y, t − 1) does not happen before (x, s).
So, (x, s) and (y, t − 1) are incomparable with ≺R. On a similar note, it is in
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general possible that the directed graph with vertices N × N and edges ≺R is
not even weakly connected. This occurs for instance when there are no message
edges, in which case the graph consists of only isolated chains of local edges
(and their transitive closure).

Consider the following property:

Corollary 4.5. For every run R, for each (x, s, y, t,f) ∈ mesg(R) we have
(y, t) 6≺R (x, s).

Proof. First, (x, s, y, t,f) ∈ mesg(R) implies (x, s) ≺R (y, t) by definition of
≺R. So, if (y, t) ≺R (x, s) then there would be a cycle in ≺R, which not
possible by Lemma 4.3. �

This last property is equivalent to saying that if (y, t) 6≺R (x, s) then it is
possible that x during step s sends a message to y that arrives in step t of y.
We will concretely use this in our declarative semantics: we only allow x during
step s to send a message to y at step t if (y, t) 6≺R (x, s) (cf. Section 4.7.3).

4.4 Additional Relation Names
In the following subsections, we will start with the construction of pure(P),
which is the pure Datalog¬ program obtained from P. FFor this purpose, we
need some new relation names not yet used in sch(P).6 These are listed in Table
1. The concrete purpose of all these relations will become clear in the following
subsections.

New relation names Represents
all network
time, tsucc, <, 6= timestamps
before happens-before relation
candR, chosenR, otherR, for
each relation name R in idb(P)

messages

hasSender, isSmaller,
hasMax, rcvInf

delivery of only a finite number
of messages to each step of a
node

Table 1: Relation names not in sch(P).

4.5 Network and Time Relations
In pure(P), we will use unary relation all to represent the whole network of
interest. For example, a fact all(x) will express that x is a node of the network.
A small remark: if the original rules of P need access to node identifiers, then
those identifiers must be explicitly provided in extra input relations different

6In practice, this can always be arranged through a namespace mechanism.
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from all (like relation Node in Section 3.1) or they must be received from other
nodes by means of messages.

In pure(P), we will also explicitly reason about timestamps, using relations
of the following database schema:

Dtime = {time(1), tsucc(2), <(2), 6=(2)}.

The relations ‘<’ and ‘6=’ will be written in infix notation in rules. We consider
only the following instance over Dtime:

Itime = {time(s), tsucc(s, s+ 1) | s ∈ N}
∪ {(s < t) | s, t ∈ N : s < t}
∪ {(s 6= t) | s, t ∈ N : s 6= t}.

Intuitively, the instance Itime provides timestamps together with relations to
compare them.

4.6 Representing Causality
We now explain how causality will be represented in pure(P). To express that
(x, s) ∈ N ×N causally happens before (y, t) ∈ N ×N, we use a fact of the form
before(x, s, y, t). We add to pure(P) the following rules:

before(x, s, x, t)← all(x), tsucc(s, t). (4.1)
before(x, s, y, t)← before(x, s, z, u), before(z, u, y, t). (4.2)

The rule (4.1) expresses that on every node, a step causally comes before the
next step. The rule (4.2) computes the transitive closure on the before relation,
because transitivity is required for a partial order.

The above rules are added to pure(P) independently of what rules P con-
tains. But in the following subsection we will add rules to pure(P) that are
obtained by transforming the original rules of P. In particular, the sending of
messages will also have an impact on the happens-before relation.

4.7 Rule Transformation
For each type of rule in P we specify what corresponding rules should be added
to pure(P). Because P is constant-free, all rules we add are constant-free. For
technical convenience, we will assume that rules of P always contain at least one
positive body atom. This assumption allows us to enforce more elegantly that
the variables in the head atoms of pure(P) also occur in at least one positive
body atom. This assumption is not really a restriction, since a nullary positive
body atom is already sufficient.

First, let x, s, t, t′ ∈ var be distinct variables that do not yet occur in the
rules of P. In pure(P), the variables x and s will be used as location specifier and
timestamp respectively. The variables t and t′ will also be used for timestamps.
We write B{v̄}, where v̄ is a tuple of variables, to denote any sequence β of
literals over database schema sch(P), such that the variables in β are precisely
those in the tuple v̄.
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4.7.1 Deductive Rules

For each deductive rule
R(ū)← B{ū, v̄}

in P, we add to pure(P) the following rule:

R(x, s, ū)← B{ū, v̄}⇑x,s. (4.3)

This rule expresses that the facts deductively derived at some node x during
step s are (immediately) visible within step s of x.

4.7.2 Inductive Rules

For each inductive rule
R(ū)• ← B{ū, v̄}

in P, we add to pure(P) the following rule:

R(x, t, ū)← B{ū, v̄}⇑x,s, tsucc(s, t). (4.4)

Intuitively, this rule derives a fact that becomes visible in the next step of the
same node.

4.7.3 Asynchronous Rules

For the situation in which a node x at its step s sends a message fact R(ā)
to a node y, we use a fact candR(x, s, y, t, ā) to say that t could be the arrival
timestamp of this message at y.7 We use a fact chosenR(x, s, y, t, ā) to say
that t is the effective arrival timestamp of this message at y. Lastly, a fact
otherR(x, s, y, t, ā) means that t is not the arrival timestamp of the message.

Now, for each asynchronous rule

R(ū) | y← B{ū, v̄, y}

in P, letting w̄ be a tuple of new and distinct variables with |w̄| = |ū|, we add to
pure(P) the following rules, for which the intuition is given below:

candR(x, s, y, t, ū)←B{ū, v̄, y}⇑x,s, all(y), time(t),
¬before(y, t, x, s).

(4.5)

chosenR(x, s, y, t, w̄)← candR(x, s, y, t, w̄), ¬otherR(x, s, y, t, w̄). (4.6)

otherR(x, s, y, t, w̄)← candR(x, s, y, t, w̄), chosenR(x, s, y, t′, w̄), t 6= t′. (4.7)

R(y, t, w̄)← chosenR(x, s, y, t, w̄). (4.8)

before(x, s, y, t)← chosenR(x, s, y, t, w̄). (4.9)
7Here, ‘cand’ abbreviates “candidate”.
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Rule (4.5) represents the messages that are sent. It evaluates the body of the
original asynchronous rule, verifies that the addressee is within the network by
using relation all, and it generates all possible candidate arrival timestamps
that are not restricted by relation before. This last restriction comes from
Corollary 4.5, and it will prevent cycles from occurring in relation before.

Now remains the matter of actually choosing one arrival timestamp amongst
all these candidates. Intuitively, rule (4.6) selects an arrival timestamp for a
message with the condition that this timestamp is not yet ignored, as expressed
with relation otherR. Also, looking at rule (4.7), a possible arrival timestamp
t becomes ignored if there is already a chosen arrival timestamp t′ with t 6= t′.
Together, both rules have the effect that exactly one arrival timestamp will be
chosen under the stable model semantics. This technical construction is due
to Saccà and Zaniolo [30], who show how to express dynamic choice under the
stable model semantics.

Rule (4.8) represents the actual arrival of an R-message with the chosen
arrival timestamp: the data-tuple in the message becomes part of the addressee’s
state for relation R. When the addressee reads relation R, it thus transparently
reads the arrived R-messages.

The rule (4.9) adds the causal restriction that the local step of the sender
happens before the arrival step of the addressee. Together with the previously
introduced rules (4.1) and (4.2), this will make sure that when the addressee
later causally replies to the sender, the reply — as generated by a rule of the
form (4.5) — will arrive after this first send-step of the sender.

Note, if multiple asynchronous rules in P have the same head predicate R,
only new candR-rules have to be added because the rules (4.6)–(4.9) are general
for all R-messages.

Note that if there are asynchronous rules in P, the program pure(P) will not
be syntactically stratifiable because relation before negatively depends on itself
through rules of the following forms, in order: (4.5), (4.6) and (4.9). Moreover,
pure(P) is not locally stratifiable [9] because on a network with a least two
nodes x and y, the fact before(x, s, y, t) with s, t ∈ N can negatively depend on
itself by means of ground versions of these same rules.

4.7.4 Fairness and Finite Messages

We now relate the fairness conditions of Section 3.5 to pure(P). The fairness
condition that every node does an infinite number of transitions does not require
explicit modeling, because our previous transformations of deductive, inductive
and asynchronous rules implicitly look at all possible pairs in N × N, i.e., all
possible steps for all nodes. The other fairness condition demands that every
sent message is eventually delivered. This too is already satisfied by our trans-
formation of the asynchronous rules, because for every sent message we choose
precisely one arrival timestamp.

But there is one more thing that requires special attention. Our program
pure(P) so far allows an infinite number of messages to arrive at any step of a
node. This does not happen in our operational semantics, or in any real-world
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distributed system for that matter: indeed, no node has to process an infinite
number of messages at any given moment. We consider this to be an additional
fairness restriction that must be explicitly enforced in pure(P).

We will approach this problem as follows. Suppose there are an infinite
number of messages that arrive at some node y during its step t. Since in a
network there are only a finite number of nodes and a node can only send a
finite number of messages during each step (the active domain is finite), there
must be at least one node x that sends messages to step t of y during an
infinite number of steps of x. Hence there is no maximum value amongst the
corresponding send-timestamps of x. Thus, in order to prevent the arrival of an
infinite number of messages at step t of y, it will be sufficient to demand that
there always is such a maximum send-timestamp for every sender. Below, we
will implement this strategy with some concrete rules in pure(P).

We use a fact rcvInf(y, t) to express that node y receives an infinite number
of messages during its step t. Below we add new rules, and their intuition is that
they are relative to an addressee and a step of this addressee, represented by
the variables y and t respectively. First, we add the following rule to pure(P)
for each relation chosenR that results from the transformation of asynchronous
rules, where x, s, y, and t are variables and w̄ is a tuple of distinct variables
disjoint from the previous ones with |w̄| the arity of relation R in sch(P):

hasSender(y, t, x, s)← chosenR(x, s, y, t, w̄), ¬rcvInf(y, t). (4.10)

This rule intuitively means that as long as addressee y has not received an in-
finite number of messages during its step t, we register the senders and their
send-timestamps. Recall that <(2)∈ Dtime. Next, we add to pure(P) the follow-
ing rules, for which the intuition is provided below:

isSmaller(y, t, x, s)← hasSender(y, t, x, s), hasSender(y, t, x, s′),
s < s′.

(4.11)

hasMax(y, t, x)← hasSender(y, t, x, s), ¬isSmaller(y, t, x, s). (4.12)

rcvInf(y, t)← hasSender(y, t, x, s), ¬hasMax(y, t, x). (4.13)

The rule (4.11) checks for each sender and each of its send-timestamps whether
there is a later send-timestamp of that same sender. The rule (4.12) tries to
find a maximum send-timestamp. Finally, the rule (4.13) derives a rcvInf-fact
if no maximum send-timestamp was found for at least one sender.

We will show in Section 7.1 that in any stable model, the above rules make
sure that every node receives only a finite number of messages at every step.

4.8 Input and Stable Models
Now we define the actual declarative semantics for P. Let H be an input
distributed database instance for P, over a network N . Let pure(P) be as
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previously constructed. We define decl(H) to be the following database instance
over the schema edb(P)LT ∪ {all(1)} ∪ Dtime:

decl(H) = {R(x, s, ā) | x ∈ N , s ∈ N, R(ā) ∈ H(x)}
∪ {all(x) | x ∈ N} ∪ Itime.

In words: we make for each node its input facts available at all timestamps; we
provide the set of all nodes; and, Itime provides the timestamps with compari-
son relations (see Section 4.5). Note, instance decl(H) is infinite because N is
infinite.

Recall the stable model semantics for Datalog¬ programs, as reviewed in
Section 2.2.3. We now define the declarative semantics for P on input H:

Definition 4.6. Any stable model of pure(P) on input decl(H) is called a model
of P on input H.

Importantly, we are using stable models of pure(P), not of P.

5 Main Result
Recall from Section 4.2 the definition of the trace of a run, representing in detail
the computation of that run. Our main result shows that our declarative se-
mantics of Dedalus expresses exactly the same computations as our operational
semantics:

Theorem 5.1. Let P be a Dedalus program and let H be an input distributed
database instance for P. On input H,

(i) for every fair run R of P there is a model M of P such that trace(R) =
M |sch(P)LT , and

(ii) for every model M of P there is a fair run R of P such that trace(R) =
M |sch(P)LT .

�

The proof of item (i) of the theorem is described in Section 6. The proof of
item (ii), which is the most difficult, is described in Section 7. We only describe
the crucial reasoning steps of the proofs; the intricate technical details can be
found in the Appendix.

6 Run to Model
Let P be a Dedalus program and letH be an input distributed database instance
for P, over some networkN . LetR be a fair run of P inputH. In this section, we
show that there is a modelM of P on input H such that trace(R) = M |sch(P)LT .
The main idea is that we translate the transitions of R to facts over the schema
of pure(P).
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6.1 Construction
In this section we construct M . We define

M = decl(H) ∪
⋃
i∈N

trans[i]
R ,

where trans[i]
R for each i ∈ N is an instance over the schema of pure(P) that

describes the transition i, which is detailed below. First, the reason for including
decl(H) is because if we want M to be a stable model, it must always contain
the input decl(H) (see Section 2.2.3). Let i ∈ N. We define trans[i]

R as

trans[i]
R = caus[i]

R ∪ fin[i]
R ∪ duc[i]

R ∪ snd[i]
R ,

where each of these new sets focuses on different aspects of transition i, and
they are defined next, together with their intuition with respect to pure(P).

Let αR denote the arrival function of R, as defined in Section 3.5. For the
run R, let locR(·) and globR(·) be as defined in Section 4.1, and let ≺R be the
happens-before relation as defined in Section 4.3. Let us abbreviate si = locR(i).

Causality The set caus[i]
R represents the pairs (x, s) ∈ N × N that causally

happen before (xi, si). We define caus[i]
R to consist of all facts before(x, s, xi, si)

for which (x, s) ∈ N ×N and (x, s) ≺R (xi, si). This represents the joint result
of rules (4.1), (4.2), and (4.9), corresponding to respectively the local edges,
transitive edges, and message edges of ≺R.

Finite Messages The set fin[i]
R represents that only a finite number of mes-

sages are delivered in transition i, thus at step si of node xi. First, let senders[i]
R

denote all pairs (x, s) ∈ N ×N such that, denoting j = globR(x, s), for some fact
f we have αR(j, xi,f) = i, i.e., the node x during its step s sends a message to
xi with arrival timestamp si. It follows from the operational semantics that for
each (x, s) ∈ senders[i]

R we have globR(x, s) < i.
We define fin[i]

R to consist of the following facts:

• the fact hasSender(xi, si, x, s) for each (x, s) ∈ senders[i]
R , representing the

result of rule (4.10);

• the fact isSmaller(xi, si, x, s) for each (x, s) ∈ senders[i]
R and (x, s′) ∈

senders[i]
R with s < s′, representing the result of rule (4.11);

• the fact hasMax(xi, si, x) for each sender-node x mentioned in senders[i]
R ,

representing the result of rule (4.12).

We know that inR only a finite number of messages arrive at step si of xi. Hence
we add no fact rcvInf(xi, si) to fin[i]

R . This also explains why the specification
of the hasMax-facts above is relatively simple: there is always a maximum send-
timestamp for each sender-node.
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Deductive The set duc[i]
R represents all facts over sch(P) that are available

at xi during transition i, thus during step si of xi. Let Di denote the output of
subprogram deducP during transition i. We define duc[i]

R to consist of the facts
D⇑xi,si

i . This represents the result of rules in pure(P) of the form (4.3), (4.4)
and (4.8).

Sending The set snd[i]
R represents the sending of messages during transition

i. Let mesg[i]
R denote the output of subprogram asyncP during transition i,

restricted to the facts having their addressee-component in the network (see
Section 3.3).

We define snd[i]
R to consist of the following facts:

• the fact candR(xi, si, y, t, ā) for each R(y, ā) ∈ mesg[i]
R and t ∈ N such that

(y, t) 6≺R (xi, si), representing the result of rule (4.5);

• all facts chosenR(xi, si, y, t, ā) and otherR(xi, si, y, u, ā) for whichR(y, ā) ∈
mesg[i]

R , t = locR(j) with j = αR(i, y, R(ā)), u ∈ N, (y, u) 6≺R (xi, si) and
u 6= t. This represents the choice of an arrival timestamp for the messages,
as performed by rules (4.6) and (4.7).

6.2 Conclusion
In Appendix A it is shown thatM is a model of P on input H. By construction
of M , we have, as desired:

M |sch(P)LT =
⋃
i∈N

duc[i]
R =

⋃
i∈N

D⇑xi,si

i = trace(R).

7 Model to Run
Let P be a Dedalus program and letH be an input distributed database instance
for P, over some network N . LetM be a model of P on input H. In this section
we show that there is a fair run R of P on input H such that trace(R) =
M |sch(P)LT .

The direction shown in Section 6 is perhaps the most intuitive direction
because we only have to show that a concrete set of facts is actually a stable
model. In this section we do not yet understand whatM can contain. So, a first
important step is to show that M has some desirable properties which allow us
to construct a run from it.

First, it is important to know that in M we find location specifiers where we
expect location specifiers and we find timestamps where we expect timestamps.
Formally, we call M well-formed if:

• for each R(x, s, ā) ∈M |sch(P)LT we have x ∈ N and s ∈ N;

• for each before(x, s, y, t) ∈M , we have x, y ∈ N and s, t ∈ N;
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• for each fact candR(x, s, y, t, ā), chosenR(x, s, y, t, ā) and otherR(x, s, y, t, ā)
in M , we have x, y ∈ N and s, t ∈ N;

• for each fact hasSender(x, s, y, t), isSmaller(x, s, y, t), hasMax(x, s, y)
and rcvInf(x, s) in M , we have x, y ∈ N and s, t ∈ N.

Using the notation from Section 2.2.3, let grP,HM abbreviate the ground program

groundM (pure(P), decl(H)).

By definition of M as a stable model, we have M = grP,HM (decl(H)). It can
be shown by induction on the fixpoint computation of grP,HM on input decl(H)
that M is always well-formed. We omit the details.

7.1 Partial Order
Based on the relation before in M , in this subsection we define a strict partial
order ≺M on N × N. This forms a crucial insight in the causality information
represented by M . In the following subsection, we use this partial order to
establish a total order on N × N, around which we can build a run. The idea
is that this total order tells us which are the active nodes in the transitions of
the constructed run.

We define ≺M as follows. For each (x, s) ∈ N × N and (y, t) ∈ N × N, we
write (x, s) ≺M (y, t) if and only if before(x, s, y, t) ∈M .

Regarding terminology, an edge (x, s) ≺M (y, t) is called a local edge, a
message edge or a transitive edge if the fact before(x, s, y, t) ∈M can be derived
by a ground rule in grP,HM of respectively the form (4.1), the form (4.9), or the
form (4.2).8 It is possible that an edge is of two or even three types at the same
time.

The rest of this section is dedicated to showing that ≺M has certain desirable
properties, so that we can later derive a total order with desirable properties.
First, consider the following claim:

Claim 7.1. Relation ≺M is a strict partial order on N × N.

Proof. We show that ≺M is transitive and irreflexive.

Transitive First, we show that ≺M is transitive. Suppose we have (x, s) ≺M
(z, u) and (z, u) ≺M (y, t). We have to show that (x, s) ≺M (y, t). We have
before(x, s, z, u) ∈ M and before(z, u, y, t) ∈ M . Because the rule (4.2) is
positive, we have the following ground rule in grP,HM :

before(x, s, y, t)← before(x, s, z, u), before(z, u, y, t).

Because M is a stable model and the body of the previous ground rule is in M ,
we obtain before(x, s, y, t) ∈M . Hence, (x, s) ≺M (y, t), as desired.

8The body of such a ground rule has to be in M .
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Irreflexive Because an edge (x, s) ≺M (x, s) for any (x, s) ∈ N × N would
form a cycle of length one, it is sufficient to show that there are no cycles in
≺M at all. This gives us irreflexivity, as desired.

First, let ≺′M denote the restriction of ≺M to the edges that are local or
message edges. Note that this definition allows some edges in ≺′M to also be
transitive. The edges that are missing from ≺′M with respect to ≺M are only
derivable by ground rules of the form (4.2); we call these the pure transitive
edges. We start by showing that ≺′M contains no cycles. We show this with a
proof by contradiction. So, suppose that there is a cycle in N × N through the
edges of ≺′M :

(x1, s1) ≺M (x2, s2) ≺M . . . ≺M (xn, sn)

with n ≥ 2 and (x1, s1) = (xn, sn). We have before(xi, si, xi+1, si+1) ∈ M for
each i ∈ {1, . . . , n−1}. Moreover, based on these previous before-facts, ground
rules in grP,HM of the form (4.2) will have derived before(xi, si, xj , sj) ∈M for
each i, j ∈ {1, . . . , n}. If each edge on the above cycle would be only local, then
for each i, j ∈ {1, . . . , n} with i < j we have xi = xj and si < sj , and hence
s1 6= sn, which is false. So, there has to be some k ∈ {1, . . . , n − 1} such that
(xk, sk) ≺M (xk+1, sk+1) is a message edge, derived by a ground rule of the form
(4.9):

before(xk, sk, xk+1, sk+1)← chosenR(xk, sk, xk+1, sk+1, ā).

Therefore chosenR(xk, sk, xk+1, sk+1, ā) ∈ M . This chosenR-fact must be de-
rived by a ground rule of the form (4.6) in grP,HM , which implies that

candR(xk, sk, xk+1, sk+1, ā) ∈M.

This candR-fact must in turn be derived by a ground rule ψ of the form (4.5).
Because rules of the form (4.5) in pure(P) contain a negative before-atom in
their body, the presence of ψ in grP,HM requires that before(xk+1, sk+1, xk, sk) /∈
M . But that is a contradiction, because before(xi, si, xj , sj) ∈ M for each
i, j ∈ {1, . . . , n} (see above).

Now we show there are no cycles in the entire relation ≺M . Since M =
grP,HM (decl(H)), we have M =

⋃
i∈NMi where M0 = decl(H) and Mi =

T (Mi−1) for each i ≥ 1 where T is the immediate consequence operator of
grP,HM . By induction on i, we show that an edge before(x, s, y, t) ∈ Mi either
is a local or message edge, or it can be replaced by a path of local or message
edges in Mi. Then any cycle in ≺M would imply there is a cycle in ≺′M , which
is impossible. So, ≺M can not contain cycles. Now, this induction property is
satisfied for the base case because M0 does not contain before-facts. For the
induction hypothesis, assume the property holds for Mi−1, where i ≥ 1. For
the inductive step, let before(x, s, y, t) ∈ Mi \Mi−1. If this fact is derived by
a ground rule of the form (4.1) or (4.9) then the property is satisfied. Now
suppose the fact is derived by a ground rule of the form (4.2):

before(x, s, y, t)← before(x, s, z, u), before(z, u, y, t).
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Both body facts are inMi−1, implyingMi−1 contains a path of local or message
edges from (x, s) to (z, u) and from (z, u) to (y, t). Hence, using Mi−1 ⊆ Mi,
the edge before(x, s, y, t) ∈ Mi can be replaced by a path of local or message
edges in Mi. �

In Section 4.7.4 we have added extra rules to pure(P) to enforce that every
node only receives a finite number of messages during each step. We now verify
that this works correctly:

Claim 7.2. For each (y, t) ∈ N × N there are only a finite number of pairs
(x, s) ∈ N × N such that (x, s) ≺M (y, t) is a message edge.

Proof. We start by noting that M does not contain the fact rcvInf(y, t). In-
deed, in order to derive this fact, we need a ground rule in grP,HM of the form
(4.13), which has a body fact of the form hasSender(y, t, x, s). Such hasSender-
facts must be generated by ground rules in grP,HM of the form (4.10). The
rule (4.10) negatively depends on relation rcvInf. Thus, specifically, if we
want a ground rule in grP,HM that can derive hasSender(y, t, x, s), we should
require the absence of rcvInf(y, t) from M . So rcvInf(y, t) ∈ M requires
rcvInf(y, t) /∈M , which is impossible.

The rest of the proof works towards a contradiction. So, suppose that (y, t)
has an infinite number of incoming message edges. Because there are only a finite
number of nodes in N , there has to be a node x that has an infinite number of
timestamps s such that before(x, s, y, t) ∈ M is a message edge. Since it is a
message edge, such a fact before(x, s, y, t) can be generated by a ground rule
in grP,HM of the form (4.9), which implies that there is a relation R in idb(P)
and a tuple ā such that chosenR(x, s, y, t, ā) ∈ M . Because rcvInf(y, t) /∈ M
(see above), for each of these chosenR-facts, there is a ground rule of the form
(4.10) in M that derives hasSender(y, t, x, s) ∈M .

Rule (4.13) has a negative hasMax-atom in its body. If we can show that
hasMax(y, t, x) /∈ M , then there will be a ground rule in grP,HM of the form
(4.13), where hasSender(y, t, x, s) ∈M :

rcvInf(y, t)← hasSender(y, t, x, s).

This then causes rcvInf(y, t) ∈M , giving the desired contradiction.
Also towards a proof by contradiction, suppose that hasMax(y, t, x) ∈ M .

This means that there is a ground rule ψ in grP,HM of the form (4.12):

hasMax(y, t, x)← hasSender(y, t, x, s).

Because the rule (4.12) contains a negative isSmaller-atom in the body, and
because ψ ∈ grP,HM , we know that isSmaller(y, t, x, s) /∈M . But because there
are infinitely many facts of the form hasSender(y, t, x, s′) ∈M , there is at least
one fact hasSender(y, t, x, s′) ∈ M with s < s′. Moreover, the rule (4.11) is
positive, and therefore the following ground rule is always in grP,HM :

isSmaller(y, t, x, s)← hasSender(y, t, x, s), hasSender(y, t, x, s′), s < s′.
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Since the body of this ground rule is inM , the rule derives isSmaller(y, t, x, s) ∈
M , which gives the desired contradiction. �

An ordering ≺ on a set A is called well-founded if for each a ∈ A, there are
only a finite number of elements b ∈ A such that b ≺ a. We now use Claim 7.2
to show:

Claim 7.3. Relation ≺M on N × N is well-founded.

Proof. Let (x, s) ∈ N ×N. We have to show that there are only a finite number
of pairs (y, t) ∈ N × N such that (y, t) ≺M (x, s). Technically, we can limit our
attention to paths in ≺M consisting of local edges and message edges, because
if we can show that there are only a finite number of predecessors of (x, s) on
such paths, then there are only a finite number of predecessors when we include
the transitive edges as well. First we show that every pair (y, t) ∈ N × N has
only a finite number of incoming local and message edges. If t > 0, we can
immediately see that (y, t) has precisely one incoming local edge, as created by
a ground rule of the form (4.1), and if t = 0 then (y, t) has no incoming local
edge. Also, Claim 7.2 tells us that (y, t) has only a finite number of incoming
message edges. So, the number of incoming local and message edges in (y, t) is
finite.

Let (y, t) ∈ N × N be a pair such that (y, t) ≺M (x, s) is a local edge or a
message edge. Starting in (x, s), we can follow this edge backwards so that we
reach (y, t). If (y, t) itself has incoming local or message edges, from (y, t) we
can again follow an edge backwards. This way we can incrementally construct
backward paths starting from (x, s). Because at each pair of N × N there are
only a finite number of incoming local or message edges (shown above), if (x, s)
would have an infinite number of predecessors, we must be able to construct
a backward path of infinite length. We now show that the existence of such
an infinite path leads to a contradiction. So, suppose that there is a backward
path of infinite length. Because there are only a finite number of nodes in the
network N , there must be a node y that occurs infinitely often on this path.
We will now show that, as we progress further along the backward path, we
must see the local timestamps of y strictly decrease. Hence, we must eventually
reach timestamp 0 of y, after which we cannot decrement the timestamps of y
anymore, and thus it is impossible that y occurs infinitely often along the path.
Suppose that the timestamps of y do not strictly decrease. There are two cases.
First, if the same pair (y, t) would occur twice on the path, we would have a
cycle in ≺M , which is not possible by Claim 7.1. Secondly, suppose that there
are two timestamps t and t′ of y such that t < t′ and (y, t) occurs before (y, t′)
on the backward path, meaning that (y, t) lies closer to (x, s). Because the edges
were followed in reverse, we have

(y, t′) ≺M . . . ≺M (y, t).

But since t < t′, by means of local edges, we always have

(y, t) ≺M (y, t+ 1) ≺M . . . ≺M (y, t′).
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Combining these two sets of edges leads to a cycle, which is impossible by Claim
7.1. �

7.2 Construction of Run
Let ≺M be the well-founded strict partial order on N × N as defined in the
preceding subsection. The relation ≺M has the intuition of a happens-before
relation of a run (Section 4.3), but the novelty is that it comes from a purely
declarative model M . We will now use ≺M to construct a run R such that
trace(R) = M |sch(P)LT .

It is well-known that a well-founded strict partial order can be extended to
a well-founded strict total order. So, let <M be a well-founded strict total order
on N × N that extends ≺M , i.e., for each (x, s) ∈ N × N and (y, t) ∈ N × N, if
(x, s) ≺M (y, t) then (x, s) <M (y, t), but the reverse does not have to hold.

Ordering the set N × N according to <M gives us a sequence of pairs that
will form the transitions in the constructed run R. Concretely, we obtain a
sequence of nodes by taking the node-component from each pair. This will form
our sequence of active nodes. Similarly, by taking the timestamp-component
from each pair of N × N, we obtain a sequence of timestamps. These are the
local clocks of the active nodes during their transitions.

We introduce some extra notations to help us reason about the ordering of
time that is implied by <M . For each (x, s) ∈ N × N, let globM (x, s) ∈ N
denote the ordinal of (x, s) as implied by <M , which is well-defined because
<M is well-founded. For technical convenience, we let ordinals start at 0. Note
that globM (·) is an injective function. For any i ∈ N, we define (xi, si) to be the
unique pair in N × N such that globM (xi, si) = i.

As a counterpart to function globM (·), for i ∈ N and x ∈ N , let locM (i, x)
denote the size of the set

{(x, s) ∈ N × N | globM (x, s) < i}.

Intuitively, if i is regarded to be the ordinal of a transition in a run, the number
locM (i, x) is the number of local steps of x that came before transition i, i.e.,
the number of transitions before i in which x was the active node. If x = xi (the
active node) then locM (i, x) is effectively the timestamp of x during transition
i, and if x 6= xi then locM (i, x) is the next timestamp of x that still has to come
after transition i. Note that the functions globM (·) and locR(·) closely resemble
the functions globR(·) and locR(·) of Section 4.1.

We will now define the desired runR of P onH. First we define the (infinite)
sequence of configurations ρ0, ρ1, ρ2, etc. In a second step we will connect each
pair of subsequent configurations by a transition. Recall from Section 3.2 that
a configuration describes for each node what facts it has stored locally (state),
and also what messages have been sent to this node but that are not yet received
(message buffer). The facts that are stored on a node are either input edb-facts,
or facts derived by inductive rules in a previous step of the node. The first kind
of facts can be easily obtained from M by keeping only the facts over schema

31



edb(P)LT, which gives a subset of decl(H). For the second kind of facts, we
look at the inductively derived facts in M , which is detailed next. The rules in
pure(P) that represent inductive rules of P are easily recognizable: they are of
the form (4.4), meaning that they have a head atom over sch(P)LT and they
have a positive body tsucc-atom. No other kind of rule in pure(P) has this
form. Hence, the ground rules in grP,HM that are based on rules of the form
(4.4) are also easily recognizable, and we will call these inductive ground rules.
A ground rule ψ ∈ grP,HM is called active on M if posψ ⊆M , which implies that
headψ ∈ M because M is stable. Let M ind denote all head atoms of inductive
ground rules in grP,HM that are active on M . Note that M ind ⊆ M . Now, for
each i ∈ N, for each node x ∈ N , denoting s = locM (i, x), in configuration ρi
the state stρi(x) is defined as(

(M |edb(P)LT)|x,s ∪M ind|x,s
)⇓
.

Using notations from Section 4.2, note that we remove the location specifier and
timestamp because we have to obtain facts over the schema of P, not over the
schema of pure(P).

Now we define the message buffers in the configurations. Recall that the
message buffer of a node always contains pairs of the form 〈j,f〉, where j ∈ N
is the transition in which the fact f over idb(P) was sent. For each i ∈ N, for
each node x ∈ N , in configuration ρi the message buffer bfρi(x) is defined as

{〈globM (y, t), R(ā)〉 |
∃u : chosenR(y, t, x, u, ā) ∈M, globM (y, t) < i ≤ globM (x, u)}.

Note the use of addressee x in the definition of bfρi(x). The definition of
bfρi(x) reflects the operational semantics, in that the messages in the buffer
of node x must be sent in a previous transition, as expressed by the constraint
globM (y, t) < i. Moreover, the constraint i ≤ globM (x, u) says that bfρi(x)
contains only messages that will be delivered in transitions of x that come after
configuration ρi. Possibly i = globM (x, u), and in that case the message will be
delivered in the transition immediately after configuration ρi (see also below).

So far we have obtained a sequence of configurations ρ0, ρ1, ρ2, etc. Now
we define a sequence of tuples, one tuple per ordinal i ∈ N, that represents
the transition i. Let i ∈ N. The tuple τi is defined as (ρi, xi,mi, i, ρi+1), also
denoted as ρi

xi,mi−−−−→
i

ρi+1, where

mi = {〈globM (y, t), R(ā)〉 | chosenR(y, t, z, u, ā) ∈M, globM (z, u) = i}.

Intuitively, in mi, we select all messages that arrive in transition i. And since
globM (z, u) = i implies z = xi and u = si, we thus select all messages destined
for step si of node xi.

In Appendix B it is shown that the sequence R is indeed a legal run of P on
input H such that trace(R) = M |sch(P)LT . In the following subsection we show
that R is also fair.
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7.3 Fair Run
In this subsection we show that run R is fair. Recall from Section 3.5 that we
have to check two fairness conditions:

1. every node is the active node in an infinite number of transitions; and,

2. for every transition i ∈ N, for every node y ∈ N , for every 〈j,f〉 ∈ bfρi(y),
there is a transition k with i ≤ k in which 〈j,f〉 is delivered (to y).

We show that the first fairness condition is satisfied by R. Let x ∈ N be a node,
and let s ∈ N be a timestamp of x. Consider transition i = globM (x, s). This
transition has active node xi = x. We can find such a transition with active node
x for every timestamp s ∈ N of x, and these transitions are all unique because
function globM (·) is injective. So, there are an infinite number of transitions in
R with active node x, and the first fairness condition is satisfied.

Now we show that the second fairness condition is satisfied. Let i ∈ N,
y ∈ N , and 〈j,f〉 ∈ bfρi(y). Denote f = R(ā). By definition of bfρi(y),
〈j,f〉 ∈ bfρi(y) implies that there are values x ∈ N , s ∈ N and t ∈ N such
that chosenR(x, s, y, t, ā) ∈ M and j = globM (x, s) < i ≤ globM (y, t). Denote
k = globM (y, t). Hence, i ≤ k and 〈j,f〉 ∈ mk by definition of mk. Thus 〈j,f〉
is delivered to xk = y in transition k, as desired.

8 Conclusion and Future Work
In the literature, many operational semantics for declarative networking lan-
guages were previously developed [13, 28, 17, 7, 1]. In the current work, we
have focused on the language Dedalus [5, 6, 19], and we have shown that dis-
tributed computations expressed in an operational way can also be described
purely declaratively, based on stable models.

Regarding future work, in this paper we have probably not yet explored
the full power of stable models. We therefore expect that this work can be
extended to languages that incorporate more powerful language constructs, such
as dynamic choice [22], aggregation [26], or constructs that allow for reasoning
about different time-scales on which events occur [16]. It might also be possible
to remove the syntactic stratification condition that we used for the deductive
rules of Dedalus.

More related to multi-agent systems [25, 29, 24], it might be interesting
to allow logic programs used in declarative networking to dynamically modify
their rules. The question would be how (and if) this can be represented in a
declarative semantics.

Lastly, we can think about the output of Dedalus programs. Marczak et
al. [27] define the output of Dedalus programs with ultimate facts, which are
facts that will eventually always be present on the network. This way, the out-
put of a run (or equivalently stable model) can be defined. Then, a consistent
Dedalus program is required to produce the same output in every run. For
consistent programs, the output on an input distributed database instance can
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thus be defined as the output of any run. We can now consider the follow-
ing decision problem: for a consistent Dedalus program, an input distributed
database instance for that program, and a fact, decide if this fact is output by
the program on that input. We think that decidability depends on the semantics
of the message buffers. In this paper, we represented per addressee duplicate
messages in its message buffer. This is a realistic representation, since in a real
network, the same message can be sent multiple times, and hence, multiple in-
stances of the same message can be in transmission simultaneously. If in the
message buffers we would remove duplicate messages, then the decision prob-
lem becomes decidable because only a finite number of configurations would be
possible by finiteness of the input domain. But when duplicates are preserved,
the number of configurations is not limited, and we expect that the problem
will be undecidable in general. However, we might want to investigate whether
decidability can be obtained in particular (syntactically defined) cases. If so, it
might be interesting for those cases to find finite representations of the stable
models. This could serve as a more intuitive programmer abstraction, or it
could perhaps be used to more efficiently simulate the behavior of the network
for testing purposes.
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Appendix

General Remarks
Let P be a Dedalus program. Recall from Section 3.3 that deducP ⊆ P is the
subset of all (unmodified) deductive rules. The semantics of deducP is given by
the stratified semantics. Although the semantics of deducP does not depend on
the chosen syntactic stratification, for technical convenience in the proofs, we
will fix an arbitrary syntactic stratification for deducP . Whenever we refer to
the stratum number of a relation in idb(deducP), it is assumed that this fixed
syntactic stratification is used to determine the stratum number. Recall that
stratum numbers start at 1.

A Run to Model: Proof Details
This section contains the proof details of Section 6. Recall the symbols defined
there. In this section we show that the constructed set M is a model of P on
input H.

Also recall the definition of stable model semantics from Section 2.2.3. Let
grP,HM abbreviate the ground program

groundM (pure(P), decl(H)).

This program can be considered even ifM is not stable. DenoteN = grP,HM (decl(H)).
We must show that N = M . The inclusions M ⊆ N and N ⊆ M are shown
respectively in Sections A.1 and A.2.

We will use the following notations for run R. For each i ∈ N, recall that
transition i transforms configuration ρi into configuration ρi+1. Let xi and
mi ⊆ bfρi(xi) denote respectively the active node and the received messages
during transition i. Also, let si abbreviate locR(i), and let Di denote the output
of subprogram deducP during transition i.

A.1 First Inclusion
In this section we show that M ⊆ N . By definition,

M = decl(H) ∪
⋃
i∈N

trans[i]
R .

First, we immediately have decl(H) ⊆ N by the semantics of grP,HM .
Next, we define for uniformity the set trans[−1]

R = ∅. We will show by
induction on i = −1, 0, 1, . . ., that trans[i]

R ⊆ N . The base case (i = −1)
is trivial. For the induction hypothesis, let i ≥ 0, and assume for all j ∈
{−1, 0, . . . , i− 1} that trans[j]

R ⊆ N . We show that trans[i]
R ⊆ N . By definition,

trans[i]
R = caus[i]

R ∪ fin[i]
R ∪ duc[i]

R ∪ snd[i]
R .
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We will show inclusion in N for each of these four sets. The numbered claims
we will refer to can be found in Section A.1.1.

Causality We show that caus[i]
R ⊆ N . Let (x, s) ∈ N × N be a pair such

that (x, s) ≺R (xi, si). We have to show that before(x, s, xi, si) ∈ N . We
distinguish between the following cases:

• Suppose that (x, s) happens before (xi, si) by means of a local edge, i.e.,
x = xi and si = s+ 1.
Because the rule (4.1) in pure(P) is positive, the following ground rule is
always in grP,HM :

before(x, s, x, s+ 1)← all(x), tsucc(s, s+ 1).

This rule derives before(x, s, x, s+ 1) = before(x, s, xi, si) ∈ N because
its body facts are in decl(H) ⊆ N .

• Suppose that (x, s) happens before (xi, si) by means of a message edge,
i.e., there is an earlier transition j < i with j = globR(x, s), in which x
sends a message f to xi such that αR(j, xi,f) = i. Denote f = R(ā).
Because rules of the form (4.9) in pure(P) are positive, the following
ground rule is always in grP,HM :

before(x, s, xi, si)← chosenR(x, s, xi, si, ā).

We now show that the body of this rule is inN , so that before(x, s, xi, si) ∈
N , as desired. Using xj = x, sj = s, and si = locR(i), we have

chosenR(x, s, xi, si, ā) ∈ snd[j]
R ⊆ trans[j]

R .

By applying the induction hypothesis to transition j, we have trans[j]
R ⊆ N ,

and obtain:
chosenR(x, s, xi, si, ā) ∈ N.

• Suppose that (x, s) happens before (xi, si) not by a local edge or message
edge, but by a path containing minimally two edges. Let (z, u) denote the
penultimate pair on the path so that (x, s) ≺R (z, u) (by transitivity) and
(z, u) ≺R (xi, si), where the latter relation happens via a local edge or a
message edge.
Because the rule (4.2) is positive, the following ground rule is always in
grP,HM :

before(x, s, xi, si)← before(x, s, z, u), before(z, u, xi, si).

We will now show that the body of this rule is in N , which implies
before(x, s, xi, si) ∈ N , as desired. First, denote j = globR(z, u). Be-
cause (z, u) ≺R (xi, si), using the operational semantics, it can be shown

39



that j < i. And because (x, s) ≺R (z, u), we have before(x, s, z, u) ∈
caus[j]

R . By applying the induction hypothesis to j, we therefore have
before(x, s, z, u) ∈ N . Secondly, because (z, u) ≺R (xi, si) is a local
edge or a message edge, we have before(z, u, xi, si) ∈ N (shown in the
preceding two cases).

Finite Messages We show that fin[i]
R ⊆ N . Let senders[i]

R be as defined in
Section 6. For each kind of fact in fin[i]

R , we show inclusion in N .
Let hasSender(xi, si, x, s) ∈ fin[i]

R . We have (x, s) ∈ senders[i]
R , which means

that x during step s sends a message fact R(ā) that arrives in step si of xi.
Rules in pure(P) of the form (4.10) have a negative rcvInf-atom in their body.
But because rcvInf(xi, si) is not added to trans[i]

R , and hence not to M , the
following rule is in grP,HM :

hasSender(xi, si, x, s)← chosenR(x, s, xi, si, ā).

We show that the single body fact is inN , so the rule derives hasSender(xi, si, x, s) ∈
N , as desired. Denote j = globR(x, s). Using that x = xj and s = sj , we have
chosenR(x, s, xi, si, ā) ∈ snd[j]

R . Because j < i by the operational semantics,
we can apply the induction hypothesis to j to know that snd[j]

R ⊆ N , and thus
chosenR(x, s, xi, si, ā) ∈ N , as desired.

Let isSmaller(xi, si, x, s) ∈ fin[i]
R . We have (x, s) ∈ senders[i]

R and there is
a timestamp s′ ∈ N so that (x, s′) ∈ senders[i]

R and s < s′. The rule (4.11) is
positive and therefore the following ground rule is always in grP,HM :

isSmaller(xi, si, x, s) ← hasSender(xi, si, x, s), hasSender(xi, si, x, s′),
s < s′.

We immediately have (s < s′) ∈ decl(H) ⊆ N . By construction of fin[i]
R , we

have hasSender(xi, si, x, s) ∈ fin[i]
R and hasSender(xi, si, x, s′) ∈ fin[i]

R , and thus
both facts are also in N as was shown above. Hence the previous ground rule
derives isSmaller(xi, si, x, s) ∈ N .

Let hasMax(xi, si, x) ∈ fin[i]
R . Thus x is a sender-node mentioned in senders[i]

R .
Let s be the maximum send-timestamp of x in senders[i]

R , which surely exists
because senders[i]

R is finite. There is no timestamp s′ such that (x, s′) ∈ senders[i]
R

and s < s′. Therefore we have not added the fact isSmaller(xi, si, x, s) to fin[i]
R ,

and thus also not toM . Although the rule (4.12) contains a negated isSmaller-
atom, isSmaller(xi, si, x, s) /∈M implies that the following ground is in grP,HM :

hasMax(xi, si, x)← hasSender(xi, si, x, s).

Moreover, (x, s) ∈ senders[i]
R implies hasSender(xi, si, x, s) ∈ N , and thus the

previous ground rule derives hasMax(xi, si, x) ∈ N , as desired.
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Deductive We show that duc[i]
R ⊆ N . By definition, duc[i]

R = D⇑xi,si

i . We will
show that D⇑xi,si

i ⊆ N . Recall from Section 3.4 that the input of subprogram
deducP during transition i consists of the set

stρi(xi) ∪ untag(mi).

If we can show that (stρi(xi) ∪ untag(mi))⇑xi,si ⊆ N , then we can apply Claim
A.1 to know that D⇑xi,si

i ⊆ N , as desired.
We first show that stρi(xi)⇑xi,si ⊆ N . There are two cases to consider:

• Suppose that si = 0, i.e., i is the first transition with active node xi. Then
there were no previous state modifications of xi, and thus stρi(xi) = H(xi),
which are just the input facts for xi. In that case stρi(xi)⇑xi,si ⊆ N
because H(xi)⇑xi,si ⊆ decl(H) ⊆ N .

• Suppose that si > 0. This means that xi has done some previous transi-
tions. Let j be the last transition of xi that came before i. Since there are
no other transitions of xi between j and i, it follows from the operational
semantics that stρi(xi) = stρj+1(xj). By applying the induction hypothesis
to j, we have duc[j]

R ⊆ trans[j]
R ⊆ N . Using that xj = xi and sj+1 = si, we

can apply Claim A.3 to know that stρi(xi)⇑xi,si = stρj+1(xj)⇑xj ,sj+1 ⊆ N .

Now we show that untag(mi)⇑xi,si ⊆ N . Let f ∈ untag(mi). We have to show
that f⇑xi,si ∈ N . First, because f ∈ untag(mi), there is a transition k with
k < i such that 〈k,f〉 ∈ mi, i.e., the fact f was sent to xi during transition k
(by node xk). Denote f = R(ā). So, there must be an asynchronous rule with
head-predicate R in P, which has a corresponding rule in pure(P) of the form
(4.8). Rules of the form (4.8) are positive and thus the following ground rule is
always in grP,HM :

R(xi, si, ā)← chosenR(xk, sk, xi, si, ā).

We show that the body of this rule is in N , so the rule derives f⇑xi,si ∈ N , as
desired. Because xk sends f to xi during transition k, and i is the transition
in which this message is delivered to xi, we have chosenR(xk, sk, xi, si, ā) ∈
snd[k]
R ⊆ trans[k]

R . By applying the induction hypothesis to k, we have snd[k]
R ⊆ N

and thus chosenR(xk, sk, xi, si, ā) ∈ N .

Sending We show that snd[i]
R ⊆ N . For each kind of fact in snd[i]

R we show
inclusion in N .

Let candR(xi, si, y, t, ā) ∈ snd[i]
R . We have R(y, ā) ∈ mesg[i]

R , t ∈ N and
(y, t) 6≺R (xi, si). Since D⇑xi,si

i ⊆ N (see above), we can use Claim A.4 to
obtain candR(xi, si, y, t, ā) ∈ N , as desired.

Let chosenR(xi, si, y, t, ā) ∈ snd[i]
R . We have R(y, ā) ∈ mesg[i]

R and t =
locR(j) with j = αR(i, y, R(ā)). Because R(y, ā) ∈ mesg[i]

R , this fact was
produced by asyncP , and thus there is an asynchronous rule in P with head-
predicate R. This asynchronous rule has a corresponding rule in pure(P) of the
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form (4.6), that contains a negated otherR-atom in the body. But by construc-
tion of snd[i]

R , we have not added otherR(xi, si, y, t, ā) to snd[i]
R , and thus also

not to M . Therefore the following ground rule of the form (4.6) is in grP,HM :

chosenR(xi, si, y, t, ā)← candR(xi, si, y, t, ā).

Because j > i by the operational semantics, we have (y, t) 6≺R (xi, si). Thus,
by construction of snd[i]

R , we have candR(xi, si, y, t, ā) ∈ snd[i]
R , in which case

candR(xi, si, y, t, ā) ∈ N (shown above). Hence, the previous ground rule derives
chosenR(xi, si, y, t, ā) ∈ N , as desired.

Let R(y, ā) and t be from above. Let otherR(xi, si, y, u, ā) ∈ snd[i]
R . We

have u ∈ N, (y, u) 6≺R (xi, si) and u 6= t. Because the rule(4.7) is positive, the
following ground rule is in grP,HM :

otherR(xi, si, y, u, ā) ← candR(xi, si, y, u, ā), chosenR(xi, si, y, t, ā),
u 6= t.

We immediately have (u 6= t) ∈ decl(H) ⊆ N . Now we show that the other body
facts are inN , so the rule derives otherR(xi, si, y, u, ā) ∈ N , as desired. Because
(y, u) 6≺R (xi, si), by construction of snd[i]

R , we have candR(xi, si, y, u, ā) ∈ snd[i]
R

and thus candR(xi, si, y, u, ā) ∈ N (shown above). Moreover, it was shown
above that chosenR(xi, si, y, t, ā) ∈ N .

A.1.1 Subclaims

Claim A.1. Let i be a transition of R. If (stρi(x)∪untag(mi))⇑xi,si ⊆ N , then
D⇑xi,si

i ⊆ N .

Proof. Abbreviate Ii = stρi(x)∪untag(mi). Recall that Di = deducP(Ii), which
is computed with the stratified semantics.

For a number k, we write D→ki to denote the set obtained by adding to Ii
all facts derived in stratum 1 up to stratum k during the computation of Di.
For the largest stratum number n of deducP , we have D→ni = Di. Also, because
stratum numbers start at 1, we have D→0

i = Ii. We show by induction on k = 0,
1, 2, . . ., n, that (D→ki )⇑xi,si ⊆ N .

Base case For the base case, k = 0, the property holds by the given assump-
tion I⇑xi,si

i ⊆ N .

Induction hypothesis For the induction hypothesis, assume for some stra-
tum number k with k ≥ 1 that (D→k−1

i )⇑xi,si ⊆ N .

Inductive step For the inductive step, we show that (D→ki )⇑xi,si ⊆ N . Recall
that the input of stratum k in deducP is the set D→k−1

i , and the semantics is
given by the fixpoint semantics of semi-positive Datalog¬ (see Section 2.2.2).
So, we can consider D→ki to be a fixpoint, i.e., as the set

⋃
l∈NAl with A0 =
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D→k−1
i and Al = T (Al−1) for each l ≥ 1, where T is the immediate consequence

operator of stratum k. We show by inner induction on l = 0, 1, etc, that

(Al)⇑xi,si ⊆ N.

For the base case (l = 0), we have A0 = D→k−1
i , for which we can apply the

outer induction hypothesis to know that (D→k−1
i )⇑xi,si = (A0)⇑xi,si ⊆ N , as

desired. For the inner induction hypothesis, we assume for some l ≥ 1 that
(Al−1)⇑xi,si ⊆ N . For the inner inductive step, we show that (Al)⇑xi,si ⊆
N . Let f ∈ Al \ Al−1. Let ϕ ∈ deducP and V be a rule from stratum k
and valuation respectively that have derived f . Let ϕ′ be the rule in pure(P)
obtained by applying the transformation (4.3) to ϕ. Let V ′ be V extended
to assign xi and si to the new variables in ϕ′ that represent the location and
timestamp respectively. Note in particular that V ′(posϕ′) = V (posϕ)⇑xi,si and
V ′(negϕ′) = V (negϕ)⇑xi,si . Let ψ be the positive ground rule obtained by
applying V ′ to ϕ′ and by subsequently removing all negative (ground) body
atoms. We show that ψ ∈ grP,HM and that its body is in N , so that ψ derives
headψ = f⇑xi,si ∈ N , as desired.

• In order for ψ to be in grP,HM , it is required that V ′(negϕ′) ∩ M = ∅.
Because V is satisfying for ϕ, and negation in ϕ is only applied to lower
strata, we have V (negϕ) ∩ D→k−1

i = ∅. Moreover, since a relation is
computed in only one stratum of deducP , we overall have V (negϕ)∩Di = ∅.
Then by Claim A.2 we have V (negϕ)⇑xi,si ∩M = ∅. Hence,

V ′(negϕ′) ∩M = ∅.

• Now we show that posψ ⊆ N . Because V is satisfying for ϕ, we have
V (posϕ) ⊆ Al−1, and by applying the inner induction hypothesis we have
V (posϕ)⇑xi,si ⊆ N . Therefore, posψ = V ′(posϕ′) ⊆ N .

�

Claim A.2. Let i be a transition. Let I be a set of facts over sch(P). If
I ∩Di = ∅ then I⇑xi,si ∩M = ∅.

Proof. For every fact f ∈ M that is over schema sch(P)LT, and has location
specifier xi and timestamp si, we have f ∈ duc[i]

R because (i) for any transition
j there are no facts over sch(P)LT in caus[j]

R , fin[j]
R or snd[j]

R ; (ii) we only add
facts with location specifier xi to duc[j]

R if j is a transition of node xi; and, (iii)
for every transition j of node xi, the local timestamp sj = locR(j) is different
from si whenever i 6= j.

Hence, it suffices to show I⇑xi,si ∩ duc[i]
R = ∅. But this is immediate from

I ∩Di = ∅ because duc[i]
R equals D⇑xi,si

i by definition. �
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Claim A.3. Let j be a transition, and suppose that duc[j]
R ⊆ N . Recall

that transition j transforms configuration ρj into configuration ρj+1. We have
stρj+1(xj)⇑xj ,sj+1 ⊆ N .

Proof. By the operational semantics, we have

stρj+1(xj) = H(xj) ∪ inducP〈Dj〉.

We immediately have H(xj)⇑xj ,sj+1 ⊆ decl(H) ⊆ N . Now we show that
inducP〈Dj〉⇑xj ,sj+1 ⊆ N . Let f ∈ inducP〈Dj〉. Let ϕ ∈ inducP and V re-
spectively be a rule and valuation that have derived f . Let ϕ′ be the rule in
pure(P) that is obtained after applying transformation (4.4) to ϕ. Thus, besides
the additional location variable, the rule ϕ′ has two timestamp variables, one
in the body and one in the head. Moreover, the body contains an additional
positive tsucc-atom. Let V ′ be V extended to assign xj to the location vari-
able, and to assign timestamps sj and sj + 1 to the body and head timestamp
variables respectively. Let ψ be the positive ground rule obtained from ϕ′ by
applying valuation V ′ and by subsequently removing all negative (ground) body
atoms. We show that ψ ∈ grP,HM and that its body is in N , so that ψ derives
headψ = f⇑xj ,sj+1 ∈ N , as desired.

• In order for ψ to be in grP,HM , it is required that V ′(negϕ′) ∩ M = ∅.
Because V is satisfying for ϕ, we have V (negϕ)∩Dj = ∅. By Claim A.2 we
then have V (negϕ)⇑xj ,sj ∩M = ∅. And since V ′(negϕ′) = V (negϕ)⇑xj ,sj ,
we have V ′(negϕ′) ∩M = ∅, as desired.

• Now we show that posψ ⊆ N . Since posψ = V ′(posϕ′), we will show that
V ′(posϕ′) ⊆ N . The set V ′(posϕ′) consists of the facts V (posϕ)⇑xj ,sj and
the fact tsucc(sj , sj +1). The latter fact is in decl(H) and thus in N . For
the other facts, because V is satisfying for ϕ, we have V (posϕ) ⊆ Dj and
thus V (posϕ)⇑xj ,sj ⊆ D⇑xj ,sj

j = duc[j]
R . And by using the given assumption

duc[j]
R ⊆ N , we obtain the desired result.

�

Claim A.4. Let i be a transition. Suppose that D⇑xi,si

i ⊆ N . For each
R(y, ā) ∈ mesg[i]

R and timestamp t ∈ N with (y, t) 6≺R (xi, si) we have

candR(xi, si, y, t, ā) ∈ N.

Proof. By definition of mesg[i]
R , we have R(y, ā) ∈ asyncP〈Di〉. Let ϕ ∈ asyncP

and V be a rule and valuation that produced R(y, ā). Let ϕ′ ∈ P be the original
asynchronous rule on which ϕ is based. Let ϕ′′ ∈ pure(P) be the rule obtained
from ϕ′ by applying transformation (4.5). Let V ′′ be valuation V extended to
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assign xi and si to respectively the sender location and sender timestamp of ϕ′′,
and to assign y and t respectively to the addressee location and addressee arrival
timestamp. Let ψ denote the positive ground rule that is obtained from ϕ′′ by
applying valuation V ′′ and by subsequently removing all negative (ground) body
atoms. We show that ψ ∈ grP,HM and that its body is in N , so that ψ derives
headψ = candR(xi, si, y, t, ā) ∈ N , as desired.

• In order for ψ to be in grP,HM , it is required that V ′′(negϕ′′) ∩M = ∅. By
construction of ϕ′′, the set V ′′(negϕ′′) consists of the facts V (negϕ)⇑xi,si

and the fact before(y, t, xi, si). First, because V is satisfying for ϕ, we
have V (negϕ)∩Di = ∅. Then, by Claim A.2, we have V (negϕ)⇑xi,si∩M =
∅. Moreover, we are given that (y, t) 6≺R (xi, si), and thus we have not
added before(y, t, xi, si) to caus[i]

R , and by extension also not to M (since
caus[i]

R is the only part of M where we add before-facts with last two
components xi and si). Thus overall V ′′(negϕ′′) ∩M = ∅, as desired.

• Now we show that posψ ⊆ N . Since posψ = V ′′(posϕ′′), we will show
that V ′′(posϕ′′) ⊆ N . By construction of ϕ′′, the set V ′′(posϕ′′) consists
of the facts V (posϕ)⇑xi,si , all(y) and time(t). First, we immediately
have time(t) ∈ decl(H) ⊆ N . Also, by definition of mesg[i]

R , y is a valid
addressee and thus all(y) ∈ decl(H) ⊆ N . Finally, because V is satisfying
for ϕ, we have V (posϕ) ⊆ Di. Thus V (posϕ)⇑xi,si ⊆ D⇑xi,si

i , and we are
given that D⇑xi,si

i ⊆ N . Thus overall V ′′(posϕ′′) ⊆ N .

�

A.2 Second Inclusion
In this section we show that N ⊆ M . By definition, N = grP,HM (decl(H)).
Following the semantics of positive Datalog¬ programs in Section 2.2.1, we can
view N as a fixpoint, i.e., N =

⋃
l∈NNl, where N0 = decl(H), and for each

l ≥ 1 the set Nl is obtained by applying the immediate consequence operator of
grP,HM to Nl−1. This implies Nl−1 ⊆ Nl for each l ≥ 1. We show by induction
on l = 0, 1, . . ., that Nl ⊆ M . For the base case (l = 0), we immediately have
N0 = decl(H) ⊆ M . For the induction hypothesis, we assume for some l ≥ 1
that Nl−1 ⊆ M . For the inductive step, we show that Nl ⊆ N . Specifically,
we divide the facts of Nl \ Nl−1 into groups based on their predicate, and for
each group we show inclusion in M . As for terminology, we call a ground rule
ψ active on Nl−1 if posψ ⊆ Nl−1.

The numbered claims we will refer to can be found in Section A.2.1.

Causality Let before(x, s, y, t) ∈ Nl \ Nl−1. It is sufficient to show that
(x, s) ≺R (y, t) because then before(x, s, y, t) ∈ caus[i]

R ⊆M where i = globR(y, t).
We have the following cases:
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• The before-fact was derived by a ground rule in grP,HM of the form (4.1)
(local edge). This implies x = y and t = s + 1. We immediately have
(x, s) ≺R (y, t).

• The before-fact was derived by a ground rule in grP,HM of the form (4.9)
(message edge):

before(x, s, y, t)← chosenR(x, s, y, t, ā).

Since this rule is active on Nl−1, we have chosenR(x, s, y, t, ā) ∈ Nl−1.
By applying the induction hypothesis, we have chosenR(x, s, y, t, ā) ∈M .
Denoting j = globR(x, s), the set snd[j]

R is the only part of M where we
could have added this fact. This implies that x during its step s sends
a message to y, and this message arrives at local step t of y. Therefore
(x, s) ≺R (y, t), as desired.

• The before-fact was derived by a ground rule in grP,HM of the form (4.2)
(transitive edge):

before(x, s, y, t)← before(x, s, z, u), before(z, u, y, t).

Since this rule is active on Nl−1, its body facts are in Nl−1. By ap-
plying the induction hypothesis, we have before(x, s, z, u) ∈ M and
before(z, u, y, t) ∈ M . The only places we could have added these facts
to M are in the sets caus[j]

R and caus[k]
R respectively, where j = globR(z, u)

and k = globR(y, t). By construction of the sets caus[j]
R and caus[k]

R we
respectively have that (x, s) ≺R (z, u) and (z, u) ≺R (y, t), and thus by
transitivity (x, s) ≺R (y, t), as desired.

Finite Messages

• Let hasSender(x, s, y, t) ∈ Nl\Nl−1. This fact can only have been derived
by a ground rule in grP,HM of the form (4.10):

hasSender(x, s, y, t)← chosenR(y, t, x, s, ā).

Since this rule is active on Nl−1, we have chosenR(y, t, x, s, ā) ∈ Nl−1.
By applying the induction hypothesis, we have chosenR(y, t, x, s, ā) ∈M .
We can only have added this fact in the set snd[i]

R with i = globR(y, t).
This means that y during its step t sends a message R(ā) to x, and this
message arrives during step s of x. Hence, denoting j = globR(x, s), we
have (y, t) ∈ senders[j]

R (with senders[j]
R as defined in Section 6). Thus we

have added the fact hasSender(x, s, y, t) ∈ fin[j]
R ⊆M , as desired.

• Let isSmaller(x, s, y, t) ∈ Nl\Nl−1. This fact can only have been derived
by a ground rule in grP,HM of the form (4.11):

isSmaller(x, s, y, t) ← hasSender(x, s, y, t), hasSender(x, s, y, t′),
t < t′.
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Since this rule is active on Nl−1, its body facts are in Nl−1. By ap-
plying the induction hypothesis, we have hasSender(x, s, y, t) ∈ M and
hasSender(x, s, y, t′) ∈ M . The only part of M where we could have
added these facts is the set fin[i]

R with i = globR(x, s). By construction of
the set fin[i]

R , this implies that (y, t) ∈ senders[i]
R and (y, t′) ∈ senders[i]

R . Be-
cause (t < t′) ∈ Nl−1, we more specifically know that (t < t′) ∈ decl(H),
which implies t < t′. Thus we have added isSmaller(x, s, y, t) ∈ fin[i]

R , as
desired.

• Let hasMax(x, s, y) ∈ Nl \Nl−1. This fact can only have been derived by
a ground rule in grP,HM of the form (4.12):

hasMax(x, s, y)← hasSender(x, s, y, t).

Since this rule is active on Nl−1, we have hasSender(x, s, y, t) ∈ Nl−1.
By applying the induction hypothesis, we have hasSender(x, s, y, t) ∈M .
The only part of M where we could have added this fact, is the set fin[i]

R
with i = globR(x, s). Thus (y, t) ∈ senders[i]

R , and y is a sender-node
mentioned in senders[i]

R . Hence, we have added hasMax(x, s, y) ∈ fin[i]
R ⊆

M , as desired.

• Let rcvInf(x, s) ∈ Nl \Nl−1. This fact can only have been derived by a
ground rule in grP,HM of the form (4.13):

rcvInf(x, s)← hasSender(x, s, y, t).

Since this rule is active on Nl−1, we have hasSender(x, s, y, t) ∈ Nl−1.
By applying the induction hypothesis, we have hasSender(x, s, y, t) ∈
M . The only part of M where we could have added this fact, is the
set fin[i]

R with i = globR(x, s). Thus (y, t) ∈ senders[i]
R . Moreover, because

the rule (4.13) contains a negative hasMax-atom in the body, and the
above ground rule is in grP,HM , it must be that hasMax(x, s, y) /∈ M , and
thus hasMax(x, s, y) /∈ fin[i]

R . But since y is a sender-node mentioned in
senders[i]

R , the absence of hasMax(x, s, y) from fin[i]
R is impossible. Therefore

this case can not occur.

Deductive Let R(x, s, ā) ∈ (Nl \Nl−1)|sch(P)LT . The fact R(x, s, ā) has been
derived by a ground rule ψ ∈ grP,HM that is active on Nl−1. Because ψ ∈ grP,HM ,
there is a rule ϕ ∈ pure(P) and valuation V such that ψ is obtained from ϕ by
applying V and by subsequently removing the negative (ground) body atoms,
and such that V (negϕ) ∩M = ∅. We have the following cases:

• Rule ϕ is of the form (4.3). Let ϕ′ ∈ deducP be the original deductive rule
corresponding to ϕ. By construction of ϕ out of ϕ′, we can apply valuation
V to ϕ′ as well. Denote i = globR(x, s). We will show now that V is
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satisfying for ϕ′ during transition i, which causes V (headϕ′) = R(ā) ∈ Di

to be derived, and we obtain as desired:

R(x, s, ā) ∈ D⇑x,si = D⇑xi,si

i = duc[i]
R ⊆M.

By definition of syntactic stratification, relations mentioned in posϕ′ are
never computed in a stratum higher than R, and relations mentioned
in negϕ′ are computed in a strictly lower stratum than R. Thus, it is
sufficient to show that V (posϕ′) ⊆ Di and V (negϕ′) ∩Di = ∅. First, we
show that V (posϕ′) ⊆ Di. Because ϕ is of the form (4.3), all facts in
V (posϕ) are over sch(P)LT and have location specifier x and timestamp
s. Moreover, since ψ is active on Nl−1, we have posψ = V (posϕ) ⊆ Nl−1.
By applying the induction hypothesis, we have V (posϕ) ⊆ M , and thus
by Claim B.4 we have V (posϕ)⇓ ⊆ Di. By construction of ϕ out of ϕ′, we
have V (posϕ)⇓ = V (posϕ′). Thus V (posϕ′) ⊆ Di, as desired.
Secondly, we show that V (negϕ′)∩Di = ∅. Because ϕ is of the form (4.3),
all facts in V (negϕ) are over sch(P)LT and have location specifier x and
timestamp s. Moreover, by choice of ϕ and V , we have V (negϕ)∩M = ∅,
and thus by Claim B.5 we have V (negϕ)⇓ ∩Di = ∅. And by construction
of ϕ out of ϕ′, we have V (negϕ)⇓ = V (negϕ′). Thus V (negϕ′) ∩Di = ∅,
as desired.

• Rule ϕ is of the form (4.4). Let ϕ′ ∈ inducP be the original inductive
rule corresponding to ϕ. First, ψ contains in its body a fact of the form
tsucc(r, s). Since ψ is active on Nl−1, we have tsucc(r, s) ∈ Nl−1 and
more specifically, tsucc(r, s) ∈ decl(H). This implies that s = r + 1.
Denote i = globR(x, r) and j = globR(x, s). Note that the relationship
between timestamps r and s implies that there are no transitions of node
x between i and j. By construction of ϕ out of rule ϕ′, we can apply V
to ϕ′, and we will now show that V is satisfying for ϕ′ during transition
i. This results in V (headϕ′) = R(ā) ∈ inducP〈Di〉 ⊆ stρi+1(x), and since
stρi+1(x) = stρj (x) ⊆ Dj , we obtain R(x, s, ā) ∈ D⇑x,sj = duc[j]

R ⊆ M , as
desired.
We have to show that V (posϕ′) ⊆ Di and V (negϕ′) ∩ Di = ∅. First, we
show that V (posϕ′) ⊆ Di. Denote I = V (posϕ)|sch(P)LT , which allows us
to exclude the extra tsucc-fact in the body. All facts in I have location
specifier x and timestamp s. Because ψ is active on Nl−1, we have I ⊆
posψ ⊆ Nl−1, and by applying the induction hypothesis, we have I ⊆M .
By Claim B.4 thus have I⇓ ⊆ Di, and since I⇓ = V (posϕ′), we have
V (posϕ′) ⊆ Di, as desired.
Secondly, showing that V (negϕ′) ∩ Di = ∅ is like in the previous case,
where ϕ is deductive.

• Rule ϕ is of the form (4.8). Then ψ concretely looks as follows, where
(y, t) ∈ N × N and R in idb(P):

R(x, s, ā)← chosenR(y, t, x, s, ā).
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Since ψ is active on Nl−1, we have chosenR(y, t, x, s, ā) ∈ Nl−1, and by
applying the induction hypothesis, we have chosenR(y, t, x, s, ā) ∈ M .
The only part of M where we could have added this fact is in the set
snd[i]
R with i = globR(y, t). This implies that R(x, ā) ∈ mesg[i]

R and that
node x will receive fact R(ā) during its local step s, thus during transition
j = globR(x, s). Then, by the operational semantics, we have R(ā) ∈
untag(mj) ⊆ Dj . Thus R(x, s, ā) ∈ D⇑x,sj = duc[j]

R ⊆M , as desired.

Sending

• Let candR(x, s, y, t, ā) ∈ Nl \Nl−1. The fact candR(x, s, y, t, ā) is derived
by a ground rule ψ ∈ grP,HM of the form (4.5) that is active on Nl−1.
Because ψ ∈ grP,HM , there is a rule ϕ ∈ pure(P) and a valuation V such
that ψ is obtained from ϕ by applying valuation V and by subsequently
removing the negative (ground) body atoms, and so that V (negϕ)∩M = ∅.
Denote i = globR(x, s). It is sufficient to show that R(y, ā) ∈ mesg[i]

R and
(y, t) 6≺R (x, s), because then candR(x, s, y, t, ā) ∈ snd[i]

R ⊆M , as desired.
First, we show that (y, t) 6≺R (x, s). Because there is a negative before-
atom in ϕ, the existence of ψ in grP,HM implies that before(y, t, x, s) /∈M .
Hence, before(y, t, x, s) /∈ caus[i]

R . Then by construction of caus[i]
R we

obtain (y, t) 6≺R (x, s).

Secondly, we show that R(y, ā) ∈ mesg[i]
R . Let ϕ′ ∈ P be the original

asynchronous rule on which ϕ is based. Let ϕ′′ ∈ asyncP be the rule
corresponding to ϕ′. It follows from the constructions of ϕ out of ϕ′ and
ϕ′′ out of ϕ′ that valuation V can be applied to ϕ′′. We have V (headϕ′′) =
R(y, ā). We will show that V is satisfying for ϕ′′ during transition i, which
gives R(y, ā) ∈ asyncP〈Di〉. Moreover, the body of ψ contains the fact
all(y) ∈ decl(H), and thus y ∈ N , making y a valid addressee. Thus
R(y, ā) ∈ mesg[i]

R , as desired.
We have to show that V (posϕ′′) ⊆ Di and V (negϕ′′) ∩ Di = ∅. Ab-
breviate I1 = V (posϕ)|sch(P)LT and I2 = V (negϕ)|sch(P)LT . Note that
I⇓1 = V (posϕ′′) and I⇓2 = V (negϕ′′). All facts in I1 ∪ I2 have location
specifier x and timestamp s.

– Because ψ is active on Nl−1, we have I1 ⊆ posψ ⊆ Nl−1, and by
applying the induction hypothesis we thus have I1 ⊆ M . Then by
Claim B.4 we have I⇓1 ⊆ Di and thus V (posϕ′′) ⊆ Di, as desired.

– By choice of ϕ and V , we have I2 ∩M = ∅. By Claim B.5 we then
have I⇓2 ∩Di = ∅ and thus V (negϕ′′) ∩Di = ∅, as desired.

• Let chosenR(x, s, y, t, ā) ∈ Nl \ Nl−1. This fact is derived by a ground
rule ψ in grP,HM of the form (4.6):

chosenR(x, s, y, t, ā)← candR(x, s, y, t, ā).
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Denote i = globR(x, s). We will show that R(y, ā) ∈ mesg[i]
R and that t

is the actual arrival timestamp of this message at y. Then we will have
added chosenR(x, s, y, t, ā) ∈ snd[i]

R ⊆M , as desired.
First, since ψ is active on Nl−1, we have candR(x, s, y, t, ā) ∈ Nl−1, and by
applying the induction hypothesis, we have candR(x, s, y, t, ā) ∈ M . The
set snd[i]

R is the only part ofM where we could have added this fact. Next,
candR(x, s, y, t, ā) ∈ snd[i]

R implies R(y, ā) ∈ mesg[i]
R and (y, t) 6≺R (x, s).

We are left to show that t is the actual arrival timestamp of the message.
Because ψ ∈ grP,HM , there is a rule ϕ ∈ pure(P) and valuation V such
that ψ is obtained from ϕ by applying V and by subsequently remov-
ing the negative (ground) body atoms, and so that V (negϕ) ∩ M = ∅.
Now, because rule ϕ contains a negative otherR-atom in its body, we
have otherR(x, s, y, t, ā) /∈M and thus otherR(x, s, y, t, ā) /∈ snd[i]

R . Since
R(y, ā) ∈ mesg[i]

R and (y, t) 6≺R (x, s) (see above), the absence of this
otherR-fact from snd[i]

R can only be explained by the following: t = locR(j)
with j = αR(i, y, R(ā)), as desired.

• Let otherR(x, s, y, t, ā) ∈ Nl \Nl−1. This fact is derived by a ground rule
ψ of the form (4.7):

otherR(x, s, y, t, ā) ← candR(x, s, y, t, ā), chosenR(x, s, y, t′, ā),
t 6= t′.

Since this rule is active on Nl−1, we have candR(x, s, y, t, ā) ∈ Nl−1 and
chosenR(x, s, y, t′, ā) ∈ Nl−1, and these facts are also in M by apply-
ing the induction hypothesis. Denote i = globR(x, s). The only part of
M where we could have added these fact to M , is the set snd[i]

R . First,
candR(x, s, y, t, ā) ∈ snd[i]

R implies that R(y, ā) ∈ mesg[i]
R and (y, t) 6≺R

(x, s). Second, chosenR(x, s, y, t′, ā) ∈ snd[i]
R implies that t′ is the real

arrival timestamp of the message R(ā) at y. Finally, since ψ is active,
we have (t 6= t′) ∈ decl(H), and thus t 6= t′. Therefore we have added
otherR(x, s, y, t, ā) to snd[i]

R ⊆M , as desired.

A.2.1 Subclaims

Claim A.5. Let I be a set of facts over sch(P)LT, all having the same location
specifier x ∈ N and timestamp s ∈ N. Denote i = globR(x, s). If I ∩M = ∅
then I⇓ ∩Di = ∅.

Proof. First, I ∩M = ∅ implies I ∩ duc[i]
R = ∅ because duc[i]

R ⊆ M . And since
duc[i]
R = D⇑x,si , we have I ∩D⇑x,si = ∅. Finally, since the facts in I ∪D⇑x,si all

have the same location specifier x and timestamp s, we obtain I⇓ ∩Di = ∅. �

50



Claim A.6. Let I be a set of facts over sch(P)LT, all having the same location
specifier x ∈ N and timestamp s ∈ N. Denote i = globR(x, s). If I ⊆ M then
I⇓ ⊆ Di.

Proof. The only part of M where we add facts over sch(P)LT with location
specifier x and timestamp s is duc[i]

R . Hence I ⊆ duc[i]
R = D⇑x,si and thus

I⇓ ⊆ Di. �

B Model to Run: Proof Details
Consider the definitions and notations from Section 7. In this section we show
that R is a run of P on input H, such that trace(R) = M |sch(P)LT . We do this
in several parts, where each part is placed in its own subsection:

• in Section B.2 we show that ρ0 = start(P, H);

• in Section B.3 we show that every fabricated transition of R is in fact a
valid transition; and,

• in Section B.4 we show that trace(R) = M |sch(P)LT .

Before we start, we need some additional notations that are given in the next
subsection. The numbered claims we will refer to can be found in Section B.5.

B.1 Additional Definitions and Notations
Let ϕ ∈ pure(P) be a rule such that its head atom is over sch(P)LT. From the
construction of pure(P), it is clear that ϕ falls in exactly one of the following
three cases:

• ϕ is of the form (4.3), i.e., deductive, recognizable as a rule in which only
atoms over sch(P)LT are used, and in which the location and timestamp
variable in the head are the same as in the body;

• ϕ is of the form (4.4), i.e., inductive, recognizable as a rule with a head
atom over sch(P)LT and a tsucc-atom in the body;

• ϕ is of the form (4.8), i.e., a delivery, recognizable as a rule with a head
atom over sch(P)LT and a chosenR-fact in the body (where R is also the
head-predicate).

The same classification of deductive, inductive and delivery rules can also be
applied to the (positive) ground rules in grP,HM that have a ground head atom
over sch(P)LT.

Recall from the general remarks in the appendix that we are working with
a fixed (but arbitrary) syntactic stratification for the deductive rules. Stratum
numbers start at 1. If ϕ ∈ pure(P) is deductive, we can uniquely identify its
stratum number as the stratum number of the original deductive rule in P on
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which ϕ is based. Similarly, for deductive ground rules, we can also uniquely
identify the stratum number as the stratum number of a corresponding non-
ground rule in pure(P).9

We call a ground rule ψ ∈ grP,HM active if posψ ⊆ M , which implies that
headψ ∈M because M is stable. Now we define the following subsets of M :

• Mduc,k: all facts of M that are the head of an active deductive rule in
grP,HM with stratum number less than or equal to k;

• M ind: all facts ofM that are the head of an active inductive rule in grP,HM ;

• Mdeliv: all facts ofM that are the head of an active delivery rule in grP,HM .

This allows us to classify the facts in M |sch(P)LT as being derived in a deductive
manner, an inductive manner or being message deliveries. We also define:

MN = M |edb(P)LT ∪M ind ∪Mdeliv.

For (x, s) ∈ N × N, we write I|x,s to abbreviate (I|sch(P)LT)|x,s. So intuitively,
when we select the facts with location specifier x and timestamp s, we are only
interested in facts that provide these two components, which are the facts over
sch(P)LT.

For i ∈ N, the set (MN)|xi,si intuitively contains the “input” of the deductive
fixpoint computation during the local step si of the node xi: the input facts, the
facts derived by inductive rules during a previous computation step (if any) of xi,
and the delivered messages. The deductive rules then complete this information
by deriving some new facts, that are visible within step si of xi.

For a transition number i ofR, we denoteDi = deducP(stρi(xi)∪untag(mi)).
For a number k ∈ N, we write D→ki to denote the set of facts obtained by adding
to stρi(xi) ∪ untag(mi) all facts derived in stratum 1 up to stratum k during
the computation of Di. To mirror this notation, we write M→k to denote the
set MN ∪Mduc,k. For uniformity in the proofs, we will consider the case k = 0,
which is an invalid stratum number, and this gives D→0

i = stρi(xi)∪ untag(mi)
and M→0 = MN.

B.2 Valid Start
We show that ρ0 = start(P, H). Let x ∈ N . First we show that stρ0(x) is the
correct start state for x, meaning that stρ0(x) = H(x). By definition,

stρ0(x) =
(
(M |edb(P)LT)|x,s ∪M ind|x,s

)⇓
with s = locM (0, x). It must be that s = 0 because there are no pairs of N ×N
with first component x that have an ordinal strictly less than 0. Now, there can

9We say a rather than the corresponding rule because there could be more than one.
Indeed, multiple original deductive rules in pure(P) could be mapped to the same positive
ground rule after applying a valuation and removing their negative ground body atoms. But
in any case, these non-ground rules will have the same head predicate. Hence, they have the
same stratum.
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be no ground inductive rules in grP,HM that derive facts with head timestamp 0
because it follows from the construction of decl(H) that the second component
of a tsucc-fact is always strictly larger than 0. Therefore M ind|x,s = ∅, and
thus stρ0(x) =

(
(M |edb(P)LT)|x,s

)⇓. Then by Claim B.1 we have stρ0(x) =
(H(x)⇑x,s)⇓ = H(x), as desired.

Now we show that bfρ0(x) is the correct start message buffer for x, which
means that it should be empty. By definition, bfρ0(x) is

{〈globM (y, t), R(ā)〉 |
∃u : chosenR(y, t, x, u, ā) ∈M, globM (y, t) < 0 ≤ globM (x, u)}.

We can immediately see that there are no facts of the form chosenR(y, t, x, u, ā) ∈
M with globM (y, t) < 0, by definition of the function globM (·). Hence, bfρ0(x) =
∅.

We conclude that ρ0 = start(P, H).

B.3 Valid Transition
Let i ∈ N. We will now show that ρi

xi,mi−−−−→
i

ρi+1 is a valid transition.
We start by showing that mi ⊆ bfρi(xi). Let 〈j,f〉 ∈ mi. By definition of

mi, there is a fact of the form chosenR(y, t, z, u, ā) ∈ M with globM (z, u) = i
such that j = globM (y, t) and f = R(ā). Note that globM (z, u) = i implies
z = xi and u = si. Now, because rules in pure(P) of the form (4.9) are always
positive, the following ground rule is in grP,HM , which is of the form (4.9):

before(y, t, xi, si)← chosenR(y, t, xi, si, ā).

Since its body is inM , this rule derives before(y, t, xi, si) ∈M . Hence (y, t) ≺M
(xi, si) by definition of ≺M . Moreover, <M respects ≺M , and thus (y, t) <M
(xi, si) and globM (y, t) < globM (xi, si). And since globM (xi, si) = i, we overall
have

globM (y, t) < i ≤ globM (xi, si).
Therefore 〈j,f〉 ∈ bfρi(xi).

Now, because mi ⊆ bfρi(xi), and because transitions are deterministic once
the active node and delivered messages are fixed, we can consider the unique
result configuration ρ such that ρi

xi,mi−−−−→
i

ρ is a valid transition. We have to
show that ρi+1 = ρ. We divide the work in two parts: for each x ∈ N , show
that stρi+1(x) = stρ(x) (state), and bfρi+1(x) = bfρ(x) (buffer).

B.3.1 State

Let x ∈ N . We must show that stρi+1(x) = stρ(x). Denote s = locM (i + 1, x).
By definition,

stρi+1(x) =
(
(M |edb(P)LT)|x,s ∪M ind|x,s

)⇓
.
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Case x 6= xi. By definition, stρ(x) = stρi(x). We will show that stρi+1(x) =
stρi(x), which gives stρi+1(x) = stρ(x), as desired. Since x 6= xi, the number
of pairs from N × N containing node x that come strictly before ordinal i + 1
is the same as the number of pairs containing node x that come strictly before
ordinal i. Formally: s = locM (i + 1, x) = locM (i, x). Thus the right-hand side
in the previous equation equals stρi(x), and the result is obtained.

Case x = xi. By definition, stρ(x) = H(x) ∪ inducP〈Di〉. Referring to the
definition of stρi+1(x) from above, by Claim B.1 we have

(M |edb(P)LT)|x,s = H(x)⇑x,s.

If we can also show that M ind|x,s = inducP〈Di〉⇑x,s, then we overall have, as
desired:

stρi+1(x) =
(
(M |edb(P)LT)|x,s ∪M ind|x,s

)⇓
= H(x) ∪ inducP〈Di〉
= stρ(x).

Since x = xi, we have s = locM (i + 1, xi) = locM (i, xi) + 1, and using that
locM (i, xi) = si (Claim B.2), we have s = si + 1. We show that M ind|xi,si+1 =
inducP〈Di〉⇑xi,si+1. Both inclusions are shown separately, by Claims B.3 and
B.6. Therefore, we obtain M ind|x,s = inducP〈Di〉⇑x,s, as desired.

B.3.2 Buffer

Let x ∈ N . We must show that bfρi+1(x) = bfρ(x). Denote

δi→x = {〈i, R(ā)〉 | R(x, ā) ∈ asyncP〈Di〉}.

Like in the operational semantics, δi→x denotes the (tagged) messages that are
sent to x during transition i.

Case x 6= xi. By definition, bfρ(x) = bfρi(x) ∪ δi→x. We start by showing
that bfρ(x) ⊆ bfρi+1(x). Let 〈j,f〉 ∈ bfρ(x). Denote f = R(ā).

• Suppose that 〈j,f〉 ∈ bfρi(x). By definition of bfρi(x), there are values
y ∈ N , t ∈ N and u ∈ N such that chosenR(y, t, x, u, ā) ∈ M and j =
globM (y, t) < i ≤ globM (x, u). Now, since x 6= xi, we more specifically
have i < globM (x, u) and thus i + 1 ≤ globM (x, u). Therefore 〈j,f〉 ∈
bfρi+1(x), as desired.

• Suppose that 〈j,f〉 ∈ δi→x. By definition of δi→x, this implies j = i and
R(x, ā) ∈ asyncP〈Di〉. By Claim B.7 we then have 〈j,f〉 = 〈i, R(ā)〉 ∈
bfρi+1(x), as desired.
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Secondly, we show that bfρi+1(x) ⊆ bfρ(x). Let 〈j,f〉 ∈ bfρi+1(x). Denote
f = R(ā). By definition of bfρi+1(x), there are values y ∈ N , t ∈ N and u ∈ N
such that chosenR(y, t, x, u, ā) ∈M and j = globM (y, t) < i+ 1 ≤ globM (x, u).
So j ≤ i. We have the following cases:

• Suppose that j < i. Thus globM (y, t) < i. This immediately gives 〈j,f〉 ∈
bfρi(x) ⊆ bfρ(x), as desired.

• Suppose that j = i. By Claim B.8 we then have R(x, ā) ∈ asyncP〈Di〉.
This implies that 〈j,f〉 = 〈i, R(ā)〉 ∈ δi→x ⊆ bfρ(x), as desired.

Case x = xi. By definition, bfρ(x) = (bfρi(x) \mi)∪ δi→x. Some parts of the
reasoning are similar as for the case x 6= xi. Repitition is avoided by referring
to shared subclaims where possible.

We start by showing that bfρ(x) ⊆ bfρi+1(x). Let 〈j,f〉 ∈ bfρ(x). Denote
f = R(ā). We have the following cases:

• Suppose that 〈j,f〉 ∈ bfρi(x) \mi. Thus 〈j,f〉 ∈ bfρi(x) and 〈j,f〉 /∈ mi.
The former implies that there are values y ∈ N , t ∈ N and u ∈ N such
that chosenR(y, t, x, u, ā) ∈ M and j = globM (y, t) < i ≤ globM (x, u).
It must be that globM (x, u) 6= i, because otherwise 〈j,f〉 ∈ mi, which is
false. Combined with i ≤ globM (x, u), this gives i < globM (x, u). Hence,
i+ 1 ≤ globM (x, u) and we obtain that 〈j,f〉 ∈ bfρi+1(x), as desired.

• Suppose that 〈j,f〉 ∈ δi→x. By definition of δi→x, this implies j = i and
R(x, ā) ∈ asyncP〈Di〉. By Claim B.7 we then have 〈i, R(ā)〉 ∈ bfρi+1(x),
as desired.

Secondly, we show that bfρi+1(x) ⊆ bfρ(x). Let 〈j,f〉 ∈ bfρi+1(x). Denote
f = R(ā). By definition of bfρi+1(x), there are values y ∈ N , t ∈ N and u ∈ N
such that chosenR(y, t, x, u, ā) ∈M and j = globM (y, t) < i+ 1 ≤ globM (x, u).
Now we look at the cases for j:

• Suppose that j < i. This gives us globM (y, t) < i ≤ globM (x, u), which
implies 〈j,f〉 ∈ bfρi(x). Moreover, i + 1 ≤ globM (x, u) implies that
globM (x, u) 6= i. Hence, 〈j,f〉 /∈ mi. Taken together, we now have
〈j,f〉 ∈ bfρi(x) \mi ⊆ bfρ(x).

• Suppose that j = i. Then 〈i, R(ā)〉 ∈ bfρi+1(x), and by Claim B.8 we
obtain that R(x, ā) ∈ asyncP〈Di〉. Therefore 〈j,f〉 = 〈i, R(ā)〉 ∈ δi→x ⊆
bfρ(x), as desired.

B.4 Trace
In this section we show that trace(R) = M |sch(P)LT . Recall the definition of
trace(R) from Section 4.2:

trace(R) =
⋃
i∈N

(Di)⇑xi, locR(i).
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For each i ∈ N, we have defined locR(i) as the number of transitions in R
that come before i and in which xi is also the active node. It follows from the
construction of R that locR(i) = locM (i, xi). Indeed, locM (i, xi) counts the
number of pairs in N × N with node xi that have an ordinal strictly smaller
than i, and that is precisely the number of transitions in R with active node xi
that come before i. Moreover, by Claim B.2 we have locM (i, xi) = si. Hence,

trace(R) =
⋃
i∈N

(Di)⇑xi,si .

By Claim B.9, for each i ∈ N we have (Di)⇑xi,si = M |xi,si , and thus

trace(R) =
⋃
i∈N

M |xi,si .

For the next step, let us denote A = {(xi, si) | i ∈ N}. We show that A = N×N.
First, it follows from their respective definitions that xi ∈ N and si ∈ N, and
therefore A ⊆ N ×N. Secondly, we show that N ×N ⊆ A. Let (x, s) ∈ N ×N.
Denote i = globM (x, s). By definition, xi = x and si = s. Hence (x, s) =
(xi, si) ∈ A. Now we may write:

trace(R) =
⋃

(x,s)∈A

M |x,s

=
⋃

(x,s)∈N×N

M |x,s.

Finally, becauseM is well-formed (see Section 7), there are no facts inM |sch(P)LT

of the form R(v, w, ā) with v /∈ N or w /∈ N. We obtain, as desired:

trace(R) = M |sch(P)LT .

B.5 Subclaims
Claim B.1. Let x ∈ N and s ∈ N. We have (M |edb(P)LT)|x,s = H(x)⇑x,s.

Proof. First, by construction of decl(H) we have (decl(H)|edb(P)LT)|x,s = H(x)⇑x,s.
Because decl(H) ⊆ M , and because facts over edb(P)LT can not be derived by
rules in pure(P), we have M |edb(P)LT = decl(H)|edb(P)LT . Hence,

(M |edb(P)LT)|x,s = (decl(H)|edb(P)LT)|x,s = H(x)⇑x,s,

and the result is obtained. �

Claim B.2. Let i ∈ N. Recall the definition of xi and si as the node and
timestamp in the pair of N × N that has ordinal i in <M . We have si =
locM (i, xi).
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Proof. By definition of xi and si, we have globM (xi, si) = i. Suppose we would
know for all timestamp values s ∈ N and t ∈ N that s < t implies globM (xi, s) <
globM (xi, t). Then locM (i, xi), which is the number of pairs from N × N with
first component xi that come strictly before ordinal i, is precisely

|{s ∈ N | s < si}|.

This equals si, as desired.
We are left to show for any s ∈ N and t ∈ N that s < t implies globM (xi, s) <

globM (xi, t). It is actually sufficient to show for any s ∈ N that (xi, s) ≺M
(xi, s+ 1). Indeed, this would imply for any t ∈ N with s < t that

(xi, s) ≺M (xi, s+ 1) ≺M (xi, s+ 2) ≺M . . . ≺M (xi, t).

And since ≺M is a partial order, it is transitive, and thus (xi, s) ≺M (xi, t).
Next, since<M respects≺M , we obtain (xi, s) <M (xi, t) and thus globM (xi, s) <
globM (xi, t), as desired. To show that (xi, s) ≺M (xi, s + 1), we observe that
the rule (4.1) in pure(P) is positive. Hence, for any s ∈ N, the following ground
rule is always in grP,HM , and it derives before(xi, s, xi, s + 1) ∈ M because
{all(xi), tsucc(s, s+ 1)} ⊆ decl(H) ⊆M :

before(xi, s, xi, s+ 1)← all(xi), tsucc(s, s+ 1).

Thus for all s ∈ N we have (xi, s) ≺M (xi, s+ 1) by definition of ≺M . �

Claim B.3. Let i ∈ N. We have M ind|xi,si+1 ⊆ inducP〈Di〉⇑xi,si+1.
Proof. Let f ∈M ind|xi,si+1. We show that f ∈ inducP〈Di〉⇑xi,si+1.

By definition of M ind, there is an active inductive ground rule ψ ∈ grP,HM

that can derive f , i.e., headψ = f . Because ψ ∈ grP,HM , there is a rule ϕ ∈
pure(P) and a valuation V so that ψ can be obtained from ϕ by applying V
and by subsequently removing all negative (ground) body literals, and so that
V (negϕ) ∩M = ∅. The rule ϕ must be of the form (4.4), which implies that V
must assign xi and si to the body location and timestamp variable respectively,
and that it must assign xi and si+1 to the head location and timestamp variable
respectively.

Let ϕ′ ∈ P be the original inductive rule on which ϕ is based. Let ϕ′′ ∈
inducP be the rule corresponding to ϕ′. It follows from the construction of ϕ
out of ϕ′ and ϕ′′ out of ϕ′ that valuation V can also be applied to rule ϕ′′.
Indeed, rule ϕ just has more variables for the location and timestamps. We
show that V is satisfying for ϕ′′ with respect to Di, so that ϕ′′ and V together
derive V (headϕ′′) = f⇓ ∈ inducP〈Di〉, which gives f ∈ inducP〈Di〉⇑xi,si+1, as
desired.

We must concretely show that V (posϕ′′) ⊆ Di and V (negϕ′′) ∩Di = ∅. We
start by showing that V (posϕ′′) ⊆ Di. From the relationship between ψ, ϕ and
ϕ′′, we know that

posψ|sch(P)LT = V (posϕ)|sch(P)LT = V (posϕ′′)⇑xi,si .
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Since ψ is active with respect toM , we have posψ ⊆M , and thus V (posϕ′′)⇑xi,si ⊆
M . Then by Claim B.4 we have V (posϕ′′) ⊆ Di, as desired.

Now we show that V (negϕ′′) ∩ Di = ∅. By the relationship of ϕ and ϕ′′,
we have V (negϕ′′)⇑xi,si ⊆ V (negϕ). By choice of ϕ and V , we have V (negϕ) ∩
M = ∅. Hence, V (negϕ′′)⇑xi,si ∩ M = ∅. Finally, by Claim B.5, we have
V (negϕ′′) ∩Di = ∅, as desired. �

Claim B.4. Let i ∈ N. Let I be a set of facts over the schema sch(P)LT that
all have location specifier xi and timestamp si. If I ⊆M then I⇓ ⊆ Di.

Proof. By the given assumptions on I, we have I ⊆ M |xi,si . Then by Claim
B.9 we have I ⊆ (Di)⇑xi,si . Hence I⇓ ⊆ Di, as desired. �

Claim B.5. Let i ∈ N. Let I be a set of facts over the schema sch(P)LT that
all have location specifier xi and timestamp si. If I ∩M = ∅ then I⇓ ∩Di = ∅.

Proof. We are given that I ∩M = ∅. This implies I ∩M |xi,si = ∅. By Claim
B.9 we have I ∩ (Di)⇑xi,si = ∅. Hence I⇓ ∩Di = ∅, as desired. �

Claim B.6. Let i ∈ N. We have inducP〈Di〉⇑xi,si+1 ⊆M ind|xi,si+1.

Proof. Let f ∈ inducP〈Di〉. We show that f⇑xi,si+1 ∈M ind|xi,si+1.
Recall the semantics for inducP from Section 3.3. Let ϕ ∈ inducP and V

be the rule and valuation that together derived f ∈ inducP〈Di〉. Let ϕ′ ∈ P
be the original inductive rule on which ϕ is based. Let ϕ′′ ∈ pure(P) be the
inductive rule that in turn is based on ϕ′, which is of the form (4.4). Let
V ′′ be the valuation for ϕ′′ that is obtained by extending V to assign xi and
si to respectively the location and timestamp variables in the body, and to
assign si + 1 to the head timestamp variable. Let ψ be the positive ground rule
obtained from ϕ′′ by applying the valuation V ′′, and by subsequently removing
the negative (ground) body literals. Note that headψ = V (headϕ)⇑xi,si+1 =
f⇑xi,si+1. We will show that ψ ∈ grP,HM and that posψ ⊆M , so that this ground
rule derives f⇑xi,si+1 ∈M . And since ψ is inductive, we more specifically have
f⇑xi,si+1 ∈M ind|xi,si+1, as desired.

• First we show that ψ ∈ grP,HM . This requires that V ′′(negϕ′′) ∩M = ∅.
From the construction of rule ϕ′′, we have V ′′(negϕ′′) = V (negϕ)⇑xi,si .
We will show that V (negϕ)⇑xi,si ∩M = ∅.
Because V is satisfying for ϕ with respect to Di, we have V (negϕ)∩Di =
∅. This gives V (negϕ)⇑xi,si ∩ (Di)⇑xi,si = ∅. By Claim B.9 we then
have V (negϕ)⇑xi,si ∩M |xi,si = ∅. As the set V (negϕ)⇑xi,si contains only
facts over sch(P)LT with location specifier xi and timestamp si, we have
V (negϕ)⇑xi,si ∩M = ∅, as desired. We obtain that ψ ∈ grP,HM .
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• Now we show that posψ ⊆M . From the construction of rule ϕ′′, we have

posψ = V ′′(posϕ′′) = V (posϕ)⇑xi,si ∪ {tsucc(si, si + 1)}.

We immediately have tsucc(si, si + 1) ∈ decl(H) ⊆ M . Moreover, since
V is satisfying for ϕ with respect to Di, we have V (posϕ) ⊆ Di. Hence
V (posϕ)⇑xi,si ⊆ (Di)⇑xi,si . By Claim B.9 we then have V (posϕ)⇑xi,si ⊆
M |xi,si ⊆M , as desired.

�

Claim B.7. Let i ∈ N. Let x ∈ N . For each fact R(x, ā) ∈ asyncP〈Di〉,
we have 〈i, R(ā)〉 ∈ bfρi+1(x). Intuitively, this means that the messages that
are sent under the operational semantics are also sent in M , since bfρi+1(x) is
defined purely in terms of M .

Proof. The main approach of this proof is as follows. We will show that there is
a timestamp u ∈ N such that chosenR(xi, si, x, u, ā) ∈ M . Next, because rules
of the form (4.9) are positive, in grP,HM there is always the following ground rule:

before(xi, si, x, u)← chosenR(xi, si, x, u, ā).

Thus if chosenR(xi, si, x, u, ā) ∈ M then before(xi, si, x, u) ∈ M , which im-
plies that (xi, si) ≺M (x, u) by definition of ≺M . Since <M respects ≺M , we
obtain (xi, si) <M (x, u) and thus globM (xi, si) < globM (x, u). Also, since
globM (xi, si) = i, we overall get

globM (xi, si) < i+ 1 ≤ globM (x, u),

which together with chosenR(xi, si, x, u, ā) ∈ M gives 〈globM (xi, si), R(ā)〉 =
〈i, R(ā)〉 ∈ bfρi+1(x), as desired.

Now we are left to show that such a timestamp u exists. Recall the semantics
for asyncP from Section 3.3. Let ϕ ∈ asyncP and V be a rule and valuation that
together derived R(x, ā) ∈ asyncP〈Di〉. Let ϕ′ ∈ P be the original asynchronous
rule on which ϕ is based. Let ϕ′′ ∈ pure(P) be the rule obtained by applying
transformation (4.5) to ϕ′. To continue, because ≺M is well-founded, there are
only a finite number of timestamps v ∈ N of node x such that (x, v) ≺M (xi, si).
So, there exists a timestamp u ∈ N such that (x, u) 6≺M (xi, si). Now, let
V ′′ be the valuation for ϕ′′ that is the extension of valuation V to assign xi
and si to the body location variable and timestamp variable respectively (both
belonging to the sender), and to assign u to the addressee arrival timestamp.
Note that from the construction of ϕ′′ we also know that V (and thus V ′′)
assigns the value x to the addressee location variable and the tuple ā to the
message contents. Let ψ denote the ground rule obtained by applying V ′′ to
ϕ′′, and by subsequently removing the negative (ground) body literals. We
will first show that ψ ∈ grP,HM , and then we show that posψ ⊆ M , meaning
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that ψ derives headψ = candR(xi, si, x, u, ā) ∈ M . Then Claim B.11 can be
applied to know that there is a timestamp u′, with possibly u′ = u, such that
chosenR(xi, si, x, u′, ā) ∈M , as desired.

In order for ψ to be in grP,HM , it is required that V ′′(negϕ′′) ∩M = ∅. It
follows from the construction of ϕ′′ out of ϕ′ and ϕ out of ϕ′ that

V ′′(negϕ′′) = V (negϕ)⇑xi,si ∪ {before(x, u, xi, si)}.

It must be that before(x, u, xi, si) /∈M because otherwise (x, u) ≺M (xi, si) by
definition of≺M , which is false by choice of u. Next, we show that V (negϕ)⇑xi,si∩
M = ∅. Because V is satisfying for ϕ with respect toDi, we have V (negϕ)∩Di =
∅, and thus

V (negϕ)⇑xi,si ∩ (Di)⇑xi,si = ∅.

Moreover, by Claim B.9 we have (Di)⇑xi,si = M |xi,si , and thus

V (negϕ)⇑xi,si ∩M |xi,si = ∅.

As the set V (negϕ)⇑xi,si contains only facts over sch(P)LT with location specifier
xi and timestamp si, we have

V (negϕ)⇑xi,si ∩M = ∅,

as desired. We obtain that ψ ∈ grP,HM .
For the last part, we will show that ψ is active on M , meaning that posψ ⊆

M . Note that posψ = V ′′(posϕ′′). From the construction of ϕ′′ we have

V ′′(posϕ′′) = V (posϕ)⇑xi,si ∪ {all(x), time(u)}.

Because x ∈ N and u ∈ N, we immediately have {all(x), time(u)} ⊆ decl(H) ⊆
M . We are left to show that V (posϕ)⇑xi,si ⊆M . Because V is satisfying for ϕ
with respect to Di, we have V (posϕ) ⊆ Di. Hence V (posϕ)⇑xi,si ⊆ (Di)⇑xi,si .
By again using Claim B.9 we then obtain V (posϕ)⇑xi,si ⊆ M |xi,si ⊆ M , as
desired. �

Claim B.8. Let i ∈ N and x ∈ N . For each pair 〈i, R(ā)〉 ∈ bfρi+1(x), we have
R(x, ā) ∈ asyncP〈Di〉. Note the send-tag i in the pair 〈i, R(ā)〉. Intuitively, this
claim says that the messages that are sent in M are also sent in the operational
semantics.

Proof. By definition of bfρi+1(x), the pair 〈i, R(ā)〉 ∈ bfρi+1(x) implies that
there are values y ∈ N , t ∈ N and u ∈ N such that chosenR(y, t, x, u, ā) ∈ M ,
globM (y, t) = i and globM (y, t) < i+ 1 ≤ globM (x, u). And globM (y, t) = i gives
us that y = xi and t = si. Thus chosenR(xi, si, x, u, ā) ∈M .

All ground rules in grP,HM that can derive chosenR(xi, si, x, u, ā) ∈ M are
of the form (4.6), and hence candR(xi, si, x, u, ā) ∈ M . Let ψ ∈ grP,HM be
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an active ground rule with head candR(xi, si, x, u, ā). Because ψ ∈ grP,HM ,
there is a rule ϕ ∈ pure(P) and a valuation V so that ψ is obtained from
ϕ by applying V and by subsequently removing all negative (ground) body
literals, and so that V (negϕ) ∩M = ∅. The rule ϕ is of the form (4.5), which
implies that V must assign xi and si respectively to the body location and
timestamp variable that correspond to the sender, and that it must assign x
and u respectively to the location and timestamp variable that correspond to
the addressee. Let ϕ′ ∈ P be the original asynchronous rule on which ϕ is based.
Let ϕ′′ be the corresponding rule in asyncP . From the construction of ϕ out
of ϕ′ and ϕ′′ out of ϕ′, it follows that V can also be applied to ϕ′′. Note that
V (headϕ′′) = R(x, ā). We now show that V is satisfying for ϕ′′ with respect
to Di, which causes R(x, ā) ∈ asyncP〈Di〉, as desired. Specifically, we have to
show that V (posϕ′′) ⊆ Di and V (negϕ′′) ∩Di = ∅.

First we show that V (posϕ′′) ⊆ Di. By construction of ϕ and ϕ′′, we have

posψ|sch(P)LT = V (posϕ)|sch(P)LT = V (posϕ′′)⇑xi,si .

Since ψ is active, we have posψ|sch(P)LT ⊆ M , and therefore V (posϕ′′)⇑xi,si ⊆
M . Then, because the facts in V (posϕ′′)⇑xi,si are over sch(P)LT and have
location specifier xi and timestamp si, we can apply Claim B.4 to know that
V (posϕ′′) ⊆ Di, as desired.

Now we show that V (negϕ′′) ∩ Di = ∅. By construction of ϕ and ϕ′′, we
have

V (negϕ)|sch(P)LT = V (negϕ′′)⇑xi,si .

By choice of ϕ and V , we have V (negϕ) ∩M = ∅. Hence, V (negϕ′′)⇑xi,si ∩
M = ∅. Then, because the facts in V (negϕ′′)⇑xi,si are over sch(P)LT and have
location specifier xi and timestamp si, we can apply Claim B.5 to know that
V (negϕ′′) ∩Di = ∅, as desired. �

Claim B.9. Let i ∈ N. We have M |xi,si = (Di)⇑xi,si . Intuitively, this means
that the operational deductive fixpoint during transition i, corresponding to
step si of node xi, is represented by M in an exact way.

Proof. Let n denote the largest stratum number of the deductive rules of P. We
show by induction on k = 0, 1, . . . , n that

(M→k)|xi,si = (D→ki )⇑xi,si .

This will give us (M→n)|xi,si = (D→ni )⇑xi,si = (Di)⇑xi,si .Moreover, Claim B.12
says that (M→n)|xi,si = M |xi,si , and thus we obtain M |xi,si = (Di)⇑xi,si , as
desired.
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Base case (k = 0) By definition,

M→0 = MN ∪Mduc,0.

But since there are no deductive ground rules in grP,HM with stratum 0, we have
Mduc,0 = ∅. Hence,

(M→0)|xi,si = (MN)|xi,si

= (M |edb(P)LT)|xi,si ∪M ind|xi,si ∪Mdeliv|xi,si . (B.1)

In order to simplify expression (B.1), we make the following observations. First,
by Claim B.10, we have

stρi(xi)⇑xi,si = (M |edb(P)LT)|xi,si ∪M ind|xi,si .

Secondly, by Claim B.13 we haveMdeliv|xi,si = untag(mi)⇑xi,si . Now expression
(B.1) can be rewritten to obtain the desired equality:

(M→0)|xi,si = stρi(xi)⇑xi,si ∪ untag(mi)⇑xi,si

= (stρi(xi) ∪ untag(mi))⇑xi,si

= (D→0
i )⇑xi,si .

Induction hypothesis For the induction hypothesis, we assume for a stratum
number k ≥ 1 that

(M→k−1)|xi,si = (D→k−1
i )⇑xi,si .

Inductive step We show that

(M→k)|xi,si = (D→ki )⇑xi,si .

We show both inclusions separately, in Claims B.14 and B.15. �

Claim B.10. Let i ∈ N. We have stρi(xi)⇑xi,si = (M |edb(P)LT)|xi,si∪M ind|xi,si .

Proof. By definition,

stρi(xi) =
(
(M |edb(P)LT)|xi,s ∪M ind|xi,s

)⇓
,

where s = locM (i, xi). Using Claim B.2, we have s = si. Therefore,

stρi(xi)⇑xi,si = (M |edb(P)LT)|xi,si ∪M ind|xi,si .

�
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Claim B.11. For each fact candR(x, s, y, u, ā) ∈M , there is a timestamp u′ ∈ N
such that chosenR(x, s, y, u′, ā) ∈ M , with possibly u′ = u. This intuitively
means that if for a message there are candidate arrival times in M , then a real
arrival time is effectively chosen.

Proof. We show this with a proof by contradiction. So, suppose that there is
no such timestamp u′. Now, because candR(x, s, y, u, ā) ∈ M , the following
ground rule, which is of the form (4.6), can not be in grP,HM , because otherwise
chosenR(x, s, y, u, ā) ∈M , which is assumed not to be possible:

chosenR(x, s, y, u, ā)← candR(x, s, y, u, ā).

Because rules of the form (4.6) contain a negative other...-atom in their body,
the absence of the above ground rule from grP,HM implies that otherR(x, s, y, u, ā) ∈
M . This otherR-fact must be derived by a ground rule of the form (4.7):

otherR(x, s, y, u, ā)← candR(x, s, y, u, ā), chosenR(x, s, y, u′, ā), u 6= u′.

But this implies that chosenR(x, s, y, u′, ā) ∈M , which is a contradiction. �

Claim B.12. Let i ∈ N. Let n denote the largest stratum number of the
deductive rules of P. We have (M→n)|xi,si = M |xi,si .

Proof. First, since M→n ⊆M , we immediately have (M→n)|xi,si ⊆M |xi,si .
Now, let f ∈ M |xi,si . We have to show that f ∈ (M→n)|xi,si . Since f has

location specifier xi and timestamp si, it is sufficient to show that f ∈ M→n.
We have the following cases:

• Suppose that f ∈M |edb(P)LT . Then f ∈MN ⊆M→n.

• Suppose that f ∈ M |idb(P)LT . This means that there is an active ground
rule ψ ∈ grP,HM with headψ = f . As seen in Section B.1, the rule ψ
can be of three types: deductive, inductive and delivery. The last two
cases would respectively imply f ∈ M ind and f ∈ Mdeliv, which gives
us f ∈ MN ⊆ M→n. For the deductive case, the rule ψ has a stratum
number no larger than n, and hence f ∈Mduc,n ⊆M→n.

�

Claim B.13. Let i ∈ N. We have Mdeliv|xi,si = untag(mi)⇑xi,si .

Proof. Let f ∈ Mdeliv|xi,si . We show that f ∈ untag(mi)⇑xi,si . Denote f =
R(xi, si, ā). By definition of Mdeliv, there is an active delivery rule ψ ∈ grP,HM

that derives f :
R(xi, si, ā)← chosenR(y, t, xi, si, ā).
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Because this rule is active, we have chosenR(y, t, xi, si, ā) ∈ M . Now, by def-
inition of xi and si, we have globM (xi, si) = i. Hence, 〈globM (y, t), R(ā)〉 ∈
mi and thus R(ā) ∈ untag(mi). Finally, we obtain that f = R(xi, si, ā) ∈
untag(mi)⇑xi,si , as desired.

Let f ∈ untag(mi)⇑xi,si . We show that f ∈ Mdeliv|xi,si . Denote f =
R(xi, si, ā). We have R(ā) ∈ untag(mi). Thus, there is some tag j ∈ N such
that 〈j, R(ā)〉 ∈ mi. By definition of mi, there are values y ∈ N , t ∈ N, z ∈ N
and u ∈ N such that

chosenR(y, t, z, u, ā) ∈M,

where globM (y, t) = j and globM (z, u) = i. This implies z = xi and u = si.
Hence, chosenR(y, t, xi, si, ā) ∈ M . Now, the following ground rule ψ is in
grP,HM because (delivery) rules of the form (4.8) are always positive:

R(xi, si, ā)← chosenR(y, t, xi, si, ā).

This rule derives f = R(xi, si, ā) ∈M because its body-fact is in M . Moreover,
f has location specifier xi and timestamp si, and ψ is an active delivery rule.
Thus we more specifically have f ∈Mdeliv|xi,si , as desired. �

Claim B.14. Let i ∈ N. Let k be a stratum number (thus k ≥ 1). Suppose
that

(M→k−1)|xi,si = (D→k−1
i )⇑xi,si .

We have
(M→k)|xi,si ⊆ (D→ki )⇑xi,si .

Proof. We consider the fixpoint computation of M , i.e., M =
⋃
l∈NMl with

M0 = decl(H) and Ml = T (Ml−1) for each l ≥ 1, where T is the immediate
consequence operator of grP,HM . By the semantics of operator T , we haveMl−1 ⊆
Ml.

We show by induction on l = 0, 1, 2, . . ., that

(Ml ∩M→k)|xi,si ⊆ (D→ki )⇑xi,si .

This will imply that((⋃
l∈N

Ml

)
∩M→k

)
|xi,si ⊆ (D→ki )⇑xi,si .

Hence, we obtain, as desired

(M ∩M→k)|xi,si = (M→k)|xi,si ⊆ (D→ki )⇑xi,si .

Before we start with the induction, recall from Section B.1 that

M→k = MN ∪Mduc,k

= M |edb(P)LT ∪M ind ∪Mdeliv ∪Mduc,k.
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Base case (l = 0) We haveM0 = decl(H). ThusM0 contains no facts derived
by deductive, inductive or delivery ground rules. Therefore,

M0 ∩M→k = M |edb(P)LT .

Hence,

(M0 ∩M→k)|xi,si ⊆ (MN)|xi,si

⊆ (M→k−1)|xi,si .

And by using the given equality (M→k−1)|xi,si = (D→k−1
i )⇑xi,si , we obtain, as

desired:

(M0 ∩M→k)|xi,si ⊆ (D→k−1
i )⇑xi,si

⊆ (D→ki )⇑xi,si .

Induction hypothesis We assume for some l ≥ 1 that

(Ml−1 ∩M→k)|xi,si ⊆ (D→ki )⇑xi,si .

Inductive step We show that

(Ml ∩M→k)|xi,si ⊆ (D→ki )⇑xi,si .

Let f ∈ (Ml ∩ M→k)|xi,si . If f ∈ Ml−1 then f ∈ (Ml−1 ∩ M→k)|xi,si and
the induction hypothesis can be immediately applied. Now suppose that f ∈
Ml \Ml−1. This means that there is a ground rule ψ ∈ grP,HM that derived f
during the application of the immediate consequence operator when going from
ordinal l − 1 to ordinal l. We have posψ ⊆ Ml−1. We have seen in Section B.1
that ψ can be of three types: deductive, inductive or a delivery rule. If ψ is an
inductive rule or a delivery rule then

f ∈ M ind|xi,si ∪Mdeliv|xi,si

⊆ (MN)|xi,si

⊆ (M→k−1)|xi,si

= (D→k−1
i )⇑xi,si

⊆ (D→ki )⇑xi,si .

Now suppose that ψ is a deductive rule. If ψ has stratum less than or equal to
k−1, then f ∈ (M→k−1)|xi,si . In that case, the given equality (M→k−1)|xi,si =
(D→k−1

i )⇑xi,si can be immediately applied to obtain that f ∈ (D→k−1
i )⇑xi,si ⊆

(D→ki )⇑xi,si , as desired. Now suppose that ψ has stratum k. Because ψ ∈ grP,HM ,
there is a rule ϕ ∈ pure(P) and valuation V so that ψ is obtained from ϕ by
applying valuation V and subsequently removing the negative (ground) body
literals, and so that V (negϕ)∩M = ∅. Let ϕ′ ∈ P be the original deductive rule
on which ϕ is based. Recall from Section 3.3 that the deductive rules of P are
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added unmodified to deducP . Thus ϕ′ ∈ deducP . By construction of ϕ out of ϕ′,
we see that valuation V can also be applied to rule ϕ′. We now show that V is
satisfying for ϕ′ during the computation of Di, and thus specifically during the
computation of stratum k because ϕ (and ϕ′) has stratum k. Since V (headϕ) =
headψ = f , this results in the derivation of V (headϕ′) = f⇓ ∈ D→ki and thus
f ∈ (D→ki )⇑xi,si , as desired. It is sufficient to show that V (posϕ′) ⊆ D→ki and
V (negϕ′) ∩ D→k−1

i = ∅ because in a syntactic stratification, a rule-body can
use relations positively if the stratum of those relations is not higher than the
stratum of the rule itself, and a rule-body can use relations negatively only if
those relations have a stratum that is strictly lower than the stratum of the rule
itself.

• We show that V (posϕ′) ⊆ D→ki . First, by the relationship between
ϕ and ϕ′, and because valuation V assigns xi and si to respectively
the body location variable and body timestamp variable of ϕ, we have
posψ = V (posϕ) = V (posϕ′)⇑xi,si . By choice of ψ, we have posψ ⊆ Ml−1.
If we could more specifically show that posψ ⊆M→k, then posψ ⊆ (Ml−1∩
M→k)|xi,si . Then the induction hypothesis can be applied to obtain
posψ = V (posϕ′)⇑xi,si ⊆ (D→ki )⇑xi,si , which results in V (posϕ′) ⊆ D→ki ,
as desired.
Now we show that posψ ⊆ M→k. Let g ∈ posψ. If g ∈ MN then we
immediately have g ∈ M→k. Now suppose that g /∈ MN. Since posψ ⊆
M |xi,si , we have g ∈M |xi,si \MN. Then Claim B.12 implies that there is
an active deductive ground rule ψ′ ∈ grP,HM with headψ′ = g. But we are
working with a syntactic stratification, and thus the stratum of ψ′ can not
be higher than the stratum of ψ, which is k. Hence g ∈Mduc,k ⊆M→k.

• We show that V (negϕ′) ∩ D→k−1
i = ∅. By choice of ϕ and V , we have

V (negϕ) ∩M = ∅. Since (M→k−1)|xi,si ⊆M , we have

V (negϕ) ∩ (M→k−1)|xi,si = ∅.

By applying the given equality (M→k−1)|xi,si = (D→k−1
i )⇑xi,si , we then

have V (negϕ) ∩ (D→k−1
i )⇑xi,si = ∅. By the relationship between ϕ and

ϕ′, we have V (negϕ) = V (negϕ′)⇑xi,si . Thus V (negϕ′) ∩ D→k−1
i = ∅, as

desired.

�

Claim B.15. Let i ∈ N. Let k be a stratum number (thus k ≥ 1). Suppose
that

(M→k−1)|xi,si = (D→k−1
i )⇑xi,si .

We have
(D→ki )⇑xi,si ⊆ (M→k)|xi,si .
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Proof. Recall that the semantics of stratum k in deducP is that of semi-positive
Datalog¬, with input D→k−1

i . So, we can consider D→ki to be a fixpoint, i.e.,
as the set

⋃
l∈NAl with A0 = D→k−1

i and Al = T (Al−1) for each l ≥ 1, where
T is the immediate consequence operator of stratum k in deducP . We show by
induction on l = 0, 1, 2, etc, that

(Al)⇑xi,si ⊆ (M→k)|xi,si .

This then gives us the desired result.

Base case (l = 0) We have A0 = D→k−1
i . By applying the given equality, we

obtain

(A0)⇑xi,si = (D→k−1
i )⇑xi,si = (M→k−1)|xi,si ⊆ (M→k)|xi,si .

Induction hypothesis We assume for some l ≥ 1 that

(Al−1)⇑xi,si ⊆ (M→k)|xi,si .

Inductive step Let f ∈ Al. We show that f⇑xi,si ∈ (M→k)|xi,si . If f ∈ Al−1
then the induction hypothesis can be immediately applied to obtain the desired
result. Now suppose that f ∈ Al \Al−1. Let ϕ ∈ deducP and V be respectively
a rule with stratum k and a valuation that together derived f ∈ Al. Let
ϕ′ ∈ pure(P) be the rule that is obtained from ϕ by applying transformation
(4.3). Let V ′ be the valuation that is obtained by extending V to assign xi and
si respectively to the body location and timestamp variable, which are also both
used in the head (by construction of ϕ′). Let ψ be the ground rule obtained
from ϕ′ by applying valuation V ′ and by subsequently removing all negative
body literals. We show that ψ ∈ grP,HM and that posψ ⊆M . This then implies

headψ = V ′(headϕ′) = V (headϕ)⇑xi,si = f⇑xi,si ∈M.

Moreover, because ϕ (and thus ϕ′) has stratum k, rule ψ is an active deductive
ground rule with stratum k, and thus f⇑xi,si ∈ (Mduc,k)|xi,si ⊆ (M→k)|xi,si , as
desired.

• We show that ψ ∈ grP,HM . We have to show that V ′(negϕ′) ∩ M = ∅.
Because V is satifying for ϕ, and because negation is only applied to
lower strata, we have

V (negϕ) ∩D→k−1
i = ∅.

Thus
V (negϕ)⇑xi,si ∩ (D→k−1

i )⇑xi,si = ∅.

By the relationship between ϕ and ϕ′, we have V (negϕ)⇑xi,si = V ′(negϕ′),
which gives us

V ′(negϕ′) ∩ (D→k−1
i )⇑xi,si = ∅.
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And by using the given equality (M→k−1)|xi,si = (D→k−1
i )⇑xi,si , we have

V ′(negϕ′) ∩ (M→k−1)|xi,si = ∅.

Now, for the last step, we work towards a contradiction: suppose that
there is a fact g ∈ V ′(negϕ′) ∩M . From the construction of ϕ′, we know
that g is over sch(P)LT and has location specifier xi and timestamp si.

– If g is over edb(P)LT then g ∈ (M |edb(P)LT)|xi,si . Thus g ∈ (MN)|xi,si ⊆
(M→k−1)|xi,si , which is a contradiction.

– If g is over idb(P)LT then there is an active ground rule ψ′ ∈ grP,HM

with headψ′ = g. As seen in Section B.1, the rule ψ′ is either deduc-
tive, inductive or a delivery rule. The last two cases would imply that
g ∈ (M ind ∪Mdeliv)|xi,si ⊆ (MN)|xi,si , which gives a contradiction
like in the previous case. Now suppose that ψ′ is deductive. Because
the predicate of g is used negatively in ϕ′ and thus negatively in ϕ,
the syntactic stratification assigns a smaller stratum number to ψ′
than the stratum number of ψ, which is k. Hence, g ∈ (M→k−1)|xi,si ,
which is again a contradiction.

We conclude that V ′(negϕ′) ∩M = ∅.

• We show that posψ ⊆M . Because V is satisfying for ϕ, we have

V (posϕ) ⊆ Al−1.

By the relationship between ϕ and ϕ′ (and ψ), we have V (posϕ)⇑xi,si =
V ′(posϕ′) = posψ. Thus

posψ ⊆ (Al−1)⇑xi,si .

By now applying the induction hypothesis, we obtain, as desired:

posψ ⊆ (M→k)|xi,si ⊆M.

�
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