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Abstract

The analysis of polygenic, phenotypic characteristics such as quantitative traits or inheritable diseases remains an important
challenge. It requires reliable scoring of many genetic markers covering the entire genome. The advent of high-throughput
sequencing technologies provides a new way to evaluate large numbers of single nucleotide polymorphisms (SNPs) as
genetic markers. Combining the technologies with pooling of segregants, as performed in bulked segregant analysis (BSA),
should, in principle, allow the simultaneous mapping of multiple genetic loci present throughout the genome. The gene
mapping process, applied here, consists of three steps: First, a controlled crossing of parents with and without a trait.
Second, selection based on phenotypic screening of the offspring, followed by the mapping of short offspring sequences
against the parental reference. The final step aims at detecting genetic markers such as SNPs, insertions and deletions with
next generation sequencing (NGS). Markers in close proximity of genomic loci that are associated to the trait have a higher
probability to be inherited together. Hence, these markers are very useful for discovering the loci and the genetic
mechanism underlying the characteristic of interest. Within this context, NGS produces binomial counts along the genome,
i.e., the number of sequenced reads that matches with the SNP of the parental reference strain, which is a proxy for the
number of individuals in the offspring that share the SNP with the parent. Genomic loci associated with the trait can thus be
discovered by analyzing trends in the counts along the genome. We exploit the link between smoothing splines and
generalized mixed models for estimating the underlying structure present in the SNP scatterplots.
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Introduction

Quantitative traits, such as high ethanol tolerance in Saccharo-

myces cerevisiae, are phenotypic characteristics that vary and are

controlled by multiple genetic elements that may contribute

differently to the trait. A quantitative trait locus (QTL) is a region

in the genome that is linked to the genes that contribute to a

quantitative trait. QTL mapping aims at identifying gene loci that

determine a specific polygenic trait. This method relies on the

extent of co-segregation of genes, which are located in unknown

QTLs and that contribute to a quantitative trait, and genetic

markers with known chromosomal locations. During a cross

between two organisms, the quantitative-trait gene and a genetic

marker located on different chromosomes of the same organism

will segregate independently and the recombination frequency will

be 50%. However, if the marker is located on the same

chromosome as the gene, then they could segregate together,

depending on the distance between their loci. The closer they are,

the lower the recombination frequency, which eventually reaches

0%. This deviation from random segregation, due to the inverse

relation between distance and recombination frequency, can be

used to identify QTLs.

The advent of new high throughput screening techniques, such

as next generation sequencing (NGS), provides a fast way to

identify large numbers of single nucleotide polymorphisms (SNPs)

on a genome-wide scale. When combined with a pooling of

segregants, NGS allows for simultaneous mapping of QTLs

throughout the whole genome.

In this paper, we consider analysis of data coming from an

experiment, in which the Illumina/Solexa NGS technique [1]

was combined with the pooling of segregants. In particular, we

apply scatterplot smoothing techniques to identify potential

QTLs. We present a semi-parametric approach that uses

marker information from a pool of segregants and provides a

‘‘smoother based testing procedure’’ for discovering genomic

regions that contain potential gene loci contributing to the

phenotypic trait of interest.

Results

The scatterplot smoothers, Eqs.(1)–(2) and (5), were defined by

using a cubic P-spline as basis and a fourth-order difference

penalty on the coefficients [2]. They were then fitted to the two

pools of segregants. Pool 1 and 2 contained 136 and 31 yeast cells

with at least 16% and 17% ethanol tolerance, respectively. For

each of these pools three chromosomes have been selected for

illustration. The results for the other chromosomes can be found in

[3].
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Chromosome XIV
Figure 1 presents the scatterplots of mismatch frequencies for

the ‘‘reliable’’ SNPs for pool 1 (left panel) and pool 2 (right

panel) for chromosome XIV. The plots also include the

estimated trends (gray line) with the 95% confidence band

(grey area) and the trend of the artificial marker (red line). The

two trends follow each other relatively well. The differences

observed between both trends is caused by the fact that about

50 individual segregants with artificial markers are used to

determine the frequencies, which is different from the BSA

process used to generate the SNP frequencies for the ethanol-

tolerant segregants.

For both pools, the confidence band indicates a broad region

with mismatch frequencies larger than 50%. For pool 2, an

additional region with frequencies lower than 50% can be also

identified.

The presence of three genes in chromosome XIV, i.e., MKT1,

SWS2 and APJ1, has been confirmed by the combination of

individual scoring of SNPs with a binomial test and introducing

artificial markers at predetermined neutral positions in the genome

of the parental strain without high ethanol tolerance [3]. All three

genes, located at approximately 470.000 bp, are part of the

regions identified by our smoother for both pools.

The left panel of Figure 2 presents the SNP frequencies and

smoothed trends for both pools. The right panel presents the

smoothed difference between the trends. The difference indicates

an enrichment effect in the area around the three QTLs for pool 2.

It also suggests an additional effect around 200.000 bp for pool 2 -

the SNP frequency drops to approximately 30%. This decrease is

also present in pool 1, but it is not as pronounced. This suggests

the presence of a minor QTL in the reference strain, which was

not present in the strain of the parent with a high ethanol

tolerance.

Chromosome II
Figure 3 presents the scatterplots of mismatch frequencies for

the ‘‘reliable’’ SNPs for pool 1 (left panel) and pool 2 (right panel)

for chromosome II. The plots also include the estimated trends

(gray line) with the 95% confidence band (grey area). For both

pools, the confidence bands indicate a region with mismatch

frequencies larger than 50%. In this region, the presence of one

gene around 470.000 bp, i.e., LYS2, was confirmed [3]. Note that,

for pool 1, the SNP frequencies in the identified region are

relatively small, with a maximum around 60%. On the other

hand, the frequencies in pool 2 are larger, with the maximum

around 80%. This enrichment effect is also identified by the

estimated difference between the two pools, shown in the right

panel of Figure 4.

Chromosome IX
Figure 5 presents the scatterplots of mismatch frequencies for

the ‘‘reliable’’ SNPs for pool 1 (left panel) and pool 2 (right panel)

for chromosome IX. For both pools, the confidence band does not

clearly indicate a region with mismatch frequencies different from

50%. For this chromosome, no QTLs were identified [3].

Note that the reference curve, which reflects the frequencies of

the artificial markers, remains below 50% throughout almost the

complete chromosome. This anomaly suggests that a SNP

frequency of 50% might lead to incorrect results. We propose to

conduct a sequencing run on an unselected pool of segregants to

estimate the SNP frequency under random segregation. The SNP

frequency in the control pool can than be compared with one or

more selected segregant pools by using model (5).

The right panel of Figure 6 presents the estimated difference

between the two pools. It indicates a significant enrichment effect

around 250.000 bp for pool 2.

Figure 1. Chromosome XIV. SNP frequencies and smoothed trends for pool 1 (left panel) and pool 2 (right panel). The gray area indicates the 95%
confidence band. The vertical lines indicate the location of the three identified genes, i.e., MKT1, SWS2 and APJ1. The red line is based on the
frequencies of the artificial markers.
doi:10.1371/journal.pone.0055133.g001

Scatterplot Smoothers as Tool for Gene Mapping
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Discussion

In our contribution, we showed that scatterplot smoothers are

valuable tools for discovering potential QTLs in NGS-BSA

experiments. The techniques can be used to model experiments

with single as well as multiple segregant pools.

The selected chromosomes, used for validation, illustrate the

three possible scenarios one can encounter during genetic

mapping, i.e. presence of a major QTL (chromosome XIV), a

minor QTL (chromosome II) and the absence of a QTL

(chromosome IX). For each of these scenarios, the proposed

method performs as expected. Additionally, the possibility to

incorporate multiple segregant pools clearly shows to be an

important feature. It not only allows investigating enrichment

effects, it can also reduce the size of the identified chromosomal

regions. Chromosome IX, which does not contain QTLs, also

indicates that a control pool is required for estimating the baseline

Figure 2. Chromosome XIV. Left panel: SNP frequencies and smoothed trends for pool 1 (circles and green lines) and pool2 (triangles and red
lines); right panel: the estimated difference in trends between the two pools. The dashed lines indicate the 95% simultaneous confidence band, the
vertical lines indicate the location of the three identified genes, i.e., MKT1, SWS2 and APJ1.
doi:10.1371/journal.pone.0055133.g002

Figure 3. Chromosome II. SNP frequencies and smoothed trends for pool 1 (left panel) and pool 2 (right panel). The gray lines indicate the 95%
confidence band. The vertical blue line indicates the location of the identified gene, i.e., LYS2.
doi:10.1371/journal.pone.0055133.g003

Scatterplot Smoothers as Tool for Gene Mapping
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mismatch frequency under random segregation. In the examples,

the discovered regions were relatively wide. The low resolution is

inherent to the data. For the experiments used here, only the first

offspring generation is considered. Hence, the QTLs in the

selected segregants are likely to be surrounded by a relative large

number of SNP markers. Backcrossing the selected segregants with

the parent without the trait will increase the resolution, i.e., the

region with flanking SNPs around the QTL will decrease due to

the subsequent recombination events. Another possible way to

improve the resolution would be to additionally include the

information about the first-order derivative of the smoothed trend.

The information would allow to identify locations at which the

derivative is equal to 0. These would be the locations, at which the

estimated SNP mismatch frequency would reach its local

maximum or minimum and would thus deviate the most from

Figure 4. Chromosome II. Left panel: SNP frequencies and smoothed trends for pool 1 (circles and green lines) and pool2 (triangles and red lines);
right panel: the estimated difference in trends between the two pools. The dashed lines indicate the 95% simultaneous confidence band, the vertical
blue line indicates the location of the identified gene, i.e., LYS2.
doi:10.1371/journal.pone.0055133.g004

Figure 5. Chromosome IX. SNP frequencies and smoothed trends for pool 1 (left panel) and pool 2 (right panel). The red line is the reference curve
based on the frequencies of the artificial markers. The gray lines indicate the 95% confidence band.
doi:10.1371/journal.pone.0055133.g005

Scatterplot Smoothers as Tool for Gene Mapping
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the random-segregation frequency. This is a topic of further

research.

Materials and Methods

Data
Saccharomyces cerevisiae is the most common yeast strain in

industry such as winemaking, baking, and brewing. It is an

intensively studied eukaryotic model organisms in molecular and

cell biology and has become an important subject for studies in

quantitative genetics. The aim of the experiment was to map

various QTLs determining high ethanol tolerance in S. cerevisiae.

For this purpose, a highly ethanol-tolerant yeast strain was crossed

with a laboratory strain of a moderate ethanol tolerance. After

sporulation, the resulting haploid offspring was screened for high

ethanol tolerance, first in a medium with 16% ethanol, and

subsequently in a medium with 17% ethanol. The first screening

step returned 136 ethanol-tolerant segregants out of a total of 5974

viable haploid yeast cells. The second screening reduced this

number further to 31. The difference between 16% and 17%

ethanol tolerance is substantial, as 17% ethanol is very close to the

maximum ethanol concentration of 18% that yeast cells can

tolerate. Most of them will not or only very poorly grow in such a

medium. The extent of this difference is also illustrated by the

large reduction of viable yeast cells when shifting from a medium

with 16% ethanol to the one with 17% ethanol.

After screening, these two pools were subjected to a pooled-

segregant genome-wide sequencing analysis by means of high-

throughput NGS, as implemented in the Illumina/Solexa NGS

technique [1]. The technique measures the fluorescence of PCR-

amplified and labeled DNA fragments and translates these

intensities into DNA sequences with a length of 40 to 100

basepairs. These millions of overlapping reads are afterwards

aligned to a known DNA sequence of the parental laboratory yeast

strain (without the trait of interest). Mapping the sequenced reads

with SeqMan NGEN 3.0 [4] against the DNA sequence identified

many single-nucleotide polymorphisms (SNPs). For each identified

SNP, the chromosomal location, the number of sequencing events

(reads) for segregant strains, and the number of differences

between the segregant strains and the parental strain were

retained. The presence of a trait-related gene in the vicinity of

the chromosomal location is more likely as the number of

deviating SNPs increases.

The number of mapped reads that do not match with the

parental reference sequence at the position xi can be interpreted as

the number of successes in a group of trials (sequencing events).

Hence, we assume that the observed mismatch counts Yi

(i~1, . . . ,m) are binomially distributed, i.e.,

Yi*Bin(ni, pi)

where ni the number of sequencing events and pi is the probability

of the difference between the parental and offspring strain at the

chromosomal location xi.

Note that, Bulk Segregant Analysis [5] was used in this

experiment. This method extracts the sequences randomly from

a pool of selected segregants instead of applying NGS on each of

the selected segregants, individually.

The highly ethanol-tolerant yeast strain was also crossed with 28

partial artificial marked strains [6]. These strains contain several

artificial unique sequences of 20 bp with a distance of approxi-

mately 20.000 bp between them. After screening the offspring for

high ethanol tolerance, the presence of these artificial markers was

checked by PCR, for approximately 50 viable segregants in

chromosomes VIII to XVI. Moreover, we also had NGS data at

our disposal from the parent strain with the trait.

Filtering
There are several issues that have to be taken into account prior

to the analysis. The scatterplot of the mismatch SNP frequencies

along chromosome XIV, shown in Figure 7, illustrates these issues.

First, a large number of SNPs with a mismatch frequency below

10% is observed. The majority of these SNPs probably correspond

to sequencing errors. Second, a few high-frequency SNPs are

Figure 6. Chromosome IX. Left panel: SNP frequencies and smoothed trends for pool 1 (circles and green lines) and pool2 (triangles and red lines);
right panel: the estimated difference in trends between the two pools. The dashed lines indicate the 95% simultaneous confidence band.
doi:10.1371/journal.pone.0055133.g006

Scatterplot Smoothers as Tool for Gene Mapping
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present. These are most likely due to sequencing errors, errors in

the reference sequence, or a low number of sequencing events.

Third, there is a lot of variability present in the data. This is

inherent to BSA-NGS, which relies on the random extraction of

the sequences from the pool of selected segregants, i.e. some

sequences covering the same SNP location might originate from

the same segregant and the number of sequencing events (reads)

per SNP location is random.

To address these issues, one could try to correct the sequencing

errors [7], use alternative base-calling procedures [8,9], or apply

filtering. We have chosen for a filtering method, as we did not have

access to the raw data necessary for applying the other correction

mechanisms. We used the NGS data of the parent with the trait

for this purpose and aligned it against the genome of the lab strain

without the trait. The differences between both strains were

identified and their frequencies plotted against their chromosomal

location, as illustrated in Figure 8 (left panel). The plot clearly

shows two distinct groups of SNPs with high and low mismatch

frequencies. We considered SNPs with a mismatch frequency

higher than 80% to be potentially reliable. The second selection

criterion was based on the sequencing depth, i.e., the number of

reads aligned at a particular location. Dohm et al. (2008) [10]

showed that a 20-fold sequencing coverage is sufficient to

compensate for sequencing errors by correct reads. Hence, we

only used the high-frequency SNPs at genomic positions with a

coverage of at least 20 reads. In the analysis of the selected pool of

segregants, we only consider those SNPs, which we termed

‘‘reliable.’’ The effect of this filtering procedure is displayed in the

right panel of Figure 8, and in Table S1.

Figure 7. The mismatch frequency for SNPs on chromosome XIV for the segregants with an ethanol tolerance of at least 16%.
doi:10.1371/journal.pone.0055133.g007

Scatterplot Smoothers as Tool for Gene Mapping
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Scatterplot Smoother
Trends in the mismatch frequencies for the selected segregants

are useful for discovering potential QTLs (see right panel of

Figure 8). Non-parametric regression can be used to provide an

estimate of the underlying nonlinear relationship between the SNP

frequencies and their chromosomal location. The relationship can

be expressed as

logit(pi)~f (xi), ð1Þ

where f (xi) is a smooth function of the chromosomal position.

Smoothing splines are commonly used for this purpose. A general

spline model of degree d with K knots can be written as follows:

logit(pi)~b0zb1xiz . . . zbdxd
i z

XK

k~1

uksk(xi), ð2Þ

where sk(x) is a set of spline basis functions.

To avoid overfitting, the spline model is typically estimated by

considering penalized maximum likelihood estimation, with a

penalty term of the form l
P

k u2
k. Ruppert et al. (2003) [11]

showed that the penalized regression problem can be expressed as

an equivalent generalized linear mixed-effects model (GLMM):

logit(p)~XbzZu, ð3Þ

with p~½p1,p2, . . . ,pm�T , b = ½b0,b1, . . . ,bd �T , and

u~½u1,u2, . . . ,uK �T . Note that b and u are vectors of the fixed

and random effects, respectively, with uk*N(0,s2
u) and s2

u acts as

the smoothing parameter. This representation has the advantage

that the degree of smoothing can be estimated from the data using

standard mixed model software (e.g. Ruppert et al. 2003, chapter

4). The design matrices X and Z are defined as follows:

X~

1 x1 . . . xd
1

1 x2 . . . xd
2

..

. ..
.

P
..
.

1 xm . . . xd
m

2666664

3777775
and

Z~

s1(x1) s2(x1) . . . sK (x1)

s1(x2) s2(x2) . . . sK (x2)

..

. ..
.

P
..
.

s1(xm) s2(xm) . . . sK (xm)

266664
377775:

The estimation of the model (3) is performed by means of

penalized quasi-likelihood (PQL). Initial estimates for b and u are

used to calculate the pseudo-data y�:

y�~XbzZuzW{1(y{p):XbzZuze�, ð4Þ

where W is a diagonal matrix with variances of yi on the diagonal.

The pseudo-error e� has a variance-covariance matrix R~W{1w,

where w is the dispersion parameter, which is one for the standard

binomial model family. Estimating w, however, allows us to

account for overdispersion in the data induced by the large

biological variation that typically occurs in BSA-NGS experi-

ments.

Equation (4) resembles a linear mixed-effects model (LMM)

formulation for y�. Thus, an LMM is fitted to the pseudo-data,

Figure 8. The mismatch frequency of ‘‘reliable’’ (black) and ‘‘unreliable’’ (grey) SNPs on chromosome XIV. Left panel : parental strain
with a high ethanol tolerance; right panel: the selected segregants.
doi:10.1371/journal.pone.0055133.g008

Scatterplot Smoothers as Tool for Gene Mapping
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yielding updated estimates of b, u, s2
u, and w. The procedure of

calculating pseudo-data and re-fitting the LMM is repeated until

convergence.

If multiple segregated pools are available, differences between

the observed trends in these pools are useful for identifying

potential loci associated with the trait. The scatterplot smoother,

proposed in Eqs. (1)-(2), can be extended so as to identify the

underlying trends in different pools as well as the pairwise

differences between these trends. In particular, we propose

logit(pi,p)~f (xi,1)zD(xi,1,xi,p),

where pi,p is the probability of the difference between the parental

and offspring strain at location xi in pool p, f (xi,1) is the

scatterplot smoother for pool 1, and D(xi,1,xi,p) is the difference

between pools 1 and p with D(xi,1,xi,1):0 and

D(xi,1,xi,p)~b0,(1,p)zb1,(1,p)z . . . zbd(1,p)z
XK

k~1

vk,(1,p)sk ð5Þ

for pw1. The variance of vk,(1,p) in the GLMM-representation (3)

of the model now acts as the smoothing parameter for the

difference between the pools.

Inference
Estimating the underlying trends does not suffice for identifying

chromosomal regions that might be linked to the trait. Therefore,

we propose a more formal assessment to discover systematic

deviations from random segregation for single pools and/or for

discovering differences in trends between multiple pools. Our

approach is based on confidence intervals or confidence bands for

the estimated smoothers.

According to Ruppert et al. (2003) [11], an approximate 100(1-

a)% pointwise confidence band for an estimated penalized spline

in the GLMM framework, f̂f (x), is given by:

f̂f (x)+z1{a=2| dst:devst:devff̂f (x){f (x)g, ð6Þ

where

dst:devst:dev f̂f (x){f (x)
n o

~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CxQ̂QCT

x

q
, ð7Þ

with Cx~½1 x . . . xd s1(x) . . . sK (x)� and

Q̂Q~dcovcov
b̂b

ûu{u

" #
~ CT R̂R{1Cz1=ŝs2

uD
� �{1

, ð8Þ

where C~½XZ� and D:diag(½0T
dz1,1T

K �)

Pointwise confidence bands, however, need to be corrected for

multiplicity and ignore serial correlation. Therefore, we propose

the use of simultaneous confidence bands, which allow to make

joint statements on multiple locations of the fitted curve. A 100(1-

a)% simultaneous confidence band for f̂fx is defined as:

f̂fx+c1{a| dst:devst:devff̂f (x){f (x)g ð9Þ

where the critical value, c1{a, is the (1-a) quantile of the random

variable

supx[x

bff (x){f (x)gdst:devst:devfbff (x){f (x)g

�����
�����& max

1ƒlƒM

Cx

bbb{b

ÂA{u

" # !
ldst:devst:devfbff (xl){f (xl)g

����������

����������
,

which can be found by simulating from an approximate

multivariate normal distribution [11]

bbb{bbuu{u

" #
*N 0,Q̂Q

n o
:

Supporting Information

Table S1 Potential and ‘‘reliable’’ SNPs for the three
chromosomes in every pool.
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