
Institute of Statistical Science, Academia Sinica
 

 
IGNORANCE AND UNCERTAINTY REGIONS AS INFERENTIAL TOOLS IN A SENSITIVITY
ANALYSIS
Author(s): Stijn Vansteelandt, Els Goetghebeur, Michael G. Kenward and  Geert
Molenberghs
Source: Statistica Sinica, Vol. 16, No. 3 (July 2006), pp. 953-979
Published by: Institute of Statistical Science, Academia Sinica
Stable URL: http://www.jstor.org/stable/24307583
Accessed: 31-10-2017 08:49 UTC

 
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide

range of content in a trusted digital archive. We use information technology and tools to increase productivity and

facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

 

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

http://about.jstor.org/terms

Institute of Statistical Science, Academia Sinica is collaborating with JSTOR to digitize,
preserve and extend access to Statistica Sinica

This content downloaded from 193.190.2.250 on Tue, 31 Oct 2017 08:49:49 UTC
All use subject to http://about.jstor.org/terms



 Statistica Sinica 16(2006), 953-979

 IGNORANCE AND UNCERTAINTY REGIONS AS

 INFERENTIAL TOOLS IN A SENSITIVITY ANALYSIS

 Stijn Vansteelandt, Els Goetghebeur, Michael G. Kenward
 and Geert Molenberghs

 Ghent University, Harvard School of Public Health, London School

 of Hygiene and Tropical Medicine and Hasselt University

 Abstract: It has long been recognised that most standard point estimators lean
 heavily on untestable assumptions when missing data are encountered. Statisticians
 have therefore advocated the use of sensitivity analysis, but paid relatively little
 attention to strategies for summarizing the results from such analyses, summaries
 that have clear interpretation, verifiable properties and feasible implementation. As
 a step in this direction, several authors have proposed to shift the focus of inference
 from point estimators to estimated intervals or regions of ignorance. These regions
 combine standard point estimates obtained under all possible/plausible missing
 data models that yield identified parameters of interest. They thus reflect the
 achievable information from the given data generation structure with its missing
 data component. The standard framework of inference needs extension to allow for
 a transparent study of statistical properties of such regions.

 In this paper we propose a definition of consistency for a region and introduce
 the concepts of pointwise, weak and strong coverage for larger regions which ac
 knowledge sampling imprecision in addition to the structural lack of information.
 The larger regions are called uncertainty regions and quantify an overall level of
 information by adding imprecision due to sampling error to the estimated region of
 ignorance. The distinction between ignorance and sampling error is often useful, for
 instance when sample size considerations are made. The type of coverage required
 depends on the analysis goal. We provide algorithms for constructing several types
 of uncertainty regions, and derive general relationships between them. Based on
 the estimated uncertainty regions, we show how classical hypothesis tests can be
 performed without untestable assumptions on the missingness mechanism.

 Key words and phrases: Bounds, identifiability, incomplete data, inference, pattern
 mixture model, selection model.

 1. Introduction

 The problem of missing values has received due attention in the statisti
 cal literature for many years; over the past decade the nature of this work has
 changed appreciably. Previously, the main concern was the lack of balance in
 duced in data sets by missing values that precluded simple methods of analysis.
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 Recent advances in general statistical methodology and computational develop
 ments have greatly reduced this as an issue. The focus has shifted to the nature
 of inferences that can be legitimately drawn from incomplete data, and how these

 are bound up with assumptions about the unobserved data. Rubin (1976) and
 Little and Rubin (1987) provide much of the foundation for this debate. In
 particular, Rubin delineated those settings in which one could proceed to anal
 yse incomplete data effectively as though they were incomplete by design. This
 distinction is central to the problem of missing data and rests on the probabilis
 tic relationships between the observed data, the missing data, and the random
 variable representing missingness.

 We are concerned here with the situation in which data may be missing in
 a non-random fashion. That is, conditional on the observed data and covariates,
 there remains statistical dependence between a data point and the probabil
 ity that it is missing. Analyses that assume the data are missing by design
 are then no longer generally valid. The lack of knowledge associated with the
 missing data now introduces an essential degree of ambiguity into statistical
 inference. We term this ambiguity 'ignorance' and distinguish it from famil
 iar statistical imprecision, the consequence of random sampling. Our procedure
 will accommodate this by replacing point estimators by sets of points that es
 timate intervals or regions of ignorance. Each point in these sets is derived in
 the usual way from a different plausible model that is compatible with the ob
 served data and yields identified parameters of interest. These sets are quite
 distinct from confidence regions that represent the statistical imprecision asso
 ciated with a point estimate. In our approach such measures of sampling error
 must be added to the region of ignorance to obtain an overall region of uncer
 tainty. These ideas of ignorance and uncertainty were introduced and illustrated
 in Goetghebeur, Molenberghs and Kenward (1999), Kenward, Molenberghs and
 Goetghebeur (2001) and Molenberghs, Kenward and Goetghebeur (2001). Re
 lated ideas have been formulated and/or used by, e.g., Balke and Pearl (1997),
 Cochran (1977), Horowitz and Manski (2000), Imbens and Manski (2004),
 Joffe (2001), Nordheim (1984), Robins (1989) and Scharfstein, Manski and An
 thony (2004).

 In this paper we develop a formal framework for the study of ignorance and
 uncertainty, illustrating these concepts with a study of HIV prevalence in Kenya
 (presented in Section 2) where diagnostic test outcomes are incompletely ob
 served. In Section 3 we introduce a formal definition for the region of ignorance.
 Having replaced conventional point estimators with intervals or regions of esti
 mates, we develop 'classical' frequentist inference to handle standard concepts
 such as coverage and consistency in these new settings. In Section 4, we define
 pointwise coverage and consistency of a regional estimator when the target of
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 inference is the unidentified true parameter value. We develop the combination
 of the estimated region of ignorance with statistical imprecision and derive esti
 mators for the resulting pointwise uncertainty regions. We show how the level
 of classical hypothesis tests can be protected without untestable assumptions
 about the missing data mechanism. In Section 5, we define weak and strong
 coverage, and consistency of a regional estimator when the target of inference is
 the identified region of ignorance (that contains the true parameter value). We
 construct uncertainty regions designed to attain a given weak or strong coverage
 probability. Until Section 6 we impose no restrictions on the observed data law.
 In Section 6 we discuss the additional challenges that must be met when the
 observed data model is parametric or semiparametric.

 2. Motivation

 To motivate the problem setting, consider the following HIV surveillance
 study described in Verstraeten, Farah, Duchateau and Matu (1998). To evaluate
 the current situation of the HIV epidemic in Kenya, 787 blood samples were col
 lected as part of the National AIDS Control Programme among pregnant women
 from rural and urbanised areas near Nairobi in 1996. Of these, 52 (699) HIV
 test results were positive (negative) and coded Y = 1 (0). Thus 751 diagnostic
 test results were observed (R = 1) and 36 were missing (R = 0). Some sera were
 hemolysed and therefore produced inconclusive HIV test results; others were not
 available at the time of diagnostic testing. Under this setting, the observed data
 ('YiRi, Ri) for subjects i = 1,..., N = 787 can be regarded as N independent and
 identically distributed copies of random variables (VR, R).

 When the dependence of missingness on the missing outcome is unknown to
 the investigator, the pattern-mixture model

 pr (R = 1) = i/0 (2.1)

 logit{pr(y = 1|Ä)} = % + 7pm(1 - R) (2-2)

 with 7*m known, and the selection model

 pr(y = 1) = /30 (2.3)

 logit{pr(i? = l|y)} = do + 7s V (2.4)

 with 7s known, are nonparametric models for the observed data. Each choice of

 7pm (7s) thus corresponds to a choice of (uq, r/o) ((ßo, A))) that fits the observed
 data perfectly, so different choices for 7* (7S) cannot be rejected by any statis
 tical test. As a result, HIV risk ßo cannot be identified from the observed data

 without unverifiable assumptions (note that ßo = expit(770)^0 + 7pm (1 ~ U>) and
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 7pm = pr(K = 1| R = 0) = expit(r/o + 7pm) under the pattern-mixture model de
 fined by (2.1)—(2.2)). However, ßo is identified once a value is chosen for 7*m (7S).
 In line with the missing data literature, parameters like 7*m (7S) that are not
 identified, but conditional on which the parameter are identified, are called 'sen
 sitivity parameters' (see e.g., Molenberghs, Kenward and Goetghebeur (2001)).

 Since the observed data do not identify the sensitivity parameter, one should
 be reluctant to analyze the data under a single choice such as 7S = 0. For
 this reason, it has become increasingly common to conduct sensitivity analyses
 which reveal how estimates for 0q vary over different values for the sensitivity
 parameter (see e.g., Copas and Li (1997), Scharfstein, Robins and Rotnitzky
 (1999), Molenberghs, Kenward and Goetghebeur (2001) and Verbeke, Molen
 berghs, Thijs, Lesaffre and Kenward (2001)). Figure 1 shows the varying risk
 estimates for the Kenyan HIV study. The missing at random (MAR) assumption
 (Rubin (1976)) corresponds to ys = 0 and is itself consistent with a relatively low
 HIV risk estimate of 0.069. Larger risk estimates would occur if HIV positives
 were least likely to respond (i.e., ys < 0).

 Figure 1. Estimates (solid line) and 95% confidence intervals (dotted lines)
 for ßo — pr(F = 1) in function of 7pm — pr(V — l|i? = 0) (left) and the
 odds ratio exp(7s) of response for HIV positives to HIV negatives (right).

 While graphical displays like Figure 1 are the most suitable tools in any
 sensitivity analysis, they prohibit concise reporting of results, especially when,
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 as usual, many unknown parameters are of interest. One natural and simple
 strategy for summarizing the results of a sensitivity analysis is to report, besides
 the usual analysis results obtained under a sole plausible missing data asssump
 tion (e.g., MAR), the range of estimates for ßo corresponding to a plausible
 range of values for the sensitivity parameter. We call such a range of estimates
 an Honestly Estimated Ignorance Region (HEIR) for the target parameter be
 cause it expresses ignorance due to the missing data. Extreme application of
 this philosophy has lead to reporting worst case-best case intervals in a num
 ber of applications (see e.g., Cochran (1977), Nordheim (1984), Robins (1989),
 Kooreman (1993), Horowitz and Manski (2000), Balke and Pearl (1997) and
 Molenberghs, Kenward and Goetghebeur (2001)). These involve no untestable
 assumptions about the missing data but have debatable merits because they are
 often extremely wide. The approach taken by us and others (e.g., Scharfstein,
 Manski and Anthony (2004)) is less extreme because we allow for untestable
 assumptions (namely that the sensitivity parameter lies within a chosen range)
 up to a chosen degree in order to obtain narrower and more plausible ranges of
 estimates. While the procedure is partly subjective, this is inherent to the prob
 lem as some untestable assumptions are (usually) unavoidable in any sensitivity
 analysis (e.g., even graphical displays like Figure 1 can often only be produced
 for a limited range of values for the sensitivity parameter, and their interpreta
 tion thus necessarily involves untestable assumptions). Furthermore, reporting
 estimates that correspond to a range of values instead of a single value for the
 sensitivity parameter is always superior, in the sense that it is less sensitive to
 untestable assumptions. This is discussed further in Section 7.

 Regions of estimates (HEIRs) instead of point estimates have been reported
 and found useful in a number of applications. They may be obtained directly
 from graphical displays like Figure 1, using methods for sensitivity analysis as
 described in Scharfstein, Robins and Rotnitzky (1999) for example, or be con
 structed more rapidly using specialized algorithms or computations (see Balke
 and Pearl (1997), Horowitz, Manski, Ponomareva and Stoye (2003), Kooreman
 (1993), Robins (1989) and Vansteelandt and Goetghebeur (2001)). Nonetheless,
 their frequentist properties have received little attention so far, with some notable
 exceptions (Horowitz and Manski (2000) and Imbens and Manski (2004)). The
 goal of this paper is to examine how one can account for the sampling variability
 of HEIRs, and what it takes to be a good estimated region of ignorance. To
 enable rigorous study, we start by formally defining HEIRs.

 3. Formal Setting

 Consider a study in which an m x 1 vector variable L; is to be measured on
 units i = 1,..., N, e.g., L, may contain a primary outcome and baseline covari
 ates. As the entire vector L, may be missing, we observe instead N independent
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 and identically distributed copies O, = (Rn Lj(#o) of the observed data vector
 O = (R,L(Ä)). Here, R is an m x 1 vector whose fth element, t = 1,m,
 equals 1 if the tth component Lt of L is observed and 0 otherwise, and L(^)
 denotes the observed part of L (according to the observed response indicator R).

 We denote the true distribution of the full data (L,R) by /o(L,R).
 Suppose for now (and until Section 6) that we impose no restrictions on the

 full data distribution /(L,R). Our goal is then to draw inference on a vector
 functional ß0 = /3{/o(L)} G IRP (e.g., the mean) of the true complete data
 distribution /o(L) = f /o(L,R)dR. This is challenging when there are missing
 data, because several full data laws /(L, R) may marginalize to the true observed
 data law

 /o(O) = J /0(L,R)dL(1_Ä) = J /(L,R)dL(1_Ä), (3.1)

 where denotes the missing part of L (according to the observed re
 sponse indicator R). Different examples of such laws /(L,R) cannot be dis
 tinguished based on realizations from the observed data law. Nevertheless, they

 may imply different values for the parameter of interest ß = /3{/(L)}, where

 /(L) = f /(L, R)<iR, in which case the observed data do not identify ß0.
 We follow ideas in Robins (1997) by defining a class Ad (7) of full data laws,

 indexed by some vector parameter 7, to be nonparametric identified (NPI) if for
 each observed data law /(O), there exists a unique law /(L,R;7) in the class
 Ad (7) such that /(O) is the marginal distribution of O according to the joint

 law /(L,R;7); that is, /(O) = f f(L,R;~/,)dL(1_f{y In Section 2 for example,
 L — Y and each possible value for 7 = 7pm G [0,1] characterizes a single class
 Ad(7) of full data laws defined by restrictions (2.1) —(2.2) for the given 7. For
 each 7 G [0,1], this class Ad(7) contains a unique law that marginalizes to the
 observed data law. In line with our previous definition, we call the parameter 7

 indexing the models Ad (7) a sensitivity parameter.
 It follows from the definition that ß0 is uniquely identified from the observed

 data law under each model Ad (7). Furthermore, the observed data cannot dis
 tinguish different models Ad(7) (corresponding to different 7-values). Suppose
 however that we have some information about the mechanism leading to the out

 comes being missing that enables us to restrict the class of full data laws to those

 classes Ad(7) for which 7 lives in a chosen set T; e.g., to consider the model
 defined by restrictions (2.1) —(2.2) with 7 G [0,0.25]. Then our primary goal is

 to draw inference for /30 under the union model Ad (F) = U7ejvVf (7), assuming
 that the true value 70 of 7 lies in F.
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 Because ß0 is not generally identified from the observed data law under
 A1(E), a whole region of values

 ir(/3, r) = |/3{/(L)} : /(L) = J /(L, R)dR with f(L, R) 6 AI(E)

 satisfying /0(O) = J /(L,R)dL(1_fl)| (3.2)
 rather than a single point value for ß, is typically consistent with the observed
 data law. Extending ideas in Molenberghs, Kenward and Goetghebeur (2001),
 this region ir(/3, Ej will be called the ignorance region for ß. We call an estimator

 of this set an Honestly Estimated Ignorance Region (HEIR) for ß0 and view it
 as an estimate for ß0 under A1(E).

 4. Inference for ß0

 In studying the frequentist properties of HEIRs, we first take the viewpoint
 that the unidentified estimand ß0 (as opposed to the identified estimand ir(/3. E))
 is the target of inference under model A1(E). Our goal is then to construct an
 appropriate concept of weak consistency for HEIRs and (1 — a) 100% uncertainty
 regions that cover ß0 with at least (1 — a) 100% chance under this model.

 4.1. Sampling variability: Pointwise coverage

 The HEIR inherits variability from the sample of data. This is most easily ex

 plored through the parameter /3(7) = ß{f{L)} where /(L) = J /(L,R)dR with
 /(L,R) G M(n) satisfying /0(O) = //(L,R)dL(1_fi), which is identified under
 the smaller model AI (7). For given 7, estimates and (1 — a) 100% confidence
 regions for ß(7) under Ad (7) can be constructed in the usual way. However,
 because the true value 70 of 7 is not identified under A!(E), such confidence
 regions may fail to cover the truth ß0 = /3(7o) with at least 100(1 — a)% chance
 under the true data-generating model (indeed, only the 70-specific region will).
 It is hence more meaningful to construct regions that cover /3(7) uniformly over
 7 6 E under AI (7) with at least (1 — a) 100% chance.

 Definition 1. A region URp(/9. E) is a (1 — a)100% pointwise uncertainty region
 for ß0 when its pointwise coverage probability

 inf Pr^(7){/3(7) G URP(/3,E)} (4.1)
 is at least (1 — n)100%.

 Here the notation PEvtf7) (') indicates that probabilities are taken under
 AI (7). It follows from this definition that (1 — a) 100% pointwise uncertainty
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 regions cover the truth ß0 = ß(i0) with at least (1 — a) 100% chance, whatever
 value 70 G F was used for generating the observed data.

 Pointwise uncertainty regions extend confidence regions for identified param
 eters to partially identified parameters. They retain the well-known link with hy
 pothesis tests: one can test the null hypothesis Ho : ß = ß0 versus Ha : ß ^ ß0
 at the a x 100% significance level by rejecting the null hypothesis when ß0 is
 excluded by the (1 — a) 100% pointwise uncertainty region URp(/3, T). Indeed,
 under yVf(T)

 Pro(reject ß0) = l- pr0{/3(70) G URP(/3,T)}

 < 1 - ™f pr_M(7){/3(7) G URp(/3,r)} < a,

 where the subscript 0 indicates that probabilities are taken w.r.t. the true ob
 served data law and the last step follows from the definition of pointwise uncer
 tainty regions.

 Below, we show how to construct (1 — a) 100% pointwise uncertainty intervals
 for scalar parameters. To simplify the discussion, let 7; and 7U be values in T
 that correspond to the lower and upper bound of an ignorance interval for ß,
 respectively, so that ir(ß, T) = [ßi,ßu] = [ß{li)i ß{~1u)\- Throughout, suppose
 that the following hold.

 Assumption 1. We have available consistent and asymptotically normal (CAN)
 estimators ßi for ß{"ii) with standard error se(ßß under and ßu for ß("yu)
 with standard error se(ßu) under

 Assumption 2. The values 7; and -yu in T that correspond to the lower bound
 ßl — ß{li) and upper bound ßu — ß(~yu), respectively, are independent of the
 observed data law.

 Assumption 1 guarantees that CAN estimators for ß can be found under
 and M(-yu). Assumption 2 guarantees that these estimators are CAN for

 the bounds of the ignorance interval for ßo with consistent standard errors se(ßi)
 and se(/!„), respectively. In Section 6, we give an example where Assumption 2
 fails because the values for the sensitivity parameters that correspond to these
 bounds must be estimated from the observed data. Additional account must

 then be taken of the sampling variability of these estimated values.
 Under Assumptions 1 and 2, (1 — cr) 100% pointwise uncertainty intervals for

 ßo can be constructed by adding confidence limits with adjusted critical values

 to the estimated ignorance limits ßi and ßu. Thus, with cQ./2 a critical value
 yet to be derived, we propose (1 — a) 100% pointwise uncertainty intervals of the
 form

 URp(/3, T) = [CL,Cu} = [ßi - c^se(ßi), ßu + Co±se(ßu)]. (4.2)
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 Next we calculate the critical value ca*/2 needed to attain the desired pointwise
 coverage level. In the Appendix, we show that under Assumptions 1 and 2,
 expression (4.2) is an asymptotic (1 — a)100% pointwise uncertainty interval for

 ßo if ca* /2 solves the following equation

 mm  4>(cQ* ) - $ < —Ca* - ^U - ^1 > , $ I Ca* + ^ > - $(-Cc* ) 2 ' 1 T- se(ßu) J [ t se(ßi) J
 1 - a, (4.3)

 where $(■) is the cumulative distribution function of a standard normal variate.
 We further show that the asymptotic pointwise coverage probability of this in
 terval is the nominal (1 — a) 100%. Equation (4.3) yields no feasible solution for

 ca*j2 because it involves unknown functional of the observed data distribution.
 Hence, consistent estimators must be derived for the critical value by replacing
 ßi, ßu, se(ßi) and se(ßu) in (4.3) by consistent estimators. Resulting Estimated
 Uncertainty RegiOns will be called EUROs.

 In the Appendix, we show that ca*/2 approximates the (1 — a) 100% per
 centile of the standard normal distribution when there is much ignorance about
 the target parameter and the intended sample size is large. Pointwise uncer
 tainty intervals further enjoy the important property that for monotone map
 pings g(-), pr0{ir(/3, T) C URs(/3,r)} = pr0[^{ir(/3,T)} C flr{URs(/5, F)}] =
 pr0[ir{g(/?), T} C g{URs(/3, T)}]. Hence, they can be estimated on a transformed
 scale where, for instance, asymptotic normality is a better approximation and
 subsequently backtransformed to the original scale.
 In the Kenyan HIV surveillance study, we deduce that ßo lies between ßi =

 ßilpm = 0) = expit(ï7o)i/0 = E(YR) and ßu = ß(nvm = 1) = expit(iq0)uo-\-l-vQ =
 E(yi? + 1 — R). Replacing population values by sampling analogs, we estimate
 HIV risk between ßi = 52/787 = 0.066 and 3U = 88/787 = 0.112 without assump
 tions on the missing data mechanism. With 7pm,i — 0 and 7Pm,u — 1 correspond
 ing to the lower bound ßi and upper bound ßu regardless of the observed data
 law, Assumption 2 is satisfied. Thus, solving (4.3) with se(ßi) = 52 x 731/7873

 and se(ßu) — 88 x 699/7873 yields ca*/2 = 1.645. A 95% pointwise EURO
 for ßo is [0.0515,0.130]. Without assumptions on the missing data mechanism,
 we estimate HIV risk to lie between 5.15% and 13.0% with at least 95% chance.

 Interestingly, this interval retains the qualitative interpretation of a classical con

 fidence interval but involves no missing data assumptions.
 Physicians involved in this study think that 25% is a safe overestimate

 of the risk of HIV among nonresponders. Assuming they are right, we set
 7pm € T = [0,0.25] and estimate ßo to lie between 52/787 = 0.066 and 52/787 +
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 (0.25)36/787 = 0.078. We find a corresponding 95% pointwise EURO from
 0.0515 to 0.0924. Better finite-sample approximations are expected by esti
 mating pointwise uncertainty intervals on the logit scale. Solving (4.3) with
 ßi = logit(52/787), ßu = logit(88/787), se(Â) = 787/(52 x 731) and se(ßu) =
 787/(88 x 699) yields ca*/2 = 1.665 and a 95% pointwise EURO for logit(/3o)
 is [—2.89,-2.25]. A 95% pointwise EURO for ßo becomes [expit(—2.89),
 expit(—2.25)] = [0.0528,0.0949]. Thus, under a realistic range of plausible miss
 ing data assumptions (i.e., provided that 7pm G [0,0.25]), we estimate that HIV
 risk lies between 5.28% and 9.49% with at least 95% chance.

 4.2. Consistency

 To verify whether the HEIR itself is adequate as an estimator of the partially

 identified parameter /30 under A4 (T), we extend the concept of weak consistency

 for point estimators to HEIRs. As 70 is not identified under A4(T), we require
 weak convergence of all individual point estimators ß(~i) to ß{~i) over 7 G T.

 To formalize this, consider for each 7 G T a sequence of random vectors

 /3x(7),..., and the theoretical parameter value ß(i).

 Definition 2. The HEIR fr(/?, T) = {/^(t); V7 G T} is weakly consistent for
 ß0 if the convergence in probability of ß^(^f) to ß(~y) under A4 (7) holds for all
 7 G T.

 HEIRs that are weakly consistent for a parameter ß0 under A4(T) have the
 desirable property that they cover the truth ß0 — ß (-/0 ) with arbitrarily large
 probability as the sample size increases (provided j0 G T).

 For example, in the Kenyan HIV surveillance study, HIV risk ß(j) = E(VR)
 +qE(l — R) where 7 = 7pm. By the Weak Law of Large Numbers (Newey and
 McFadden (1994)), ß(j) — V-1 J2iLi YiRi + 7(1 ~~ Ri) converges in probability
 to ^(7) for all 7 G [0,1], We conclude that the HEIR [V-1 ^iRii N~l Y2iLi
 (YiRi + 1 — Ri)} is a weakly consistent estimator for HIV risk 3q when 7 is
 unrestricted. Likewise, the HEIR [N'1 YiRi,N~l Y2iLi{YiRi + 0-25(! -
 i?i)}] is a weakly consistent estimator for ßo when 7 G [0,0.25].

 5. Inference for ir(/3,T)

 The previous notions of pointwise coverage and consistency were designed to
 measure the validity of HEIRs w.r.t. their ability to estimate the target parameter

 of interest ß0. When the ignorance region for ß0 itself is the primary target of a
 study, a more natural goal is to construct HEIRs whose distance from the true
 ignorance region can be made arbitrarily small with arbitrarily large probability
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 and (1 — a)100% uncertainty regions that cover ir(/3, T) with at least (1 — a) 100%
 chance in large samples.

 5.1. Sampling variability: Strong coverage

 A natural strategy for communicating the sampling variability of HEIRs for
 scalar parameters ß is to add the standard (1 — a) 100% confidence limits to the
 estimated ignorance limits; that is:

 URs(ß, T) = [CL, Cu] = [ßi - case(Â), ßu + C|se(/3U)], (5.1)

 where c0/2 is the (1 — a/2)100% percentile of the standard normal distribution.
 This is done in Kenward, Molenberghs and Goetghebeur (2001) and Rosenbaum
 (1995), for instance. The interval thus constructed covers all (1 — cc) 100% confi
 dence intervals for ß(-y) under Ad (7), pointwise for all 7 G T. In the Appendix,
 we show that the resulting interval can be interpreted as the (1 — a) 100% strong
 uncertainty interval URs(/3, T), which covers all values in the ignorance region
 ir(/3, T) simultaneously with (1 — a)100% chance. For vector parameters ß, we
 define such (1 — a) 100% strong uncertainty region as follows.

 Definition 3. A region URs(/3, T) is a (1 — a)100% strong uncertainty region
 for ß0 when its strong coverage probability pr0{ir(/3, T) c URs(/3, T)} is at least
 (1 — a) 100% under the true observed data law.

 It is immediate from the definition that a (1 — a) 100% strong uncertainty
 region is a conservative (1 — cc) 100% pointwise uncertainty region.

 In the Appendix we show that the strong coverage level of the strong uncer
 tainty interval (5.1) lies between 1 — a and 1 — a/2 when the estimated confidence

 limits Cl and Cu satisfy pr0(C% > ßi) = pr0(C% < ßu) = a/2. It equals 1 — a
 when, as is generally expected, the true ignorance interval almost never covers
 the strong uncertainty interval (i.e., pr0{(Ci > ßß A (Cu < ßu)} = 0). We fur
 ther show that the strong coverage probability of this interval lies between 1 — a

 and 1 — a + a2/4 when, as expected, pr0(C% > ßi\Cu < ßu) < Pro(Cl > ßl)■
 For instance, for a = 0.05 it lies between 95% and 95.0625% (when this property
 holds).

 As with pointwise coverage, strong uncertainty regions can be estimated on
 a monotonely transformed scale while retaining the original coverage level.

 5.2. Sampling variability: Weak coverage

 While strong uncertainty regions cover all parameter values in the true region

 of ignorance simultaneously with given probability, one would often be satisfied
 having covered most of them. Indeed, an estimated region which is expected to
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 cover most parameter values in ir(/3, T) is useful, even when it represents a low
 strong coverage probability. In view of this, we define the weak coverage proba
 bility of an uncertainty region as the expected proportion of overlap between the
 uncertainty region and the true region of ignorance. This leads to the following
 definition of (1 — a) 100% weak uncertainty regions.

 Definition 4. A region URtt(/3, T) is a (1 — a) 100%; weak uncertainty region for
 ß0 when its weak coverage probability

 E0||URu,(/3,r)nir(/3,r)||
 Mß^)\\

 is at least (1 — a) 100% under the true observed data law, where ||A|| (A Ç Hlp)
 denotes the volume of A.

 This can additionally be interpreted as the probability that a uniform draw
 from the ignorance region for ß0 is covered by UR^(/3, T).

 In the Appendix, we show that 100(1 — a)% weak uncertainty intervals for

 scalar ßo can be constructed following (4.2), where ca*/2 solves the equation

 se(ßi) + se(ßu)
 a —

 r+00

 / zip(z + Ca*_)dz + e. (5.2)
 Jo 2 ßu ~ ßl

 Here <p(-) denotes the standard normal density function and e is a correction
 term. In the Appendix, we show that e can be calculated exactly as

 e

 r-1-00 r-roo

 = / + Ca^_)dz + / <p(z + Ca^)dz
 J(ßu-ßi)/se{ßu) 2 J(ßu-ßi)/se(ßi)

 se(ßu) p+0°
 ßu - ßl

 se(ßu)

 r-\-oG

 lßu-ßlz^z + c^dz

 s e(Â)
 ßu - ßl

 r-1-00

 L « zip{z + ca^)dz (5.3) J ßu-ßj 2
 se(ßi)

 which we show to be so small that setting e = 0 will not hamper the accuracy of
 the calculated critical value. We further show that the weak coverage probability
 of this interval is the nominal 1 — a.

 Equation (5.2) yields no feasible solution for ca»/2 because it involves un
 known functional of the observed data distribution. Hence, consistent estimators

 must be derived for the critical value by substituting ßi, ßu, se(ßi) and se(ßu)
 in (5.2) by consistent estimators. When the HEIR is large and its endpoints
 precisely estimated, it may itself cover more than (1 — a) 100% of the true igno

 rance interval on average. By allowing for negative values of ca* /2, the coverage
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 level is then reached for a weak uncertainty interval which is contained within
 the HEIR. A drawback with inference for weak uncertainty intervals is that they
 cannot generally be estimated on a monotonely transformed scale while retaining
 the original coverage level.

 For example, in the Kenyan HIV surveillance study, with 7pm G [0,0.25],
 the 95% strong EURO [0.0487,0.0950] is estimated to cover the true ignorance
 interval for HIV risk with (at least) 95% chance. We estimated pr0{(CL >
 ßI) A (Cjj < 3u)} — 2.5 10~16, indicating that the nominal coverage level is
 well approximated by 95%. The 95% weak EURO is [0.0587,0.0899]. It has
 an expected overlap of 95% with the true ignorance region for HIV risk when
 7pm £ [0,0.25]. Since values near the midpoint of the interval are almost always
 covered, it is considerably smaller than the 95% strong EURO.

 5.3. Relationship between the weak and pointwise uncertainty region

 To enhance our understanding of the relationships between the different un
 certainty regions, we prove that a (1 — a) 100% pointwise uncertainty region
 URp(/3,T) is a conservative (1 — a) 100% weak uncertainty region. Indeed, we
 know that for all ß G ir(/3, T), pr0{/3 G URp(/3, T)} > 1 — a. Using that the weak
 coverage probability of URp(/3, T) is the probability that a uniform draw ß from
 the ignorance region for ß is covered by URp(/3, T), we find

 E0||URp(/3,r)nir(/3,r)||
 = Pr0 ßiß G URp(/3,r)} ||ir(/3,r)|| F°>^
 = E/5[Eo{^GURP(/3,r)|^}]

 >Eß(l-a\ß) = l-a.

 Here, the subscript ß refers to the uniform sampling distribution over ir(/3,T).

 5.4. Asymmetric uncertainty regions

 In constructing pointwise, strong and weak uncertainty intervals, we have

 chosen the same critical values cQ, /2 to calculate the lower limit Cl — ßi —

 ca*/2se(/?/) and the upper limit Cjj = ßu + ca*/2se(ßu). When se(ßi) differs from
 se(ßu), shorter (1 — a) 100% uncertainty intervals may sometimes be obtained by

 allowing for different values ca*/2 in Cl = ßi — ca*/2se(ßi) and ca*j2 in Cu =

 ßu + ca*u/2sc(ßu), respectively. To obtain such intervals, we estimate ca* /2 from
 the observed data for different chosen values of cQ»/2. For strong uncertainty
 intervals, for example, we choose cQ./2 such that pr0(CV/ < ßu) = a — a*/2
 when ca*/2 is such that pr0(Ci > ßß = (x\j2 (with a*/2 < a*). For pointwise
 and weak uncertainty intervals, a similar strategy is possible along the lines
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 of the Appendix. Having obtained estimates for ca. /2 over a range of ca+ /%

 values, we then choose the (ca»/2> caj/2)~tuple that minimizes the length ßu —

 ßi + ca*/2se(ßi) + ca^/2se(ßu) of the uncertainty interval.

 5.5. Simulation study

 Because our weak and pointwise uncertainty intervals ignore imprecise esti
 mation of the critical value and standard error, we assess their performance in
 a simulation study. To be able to evaluate the net effects of estimation of the
 critical value and standard error, we wish to avoid relying on asymptotic approx
 imations and therefore consider inference for the mean of normally distributed

 observations. We generate ten thousand data sets with sample size 787, standard
 normally distributed observations for responders and marginal nonresponse prob

 ability no = 36/787. We assume a priori that 7 = E(Y|.R = 0) lies in T = [—2,2].
 For each data set, ignorance and 95% uncertainty intervals for ßo = E(Y) are
 estimated for the three coverage definitions. Strong uncertainty limits are esti
 mated via Wald-type confidence limits calculated at the two estimated ignorance

 limits iyn — 2(1 — û) and fjù-(-2(1 —n), where 77 = E(Y|f? = 1). Weak and pointwise

 uncertainty limits are estimated analogously, but with adjusted critical values.

 Table 1. Simulation results: Estimated coverage probabilities (two-sided
 P-values of the null hypothesis of no bias in the estimates), average length

 (Cu — CL ) of the uncertainty interval and average adjusted critical values
 (ca*/ 2)

 Type  Coverage  Average Length  ca*/2
 Strong  0.949 (0.293)  0.332  1.960

 Weak  0.955 (0)  0.244  0.803

 Pointwise  0.948 (0.221)  0.308  1.645

 Table 1 gives empirical coverage probabilities, average length of the EURO

 and (average) adjusted critical values. Strong and pointwise EUROs reach the
 nominal 95% coverage probability. Some overcoverage is however observed for
 weak EUROs. This is due to imprecise estimation of the critical values ca, /2.
 These are highly variable for weak EUROs (mean 0.803 and standard deviation
 0.0891), but substantially less so for pointwise EUROs (mean 1.647 and standard
 deviation 0.0000149). Furthermore, by choosing the exact critical value 0.797 for
 weak uncertainty intervals, we obtain an estimated coverage of 0.950 (P-value

 0.691). The correction term e for weak EUROs is negligible, having a highly
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 skewed distribution with median —2.053 10 13 (min. —1.663 10 6, 1st quartile
 -5.812 KT12, 3rd quartile -4.480 1(T15, max. -3.249 1(T28).

 5.6. Consistency

 To verify whether the HEIR is adequate as an estimator of ir(/3, T), we
 extend the definition of Section 4.2 for weakly consistent HEIRs by defining a
 HEIR to be weakly consistent for an ignorance region ir(/3, Ej under model -M(r)
 when its distance to ir(/3, T) can be made arbitrarily small with arbitrarily large
 probability in large samples.

 To formalize this, consider the sequence of random sets fri(/3, T),..., ir/v(/3, T)
 and the theoretical region of ignorance ir(/3,T). Define ||ir(/3,T) — ir at(/3, T)|| as
 the maximum distance between the true (ir(/3,T)) and estimated (ir jv(/3, F))
 region of ignorance for ß0, i.e.,

 |ir(/3, T) — irjv(/3,r)||

 = max f sup _ inf \\ßN-ß\\, sup inf \\ßN-ß\\
 \ßNeirN(ß,r)ßeir(ß,r) ßeir(ß,T)^NevcN{ß,T) ,

 where \\ßN — ß\\ is the Euclidian distance between ßN and ß. The above distance
 is known as the Hausdorff metric over the metric space 21RP of all subsets of IRP.

 Using general results on stochastic convergence in metric spaces (van der
 Vaart (1998)), we come to the following definition.

 Definition 5. The HEIR ir/v(/3, T) is weakly consistent for ir(/3, Fj if

 (Ve, S > 0)(3iVo(e, 5)) (N > N0(e, S) =7 pv0{\\äN(ß, T) - ir(/3, T)\\ < 0} > 1 - e).

 The following theorem, proved in Appendix 2, gives simple sufficient rules
 for verifying this property.

 Theorem 1. Define the HEIR vtn{13, T) = 1/3^(7); V7 G T} as a set of in
 dividual point estimators and the true region of ignorance ir(ß,T) =
 {/3(7); V7 € T} as the set of corresponding estimands ß{~{)- Then, ir^ß3,T) is
 a weakly consistent estimator for ir{ß,T) under M.(T) when the point estimators
 ßN(7) in «7v(/3,T) are weakly consistent estimators for ß(^) uniformly over all
 7 G T; that is,

 (Ve, 6 > 0)(3N0(e, S)) I > N0(e, ö) => prM(7) {sup l\ßN(-y)-ß(~y) || < 5} > 1 -e

 where ||/3/v(7) — ß{l)\\ is the Euclidian distance between /3/v(7) and ß(~i)
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 For example, because in the Kenyan HIV surveillance study YR + 7(1 — R) is

 continuous at each 7 G [0,1] w.p.l, and KR + 7(1 — R) is bounded above by 1, it
 follows from the Uniform Law of Large Numbers (Newey and McFadden (1994))
 that /0(y) = N~l YiRi+/y(l~Ri) converges in probability to /3(7) uniformly
 over all 7 G [0,1]. We conclude that the HEIR [V-1 Y^iLi YiRii V-1 ^2iLi(YiRi+
 1 — Ri)] is a weakly consistent estimator for ir(/3, T) under A4(T) when F = [0,1].

 Likewise, the HEIR [V"1 ^=1 N~l H?=i{YiRi + °-25(1 ~Ri)}\ is a weakly
 consistent estimator for ir(/3, T) under A4(F) when F = [0,0.25]. Note that the
 reverse of Theorem 1 is not true.

 6. Parametric and Semiparametric Models

 So far, we have conducted inference for specific functionals of the complete

 data law by constructing ignorance and uncertainty regions under a family of
 NPI models. Such families are constructed in Robins (1997) and Scharfstein,
 Robins and Rotnitzky (1999). In practice, parametric restrictions on the full
 data distribution are often necessary, for instance when we are interested in low
 dimensional models for the complete data, or when we are forced to impose
 dimension reducing modelling restrictions due to the curse of dimensionality. In
 this section, we discuss whether meaningful ignorance and uncertainty regions
 can still be defined when the full data law is required to satisfy the restrictions
 of some parametric or semiparametric model A4*.

 Suppose we are interested in assessing the effect of age X (in years) on HIV
 risk in the Kenyan surveillance study through model A4*, defined by

 logit{pr(V = 1|X)} =77 0 + ßoX .((>. 1 )

 logit{pr(R = l|y,X)} = X + 7 Y. ((>.2)

 Because A4* imposes restrictions on the observed data law, there will generally
 be few (often at most one) full data laws that marginalize to the observed data
 law and satisfy (6.1) —(6.2). As a result, the dependence 7 of missingness on the
 missing outcome may become identified, in which case the identifiability problem

 disappears. The fact that 7 can be identified despite the missing data, is due to

 the (semi)parametric restrictions that A4* imposes. This is undesirable as one
 would rarely have sufficient information to know, before seeing the observed data,

 whether (6.1) —(6.2) hold (see also the discussion of Diggle and Kenward (1994),
 Little and Rubin (1987), Scharfstein, Robins and Rotnitzky (1999)). By the
 same token, it would usually be unreasonable to restrict attention to those full
 data laws that satisfy the intersection model A4* PI A4 (T) by defining the ignorance
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 region for ß to be

 (ß, T) = |/3{/(L)} : /(L) = |/(L,R)dRwith/(L,R)eA4*nA4(r)

 satisfying /0(O) = J /(L, R)dL(1

 îr

 (1-Ä)

 where A4(F) is defined as before as a class of NPI models for the full data in the
 absence of the restrictions of A4*. The ignorance region for ß0, and hence also
 the strong uncertainty region, is therefore generally no longer well defined when
 the full data model A4* places restrictions on the observed data law.

 It remains useful, however, to repeat the analysis for different fixed values
 7 of the sensitivity parameter in the set T as if A4* fl A4(7) were true; e.g.,
 to conduct inference for ßo indexing (6.1) for different values of 7 in (6.2). We
 continue to call the resulting range of estimates a HEIR. Pointwise uncertainty
 intervals can be constructed as before and stay meaningful provided that, for
 each 7, probabilities in (4.1) are taken w.r.t. A4* fl A4(7). Indeed, when 70 G I
 the resulting intervals will cover the truth ß0 = /3(70) with at least (1 — a) 100%
 chance provided A4* fl A4(70) holds. Likewise, it remains meaningful to define
 a HEIR weakly consistent for ß0 when the convergence of /3iV (7) to ß("l) under
 A4* H A4(7) holds for all 7 e P. Indeed, such HEIR will cover the truth ß0 =
 ßilo) with arbitrarily large probability as the sample size increases provided
 A4* fl A4(7o) holds with 70 G T.

 For example, consider the full data model defined by (6.1) with unrestricted
 response model. Figure 2 (left) shows HEIRs and 95% EUROs for age-specific
 HIV risk under this model. HEIRs were obtained via the IDE algorithm (Vanstee
 landt and Goetghebeur (2001)) which yields point estimates on the bound
 ary of the HEIR. Without assumptions on the missing data, we find HIV risk
 estimates between 6% and 12% over a reasonably wide age range. Follow
 ing Vansteelandt and Goetghebeur (2001), the boundary of the HEIR was con
 structed by defining a sensitivity parameter 7 and estimating from the observed
 data the 'extreme' values of 7 that yield estimates on the boundary of the HEIR.
 The standard errors of the ignorance limits, which were used to construct EU
 ROs in Figure 2 (left), were calculated supposing that these 'extreme' values are
 fixed. Assumption 2 failed in this example because the values of 7 that yielded
 estimates on the boundary of the HEIR vary over different samples, and hence
 depend on the observed data law. The reported EUROs ignore this extra vari
 ability. Figure 2 (right) therefore examines 500 bootstrap resamples, but reveals
 no undercoverage/overcoverage of our intervals. The 95% pointwise EUROs are
 the most meaningful here because they are known to cover the true age-specific

This content downloaded from 193.190.2.250 on Tue, 31 Oct 2017 08:49:49 UTC
All use subject to http://about.jstor.org/terms



 970 S. VANSTEELANDT, E. GOETGHEBEUR, M. G. KENWARD AND G. MOLENBERGHS

 HIV risk with at least 95% chance, regardless of the missing data mechanism,
 when (6.1) holds.

 Weak coverage
 Pointwise coverage

 Strong coverage

 Strong coverage

 Weak coverage
 • • • • Pointwise coverage

 Age

 Figure 2. Left: HEIRs (solid lines) and 95% EUROs (dotted lines) for age
 specific HIV risk; Right: Bootstrap-based estimated coverage of 95% EUROs
 for age-specific HIV risk.

 7. Discussion

 Our formalism can be viewed as a frequentist alternative to Bayesian ap
 proaches for sensitivity analysis (see e.g. Scharfstein, Daniels and Robins (2003)).
 Our approach chooses not to average out the extremes, which is especially impor
 tant where the possibility of high risks must be confronted. The nonparametric
 Bayesian approach of Scharfstein, Daniels and Robins (2003) is attractive and
 useful when there are strong scientific beliefs about the degree of selection bias,
 which can be expressed in a prior distribution /(y) for 7. In a similar spirit, our
 weak uncertainty regions express where the estimand can be expected when each
 value in the ignorance region is a priori considered equally plausible. Ultimately,
 more general prior knowledge could be incorporated in our frequentist framework

 by redefining a (1 — a) 100% weak uncertainty region for ß0 to be a region whose
 coverage probability

 J Pr^f(7) {ß (7) e UR™(/3, r)} / (7) «fry
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 is at least (1 — a) 100% under the true observed data law. Such regions enjoy
 the desirable property that they are guaranteed not to use the observed data
 to gather additional information about the sensitivity parameter. In agreement
 with Scharfstein, Robins and Rotnitzky (1999), using such information would be
 undesirable as it can only come from model assumptions, which are usually made
 for convenience. The Bayesian approach does not generally enjoy this property.
 We plan to report on this alternative development elsewhere.

 Detailed consideration of 7-specific point estimates and confidence intervals
 (as in Figure 1 and Scharfstein, Robins and Rotnitzky (1999)) remains most in
 formative and is therefore highly valuable at the analysis stage. The methods in
 this paper do not attempt to be competitive. They aim instead to summarize
 the detailed information that results from a sensitivity analysis, with appropri
 ate account of sampling variability, and thus to make the results of a sensitivity
 analysis feasible for practical reporting. Such a procedure has proved especially
 valuable in settings where the simultaneous impact of several sensitivity param
 eters is studied (Vansteelandt and Goetghebeur (2005)). In general, we believe
 that a worthwhile summary strategy is to report, besides the usual analysis under

 a sole plausible missing data assumption (e.g. MAR), a HEIR and 95% point
 wise uncertainty interval for the target parameter corresponding to one or several
 credible ranges of values for the sensitivity parameter that were selected with the
 help of subject-matter experts' insight. We believe this will help decision-makers
 to actually use the results of sensitivity analyses in practice, because they can
 interpret and use 95% pointwise uncertainty intervals like confidence intervals for

 point parameters, also with (semi)parametric observed data models. Hypothe
 sis tests derived from the pointwise EURO are valuable for significance testing.
 Equivalence can be concluded when the pointwise EURO is contained in a chosen
 equivalence range. The methods are generally applicable and easy to implement
 with simple S-Plus programs that can be obtained from the first author.

 Additional challenges must be met to adjust for imprecise estimation of the
 standard errors and critical values. In a small simulation study, ignoring this
 imprecision yielded slight overcoverage for weak uncertainty intervals, but not
 for strong and pointwise intervals. Further improvements are also possible for
 estimation of the standard errors of the ignorance limits. In many examples, the
 sensitivity parameters can be chosen such, that over repeat samples, the same lim

 iting values generate the bounds of the HEIR (i.e. such that Assumption 2 holds).
 In that case, these standard errors can be calculated in the usual way, conditional
 on those values for the sensitivity parameter. If this is not possible, our methods

 will yield approximate results that have shown good performance in bootstrap
 simulations. Alternatively, a bootstrap procedure itself may be used. For strong
 uncertainty intervals, this approach was taken by Horowitz and Manski (2000),
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 but is expensive in terms of computation time and does not yield improved results

 for our example. For pointwise uncertainty intervals, mathematically equivalent

 estimators were published by Imbens and Manski (2004) while this work was
 under review.

 The need to select the range of plausible values T for the sensitivity param
 eter is not an inherent drawback of our method, but typical of most meaningful
 sensitivity analyses. Including implausible 7-values may not only broaden the
 ignorance region unnecessarily, but also introduce implausible values. Further
 more, even a relatively narrow range of carefully chosen full data models may
 be able to convey sufficient caution. In the Kenyan study, for example, the in

 terval [—1,1] for 7s already allows the odds of response to be up to 2.72 times
 larger or smaller for HIV-positives than HIV-negatives. Combining this choice
 with Figure 1 yields an estimated HIV risk ßo between 0.067 and 0.074. Logistic
 response models, like (6.2), are especially useful in this regard, because restricted

 range of values for the sensitivity parameters indexing these models will (usually)
 produce bounded HEIRs for the target parameter, even when the outcomes are
 theoretically unbounded. When it is hard to pin down a single range, one may
 consider a growing set of ranges and observe how the ignorance region evolves
 accordingly. An indication of the deemed plausibility may be added by colour
 ing the HEIRs correspondingly. This stops one step short of averaging in the
 Bayesian way, with the continuing goal of distinguishing data-based information
 from other sources.

 In summary, we have proposed a formal, flexible and structured way of sum
 marizing the results from a sensitivity analysis with incomplete outcomes. It
 makes the assumptions about the missing data explicit and shows how they
 affect inference. The clear separation of ignorance due to incompleteness and
 imprecision due to finite sampling may guide the trade-off between sample size
 and follow-up of nonrespondents at the design stage. The methods developed
 in this work have been applied beyond the missing data context, to investigate
 the sensitivity of causal inferences to untestable assumptions (Vansteelandt and
 Goetghebeur (2005)). Because the information obtained from sensitivity analy
 ses is often extremely detailed, we believe that well understood summaries like
 HEIRs and EUROs, can help augment the use and reporting of sensitivity anal
 yses in practical investigations.
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 Appendix

 A.l. Construction of uncertainty regions and proofs

 For notational simplicity, we omit the subscript 0 and implicitly assume that
 probabilities, expectations and standard errors are taken with respect to the true
 observed data law.

 Lemma 1. (Pointwise uncertainty intervals) Let Cl and Cjj be lower and upper
 (1 — a*)100% confidence limits of ßi and ßu, respectively, based on CAN estima

 tors for ßi and ßu and a critical value ca*/2 that solves (4.3). Then the interval
 [Cl,Cu\ has asymptotic pointwise coverage probability 1 — a.

 Proof. For univariate parameters, (1 — a)100% pointwise uncertainty limits for
 ßo can be constructed by using the fact that the pointwise coverage probability

 1 - a equals inf76rpr(Ci < ß(-y) < Cu) = inf7€r{pr(Cz, < ßfiy)) - pr(Cu <
 ßfi/))}, since CL < Cv. Define CL = ßi - ca*/2se(ßt) and Cv = ßu + ca,/2se(ßu)
 for some unknown ca*/2 > 0. For CAN estimators ßi and ßu and arbitrary
 ß € [ßi,ßu], we find that asymptotically

 pr(CL < ß) - pr (Cu < ß)

 ßi- ßi / , ß~ßi\ Ißu~ ßu / , ß~ßu
 < csl h T^T ~ Pr ~ ^ +

 2 se(A) J V se(A0 2 se(A0 J

 = $<!cq. + V - $ J-Cq. -^LzäX. (A.l)
 \ "2- se(A) J 1 ^ se(/3u) J

 Using this result we now show that

 inf {pr(CL < /%)) - pr (Cu < £(7))}

 = min{pr(CL < ßi) - pr {Cu < A), pr(Cx < ßu) - pr (Cu < ßu)}- (A.2)

 Note from (A.l) that

 pr(CL < ßt) - pr (Cu < ßß = *(CaO - $ { -co. - 1 (A.3)
 1 2 se(/3u) J

 pr (CL < ßu) ~ pr (Cu <ßu) = $\csl + 1 - $(-c^). (A.4) 1 2 se(A) j
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 Asymptotically, it follows that for arbitrary ß G \ßi,ßu] and a standard normal
 variate Z

 Pr(Cx < ß) - pr(Cu < ß)

 ß~ßi\
 = pr(Ci < ßi) - pr (Cu < ßi) + pr c<^ < Z < c^_ +

 ( ßu - ßl / v / ßu-ß
 -pr Ca*_ x— < Z < -CçS —

 V 2 se(ßu) 2 se(ßu)

 se(ßi)

 = pr (CL < ßu) - pr (Cu < ßu) - pr ( c«i + ^ ?l <Z<csl + fl ) V 2 se(A) 2 se(A) J

 +pr | -Caz - ^^ < Z < -Co* | . (A.5)
 V 2 se(Äi) 2 )

 Suppose first that se(Â) < se(/3u). Then (ß - A)/se(Â) > (ß — ßi)/se(ßu). For
 a standard normal variate Z, it follows that

 pr (Cçs < Z < Ca» + ——-ß- I = pr ( —Ca*. - ——^ < Z < —c<s_ |
 V 2 2 se(Â) / V 2 se(^) 2 /

 ^ ( ß-ßl ßu-ß ^ ßu~ß\
 > pr —Ca» < Z < —Ca» X

 \ 2 se(Â) se(/3u) 2 se(Âi) J
 ( ßu- ßl ^ ry ^ ßu~ß\

 > pr —Ca* ~ < Zj < —Ca* ,
 V 2 se(/3u) 2 se(Âi) J

 where we subtract (ßu — ß)/se(ßu) from both sides in the second step and use
 the inequality (ß — A)/se(Â) > (ß — A)/se(Âi) in the third step. Using (A.5)
 it follows that pr (Cl < ß) — pr (Cu < ß) > pr(Cx < ßi) — pr (Cu < A) for
 arbitrary ß € [Ai Ai]- When instead se(Â) > se(/3u), then (/? — A)/se(Â) >
 (ß — ßi)/se(ßu). A similar argument as before then shows that

 Pr \ ~CS1 - ~ » — < Z < — Ca*_ I
 V 2 se(Ai) 2 J

 ^ t ß ~ ßl ^ ry ^ , ßu~ ßl\ > pr Ca» H — < Z < Ca*_ H X— ,
 V 2 se(Â) 2 se(Â) )

 so that pt(Cl < ß) — pr(C(7 < ß) > pr (Cl < ßu) — pr (Cu < ßu) for arbitrary
 ß G [A, ßu}- We conclude that (A.2) holds. The result (4.3) is now immediate
 from (A.2), (A.3) and (A.4).
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 Note that pr(C[/ < A) ~ 0 and pr(Cl < ßu) ~ 1 when ßu — ßi is large.

 Hence, it follows from (A.2) that cQ.j2 approximates the (1 — a) 100% percentile
 of the standard normal distribution when there is much ignorance about the

 complete data parameter of interest and the intended sample size is large.

 Lemma 2. (Strong uncertainty intervals) Let Cl and Cu be lower and upper

 (1 — a)100% confidence limits of ßi and ßu, satisfying pr(CL > ßi) = pr(Cu <

 ßu) = a/2. Then the interval [Cl,Cu] has a strong coverage probability between

 1 — a/2 and 1 — a.

 Proof. For univariate parameters, (1 — a) 100% strong uncertainty intervals for

 ß can be constructed by using the fact that the strong coverage probability 1 — a

 equals 1 - pr{3/3 € ir(/3, T) : (CL > ß) V (Cu < ß)} = 1 - pr{(Ci > ßi) V (Cu <

 ßu)}- Hence pr(CL > ßi) + pr (Cu < ßu) ~ pr {(CL > ßi) A (Cu < ßu)} = a
 Choose Cl = A — ca*/2se(ßi) and Cu — ßu + ca*/2se(ßu), the lower and upper
 (1 — a*)100% confidence limits for ß respectively, calculated at the estimated

 ignorance limits A and ßu. Here we define the critical values ca* /2 and ca»/2 such

 that pr (Cl > ßi) = pr (Cu < ßu) = a*/2. Because pr{(CL > ßi) A (Cu < ßu)} <
 pr (Cl > ßi) = a*/2, we find a € [a*/2,a*]. When - as expected - pr (Cl >

 ßi\Cu < ßu) < pr(CL > ßi), then pr(CL > ßi A Cv < ßu) < pr(CL > ßi)w(Cu <
 ßu) — a*2/4. It follows under this assumption that a G [a* — a*2/4, a*] and that

 the choice a* = a yields slightly conservative (1 — a) 100% strong uncertainty

 regions.

 Lemma 3. (Weak uncertainty intervals) Let Cl and Cu be lower and upper (1 —

 a*)100% confidence limits of ßi and ßu, respectively, based on CAN estimators for

 ßi and ßu and a critical value ca./2 that solves (5.2). Then the interval [Cl,Cu]
 has an asymptotic weak coverage probability of I — a.

 Proof. For univariate parameters, we construct (1 — a) 100% weak uncertainty

 limits for ß by using the fact that

 E|lUR4/3,r)nir(/?,r)l| = E{minQ3u,Cu)} E{max(fl,CL)}
 l|ir(A r) || ßu-ßi ßu-ßi

 E(Cl - ßu\CL > ßu)MCL > ßu)
 ßu-ßl

 E(ßl-Cu\Cu<ßl)Pv(Cu<ßl)
 ßu-ßi
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 Defining Zu = (Cjj — ßu)/se(ßu), we find that

 rßu r+oo

 /Pu r~rOO ufcu{u)du+ / ßufCu(u)du
 -oo J ßu

 ={ßu+ zuse(/3u)|- f"zn{zu)dzu + J" ßufzu{zu)dz

 = ßu + se(/?u) / zufzu (zu)dzu,
 J —oo

 E(A — Cu\Cu < ß[)pr(Cu < ßi)
 r(ßl-ßu)/ se(ßu) Ä r(ßi-ßu)/se(ßn)

 = {ßl~ßu)/ fzu{zu)dzu- se(/3u) / zufZu(zu)dzu. v/ —oo —OO

 Defining Z/ = (C^ — ßi)/se(ß\), we find that

 r/3; r+oo

 /Pi r+oo ßlfcL(l)dl+ / //cL(0^
 -oo J ß i

 = J ßlfz; (zßdzi + J |ßi + Z[se(ß\) | (zßdzi
 p+OO

 = ßi + se(Â) / Zifzßzßdzi,
 J o

 E(CL - /?U|CL > /?u)pr(CL > /?„)
 /*+oo ^ /•+OO

 = {ßl-ßu) . fzßzßdzi +se(Â) / . zjfZl(zi)dzi.
 J (ß„-ßi)/se(ßi) J (ß„—ß\)/se(ß\)

 We thus obtain

 a
 se(Â) /"^ ; ; u se(Âi) /"0 e t \j

 = ~o F / zifZl(zi)dzi - / zufZu(zu)dzu + e, ßu — ßl JO ßu — ßl J - OO

 where

 E(Cl - AxICl > ^)pr(CL > &) E(A ~ CttICtt < A)pr(Q/ < ßi)
 ßu ~ ßl ßu~ ßl

 r(ßi-ßu)/se(ßu) r+°o

 = / fzu(zu)dzu + / _ fzßzßdzi
 J-oo J(ßu-ßi)/se(ßi)

 se(ßu) f^i-ßuys^) se(A) ^oo
 —Ä / zufZu{zu)dzu - _ zifZl{zi)dzi.
 ßl j-oo ßu ßl J<ßu—ßi)/se(ß\)

 r(ßi-ßu)/ae(ßu) qp/Âi r+°°

 ßu - ßl J-oo " ßu~ ßl Jißu-ßt)/se{ßi)
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 This is a very small correction term because the events Ci > ßu and Cjj < ßi
 are extremely rare (unless there is little ignorance about the target parameter

 and/or the sample size is very small). Define Cl = ßi—ca*/2se(ßl) and Cjj = ßu +

 ca*/2se(ßu) for some unknown cQ*/2. Then, we show how ca*/2 can be found. For
 CAN estimators ßi and ßu, Zi and Zu follow asymptotically normal distributions

 with mean —ca*/2 and ca*/2, respectively, as the sample size approaches infinity.
 Indeed,

 ßi-ßt-c* se(Â) ßt_ßl
 Zl = = C ,

 se(ßi) se(ßi) 2

 where (ßi — ßi)/se(ßi) converges to a standard normal distribution in law. A
 (1 — a) 100% weak uncertainty interval can now be estimated by solving (5.2)

 for ca* /2. In this way, we obtain a weak uncertainty interval with asymptotic
 coverage probability 1 — a.

 A.2. Proof of Theorem 1

 Given that all individual point estimators in irjv(/3, T) are weakly consistent
 uniformly over 7 € T,

 (ye, S > 0)(3Aro(e, S))(N > N0(e,6) => pr{sup ||/3jv(7) - 0(7)11 < <J} > 1 - e).
 7er

 Since sup/3jv(7)efriv(Ar)inf/?(7)eir{/3)r) \\ßN(>y) - ß(l)\\ < sup7er \\ßN(-y) -

 0(7)11 and sup/3(7)eir(/3 r)inf/3jv(7)el-rN(Ar) 0n(*y) -0(7)11 < suP7er Il0iv(7) -
 /3(7)||, it follows that

 (Ve, S > 0)(3Ao(e, 5))

 I N > N0(e,S) => pr ( sup inf \\ßNh) - 0(7)11 < S
 [ V/3v(7)eirJV(/3,r)/5(7)eir(/3>r)

 A sup _ inf \\ßN(l) "0(7)11 < S J > 1 — el
 /3(7)eir(/3,r)/3iv(7)eirw(/3,r) J J

 => (Ve, <5 > 0)(3N0(e, 6)) (N > N0(e, 6) => pi(\\üN(ß, T) -ir(0, T)|| < Ô) > 1 -e).
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