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ABSTRACT The concept of rescheduling is essential to activity-based modeling in order1

to calculate effects of both unexpected incidents and adaptation of individuals to traffic demand2

management measures. When collaboration between individuals is involved or timetable based3

public transportation modes are chosen, rescheduling becomes complex. This paper describes a4

new framework to investigate algorithms for rescheduling on a large scale. The framework ex-5

plicitely models the information flow between traffic information services and travelers. It com-6

bines macroscopic traffic assignment with microscopic simulation of agents adapting their sched-7

ules. Perception filtering is introduced to allow for traveler specific interpretation of perceived8

macroscopic data and information going unnoticed; it feeds person specific short term predictions9

required for schedule adaptation. Individuals are assumed to maximize schedule utility. Initial10

agendas are created by the FEATHERS activity-based schedule generator for mutually independent11

individuals using an undisturbed loaded transportation network. The new framework allows both12

agent behavior and external phenomena to influence the transportation network state; individuals13

interpret the state changes via perception filtering and start adapting their schedules, again affect-14

ing the network via updated traffic demand. The first rescheduler investigated uses marginal utility15

that monotonically decreases with activity duration and a monotonically converging relaxation al-16

gorithm to efficiently determine the new activity timing. The current framework implementation17

can support re-timing, re-location and activity re-sequencing; re-routing however is the subject of18

future research.19
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INTRODUCTION AND MOTIVATION20

A simulation framework for evaluation of rescheduling algorithms has been built. The initial21

schedule (agenda) for every inhabitant of Flanders (Belgium) is generated by the FEATHERS22

activity-based model described in Bellemans et al. (1). The new WIDRS (Within Day Re-Scheduling)23

framework is a software tool to evaluate schedule adaptation by individuals due to changed con-24

ditions. This project is part of our research efforts concerning dynamic activity-based simulation25

(parts of which are implemented by the well-known agent-based-modeling software technique).26

Changes in available schedule execution time are considered; those can originate from unexpected27

traffic or weather conditions but can also follow from negotiations between individuals about de-28

parture or arrival times during collaborative (cooperative) scheduling (e.g. while carpooling for29

commuting trips). The project is aimed at large scale simulations used to investigate traffic de-30

mand management (TDM) measures.31

WIDRS consists of two main interwoven components: schedule adaptation (rescheduling)32

and schedule execution.33

Rescheduling can be done by adapting activity execution start time or duration (re-timing),34

by choosing an alternative location (relocation), by selecting a new activity order (resequencing)35

and by dropping or inserting activities. This paper describes the framework built and the utility-36

based (de)compressor type rescheduler used in the first experiments.37

RELATED RESEARCH38

The problem of rescheduling activities in daily agendas has been investigated by several research39

groups.40

On one hand, mechanisms describing the rescheduling process itself have been developed.41

Arentze et al. (2) present the comprehensive Aurora model developed in Joh (3) for dynamic42

activity-travel rescheduling decisions. Aurora is based on S-shaped utility functions. The maximal43

utility value is a product of functions modeling the attenuation by start time, location, position in44

agenda and delay since last execution of the activity. Bounded rationality agents are assumed. Gan45

and Recker (4) present a mixed integer programming formulation of the HARP problem (House-46

hold Activity Rescheduling Problem). Jang and Chiu (5) describe a model that uses a quadratic47

utility function and integrates the scheduler with a dynamic traffic assignment tool DynusT. A sim-48

ilar approach has been taken by Bekhor et al. (6) who integrated the Tel-Aviv activity-based model49

with the MATSim toolkit allowing for re-timing and re-routing.50

On the other hand, factors influencing rescheduling characteristics for specific activities can51

be determined from surveys. van Bladel et al. (7) point out the difficulties to estimate the utility52

function parameters and show the S-shaped dependence of the utility on the delay since the preced-53

ing execution of a same activity. van Bladel et al. (8) use mixed logit models with random effects54

to estimate the effect of several factors on rescheduling. In a similar way, Guo et al. (9) describe a55

web-based tool to acquire stated preference data to uncover the (re)planning process. Roorda and56

Andre (10) use an MNL model to uncover the factors that determine the choice between several57

rescheduling options after a well-defined unexpected delay.58

FRAMEWORK CONCEPTUAL OVERVIEW59

The WIDRS framework overview is shown in Figure 1.60

1. The upper right block shows the initialization step. FEATHERS is used to generate a61

schedule for each member of the synthetic population; those schedules represent the62
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planned agendas for mutually independent individuals using an undisturbed transporta-63

tion network. Those initial daily plans are assumed to be optimal i.e. generating maxi-64

mal utility.65

2. The framework is based on traffic flows between traffic analysis zones (TAZ). Macro-66

scopic SUE (stochastic user equilibrium) traffic assignment is used to apply the traffic67

demand derived from the microsimulated schedules to the transportation network. Mi-68

croscopic routing is not supported (hence no microscopic re-routing). This decision is69

motivated by the desire to limit the simulation runtime. Travel times are skimmed and70

made available in impedance matrices. The impedance matrix used by the FEATHERS71

activity-based modeling scheduler to establish the initial agenda for each individual,72

holds for the normal case (without any incident). OD-pair specific peak load factors are73

applied in FEATHERS to account for travel during morning and evening peaks respec-74

tively.75

3. Network state can change at discrete moments in time only; network state evaluation76

by individuals is limited to those moments (called NSE-moments). The interval between77

them is called the NSE-period. NSE-moments define the time resolution for individuals78

to experience modified congestion effects. This makes it possible to integrate macro-79

scopic network state modeling with microscopic agent behavior modeling. Note that80

other time related phenomena (activity/trip start times, durations, notification times) all81

can be modeled by WIDRS using a finer grained time resolution. Network state is deter-82

mined only after each NSE-period because the required traffic assignment calculation is83

computationally expensive. NSE-moments are separated by a 15[min] interval.84

4. Before the actual simulation, 96 impedance matrices for 15[min] equidistant moments85

in time are determined by skimming the minimal travel times between TAZ (traffic86

analysis zone) centroids under normal traffic load. Those serve as the base reference.87

During the simulation, similar matrices are derived for the same moments in time for88

the case where the network is loaded with traffic generated by adapted schedules.89

5. In order to apply an incident, the capacity on a given set of network links is reduced by90

a given factor for a given period of time: this is called network disturbance. During the91

simulation, a new impedance matrix is calculated using the actual traffic load at each92

NSE-moment taking the time dependent network capacity into account.93

6. Agents can get notified at any moment in time after the incident start time. As a con-94

sequence, an agent can get notified before starting a trip that contains some affected95

network links: such individual is called an informed individual. Those persons become96

aware very soon of the network travel times disturbance. Others only become aware97

after having suffered from congestion (too late to avoid congestion so that they need98

to reschedule any remaining activities anyway). Individuals getting aware of conges-99

tion by experience are called non-informed individuals. Each individual can decide to100

adapt their schedule immediately after becoming aware of congestion. Note that being101

informed relates to a (person,trip) tuple. This allows for modeling individuals using102

the network while they are informed about additional delay for a specific subset of trips103
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only. An individual can be both informed with respect to zero or more trips while at the104

same time being non-informed about zero or more other trips.105

7. Individuals who got stuck on the network due to congestion, become aware of being106

delayed, at equidistant moments in time only. In our first experiments, this is assumed107

to be sufficiently realistic as long as NSE-period is not longer than 15[min]. At those108

moments in time, the affected individuals estimate the actual distance driven and the109

remaining distance and duration to drive. A new estimate for the total travel time is110

calculated: at this point, the modeled agents compare the most recent estimate of the ef-111

fective travel duration to the previous one. This is where the modeled individual senses112

the positive or negative difference in travel duration and, where appropriate, decides113

to reschedule. Agents deciding to reschedule based on sensed difference between esti-114

mated travel times, are the non-informed experiencing individuals mentioned in section115

Framework Conceptual Overview item 6.116

8. There is no iteration to some equilibrium over a single day because no information about117

the future shall be made available to the individual as a source for learning. Each indi-118

vidual makes her/his own prediction (interpretation) about the near future. An individual119

can learn from her/his reaction to the perceived incident but the acquired knowledge can120

only be used to estimate delays for future possibly similar (but not identical) incidents.121

9. The study area covers Flanders (Belgium). It is modeled by 2386 traffic analysis zones122

(TAZ) with an average area of about 5[km2]. TAZ are bundled into 319 municipalities.123

10. The set of persons affected by network disturbance is determined as follows. A set124

of (unidirectional) network links is selected for capacity reduction (in order to mimic125

an incident by network capacity disturbance). Three cases are considered: off-peak,126

morning-peak and evening-peak. For those cases, TransCAD is used to calculate the127

shortest time to travel between each pair of municipality centroids (m0, m1) under the128

network load predicted by FEATHERS. This is done for both the undisturbed and the129

disturbed networks and the maximum of the pairwise differences is kept in the worst-130

effect-matrix. Each (m0, m1) pair for which the corresponding element in the worst-131

effect-matrix exceeds a given threshold is an affected OD-pair. Every individual travel-132

ing an affected OD-pair is an affected individual.133

11. The first framework implementation simulates the evolution of one day; hence there is134

no individual memory and no learning mechanism.135

RESCHEDULER CONCEPTS136

1. Individual behavior is modeled by perception filtering: this accounts for lack of infor-137

mation and personal interpretation of the information that becomes available. The latter138

is the individual interpretation of the uncertainty with respect to the travel times regis-139

tered in the impedance matrices for the NSE-moments; those matrices represent the data140

made available via traffic information services (TIS). The base impedance matrices (see141

section Framework Conceptual Overview item 4) are considered to represent common142

knowledge about the expected travel times. The excess travel time calculated for the143
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FIGURE 1 : Simulator overview. Block (1) shows the FEATHERS activity based model that

produces initial schedules for the synthetic population members from landuse data, travel

surveys and an impedance matrix. Block (2) shows the microsimulator part consisting of

perception filtering and rescheduling. Block (3) shows the macroscopic simulator consisting

of traffic assignment, impedance matrix extraction and network disturbance application.
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FIGURE 2 : Gamma probability densities for delay values estimated by individuals when

traffic information service predicts an expected value of 10[min] . . . 70[min] for congestion

duration. The rate factor β = 1.0 (scale factor θ = 1

β
= 1.0) for each case.

congested situation is considered to be the expected delay made available by the traffic144

information service. It is interpreted (biased) by each individual in a specific way.145

2. Individuals are assumed to behave in a rational way and to try to maximize their utility146

by executing activities. As a consequence, in case of modified predicted travel times,147

they will adapt their schedules. Adapted schedules in turn result in a modified network148

load and travel times for the future NSE-periods.149

3. Individuals behave mutually independent.150

RESCHEDULER MODEL : TOPICS RELATED TO TIMING151

The framework has been used to run simulations by means of a first simple utility based resched-152

uler. This section explains how timing and duration phenomena influence the behavior of the153

simulated individual.154

Modeling delays155

1. Gamma distributions using scale factor β = 1.0 are used to model delays. Both the

expected value (mean) and variance are given by α.

f(x;α, β) =

{

βα

Γ(α)
xα−1e−βx x > 0;α > 0; β > 0

0 x ≤ 0
(1)

Sample density functions are shown in Figure 2156
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2. Gamma distributions have been chosen because of the reproductive property (the sum157

of independent gamma distributed variables with α1, β and α2, β is gamma distributed158

with (α1 + α2), β which is useful when processing accumulating delays).159

Incident awareness offset160

Both the information dissemination mechanism and the probability for assimilation by the individ-161

uals are essential model components.162

1. Two dissemination models are considered. The first is the broadcast model which is a163

volatile push mechanism which means that the information sender is the initiator and164

the message can get lost; radio broadcast information is an example. The second is the165

publish model where the information consumer either subscribes and receives a non-166

volatile message or decides to consult a (web)service; in this case the information can167

be consulted multiple times at arbitrary moments in time. Both the time at which an168

individual gets notified and the levels of information loss and distortion, depend on the169

mechanism used.170

2. No evidence about individual behavior in this respect was available while implement-171

ing the initial model. Hence for the experiments, the broadcast model is assumed and172

assimilation probability equals one for each affected individual and zero for everyone173

else. The delay between incident occurrence and broadcast (notification delay) is as-174

sumed to be gamma distributed ωnot ∼ gamma(αωnot
, β) with an expected value of175

αωnot
= 30[min]. A single gamma density function is used to sample the value for the176

notification delay. As a consequence, every individual gets informed but many of them177

too late (those are not informed in time to be able to use the information).178

3. Integration of the publish mechanism is required if it turns out that individuals having179

alternative routes to a destination tend to consult TIS before starting to execute the trip180

and hence show substantially different behavior.181

4. Agents getting notified before making use of congested network links, are informed182

individuals. The other ones are non-informed individuals.183

Expected traveltime adaptation and perception filtering184

Perception of (the effect of) incidents by individuals is modeled by185

1. for informed individuals (who are notified in time)186

(a) the time lag ωnot between the incident occurrence and the individual becoming187

aware of it by traffic information188

(b) the incident effect duration δnot as expected by the individual189

2. for non-informed individuals (who learn by experience)190

(a) the NSE-moment in time texp at which the person experiences a non-expected delay191

while traveling (hence a delay that adds to the expected daily congestion)192

(b) the person specific estimated duration δexp to finish the ongoing trip193
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Expected incident effect duration194

1. Early notifications (both by broadcast or publish mechanisms) can come available be-195

fore the incident (effect) end time. Hence, the incident effect duration is not known and196

each individual needs to estimate it along with the level and duration of its effect on197

travel times. It is assumed that the TIS provides in direct or indirect way some data198

about the kind of the incident which is used by the individual to estimate the duration.199

In the current model, the duration of the specified network disturbance is used as the200

expected value for a gamma distributed stochastic from which each individual samples201

to estimate the disturbance effect duration.202

203

2. Following cases are distinguished :204

(a) Case awareness by notification : the event duration as perceived by an individual205

who gets notified by a TIS, is modeled by a gamma distributed stochastic δnot ∼206

gamma(αδnot
, β). δnot models the duration expected by each individual aware of207

the incident and is based on the individual’s personal conviction: as a consequence,208

a new value is sampled for each individual (who is aware of the incident). Note209

that even in case an individual gets notified while traveling, the new travel duration210

cannot be fetched from the impedance matrix in use because that does not contain211

information about the future.212

(b) Case awareness by experience : the incident effect duration as perceived by an

uninformed person who experiences the incident effect by getting stuck in a con-

gestion, is modeled by a gamma distributed stochastic δexp ∼ gamma(αexp, β).
The individual is assumed to be able to predict (probably by experience) the new

travel duration (impedance) for the OD-pair (s)he is using at the NSE-moment in

time at which (s)he becomes aware of the problem. The individual believes that

the remainder of the trip will be driven at congested speed because that is, at that

moment, the best estimate for the duration to travel from origin to destination. Note

that this belief can get revised at the next NSE-moment. Let drem be the duration

required to travel the remaining distance; that is recalculated for each non-informed

individual at each NSE-moment. The uncertainty is modeled by sampling the du-

ration to travel the remainder of the trip distance from a gamma distribution with

expected value drem.

E(remDur) =
αexp

β
= drem (2)

δexp ∼ gamma(β · drem, β) (3)

3. Using a more elaborated model, the incident effect duration estimation can be made213

dependent on the drivers history (experience) which in turn can be assumed to grow214

with age.215

Particular moments in time with respect to rescheduling216

1. Let tinc be the time at which the incident occurs.217
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FIGURE 3 : Awareness by notification : informed person. A rectangle designates a trip. d0

is the original duration, d1 is the new duration. tinc is the incident start time, tnot is the

time at which the person gets notified and tend is the expected incident effect end time. Trips

ending before tnot are not affected. Note that the duration for trip TA is unaffected because

the trip is too short to get the incident effect experienced or notified. Grey blocks represent

affected trips that induce rescheduling due toe timely notification. Dash-dot lines represent

NSE-moments at which network state change can be perceived by individuals.
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FIGURE 4 : Awareness by experience : nonInformed person. Incident occurs at tinc and

ends later than texp. The value for δexp is drawn from a gamma distribution whose mean

equals the travel duration calculated using the actual network state. Dash-dot lines represent

NSE-moments at which network state change can be perceived by individuals.

2. Case awareness by notification : see Figure 3218

(a) The individual gets informed before experiencing the incident effect.

tnot = tinc + sample(gamma(ωnot, 1.0)) (4)

tend = tinc + sample(gamma(δnot, 1.0)) (5)

where219

tnot : is the time at which the individual gets notified (informed)

tinc : is the incident occurrence time

tend : is the incident’s effect end time as estimated by the individual. Note that

tend < tnot is possible (i.e. the person gets informed after the incident

effect is expected (by this person) to have terminated).

ωnot : is the expected delay between the incident start and the notification

δnot : is the expected incident effect duration

220

(b) Note that we assume that the person knows the incident start time (at least as soon221

as (s)he gets informed): in reality, the incident occurrence time is not always con-222

tained in the traffic info conveyed.223

3. Case awareness by experience : see Figure 4.

The (traveling) person becomes aware by experiencing delay: this always occurs at

equidistant discrete times because only at those moments the network state is recalcu-

lated. Relevant moments in time are given by

texp = t0 + k ·∆NSE , k ∈ N (6)

tend = texp + δexp (7)
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where224

texp : is the NSE-moment at which the individual evaluates the situation

t0 : is the simulated period start time

∆NSE : is the NSE-period duration

tend : is the incident’s effect end time as estimated by the individual. Note that

tend < tnot is possible (i.e. the person gets informed after the incident

effect is expected (by this person) to have terminated).

δexp : is the duration of the incident effect as estimated by the individual

225

4. The rescheduling algorithm is run226

(a) at each NSE-moment: for each affected individual traveling at that moment in time227

a new trip end time estimate comes available. The current implementation calcu-228

lates a new schedule only at the last NSE-moment contained in the trip. This is229

sufficient because individuals are assumed to act independently. As soon as inter-230

action between individuals has been implemented, rescheduling at least shall be231

condidered for each NSE-moment in order to model information flowing from de-232

layed individuals to people who they need to cooperate with during the remainder233

of the schedule. As soon as an individual becomes aware of any delay while know-234

ing that her/his agenda requires collaboration with someone else, information about235

the expected delay can be forwarded to the cooperators.236

(b) at each notification moment for informed individuals237

(c) at each trip end (arrival) time238

RESCHEDULER MODEL : UTILITY FUNCTIONS239

The first experiment serves to evaluate both the framework and a simple rescheduler when operat-240

ing on a large set of individuals and using a countrywide real road network.241

General Assumptions242

1. It is assumed that the schedules predicted by FEATHERS are optimal (i.e have maximal243

utility).244

2. The rescheduler only covers re-timing, no activity dropping, nor activity reordering, nor245

activity relocation, nor mode changes.246

3. Utility does not depend on absolute time as long as the activity is performed within the247

specified time limits.248

Utility Function249

1. Marginal utility v(d) is assumed to monotonically decrease with activity duration d.

Utility u(d) is determined by integration and by requiring zero utility for zero duration.

Subscript i identifies the activity. Both are shown in Figure 5

vi(d) = ki · e
−αi·d (8)

ui(d) = (1− e−αi·d)
ki

αi

(9)
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250

2. Consider the largest subset of activities in an optimal schedule so that only the first251

(last) one starts (ends) at an externally stated time limit (e.g. shop closing time, time252

specified in public transportation timetable). Then, the marginal utility is the same for253

each activity period in that set since the utility is maximal.254

3. Assume that activities ai (predecessor in period [ti−1, ti) ) and ai+1 (successor in period

[ti, ti+1) ) can be performed as a sequence. The optimal moment in time ti to start the

successor is determined from

vi(ti − ti−1) = vi+1(ti+1 − ti) ⇔ ti =
αi · ti−1 + αi+1 · ti+1 + ln ki

ki+1

αi + αi+1
(10)

Parameters determination from initial schedule255

1. The k value used in the (marginal) utility function is assumed to be activity type specific.256

For the experiment k values have been chosen based on the idea that they represent the257

activity importance. However, they need to be estimated by a survey.258

2. The α values are time constants: they are calculated from the assumed optimality cri-

terion. For nact activities, this condition leads to nact − 1 equations. The nact-th value

is determined by assuming that, in each maximal subset constrained by time limits (as

defined in section Utility Function item 2), the marginal utility for a reference activ-

ity dropped to a given fraction f of the original value for its duration d predicted by
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Activity type k.

HomeActivity 1.0

Work/school 2.0

Bring/Get 4.0

Daily Shopping 2.0

Non-daily Shopping 1.0

Services 2.0

.

TABLE 1 : (Marginal) Utility k values for activity types used in simulation.

FEATHERS. Equation 12 shows that the reference activity reaches a fraction 1 − f of

its maximal utility for duration d. For our first experimental result, we arbitrarily chose

the first activity in the schedule to be the reference activity with f = 0.05.

v(d) = k · e−α·d
⇒ v(d) = f · v(0) = f · k (11)

⇒ u(d) =
k

α
(1− e−α·d) =

k

α
(1− f) (12)

Since the k values depend on the activity type only, the specific (marginal) utility func-259

tions used, cause all activities of a given type enclosed between externally given time260

constraints in an optimal schedule, to reach the same utility. This however does not261

mean that they all have the same duration because the α values are activity specific.262

3. It needs to be investigated how to determine the optimal choice of the reference activity263

by finding out whether the activity type or the duration is the relevant factor for selection.264

Schedule Adaptation265

1. After applying the disturbance to the network, affected informed and non-informed in-266

dividuals get new values for the travel delay for one or more trips (each one at a specific267

moment in time t0 defined by notification or experience). The amount of time to be268

spent to the (partial) activities and trips that have not yet been finished at time t0 will269

change due to modified travel duration predicted from the network state.270

2. For each individual (schedule) the new activity start times are calculated using a re-271

laxation algorithm based on equation 10 that can be proven analytically to converge272

monotonically when a monotonically decreasing marginal utility is used.273

SIMULATION RUN - NUMERICAL DATA AND RESULTS274

1. For the first experiment, the k values given in Table 1 have been determined estimating275

the relative importance of activity types.276

2. A simulation runs goes as follows:277

(a) FEATHERS is used to generate an initial schedule for every individual.278
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(b) For each NSE-period p0 the set of trips whose execution period overlaps with p0 is279

determined. Each such set is used to assign traffic to the network using TransCAD.280

Travel times between TAZ are extracted from the TransCAD results. The set of281

affected individuals is determined as described in section Framework Conceptual282

Overview item 10.283

(c) For each newly affected schedule, the time at which the individual becomes aware284

is calculated: notification event.285

(d) As time evolves, at the end of every NSE-period, the new traffic state on the net-286

work is calculated and affected traveling persons who are not yet informed, become287

aware of congestion by experience: experience event. This event cancels an even-288

tually pending notification event for the specific (person,trip) combination.289

(e) Notification and experience events for each person are processed in chronological290

order. The one that comes first, applies.291

3. Total simulation time for 96 NSE-periods for about 2.9 million persons takes 19 hours292

computation time on a standard Intel i5 laptop running at 2.4 GHz and having 4 GB of293

memory. About 70% of the time is consumed by TransCAD for traffic assignment and294

shortest time paths calculations. The relaxation algorithm to find new optimal schedules295

when timing constraints changed, handles 21000 schedules per second.296

4. First results include cumulative distribution functions (CDF) for (marginal) utility and297

travel time for the situations before and after rescheduling. They allow to compare time298

loss effects between informed and non-informed individuals.299

FUTURE WORK300

1. Bell-shaped marginal utility functions (leading to S-shaped utility functions) will be301

introduced. Joh (3) has shown that they provide a more realistic model of reality.302

2. More elaborated models for the traffic information conveying model (broadcast, publish)303

need to be incorporated; the framework now is ready to do so. The sensitivity of the304

simulator to the notification model used, is to be investigated.305

3. Activity dropping and insertion, activity re-sequencing, activity relocation all will lead306

to challenging combinatorial optimization problems. Cooperation between individuals307

will add another magnitude of complexity as is suggested by preliminar investigations308

in Knapen et al. (11).309

CONCLUSION310

A framework to investigate large scale effects of rescheduling daily activities has been built by311

combining microscopic simulation with macroscopic time dependent traffic network performance312

modeling. The microscopic component covers large amounts of agents re-optimising their daily313

agenda making use of network information via perception filtering as time evolves; this in turn314

influences the time dependent network load. Both the framework and a simple rescheduler using315

monotonically decreasing marginal utility have been evaluated and proved to be able to produce316
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results for the complete flemish population and road network within a feasible runtime. The frame-317

work now is ready for evaluation of alternative (marginal) utility functions, traffic information318

conveying models and perception filters.319
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