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Force feedback has proven to be beneficial in the domain of robot-assisted rehabilitation. According to the patients’ personal needs,
the generated forces may either be used to assist, support, or oppose their movements. In our current research project, we focus
onto the upper limb training for MS (multiple sclerosis) and CVA (cerebrovascular accident) patients, in which a basic building
block to implement many rehabilitation exercises was found. This building block is a haptic linear path: a second-order continuous
path, defined by a list of points in space. Earlier, different attempts have been investigated to realize haptic linear paths. In order to
have a good training quality, it is important that the haptic simulation is continuous up to the second derivative while the patient
is enforced to follow the path tightly, even when low or no guiding forces are provided. In this paper, we describe our best solution
to these haptic linear paths, discuss the weaknesses found in practice, and propose and validate an improvement.

1. Introduction

Force feedback applications show their benefits when they
are applied in a robot-assisted rehabilitation program [1, 2].
In such a setup, the training can be more finely tailored to
the abilities and needs of the patient. At the same time, less
assistance of the therapist may be required, allowing at the
longer term to abolish the “one therapist for one patient”
requirement. The ultimate goal should be to allow patients
to perform their training independently without active as-
sistance of the therapist, or even to use the force feedback
enabled setup at home while being remotely monitored [3,
4]. It may sound evident that this opens possibilities for cost
reduction or an increased training intensity, where the latter
at its turn provides better training results [5]. Additionally,
several studies suggest that using games in a therapy may
improve the patient’s motivation [6]. Not necessarily using
force feedback, but surely by bringing the computer to the
revalidation setup and exploiting the “fun”-factor, this im-
provement in motivation may be achieved.

Our research lab participated in a pilot study focussing
on the training of the upper limbs in Multiple Sclerosis (MS)
(MS is an autoimmune disease of the central nervous system,
resulting in an increasing loss of force and coordination)
patients [7]. As the results were promising, the project was
prolonged and the focus was broadened to both MS and
CVA (CVA: cerebrovascular accident or stroke is the loss of
brain function(s) due to disturbance in the blood supply to
the brain, caused by a blockage or a leakage of blood) pa-
tients. More information regarding our haptic-assisted reha-
bilitation approach can be found in [8].

A Phantom haptic device, a HapticMaster and/or a Fal-
con, were chosen to be used to control several game-like
training exercises. The generated forces can be applied to ei-
ther assist, support, or oppose the patient, according to their
individual needs [9].

Assisting Forces. They “assist” the patient in performing a
(new) movement. The patient can remain passive and can
feel how the movement has to be made.
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Supporting Forces. They help the patients, but patients have
to perform the movement by themselves. The forces avoid
making too large deviations from the intended motion path.

Opposing Forces. They oppose the patient’s movement by
generating forces opposite to the intended motion (friction,
viscosity, etc.), requiring the patient to develop larger force
amplitudes.

In the following sections we first introduce our previous
work on this topic and illustrate the weaknesses found during
further usage. Afterwards we discuss an improvement on our
work as well as experimental data to validate and motivate it.

2. Previous Work

During the development of rehabilitation exercises, we no-
ticed that only a few basic haptic effects were necessary.
Among them, we identify the ones available in most haptic
APIs such as feedback when touching objects, spring forces,
or magnetic force fields. However, one important building
block is what we call a “linear path” between two or more
points in space. One of the important features of such a
haptic linear path is that an adjustable spring force supports
the patient by attracting the cursor to the center of the line.
Supplementary, additional forces such as an assisting forward
force, or an opposing friction or viscosity may be useful as
well. The current existing implementations, in the most com-
mon haptic APIs. (We consider OpenHaptics [10], CHAI3D
[11] and H3D [12]), unfortunately are not fully suitable. In
what follows, we first shortly indicate the design require-
ments.

(1) Continuous Path. It is required that the haptic simula-
tion is continuous in the first and the second deriva-
tive in each point. This is necessary for a smooth hap-
tic rendering with no bumps or oscillations, further-
more allowing the smooth superimposing of addi-
tional forces (see item 5).

(2) Easy to Design. For the designer of a scene, the inter-
face must be as easy as possible, avoiding complex
shapes such as splines, to be entered manually. A
simple enumeration of a set of points in space may
be suitable, although a naive implementation would
conflict with our first requirement.

(3) Approximate the Given Path. The interpolated contin-
uous path must approximate the original linear path
as close as possible.

(4) Support for Several Devices. In our rehabilitation
project we consider three different haptic devices: the
HapticMaster, the Phantom, and the Falcon. Obvi-
ously, the same software should apply to all three
devices.

(5) Apply Additional Forces. For our rehabilitation pro-
gram it is necessary not only to generate a spring force
to the center of the curve. Additional forces, either
supporting or opposing (such as a forward force,
friction, or viscosity), have to be superimposed, as
well.

In [13] we proposed two approaches that meet all of our
requirements: one using rounded corners, another using car-
dinal splines, as is illustrated in Figure 1. Analysis showed
that both types had their own benefits and disadvantages.
Using both implementations in practice, we found that the
cardinal spline solution provided the best results. Therefore,
in the scope of this paper, we will limit our discussion to the
cardinal spline implementation.

In the next section, we first explain the math behind the
original implementation and explain the problem with this
implementation. Thereafter, in Section 4, we propose our
additional “pull-back algorithm” as an improvement. Finally,
in Section 5, we show the results of our solution in a short
benchmark.

3. Haptic Lines Implementation

As shown in Listing 1, the designer of a new scene or reha-
bilitation exercise defines a new path by defining a sequence
of points in (3D) space. Using Cardinal splines interpolation
[10], the haptic rendering is calculated. Cardinal splines are
a subset of Hermite Splines where the tangent control points
are defined as a function of the other control points (provid-
ing an easier interface to the “designer”).

The Cardinal Splines solution guarantees that the contin-
uous curve runs through the control points. Depending on
the “tension factor,” however, the actual curve can slightly
deviate from the line between two successive points (see
Figure 1(b)).

Given the points s1 and s2 and the tangential lines T1 and
T2, the tangential line Tn is given by α · (sn−1 − sn+1). This
means that the tangential is parallel with the line between the
previous and the next control point. Alpha (α) is the tension
factor, typically between 0 and 1, defining how “tight” the
curve is in the control points.

The spline curve is then defined by four parametric func-
tions:

h1(t) = 2t3 − 3t2 + 1,

h2(t) = −2t3 + 3t2,

h3(t) = t3 − 2t2 + t,

h4(t) = t3 − t2.

(1)

An arbitrary point P on the curve is calculated by

�P
(
x, y, z

) = h1(t) · s1 + h2(t) · s2 + h3(t) · s1 + h4(t) · s2.
(2)

For a smooth haptic rendering, we need to find the
perpendicular projection h′ from the position of the haptic
device h. The calculation of the minimal distance of a
point to the spline can be achieved by solving the equation
∂P(t)/∂t = 0, but this is not trivial [14]. We decided to take a
more pragmatic approach and exploit the strong coherence
between successive haptic rendering steps by searching for
a new local minimum in the neighborhood of the previous
projection point.

The pragmatic approach can be applied for all rendering
steps, except for the very first one (at startup). In that situ-
ation, the entire closest line segment has to be sought for a
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(1) <Toggle Group DEF="Linear Pad" haptics On="false" graphics On="false">
(2) <Shape>
(3) <Appearance>
(4) <Material emissive Color="0 0 0"/>
(5) <Line Properties linewidth Scale Factor="5"/>
(6) </Appearance>
(7) <Linear Path vertex Count="11" DEF="myPath">
(8) <Coordinate point="−0.1466667 0.02666667 0,
(9) −0.1053333 0.078 0,
(10) −0.005333333 0.07933334 0.0,
(11) 0.018 0.04666667 0.0,
(12) −0.01066667 0.01866667 0,
(13) −0.06933333 0.04333333 0,
(14) −0.07333333 0.1213333 0,
(15) 0.05466667 0.1266667 0,
(16) 0.1166667 0.05333333 0,
(17) 0.1146667 −0.012 0,
(18) 0.072 −0.036 0"/>
(19) </LineraPath>
(20) </Shape>
(21) <Linear Path Forces DEF="myForces" interpolation="splines"
(22) spring Constant="40"
(23) aid Constant="1.3"
(24) viscosity Constant="5"
(25) static Friction="0.8"
(26) dynamic Friction="0.5">
(27) <Linear Path USE="myPath"/>
(28) </Linear Path Forces>
(29) </Toggle Group>

Listing 1: Listing example of a linear path with some haptic effects.
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Figure 1: (a) First solution using rounded polygons. (b) Second alternative using cardinal splines.
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Figure 2: Illustration of a possible “shortcut a user can make.”

minimum distance. In our implementation, for performance
optimization, the spline curve is precalculated in a spline
table.

The spline equation is a parametric equation (in t), with
t varying between 0 and 1, respectively, corresponding with
the start and the end point of a segment. It may be clear that
the step size of the samples of t, must be linked to the actual
length of a segment; otherwise small segments would be
oversampled while longer segments would have a coarser res-
olution. A reasonable high resolution is important to ensure
smooth haptics; otherwise the haptic simulation may suffer
from stutter effects. In our implementation, the number of
steps is proportional to the Euclidian distance between the
control points, or is written as:

nsteps = k · ∣∣pn − pn−1
∣
∣. (3)

For example, for the phantom k is determined to be 7000
based on the resolution of the phantom which is 0.03 mm.
For the other devices k would be smaller or close to k; there-
fore we define k as a constant at 7000 for all our haptic devi-
ces.

4. Haptic Lines Problem and Improvement

The implementation described in the previous section has as
a downside that while the spring forces are low, it may be easy
to find “a shortcut” between the beginning and the end of
a line. Figure 2 illustrates this shortcoming. It may be clear
that in a rehabilitation context; this effect is unwanted, as
we want the patient to accurately follow the predefined path.
This is particularly true in low-force circumstances where it
is (physically) easy to deviate from the path. In this section
we will describe an improvement which forces the patient to
better keep on the track.

4.1. Pullback Function. The central idea of our solution is to
define a continuous function that virtually “pulls back” the
perpendicular projection of the cursor on the spline curve
based upon the distance of the actual cursor from the curve.
The larger the distance is between the cursor and its pro-
jection, the more the projection point is pulled back. The
new (pulled back) projection point is then used for calcu-
lating the feedback forces. Pulling back the projection point
increases the attraction forces and introduces a slight resist-
ance force to advance on the path, but even when low or no
attraction forces are present, the pullback function will ulti-
mately halt a wrong progression of the user in a continuous
way.

4.2. Implementation. Although the general idea is pretty sim-
ple, the implementation is less evident. In this section, we will
clarify how the function is implemented and how continuity
is ensured.

The pullback function is defined as follows (see also
Figure 3):

G−
((

1− cos
(

dist
d
× π

))
× m

2.0

)
, (4)

where G is the global spline parameter (see further) on the
spline curve (taking all segments into account) and dist is
the perpendicular distance of the actual cursor to the curve.
d and m are two constants that define the behaviour of the
pullback function as will be explained later in this section.

We work with the global distance parameter G, rather
than the parametric spline values per segment, as the the
pullback function must behave consistently independent of
the length of a particular segment. In order to calculate G, in
a first step, the current spline parameter (in the current seg-
ment) must be converted into a global distance value taking
all the past segment lengths into account. The total distance
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Figure 3: The pullback algorithm.

from the beginning of the curve, divided by the total spline
length gives us the global distance parameter (G).

The second term in the formula is a sinusoidal function
in dist that behaves as shown in the upper right corner in
Figure 3. d is a constant that defines the distance at which the
pullback function is maximal. When d > dist, the pullback
function is kept at its maximum. Hence, when dist approach-
es from zero to d, the cosine function ensures a smooth and
continuous increase.

The parameter m defines the maximum value the projec-
tion point is “pulled back”. When dist approaches to d, the
cosine becomes 0 and the maximum pull back value (divided
by 2.0) is applied. Hence, our global distance parameter is
lowered by the pullback value.

After applying the equation we reconvert G back into a
parametric spline value (taking the lengths of the different
segments into account) that gives us the new position onto
the haptic line: the pullback point.

The explanation above describes the basic algorithm.
However, a couple of smaller refinements were necessary in
order to make the algorithm work in practice and insure
continuity in all cases. Amongst them, some logic takes into
account that it is possible for a user to make a shortcut that
goes beyond the border of one segment, or even to skip one
or more segments.

5. Benchmarking

5.1. Experimental Design. In order to verify our improve-
ment, an evaluation was necessary. However, conducting a
standard user study would not provide us with satisfying
results. This is because the enhancement described in this
paper is to prevent patients to take a shortcut instead of fol-
lowing the defined path; this situation grows only after a

patient is fully familiar with the application and has learned
to exploit all back doors. Hence, evaluation using naive users
would not give us any useful feedback on the quality of our
solution.

Therefore, we opted to perform a benchmark test. In this
benchmark we deliberately try to search for the shortest path
between the start and the end of the curve, not necessarily
following the path. This was done using different paths and
different parameters, as defined:

(i) four different values for the attractive force to the
center of the line (0 N, 50 N, 100 N, 150 N), (these are
the values given to the API. The values were empiri-
cally chosen in order to have “no,” “weak,” “medium,”
and “strong” attraction forces),

(ii) four different pullback strengths, defined by the pa-
rameter m (0, 0.033, 0.066, 0.1) (these values are ex-
pressed as a percentage of the total curve length),

(iii) two different haptic lines: a highly curved curve and
a less curved, as shown in Figure 4.

This results in 16 different benchmarking conditions for
the two curves, or 32 conditions in total.

Two of the authors performed the benchmarking, as
they are supposed to know the insights of the solution and
are better able to find the shortest possible path. In order to
ensure that the authors would really strive for the best min-
imal values, a little competition between the benchmarkers
was set up, electing the winner as the one who found the
shortest path in the majority of the conditions.

For each of the 32 conditions, each benchmarker was
obliged to try for 10 times to find the shortest path, while
the result (the ratio between the covered path and the actual
length of the path) was shown after each trial. The latter was
also logged to file for later analysis.
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Ratio: 2.58579–2.00079

(b)

Figure 4: The two curves used in the benchmarking test. Curve 1 (a) with a high curvature, curve 2 (b) with much less curvature. Note that
the visual representation only shows the straight lines, while the haptic simulation uses the spline interpolation.
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Figure 5: Ratio (shortest path/actual path length) for curve 1 (high curvation) and curve 2 (low curvation) for the different attraction forces
(colours) and different pull-back values (x-axis).

5.2. Results. The results of the benchmark are given in
Figure 5. The graph depicts the lowest ratio (measured dis-
tance versus actual distance), measured for a given condition,
respectively, for curves 1 (a) and 2 (b). The x-axis contains
the different m values for the pullback algorithm; the differ-
ent graphs show the different attraction forces (no force, low,
medium, and high force).

In what follows, we clarify how these graphs can be
interpreted.

In Figure 5(a), given the m = 0 condition (first column),
we get a ratio of 0, 78 in the no-force condition (lower curva-
ture). This means that one of the benchmarkers could com-
plete the trial by making a movement that was 78% shorter
than the actual intended path. In this condition there was no
attraction force and no pull back, so we can assume that this
is the shortest path that the spline interpolation allows. In
Figure 5(b), we see for the same condition a ratio of 0, 90,

which can be explained by the fact that the intended path is
less curved, and hence the possible deviation is smaller.

When looking at the different force conditions (still given
m = 0), we observe that the more the attraction force in-
creases, the more tightly the original curve must be followed.
This may in no means be a surprise, as this is the actual goal
of the haptic lines: supporting a patient in practising a given
path or movement and keeping them tight to this path. It
may be evident that in curve 2 the difference is less pro-
nounced as the path is more straight.

Having a better understanding of how to interpret the
graphs, let us now discuss the influence of the parameter m,
indicating “how far” the projection on the curve is “pulled
back” when the perpendicular distance to the curve is
increasing. In Figure 5(a), we see that increasing m forces the
user to better follow the original curve in all force conditions.
In the situation where m = 0.1, the ratio is even almost
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independent from the attraction force, with ratios between
0.91 and 0.94. For curve 2, the result is obviously less pro-
nounced, but here we also notice that the “no force, no
pull-back” condition allows to slightly “bypass” the intended
curve, while adding our pull-back algorithm inhibits this
behaviour, independent of the attraction forces.

This is exactly the initial intention of our pull-back mech-
anism: finding a smooth and continuous manner of forcing
a user to follow a given path, when attraction forces are low.
Moreover, we felt that our solution did not hinder the natu-
ral interaction with the system, which was the case in our
former rounded corners solution described in [13]. The lat-
ter, however, remains to be confirmed by a practical usage in
our project.

6. Conclusion

In our current research project, focussing on the upper-limb
rehabilitation of MS and CVA patients using force feedback
supported exercises, we found that several basic force feed-
back behaviors were necessary, among which a linear haptic
path. Unfortunately current implementations in available
APIs do not suite our particular need. In this paper, we de-
scribed one of our best performing alternatives to implement
these curves, based upon Cardinal Splines. In practice, how-
ever, we observed that patients getting experienced in the
exercises, had the possibility to shorten their path as the at-
traction force was lowered. Therefore, we proposed a “pull
back” algorithm, smoothly pulling back the projection on the
curve based upon the distance of the cursor and the curve.
In a benchmarking test, we could show that adding a higher
pull-back factor makes the user to better follow the intended
path, independent of the available attraction forces.

During informal tests, we found that the pull-back func-
tion felt natural and did not hinder the interaction. This,
however, requires verification in a formal user study, by let-
ting naive users or patients work with our solution during
real rehabilitation exercises.
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