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Abstract: Bayesian modeling of dose-response microarray data offers the possi-
bility to jointly establish the dose-response relationships between gene expression
and increasing doses of therapeutic compound, and to determine the nature of
the relationships wherever it exist. Moreover, correction for multiplicity adjust-
ment for Bayesian modeling of dose-response microarray data can be based on
the direct posterior probability of the null model. The posterior probabilities are
obtained by translating the inequality constraints for monotone relationship into
Bayesian variable selection problem.
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1 Introduction

Dose-response microarray experiments are a growing area in biomedical
and pharmaceutical research to study the relationship between increasing
doses of a therapeutic compound and the activity of entire genome at once.
The primary goal of such an experiment is to identify genes with signifi-
cant dose-response relationship under the monotone constraints (Lin et al.,
2012). Secondly, it is necessary to determine the nature of the relationship
wherever it exists. Denote the mean gene expression of a gene under the
placebo dose as µ0. Similarly, we consider an increasing doses of a thera-
peutic compound and µi, i = 1, . . . ,K be an the mean gene expression
under dose i. Therefore, the primary interest is to test the null hypothesis

H0 : µ0 = µ1 = µ2 = . . . = µK , (1)
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TABLE 1. The set of seven possible monotonic dose-response models for an
experiment with three dose levels. The mean response of dose level i is denoted
as µi. The model g0 represents the null model of no dose effect.

Model Non-decreasing profile Non-increasing profile

g1 µ0 = µ1 = µ2 < µ3 µ0 = µ1 = µ2 > µ3

g2 µ0 = µ1 < µ2 = µ3 µ0 = µ1 > µ2 = µ3

g3 µ0 < µ1 = µ2 = µ3 µ0 > µ1 = µ2 = µ3

g4 µ0 < µ1 = µ2 < µ3 µ0 > µ1 = µ2 > µ3

g5 µ0 = µ1 < µ2 < µ3 µ0 = µ1 > µ2 > µ3

g6 µ0 < µ1 < µ2 = µ3 µ0 > µ1 > µ2 = µ3

g7 µ0 < µ1 < µ2 < µ3 µ0 > µ1 > µ2 > µ3

against the alternative hypotheses

Hup
a : µ0 ≤ µ1 ≤ µ2 ≤ . . . ≤ µK ,

or
Hdn

a : µ0 ≥ µ1 ≥ µ2 ≥ . . . ≥ µK

(2)

with at least one strict inequality. The choice between Hup
a and Hdn

a de-
pends on the direction of the ordered constraints. Note that the determina-
tion of the nature of the dose-response relationship is related to the further
decomposition of the alternative hypotheses into their basic hypotheses.
This process results in 2K − 1 hypotheses under each of the monotone di-
rections. For a dose-response microarray experiments with one control dose
and K = 3 (i.e. three increasing doses of a therapeutic compound), the al-
ternative hypotheses can be decomposed into further basic hypotheses as
shown in Table 1. Note that each alternative hypothesis corresponds to a
monotone model. In particular the null hypothesis corresponds to the null
model for which µ0 = µ1 = µ2 = µ3.
Bayesian modeling of dose-response microarray data offers a framework to
simultaneously establish a dose-response relationship and to determine the
nature of the relationship by providing posterior probability for each of
the models gi, i = 1, . . . ,K, given the data. The posterior probability of
the null model is particularly interesting, because it is also a probability of
false positives findings, i.e. of genes that are wrongly assigned to the alter-
native hypotheses. Hence, posterior probability allows for adjustment for
false discovery rate (Newton et al., 2007), to identify few important genes in
a pool of potential false positives. However, the estimation of the required
parameters to obtain posterior probability for the models requires esti-
mation under equality constraints between two or more parameters which
could not be estimated with the standard approach of Gelfand et al. (1991).
Therefore, the Bayesian variable selection approach offers elegant solution
how to identify the relationship and correct for multiplicity simultaneously
using conditional false discovery rate.
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2 Methodology

The Bayesian inequality models (Klugkist and Hoijtink, 2005) cannot be
used in our framework because of the equality constraints specified in the
models. The equality constraints would cause that standard estimation ap-
proach assigns zero probabilities to each of our models except g7. Therefore,
we propose the following parametrization. We consider the following linear
model,

Yij = µi + εij , εij ∼ N(0, σ2), i = 0, · · · ,K, j = 0, 1, 2, · · · , ni, (3)

where Y = (Y01, Y02, . . . , YKnK ) are gene expression levels and ni repre-
sents the number of observations at the ith dose level. Reparameterize the
mean response such that

E(Yij) = µi =


µ0, i = 0,

µ0 +
i∑

ℓ=1

δℓ, i = 1, . . . ,K.,
(4)

with the constraints that δℓ ≥ 0 for an upward trend or δℓ ≤ 0 for a down-
ward trend. The difference in the mean structures of the different models
therefore depends on which of the components in δ = (δ1, δ2, . . . , δK) are
set to be equal to zero. The problem of model estimation is equivalent to
decision which columns in the full design matrix of model 4 are selected or
deleted. This is related to the Bayesian variable selection (BVS) approach
(George and McCulloch, 1993), which is used to determine an optimal
model from a priori set of R known plausible models. In our setting the
BVS model allows us to calculate the posterior probability of each model,
p(gr|data) and in particular the posterior probability of the null model,
p(g0|data). Let zi, i = 1, . . . ,K be an indicator variable such that

zi =

{
1, δi is included in the model,
0, δi is not included in the model,

(5)

and let θi = δi · zi. Hence, we can reformulate the mean structure in (4)
(O’Hara and Sillanpää, 2009) in terms of θi and zi as

E(Yij) = µ0 +

i∑
ℓ=1

θℓ = µ0 +

i∑
ℓ=1

zℓδℓ, i = 1, . . . ,K. (6)

For K dose levels experiment, the vector z = (z1, . . . , zK) defines uniquely
each one of the 2K plausible models. For example for K = 3 and z =
(z1 = 1, z2 = 0, z3 = 0) we obtain E(Yij |z) = (µ0, µ0 + δ1, µ0 + δ1, µ0 + δ1),
which corresponds to the mean of model g3). We assume that zi and δi are
independent, and use truncated normal prior distribution for δi and

zi ∼ Bernoulli(πi),
πi ∼ U(0, 1).

(7)
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As pointed out by O’Hara and Sillanpää (2009) the posterior inclusion
probability of δi into the model equals the posterior mean of zi. The pos-
terior probability of each model can be straightforwardly obtained by us-
ing the transformation of z instead of the entire vector z itself. Denote
MR = 1 + zc, where c = (1, 2, . . . , 2K−1)T , then MR has unique value for
each of the plausible models (for example: MR = 2 only for the model g3).
Thus, the posterior probability of MR = r, r = 1, . . . , R, defines uniquely
the posterior probability of the rth model,

p(MR = r|data) = p(gr|data), (8)

and in particular, the posterior probability of the null model is given by,

p(MR = 1|data) = p(g0|data). (9)

Assume that there arem = 1, . . . ,M genes in the experiment and the aim is
to find the differentially expressed ones with respect to dose. In our frame-
work, the problem is translated to the determination if the gene follows any
other model than g0. Assume that the genes satisfying pm(g0|data) ≤ α for
given threshold α are considered differentially expressed. Hence, according
to Newton et al. (2007), pm(g0|data) represents probability of such state-
ment being false. Let Im be an indicator variable of pm(g0|data) ≤ α. Since
pg(g0|data) is also the probability that the considering the mth gene diffe-
rentially expressed is incorrect, the expected number of false discoveries
(cFD) is

cFD(α) := E(cFD) =
M∑

m=1

pm(g0|data)Im. (10)

Newton et al. (2007) defined the conditional (on the data) false discovery
rate as

cFDR(α) =
cFD(α)

N(α)
, (11)

where N(α) is the number of genes declared differentially expressed for a
given threshold α. Note that cFDR(α) is interpreted as the average error
that is made by considering any gene as differentially expressed. Hence,
the value of α is selected is such a way that cFDR(α) does not exceed a
pre-specified threshold τ .

3 Results

We apply the direct posterior probability approach discussed above for
multiplicity adjustment. The framework enables adjustment for false dis-
covery rates among the significant genes. We use the R2WINBUGS package to
fit a gene specific model and to obtain the posterior probability of the null
model. For each gene an MCMC simulation of 20000 iterations (from which
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FIGURE 1. Adjustment for multiplicity. The relationship between the conditional
false discovery rate (cFDR) and the cut-off values.

5000 are used as burn-in period) was used to fit the BVS model. Figures 1
and 2 show the relationship between false discovery rate (cFDR), number
of significant genes and cut-off value α. Figure 1 shows that an increase
in cut-off values results in an increase in false discovery rate. However, the
false discovery rate reaches its maximum of 0.2 at the cut-off of about 0.5.
Figure 2 also shows an increase in the number of significant genes with
an increase in cut-off values. The implication of the finding is that, as ex-
pected, the higher the cut-off value, the larger the number of significant
genes and consequently, the higher the proportion of false positives among
the significant genes. Similar to the frequentists practice, one may wish
to control for false discovery rate at 1% or 5%, which corresponds to cut-
off values of 0.029 and 0.102, respectively. Based on these cut-off values,
the corresponding numbers of significant genes are 609 and 3295 genes,
respectively.

4 Discussion

There are two main challenges in Bayesian analysis of dose-response mi-
croarray data. The first is the presence of strictly equality relationship
between differences in gene expressions at different doses of a therapeutic
compound and the second is the question how to adjust for multiplicity.
The BVS method is useful as an approach to circumvent the first problem
by replacing strict equality between doses by a common parameter. The
BVS model estimates equal means for two successive dose levels, i and i−1
whenever the corresponding binary variable for the ith dose level zi = 0.
Further, the posterior probability of the null model can be estimated and
can be used for multiplicity adjustment. In summary, the BVS methodolo-
gy offers the tools how to handle the differentially expressed genes finding
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FIGURE 2. Adjustment for multiplicity. The relationship between number of sig-
nificant genes and the cut-off values.

in elegant and efficient way.
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