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1 Introduction

The mathematical study of gene assembly in ciliates wasated in [58] and in [59],
where it was noted that the DNA rearrangements performedibjes have a strong
computational appeal. The first results dealt with the camatmnal capabilities of
suitably defined models for gene assembly, using classigabaches from theoret-
ical computer science, especially based on formal langaiage computability the-
ory. Shortly afterwards, a parallel line of research wasdted in [33] and in [75],
where the focus was to study various properties of the gesendsly process itself,
understood as an information processing process thafdrams one genetic struc-
ture into another.

This research area has witnessed an explosive developritmg large number
of results and approaches currently available. Some of tielang to computer sci-
ence: models based on rewriting systems, permutatiofsgstgraphs, and formal
languages, invariants results, computability results, see, e.g., [29], while others,
such as template-based DNA recombination, belong to thieatand experimental
biology, see, e.g., [34] and [5].

In this chapter we review several approaches and resultseitamputational
study of gene assembly. In Section 2 we introduce the basiodital details of the
gene assembly process as currently understood and expéalipe@bserved. After
mathematical preliminaries in Section 3, we introduce tvidhe mostly studied
molecular models for gene assembly (intermolecular angnmblecular) in Sec-
tions 4 and 5. We also discuss several mathematical appreamed in studying
these models. In Section 6 we discuss some properties oétieassembly process,
called invariants, that hold independently of moleculadel@nd assembly strategy.
In Section 7 we present models for template-based DNA reauatibn as a possible
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molecular implementation of the gene assembly process.dffelude the chapter
with a brief discussion in Section 8.

2 The basic biology of gene arrangement in ciliated protozoa

All living cells can be classified as belonging to one of twghilevel groups: the
prokaryotesor the eukaryotesThe prokaryotes are defined chiefly by their simple
cellular organization: within a prokaryotic cell there are@ compartments or sub-
divisions, all of the intracellular materials (e.g., en®snDNA, food, waste) are
contained within a single cellular membrane and are freatrinix. By contrast,
eukaryotic cells contain nested membranes with many fanatly and morpholog-
ically distinct organelles, the most well-known being thé&cleus which contains
the DNA, and DNA processing machinery. All bacteria and aszhare prokaryotes
while all higher multicellular organisms are eukaryotes.

Theprotozoaare single-celled eukaryotes of striking complexity; eaehfunc-
tions as a complete, individual organism capable of adwdmhedhaviors typically
associated with multi-cellular organisms. Protozoa atemaed with extensive sen-
sory capabilities and various species can sense temperhdgint and motion as well
as chemical and magnetic gradients. In addition to locamnotia swimming, some
types of ciliated protozoa are able to coordinate legs mamta fused cilia to walk
along substrates in search of food. Many protozoan spenéeadiive hunters and
possess elementary decision-making abilities enabliegitto identify, hunt and
consume prey.

Protozoa are found in nearly every habitat on Earth, and goenitical portion of
the microbial food web. Beyond such ecological significatice study of protozoa
is fundamental to evolutionary inquiry as the protozoaespnt a significant portion
of eukaryotic evolutionary diversity on Earth — throughithevolution they have
produced unique features, one of which we study furtherigwahapter.

The ciliated protozoa(phylum Ciliophora) are a particularly interesting group
due to their unique, and complex, nuclear morphology aneties Where most eu-
karyotic cells contain only one type of nucleus (sometinmeany copies), ciliate
cells contain two functionally different types of nucledacronucleugabbreviated
asMAC) andMicronucleus(MIC), each of which may be present in various multi-
plicities. For details on the many other aspects of ciliatddgy which we are not
able to touch upon here, we refer to [47, 73].

The diversity within the phylum Ciliophora is staggeringdagven relatively
closely related species have extreme evolutionary distgmcg., the ciliateBetrahy-
mena thermophilandParamecium caudatuimave an evolutionary distance roughly
equivalent to that between rat and corn [71]. In this chap&erestrict our discussion
to ciliates of the subclass Stichotrichia for which the wr&ideatures that we discuss
in this chapter are especially pronounced.

In Stichotrichia there is a profound difference in genomgamnization between
the MIC and MAC on both a global level (where one considersdiganization
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of chromosomes) and a local level (considering the orgéinizaf DNA sequence
within individual genes).

On the global level, the MIC is diploid (there are exactly tvapies of each chro-
mosome) and composed of long chromosomes containing nsllad base pairs of
DNA. Each of these chromosomes contains a large number ekgatthough these
genes account for only a very small portion of the total sega®f the chromosomes
(approximately 2-5% in stichotrichs). This long, but gecedty sparse, chromosome
structure is similar to that found in the nuclei of most oteekaryotes.

The global organization of the MAC provides a stark contrashat of the MIC:
most obviously, the number of copies of chromosomes in MAGgery large. For
example, typically more than 1000 copies in stichotrichererthan 10000 irsty-
lonichia, and at the extreme end up to millions of copies of the rDNAtaming
chromosome in the stichotrigbxytricha trifallax (also calledSterkiella histriomus-
corum). Along with much higher number of copies, MAC chromosomesrauch
shorter than those of the MIC and they contain only 1-3 geaeb.é\lthough they
are small, these chromosomes are genetically dense — indgpiximately 85%
of a typical chromosome sequence contain genes. Henceuglitwe have a huge
multiplicity of these chromosomes, the total DNA contenstii much lower than
in the MIC. Thus, the MIC chromosomes are long and “sparseileathe MAC
chromosomes are short and “dense”.

The difference in global genetic organization between t\and MIC is im-
pressive, but turns out to be much less startling than tlierdiiice in the local orga-
nization of the genes. On the local level, the MAC is a funwdinucleus and, like
most eukaryotic nuclei, it carries out the day-to-day gerfétousekeeping” tasks
of the cell including the production of proteins from the ¢tional MAC genes.
In contrast, the genes of the MIC are not functional (not egpible as proteins)
due to the presence of many non-coding sequences which bpetiie genes. In-
deed, the macronuclear forms of ciliate genes are heavilifirad from the original
micronuclear configurations. MIC genes can be divided imo interleaving types
of regions:Macronuclear Destined SegmemtisMDSsandInternal Eliminated Se-
quencesor IESs The MDSs are the regions of the MIC gene that end up in the
functional MAC version of the gene, while the IESs are irpersed non-genetic re-
gions of sequence that do not appear in the MAC version oféine gsee Fig. 1. The
MDSs are assembled, via overlapping regions cglleidtersto form the macronu-
clear genes. Each MDS, with the exception of the first and im$tanked on either
side by one of these pointer regions. The outgoing poinggoreon one side, which
we depict at the right side of MD% has identical DNA sequence to the incoming
pointer region on the left side of MD& + 1. An illustration of this can be seen in
Fig. 2; note that the outgoing pointer of MDSis identical to the incoming pointer
of MDS (n + 1).

In some ciliates, in addition to the appearance of IESs, the §&nes have the
further complication that the MDSs do not appear in the sarderaas they do in
the functional MAC gene. That is, the order of MDSs in the Mi&hg isscrambled
relative to their “orthodox” order in the MAC gene and may eweentain segments
which are inverted (i.e., rotated 180 degrees). A schemgpiesentation of the gene
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MDSs 1 2 3 4 5 6 7

—
IES1 IES2 IES3 IES 4 IES 5 IES 6

macronuclear
development

MDSs 1 2 3 4 5 6 7

Fig. 1. A diagram of the arrangement of six IESs and seven MDSs in iheormuclear (top)
and the macronuclear (bottom) gene encodi#id® protein. During macronuclear develop-
ment the IESs are excised and the MDSs are ligated (by owénigpf the ends) to yield a
macronuclear gene. MDSs arrtangles|ESs ardine segmentbetweerrectangles[74]

) IES . IES o JES
MIC: MDS4 P | mps2 mpst |9 MDS3
MAC: ‘[ MDS1 !g MDS2 g MDSSlMDS4 ]‘

Fig. 2. Schematic representation of MIC gene (top) and associa#d yene (bottom) with
pointers indicated on the MDSs.

actin | fromO. trifallax is shown in Fig. 3 (see [77]). Note that the numbers enumer-
ating MDSs refer to the orthodox order of the MDSs in the maantear version of
the gene, and a bar is used to denote MDSs which are inverted.

| — e T s T N O s O o

Fig. 3. Schematic representation of the structure of the micreaudene-encoding actin pro-
tein in the stichotrictSterkiella novaThe nine MDSs are in a scrambled disorder. [77]

Ciliates reproduce asexually but, during times of envirental stress (e.qg., starv-
ing due to lack of nutrients) can also undergo the (non-rypetive) sexual activity
of conjugation Rather than producing offspring, the purpose of conjugsiti cili-
ates is to give each cell a “genetic facelift” by incorpangthew DNA from the con-
jugating partner cell. The specifics of conjugation are lyigpecies-dependent, but
almost all ciliate species follow the same basic outline,gbneric form of which is
illustrated in Fig. 4. Two cells form a cytoplasmic bridgeilgimeiotically dividing
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their diploid MICs into four haploid MICs. Each cell sendsedmaploid MIC across
the bridge to the conjugating partner. The cell then comdbmee of its own hap-
loid MICs with the newly-arrived haploid MIC from the parine form a new fused
diploid MIC. Also, each cell destroys its old MAC and remaigihaploid MICs, the
fused MIC divides into two parts, one of which will be the newQvand the other
one will develop into (will be transformed into) the new MAC.

The topic of interest in this chapter is this transformatidra new MIC into a
new MAC. We focus in particular on the transformations of ithdividual genes —

5

a process calledene assemhlyrhis process is fascinating both from the biological

and information processing points of view. Indeed, generab$y is the most com-

plex example of DNA processing known to us in nature, unaeestby the dramatic
difference in the structure, and composition, of the MIC &m8lC genomes ex-

plained above. To form a functional macronuclear geneES8klmust be excised, all
MDSs must be put in their original (orthodox) order with intesl segments switched
to their proper orientation.

Understanding and investigating the computational natfitee gene assembly
process, and its biological implications, becomes therakficus of this chapter.
For further details on the biology of gene assembly we ref@€s3][72][73][65] [34]
and, in particular to [29], which contains chapters explajrbasic biology, basic cell
biology and the basic biology of ciliates written specifigdbr motivated computer
scientists.

3 Mathematical preliminaries

In this section we fix basic mathematical notions and tertogypused in this chap-
ter.

3.1 Strings

For an alphabeX, let ¥'* denote the set of all strings ovEr. Let /A denote thempty
string. For a stringu € X*, we denote byu| its length, i.e., the number of lettexs
consists of.

A string u is asubstringof a stringv, if v = xuy, for somez,y € X*. In this
case, we denote < v. We say that: is aconjugateof v if v = w;ws andu = wowy,
for somew, ws € X*.

For an alphabel, let ¥ = {@ | a € X'} be a signed disjoint copy df. The set
of all strings overY U X is denoted by = (X U X)*. A stringv € X' is called
asigned string oves.. We adopt the convention that= « for each letten € X.

Letv € X be a signed string oveX. We say that a letter ¢ X U X occursin
v, if a ora is a substring ob. Letdom(v) C X, called thedomainof v, be the set of
the (unsigned) letters that occurdn

Example 3.1For the alphabel’ = {2, 3} of pointers,Y. = {2,3}. Hereu = 233 ¢

Y* C 2% whilev = 232 € X is a signed string oveE for which dom(v) =
{2, 3} although3 is not a substring of.
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developin
macronucieus

Fig. 4. a—f. Conjugation in stichotrichsa A stichotrich with two macronuclei and two mi-
cronuclei.b Two stichotrichs have joined and formed a cytoplasmic ckarirhe two diploid
micronuclei have each formed four haploid micronucteThe two cells exchanged haploid
micronuclei, and the two organisms have separated. Theaageld haploid micronucleus has
fused with a resident haploid micronucleus forming a newaitipmicronucleus (half white
and half black).d The new diploid micronucleus has divided by mitosis. Thesaauhap-
loid micronuclei (six) and the two macronuclei are degetiiegae One of the new daughter
micronuclei has developed into a new macronucleus. The alckonucleus and the unused
haploid micronuclei have disappearédConjugation has been completed. The micronucleus
and macronucleus have divided, yielding the appropriatéean numbers (in this case, two
MICs and two MACSs). [29]



Computational nature of gene assembly in ciliates 7

The signinga — @ of letters extends to strings in a natural way: for a signed
stringu = ajay . ..a, € X, with a; € X U X for eachi, let theinversionof « be

U=TqpGp_1...a, € L.

For any set of string$ C X', we denoteS = {u | u € S}. For two strings
u,v € X'¥, we say that, andv areequivalentdenoted: ~ v, if u is a conjugate of
eitherv or .

For an alphabeL, let||.|| be the substitution that unsigns the lettélis] = a =
|@||. Mapping]|.|| extends tax'® in the natural way. A signed stringover ¥ is a
signingof a stringu € X*, if ||v|| = u. A signed string:, where each letter fromy’
occurs exactly once in, is called asigned permutation

For two alphabets andA, a mappingf : ¥ — A% is called amorphismif
f(uwv) = f(u)f(v) andf (@) = f(u). If A C 2, amorphismf : £* — A* is called
aprojectionif f(z) =z forz € Aandf(z) = A\, forz € X'\ A.

Example 3.2For the alphabel = {2,3,4,5}, there are* - 4! = 384 signed per-
mutations. The signed strings3 4 5 and4 2 5 3 are among them.

Throughout this chapter we cdl2, 3, . . .} the set ofpointers

3.2 Graphs

Forafinite seV, let E(V) = {{z,y} | =,y € V, = # y} be the set of all unordered
pairs of different elements df. A (simplg graphis an ordered pait: = (V, E),
whereV and E are finite sets ofertices andedgesrespectively. It = {z,y} € E

is an edge, then the verticesand y are theendsof e. In this casex andy are
adjacentin G. If V = &, then we denoté& = @ and call it theempty graph

For a vertext in G, let No(z) = {y | {z,y} € E} be theneighborhoof
in G. A vertexz isisolatedin G, if Ng(z) = @.

A signed graphG = (V, E, o) consists of a simple grap{V, E) together with
a labelingo: V' — {—,+} of the vertices. A vertex: is said to bepositive if
o(z) = +; otherwiser is negative We write z°(*) to indicate that the vertex has
signo(z).

LetG = (V, E, o) be a signed graph. For a subset_ V, itsinduced subgraph
is the signed graphA, E N E(A), o), whereo is restricted toAd. Thecomplement
of G is the signed grapty® = (V, E(V) \ E,c°), wheres®(z) = + if and only if
o(x) = —. Also, letloc, (G) be the signed graph obtained fraihby replacing the
subgraph induced by () by its complement. For a subsétC V', we denote by
G — A the subgraph induced by \ A.

A multigraphis a (undirected) grapty = (V, E, <), where parallel edges are
possible. Thereforef is a finite set of edges and: £ — {{z,y} | z,y € V}
is theendpoint mappingWe allowz = y, and therefore edges can be of the form
{z,x} = {z} — an edge of this form should be seen as a ‘loopfor
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4 The intermolecular model for gene assembly

The very first formal model of the ciliate gene assembly pseaeas théntermolec-
ular modelproposed in [58, 59]. We introduce in this section a striagda formal-
ization of the model and refer to [58] for the biological dtaf the model. Given

a stringuaxvzw, whereu, x, v, w are nonempty substrings, the authors defined the
following intramolecular operationizvzw — {uzw, vz} where- denotes that the
stringwvz is circular. Intuitively, this models the action of a strasfdDNA, uzvzw,
looping over onto itself and aligning the regions contajrtine subsequenae With
thez’s aligned, the DNA strand can undergo recombination, yimgjdhe two prod-
uctsuzw and-vz. Likewise, the inverse, intermolecular, operation was disfined:
{uzw, vz} — urvrw. These operations are illustrated in Fig. 5.

\4

w
UuXxX VX w u@—
/v
uxw +©

X

Fig. 5. The (reversible) recombination efcvzw < {uzw, vz} in the intermolecular model
for gene assembly of [58, 59].

Example 4.1Consider a hypothetical micronuclear gene with 4 MDSs whieee

MDSs come in the ordek/; MM Ms. If we denote each MDS by its pair of in-
coming/outgoing pointers and/or markers, we can then @etiat whole micronu-

clear gene a8 = (b, p2)(p2, p3)(pa, €)(p3, p4). (For more details on formal repre-
sentation of ciliate genes, see Section 5.) An assembltegirdor this gene in the

intermolecular model is the following (we indicate for eaxgeration the pointer on
which the molecule is aligned):

§ 5 (b,p2)(p2,p3,p1) + +(pa,€)ps —— (b, p2)(p2, 3, P1, €)P3P4
p2
E— (bap27p37p476)p31p4 + ‘pP2.

As indicated by the formal notation above, the gene getavasisel with copies of
pointersps andp,4 following the assembled gene and a copy of poipteplaced
on a separate circular molecule. Note that the notationalymores all IESs of the
micronuclear and of the assembled gene.
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The obvious difficulty with the intermolecular model is thatannot deal with
DNA molecules in which a pointer is inverted — this is the ¢asg., for the actin
I gene inS. nova Nevertheless, we can show that inverted pointers can baldtan
in this model, provided the input molecule (or its MDS-IESdéptor) is available
in two copies. Moreoverye consider all linear descriptors modulo inversidrhe
first assumption is essentially used in research on theniateicular model, see [54,
55, 59]. The second assumption is quite natural wheneveredgehdouble-stranded
DNA molecules.

Example 4.2Consider the micronuclear actin geneSterkiella novasee Fig. 3.
Denoting each of its MDSs by the pair of incoming/outgoingpers and/or markers
similarly to our previous example, we may write the gene as

d = (p3,p4)(Pa,p5) (D6, P7) (5, P6) (P7, P8) (P9, €) (D3, P2) (b, p2) (P8, o)
Thend can be assembled in the intermolecular model as follows:

5 5 (p3,pa)(Pa, s, p6) (7, p8) (Do, €) (B3, 72) (b, p2) (Ds, po) + -p5(pe, 1)

L2 (p3,14) (P4, D55 P6) (D7, P8, Do) + -Ps (P9, €)(P3, P2) (b, p2) + -ps(pe, pr)
2 (p3,p4,D5,P6)(P7. D3, Po) + P + s (o, ) (3, P2) (b, p2) + 5 (s, 7)
2T (p3,p4, D5, P6)P7P5 (D6, P7, s, Do) + 4 + ps(po, €) (P35, Pz) (b, p2)

L2 (p3,pas P5: P6; D7, D8, Po) + Pep7Ps + pa + ps(po, €) (75, P2) (b, p2)
<> (p3,pa, 5, P6, P7, s, Do, €)(P3, P2) (b, p2)pspo + -Pep7ps + -Pa.

Assuming that is also available, the assembly continues as follows. Herea
(circular) stringr, we use2r to denoter + 7:

540 —...— (p3,p1,D5, D6, 7, Ps, Do, €) (D3, P2) (b, p2)Pspo

+ Do D (P2, b)papspo + 2 - peprps + 2 - pa

L2 (p3, P4, D3> P6s D7, D3, D9, €) (T3, D2, b)papspo

+2-peprps +2 - pa

22 (p3, pa, s, D6 7, D8, D9, €)T3

+ Do Dep2(b, P2, P3, P4, D5, D> D7, P8, P9, €)P3 + 2 - pep7ps + 2 - P4

9
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=2py Dapz (b, P2, P3, D4, D5, D6 D7, P8+ D9, €)P3 + 2 - DP7P5 + 2 - Pa.

This calculation shows that the gene is eventually assemiligh p; preceding the
assembled gene apdpspg following it, and that two circular molecules are excised
during the assembly.

We refer to Section 5 for intramolecular assembly strategfehe actin | gene
in S. novaand to Section 6 for a set of properties that are independqudrticu-
lar assembly strategies, called invariants. The DNA secgreof all molecules pro-
duced by gene assembly are particular invariants of theegsodNe refer to [44]
for a detailed discussion on intermolecular assemblyegias and a comparison to
intramolecular assemblies.

Consider now contextual versions of the operations. We deftifes of the form
(p,z,q) (p',z,q") with the intended semantics that(p’, resp.) andy (¢’, resp.)
represent contexts flanking (z’, resp.). These contexts are not directly involved
in the recombination process, but instead regulate it:méstoation may only take
place ifz (z’, resp.) is flanked by (p’, resp.) and; (¢’, resp.). Our intramolecular
operation now becomasrvzw — {uzw, vz}, whereu = u'p,v = qv’ = v"p/,

w = ¢'w’, with similar constraints for the intermolecular operatio

It was shown in [59] that iterated nondeterministic apglaaof these contextual
rules to an initial axiom string yields a computing systerthvhe generative power
of a Turing machine.

5 The intramolecular model for gene assembly

5.1 Molecular model

Theintramolecular modelvas introduced in [33] and [75]. It consists of a set of three
irreversible molecular operations explaining the excisié IESs and the unscram-
bling and ligation of MDSs during the MIC-MAC developmentl three operations
postulate the folding of a DNA molecule into a specific pattirat allows the align-
ment of some pointers. Subsequent DNA recombination oretposters leads to
the MDSs (and IESS) being rearranged. We describe each tiriwe operations in
the following.

Loop, direct-repeat excision (in shotd)

The Id operationis applicable to a DNA molecule having two occurrences of a
pointer, sayp, on the same strand. We say in this case that poptes adirect
repeatalong the molecule. The molecule is then folded intmap (Fig. 6(a)) so
that the two occurrences gf are aligned. Recombination gnis thus facilitated
(Fig. 6(b)) and as a result, a linear and a circular molecrdenhtained, (Fig. 6(c)).
Each of the two molecules has an occurrencg. of
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Fig. 6. lllustration of theld-rule. (a) The molecule is first folded into a loop, alignirget
two direct repeats of a pointer. (b) Recombination is ftat#id on the two occurrences of the
pointer. (c) One linear and one circular molecule are predwas a result of the operation.

Hairpin, inverted-repeat excision/reinsertion (in shdri)

The hi operationis applicable to a DNA molecule having two occurrences of a
pointer, say, on different strands of the molecule. We say in this casepthiaterp

has arinverted repeaalong the molecule. Then the molecule is folded int@mapin
(Fig. 7(a)) so that the two occurrencespdfiave a direct alignment. Recombination
onp is thus facilitated (Fig. 7(b)), and as a result, a new limeafecule is obtained,
where one block of nucleotides has been inverted (Fig..7(c))

O v b

@ (b) (©

Fig. 7. lllustration of thehi-rule. (a) The molecule is first folded into a hairpin, aliggithe
two inverted repeats of a pointer. (b) Recombination islifatéd on the two occurrences of
the pointer. (c) A new linear molecule is produced as a resulie operation.

Double loop, alternating direct-repeat excision (in shaitbd)

Thedlad operationis applicable to a DNA molecule having two pointers, gagnd

q, each with two occurrences. All four pointer occurrencesuth be on the same
strand. Moreover, pointgrhas one occurrence in-between the two occurrences of
and one occurrence outside them. (By consequence, the sddsetfue for pointer

q with respect to the two occurrences of pointerThe molecule is then folded into
a double loop (Fig. 8(a)), so that the two occurrenceg aifid the two occurrences
of ¢ are simultaneously aligned. Recombination events and ong are facilitated
(Fig.8(b)), and as a result, a new linear molecule is obthisee Fig. 8(c).

Discussion

The{ld, hi, dlad} modelis often referred to as tirgramolecular modelto stress that
in this model, the input to which operations are appliedvgak a single molecule.
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Fig. 8. lllustration of thedlad-rule. (a) The molecule is first folded into a double loop, gm
taneously aligning two pairs of pointer occurrences. (bddRebination is facilitated on both
pointer alignments. (c) A new linear molecule is produced essult of the operation.

(In contrast, the model presented in Section 4 is referreabstthe intermolecular
model) It is important to note however thét yields as an output two molecules.
As such, for the intramolecular assembly to succeed, oeassemble all MDSs, it
is essential that all coding blocks remain within one of thelenules produced by
Id. This gives two restrictions for applyinig on a pointerp in a successful gene
assembly:

(i) No MDSs exist in-between the two occurrencepofEquivalently, only one,
possibly composite, IES exists in-between the two occeesrofp.) We say
in this case that we have simpleapplication ofld. As a result, a (possibly
composite) IES is excised as a circular molecule and all ME28sain on the
resulting linear molecule.

(ii) All MDSs are placed in-between the two occurrence.0fVe say in this case
that we have d&oundaryapplication ofld. As a result, all MDSs are placed
on the resulting circular molecule. The final assembled gatide a circular
molecule. It has been shown in [32] and [29] that using a banndpplication
of Id can be postponed to the last step of any successful assdmbiys way,
in-between the two occurrencesyothere is only one (possibly composite) IES,
similarly as in the case of simple.

The mechanistic details of the alignment and recombinagignts postulated
by the three molecular operatiois hi anddlad are not indicated in the original
proposal for the intramolecular model. Two mechanisms \\adeg proposed in [76]
and in [5]. The details of both are discussed in this chapt&ection 7.

5.2 String and graph representations for ciliate genes

We present three different formalizations for the generab$geprocess: signed per-
mutations, legal strings and overlap graphs. The first twthe$e are linear in the
sense that the order of the MDSs can be readily seen from éseptation. On the
other hand, from the overlap graphs the order of the compgsnemore difficult to
capture. The gene assembly process will, however, be @iftén nature for signed
permutations as for legal strings as well as for overlap lyggapPermutations need
to be sorted while strings and graphs need to be reduced ttyestning and graph,
respectively. Another formalization in termsaéscriptords given in Section 6.
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Signed permutations and legal strings

Each micronuclear arrangement of MDSs and IESs can be myeskas a signed
permutation over the alphabgt/y, Mo, ..., M, }, for an integek > 1 correspond-
ing to the number of macronuclear destined sequences thamage to a func-
tional gene. We identify such a string with a signed permomabver the index set
{1,2,...,k}.

Example 5.1Consider the micronuclear arrangement of the actin | geeeskiella
nova Ms M4 Mg Ms My, Mo Mo My Mg. This is represented as the signed permutation
a=346579218.

The gene assembly process is equivalentto sorting a sigavedipation in proper
order, i.e.,intheordes(p +1)...x1...(p — 1) orits inverse for suitablg (andx,
the number of MDSs in the micronuclear gene)p I 1 here, then the MDSs are
linearly ordered; otherwise they are cyclically ordered.

Representation by strings will preserve the order of the Md8ich are coded
as “pairs of pointers”.

A stringv € X* over an alphabel’ is said to be alouble occurrence stringf
every lettera € dom(v) occurs exactly twice im. A signing of a nonempty double
occurrence string is kegal string A lettera € ¥ U X is positivein a legal string
v € X, if v contains bothu anda; otherwise s is negativen v.

Example 5.2Consider the legal string = 24 3253 4 5 of pointers. Pointer§ and
5 are positive inu, while 3 and4 are negative in.. On the other hand, the string
w = 2432535 is not legal, since has only one occurrence in.

Letu = ajaz . ..a, € X' be alegal string oveE with a; € X U X for each.
Fora € dom(u), letl < i < j < n be such thafja;|| = a = ||a;||. Then the
substring

U(a) = 0iGij41-..05
is called thea-interval of w. Two different lettersi, b € X' are said tocoverlap in
u, if the a-interval and thé-interval ofu overlap: ifu(,y = a;, ... a; anduy) =
ai, - .. aj,, then eithet; < i < ji; < j2 Orip < i; < ja < J1.

Example 5.3Letu = 2435326546 be a signed string of pointers. Thenterval
of u is the substring.(») = 24 35 32, and hence pointeX overlaps withd and5 but
not with 3 or 6. Similarly, e.g.u4) = 43532654 and hence overlaps with2 and
6.

A signed permutation will be represented by a legal stringgithe following
substitutiono, : {1,2,...,k}® — {2,3,... k}'¥
0:(1) =2, 0x(rk) =k, ox(p)=p(p+1) for2<p<s,
ando. (p) = ox(p) foreachp with 1 < p < «.
Example 5.4Consider the signed permutatiarfrom Example 5.1. We have

09(c) = 34456756 789322 89.
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Overlap graphs

We turn now to representations by graphs. We use signed gtaptepresent the
structure of overlaps of letters in legal strings as folloles v € X" be a legal
string. Theoverlap graphof v is the signed grap&', = (dom(v), E, o) such that
{+ , if xis positive inv,
o(x) = L L
—, if xis negative inv ,

and
{z,y} € E < x andyoverlapinv.

Example 5.5Consider the legal string= 34523245 of pointers. Then its overlap
graphG, is given in Fig. 9.

Fig. 9. The overlap graph of the signed string= 34523245.

Overlap graphs of double occurrence strings are also knswince graphs

Example 5.6Notice that the mapping — G,, of legal strings to overlap graphs
is not injective. The following eight legal strings of paéns have the same over-
lap graph (of one edgeR323, 3232, 2323, 3232, 2323, 3232, 2323, 3232. For

a more complicated example, we mention that the strimgs= 23342554 and
vy = 35242453 define the same overlap graph.

Reduction graph

Recall that legal strings represent the MIC form of genesn@e introduce a graph,
called thereduction graphthat represents the MAC form of a gene and the other
molecules obtained as results of the assembly, given a s&gad (the MIC form

of that gene). In this way, the reduction graph represerdsetid result after re-
combination on all pointers. First, we define2aedge colored graplas a tuple
(V,E1, Es, f,s,t), whereV are the verticess,t € V are calledsourceandtar-

get andf : V\{s,t} — I'is a vertex labeling function witfi" a finite set of vertex
labels. There are two (not necessarily disjoint) sets ofrested edged’; and Es.

We letdom(G) be the range of,, and say that 2-edge colored graghandG’ are
isomorphic denoted> ~ G’, when they are equal up to a renaming of the vertices.
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However, we require that the labels of the identified vestiaee equal, and that the
sources and targets 6fandG’ are identified.

Areduction graph [10] is a 2-edge colored graph where theyywes of edge#;
andFE are calledeality edgesanddesire edgesespectively. Moreover, each vertex,
excepts andt, is labelled by an element ai,, = {2,3,...,x}. As an example,
consider the representation of legal string- 274735342656 overIl,, = A, U A,
given in Fig. 10. We will use this legal string as our runnixgmaple.

Fig. 10.The representation aof = 274735342656.

A reduction grapiR,, for a legal stringu is defined in such a way that (1) each
occurrence of a pointer af appears twice (in unbarred form) as a label of a vertex
in the graph to represent both sides of the pointer in theesgmtation ofi, (2) the
reality edges (depicted as ‘double edges’ to distinguismtfrom the desire edges)
represent the segments between the pointers, (3) the @elges represent which
segments should be glued to each other when recombinatematigns are applied
on the corresponding pointers. To enforce this last reqerd, positive pointers are
connected by crossing desire edges (cf. pointers 4 and girLE), while negative
pointers are connected by parallel desire edges. The @sstandt represent the left
and right end respectively. Note that, since the reductraplyis fixed for a givem,
the end product after recombination is fixed as well. Theamotif reduction graph
is similar to the breakpoint graph (or reality-and-desii@gdam) known from the
theory of sorting by reversal, see, e.g., [79] and [70]. Afaldefinition of reduction
graph is found, e.g., in [10]. The reduction graph for string 274735342656 is in
Fig. 11.

Fig. 11.The reduction graph far = 274735342656.

In depictions of reduction graphs, we will represent theiwes (except fos and
t) by their labels, because the exact identities of the estare not essential here —
we consider reduction graphs up to isomorphism. Note treateduction graph is
defined for the general concept of legal strings. Theretbesreduction graph repre-
sents the end product after recombination of arbitrary eeges of pointers (which
by definition come in pairs) — not only those that correspanseiguences of MDSs.
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Fig. 12. The reduction grap®., of » from the running example.

In the running example, the reduction graphof u is again depicted in Fig. 12 —
we have only rearranged the vertices.

Each reduction graph has a connected component, calldmhéae component
containing both vertices andt. The other connected components are cathadic
components

5.3 Mathematical formalizations of the intramolecular mocel

In this section we formalize the gene assembly processimgpthe three molecular
operationdd, hi, anddlad in the framework of legal strings and overlap graphs.
Assembly operations on strings

Recall that each micronuclear MDS structure can be faithftdpresented as a
signed permutation, which in turn has a presentation as a legal string o, (),
wherex is the number of the MDSs in the micronuclear gene, and as arfap
graphG, with x vertices.

We shall first describe the assembly operations for striflgs.rules arespir) the
string negative rule(spr) the string positive rule and édr) the string double rule
For simplicity we consider only strings of pointers. Redakt we denoted,, =
{2,3,...,k}andIl, = A, U A,. Below, we assume thatq € II,.

e snr, applies to a legal string of the form= u,ppu, resulting in
snrp(u1ppus) = uius . (1)
e spr, applies to a legal string of the form= u; puspu; resulting in
sprp(ulpu@u@ = UL U2 U3 . (2)
e sdr, , applies to a legal string of the form= w1 pusquspuaqus resulting in

sdry, o (U1PU2qU3PULQUS) = U ULUZULUs - (3



Computational nature of gene assembly in ciliates 17

We definedom(p) for a string reduction rule by dom(snr;,) = dom(spr,,) =
{Ipll} anddom(sdr,.,) = {|lp|l. lal} for p.q € II.

We adopt the following graphical notations for the appiimas$ of these opera-
tions:

d
u 2, snrp(u), ik N spry,(u), u e, sdrp, q(u) .

A compositiony = ¢, . .. p1 of the above operations; is astring reductionof
u, if ¢ is applicable ta:. Also, ¢ is successfulor u, if p(u) = A, the empty string.
Moreover, we defindom(y) = dom(¢1) U dom(p2) U --- U dom(py,).

Example 5.7The rulesnr, is applicable to the legal string = 52235434:
snra(u) = 5354 3 4. Moreover, we have

52235434 2, 535434 5, 5353 2, 55 9, 4,
and hence is successful fot..

The following is the basic universality result for legalisgs.

Theorem 5.8 ([28, 10]) Each legal string has a successful string reduction.

Assembly operations on graphs

We shall now describe the assembly operations for graphsriles aregnr) the
graph negative rulg(gpr) thegraph positive rule(gdr) thegraph double rule
Letz andy be vertices of a signed grajgh

e gnr, is applicable toG, if x is isolated and negative. The resuligisr, (G) =
G — .
gpr, is applicable ta7, if « is positive. The resultigpr,.(G) = loc,(G) — .
gdr, , is applicable toG, if x andy are adjacent and negative. The result is
gdr, ,(G) = loc; loc, loc,(G) — {z,y} obtained by complementing the edges
between the se®¢(x) \ Na(y), Na(y) \ Ne(z), andNg(z) N Na(y).

Example 5.9Consider the overlap grapfi = G,, for w = 352654736724;
see Fig. 13(a). The gragpr,(G) is given in Fig. 13(b), and the gragfr, 3(G) is
given in Fig. 13(c).

A compositiony = ¢, ..., of the above graph operations is calledraph
reductionfor a signed graply, if ¢ is applicable ta7. Also, ¢ is successfylf o(G)
is the empty graph.

Example 5.10The overlap graplz = G, given in Fig. 13(a) is reduced to the
empty graph by the compositigspr; gprg gpr; gpry gdrs 5.

The above operations are universal for signed graphs:

Theorem 5.11 ([45]).Each signed grapld’ has a successful graph reduction.
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& ©

@ (b) ©

Fig. 13.The graphs (&) = Gu, (b) gpr4(G), (c) gdr, 5(G), wherew = 3526547 36
724,

Equivalence of the systems

We study now the relation between the systems for stringgeaqohs, and we show
that there is a correspondence between these operations.

Theorem 5.12 ([30]).Letw be a legal string. Each string reduction = ¢,, ... 1
for w translates into a graph reductiop’ = ¢/, ... ¢! for the overlap graptG., by
the translation:

snr, — gnr,,  spr, — gpr,, sdr,,—gdr, .
Consequently, ip is successful fow, theny’ is successful fo6.,,.

The reverse implication, from graphs to strings, is not esigittforward. Recall
first that the mapping from the legal strings to the overlapfs is not injective.
Denote byp(w) thefirst occurrenceof p orp in w.

Theorem 5.13 ([30]) Letw be a legal string, and lep be a successful reduction for
G.,. Then there exists a permutatigif = ¢, ... 1 0f , which is successful for
G.,, and which can be translated to a successful string redagtio= ¢/, . .. ¢} for

w by the following translations:

gnry, = SNip(w), 8Py 7 SPr(w); gdrp,q = Sdrp(w)yq(w) :

5.4 Properties of intramolecular assemblies

We discuss in this section some properties of intramolegdae assemblies. Many
of these properties hold in all the mathematical modelsritesd in Section 5.3. In
each case however, we choose to describe the results onljewal ghat allows for
the simplest or the most elegant formulation. For more tesué refer to [29, 6]

Nondeterminism and confluence

It is easy to show on all model levels, from the molecular legethat of graphs,
that for a given gene (permutation, string, graph, respere can be more than one
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strategy to assemble it. Different assembly reductiortesgias have recently also
been confirmed experimentally [65]. We say that the intraoalar model isionde-
terministic Consider, e.g., the signed string associated to the agéné inS. nova
u=23445675678932289. There are3060 different sequential strategies to re-
duce this string (assemble the gene), see [29], of which w& sh Table 1 only
two. Note in particular that these two strategies diffetia humber and type of op-
erations used. On the other hand, both strategies are stuicesducing the input
string to the empty string. As shown in Theorems 5.8 and 3hi4 s true in general:
although several operations may be applicable to a givaut,spccessful strategies
for that input exist starting with any of those operatiortse biological interpretation
is that all (potentially many) assembly strategies of aigivecronuclear gene, have
the same result: the assembled corresponding macrongsear We call such a
modelconfluent Consequently, ciliates “need not remember” a particidguential
strategy which in turn contributes to the robustness of tregssembly process.

uy = spra(u) = 98765442289 W) = snra(u) = 3567567893289
uz = snra(u1) = 987652289 uy = sdrs6(uy) = 377893289

us = sprg(u2) = 9225675679 uf = snrr(ub) =3893289

ug = spry(uz) =95675679 u)y = sdrg,g(us) = 3322

us = sdrs,7(us) = 9669 uf = spry(uy) = 33

ue = snre(us 9 ug = sprg(us) = A

@) (b)
Table 1. Two reduction strategies for the signed string correspanth the actin | micronu-
clear gene in S.nova.

We prove in Section 6 that the assembly strategies of a gigaa ghare a num-
ber of other properties beyond yielding the same assemldad:ghe number of
molecules (linear and circular) produced throughout threeiebly, their nucleotide
sequence, whether the assembled gene is linear or circular.

The Structure of MAC genes with byproducts

Since legal strings represent the initial configuratiomg@é MIC form) and the
corresponding reduction graph the end result (the sameigdvidC form and its
excised products), it is natural to study the possible foofmeduction graphs. For-
mally, we characterize now the graphs that are (isomorphiceduction graphs.

A graph G isomorphic to a reduction graph must be-&dge coloured graph
(V,E1, Es, f,s,t) such that for eacly in the range off, p € A and there must
be exactly4 vertices labelled by. Each vertex must be connected to exactly one
(reality) edge fromE';, and each vertex, excepaindt, must be connected to exactly
one (desire) edge fromis. Finally, edges fromF,; must connect vertices with a
common label. Let us call these grafisstract reduction graphsand let the set of



20 R.Brijder, M.Daley, T.Harju, N.Jonoska, |.Petre, G.Rulzerg

abstract reduction graphs B&RG. It turns out that there are graphsARG that are
not (isomorphic to) reduction graphs.

To obtain a characterization we need one more property ofctexh graphs: the
ability to linearly order the vertices to resemble its (imgeal not unique) underlying
legal string, as done in Fig. 11. To make this linear orderetiges explicit, we
introduce a third set of edges, callegtrge edgesto the reduction graph as done in
Fig. 14.

T

S—27 2= 7 ~7=—47 4527 _7—37 -35=5.-5=—3-"3==4 “4==) =p—6" 6=5--5—6-"6—t
S~

\—/_//

Fig. 14.Merge edges are added to the reduction graph of Fig. 11.

Now, when is a set of edged for G € ARG a set of merge edges? Like desire
edges, they have the properties that (1) the edges conmicegenith a common
label and (2) each vertex exceptandt is connected to exactly one merge edge.
Moreover,M and the sef); are disjoint — no desire edge is parallel to a merge edge.
Finally, the reality edges and merge edges must allow foitlafpam s to ¢ passing
each vertex once. This last requirement is equivalent tdattethat the reality and
merge edges induce a connected graph.

If it is possible to add a set of merge edges to the graph, thismbt difficult
to see that the graph is isomorphic to a reduction gtRphindeed, we can identify
such au for this reduction graph by simply considering the alteimgpath froms
to t over the reality and merge edges. The orientation (posiiss or negativeness)
of each pointer is determined by the crossing or non crossirte desire edges
(exactly as we defined the notion of reduction graph).

To characterize reduction graphs we need the notion of atgred@mponent
graph. Given an abstract reduction graph, a pointer-compiagraph describes how
the labels of that abstract reduction graph are distribatedng its connected com-
ponents.

Definition 5.14.Let G € ARG. The pointer-component graptof GG, denoted by
PCq, is a multigraph(¢, E, ), where( is the set of connected componentsof
E = dom(G) ande is, fore € E, defined by:(e) = {C € ¢ | C contains vertices
labelled bye}.

The pointer-component graph 6f= R, of Fig. 12 is given in Fig. 15. We have
¢ = {C1,C4,C5, R} whereR is the linear component and the other elements are
cyclic components dR,,.

Itis shown in [7] that, surprisinglyi? € ARG has a set of merge edges precisely
when the pointer-component graffi is a connected graph. In other words:

Theorem 5.15 ([7]).An abstract reduction graplir is isomorphic to a reduction
graph iff PC is a connected graph.
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Fig. 15.The graphPCx,, of the grapthR., in Fig. 12.

Consider the legal string = 274735342656 as before and = 274265347356.
It turns out that they have the same reduction graph (up tadsphism):R, ~ R,
(see Fig. 11). The reason for this is that a reduction graphhmae more than one
set of merge edges — each one corresponding to a differaitdemg. Thus, there
can be many legal strings giving the same reduction gragdi] ihis shown how for
a given legal string: we can obtain precisely the set of all legal strings havirgy th
same reduction graph (up to isomorphism). In fact, it tunnstioat this set is exactly
the set of all legal strings obtained by applying compostgiof the following string
rewriting rules.

For allp, ¢ € II,. with ||p|| # ||¢|| we define

thedual string positive ruldor p is defined bydspr,, (u1puzpusz) = uiptapus,
the dual string double ruldor p, ¢ is defined bydsdr,, ,(uipusquspuagus) =
U1 PULGUIPU2GUs,

whereuy, us, ..., us are arbitrary (possibly empty) strings ovéf,,. Notice the
strong similarities of these rules with the string positiuke and string double rule.
As an example, if we take = 274735342656 andv = 274265347356 given ear-

lier, thendsdr, 5 dspr;(u) = v and hence both legal strings indeed have a common
reduction graph.

Intermediate legal strings

We now show that we can generalize the notion of reductioptgta allow for
representations of any intermediate product during theateh process. In such an
intermediate product some pointers, represented as atsibsEdom(u), where
u is a legal string, have not yet been used in recombinatiomatipes, while the
other pointers, irdlom(u)\ D, have already been used in recombination operations.
A reduction graph of; with respect to this seb, denoted byR,, p, represents such
intermediate product. As before, we simply ignore the pominD —they are put as
strings on the reality edges which are now directed edggs1Bigives an example
of R, p with u = 274735342656 andD = {2, 4} (recall that/ represents the empty
string).

We denote the legal string obtained from a legal sttify removing the pointers
from D C dom(u) and its barred variants bgmp (u). In our exampleremp (u) =
77353656. We definered(u, D) as the label of the alternating path frento ¢. Thus
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Fig. 16.GraphR.,,p with v = 274735342656 and D = {2, 4}.

in our examplered(u, D) = 2442. Assuming that gene assembly is intramolecular
(all recombination takes place on a single DNA moleculentthe cyclic connected
components must have only empty strings as edge labelsr example it is easy to
obtain an ‘invalid’ intermediate product: take, e.§.,= {3,4,5,6,7}. Hence, it is
not possible to first recombine pointrfollowed by recombination of the remaining
pointers.

Theorem 5.16 ([10]).Let v be a legal string, letp be a composition of reduction
rules withdom(¢) € dom(u), and letD = dom(u)\ dom(p). Theny is applicable
to u iff ¢ is applicable toremp (u) andred(u, D) is a legal string with domairD.
Moreover, if this is the case, ther(u) = red(u, D).

As a consequence of Theorem 5.16, reductippnsnd ¢, with the same domain
have the same effecf?; (u) = ¢2(u) for all legal stringsu. Note that in general
there areD C dom(u) for which there is no reductiop of « with D = dom(p(u)).
In our examplered(u, D) is a legal string with domairD and we have, e.g.,
(snrg sdrz 5 spr=)(u) = 2442 = red(u, D).

Cyclic components

Since the reduction graph is a representation of the endt sffser recombination,
the cyclic components of a reduction graph represent @raublecules. If we now
consider again the intramolecular model of gene assemkelyotice that each such
molecule is obtained by loop recombination. Hence, althdbgre can be many dif-
ferent sequences of operations that obtain the fixed endiptathenumberof loop
recombination operations (string negative rules in theelad each such sequence
is the same.

Theorem 5.17 ([10]).Let N be the number of cyclic components in the reduction
graph of legal stringu. Then every successful reductiomohas exactlyN string
negative rules.

Example 5.18SinceR,, in Fig. 12 has three cyclic components, by Theorem 5.17,
every successful reductiamof u has exactly three string negative rules. For exam-
ple ¢ = snry snrz spr= snrg sdrs 5 is a successful reduction of Indeed,p has
exactly three string negative rules. Alternativahyg snrs snr7 spr, sprs spr, is also

a successful reduction af with a different number ofspr andsdr) operations.

It turns out that the reduction graph also allows for detaingjon which pointers
the string negative rules can be applied using the poirderponent graph [9]. For
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convenience, let us dena® , by PC,. Also, let us denot&C,|p as the graph
obtained fronPC,, by removing the edges outside Finally, for a reductioryp, let
snrdom(p) C dom(p) be the (unbarred) pointers usedsimn rules inep.

Theorem 5.19 ([9]).Let u be a legal string, and leD C dom(u). There is a suc-
cessful reductiorp of u with snrdom(p) = D iff PC,|p is a tree.

In our running example, we see that= {2, 3,6} induces a (spanning) tree of
PC,. Therefore there is a successful reductioof « with snrdom(yp) = D. Indeed,
we havesdr; 5 sprs(u) = 226336. It is clear that we can extendr; 5 spr to a
successful reduction which applies string negative rute8,@, and6. Notice that
heresnrs must be appliedeforesnrg. In fact in [9] it is shown that the possible
orders in which the string negative rules can be appliedsis deéducible fron¥C,
by considering rooted trees.

The results above can be carried over to intermediate ptedelg., the number
of string negative rules from to ¢(u) is fixed and is equal to the number of cyclic
components oR,, p.

5.5 Simple and parallel gene assemblies

The general formulation of the intramolecular operatioliews for the aligned
pointers to be arbitrarily far from each other. We discusshis section asimple
variant of the model, where all alignments and folds invdlirethe operations are
local. In the simple versions dd, hi, anddlad the pointers involved in the recombi-
nation are at a minimal distance from each other. It turngtaitthe simple model is
able to explain the successful assemblies of all curremttynn micronuclear gene
sequences, see [11, 75, 63]. We discuss in this section tlezolar and the mathe-
matical formulation of the simple model and indicate somerigsting properties of
the model.

In the second part of this section we discuss a notigmanéllel gene assemhly
In each (parallel) step of the assembly we apply a number iMfagkected operations
simultaneously in such a way the the total number of stepsngmal. In each step
the operations are selected in such a way that their apiplicatindependent of the
others applied in the same step: all sequential compositdthose operations are
applicable to the current graph. Several difficult compategl problems arise in this
context, including deciding whether a given graph has allghesssembly of a given
length, or deciding whether there are graphs (or even todespitrarily high parallel
complexity.

Simple gene assembly

The three intramolecular operations allow in their genfenathulation that the MDSs
participating in an operation may be located anywhere atbagnolecule. Arguing
on the principle of parsimony, a simplified model was disedsslready in [75] and
then formalized in [46], asking that all operations are agapfllocally’. In the simple
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model the restriction is that there is at most one codinglbloeolved in each of
the three operations. This idea was then further develagedwo separate models.
In one of them, which we refer to as tsemple mode[61], both micronuclear, as
well as composite MDSs (obtained by splicing of several oricclear MDSs) may
be manipulated in each of the three molecular operationthdrother, called the
elementary modeind introduced in [42, 43], the model was further restristethat
only micronuclear but notcompositeMDSs could be manipulated by the molecular
operations. Consequently, once two or more micronucleabl@re combined into a
larger composite MDS, they can no longer be moved along tipgesece. We discuss
in this section only the simple model and refer for detailshaf elementary model
to [42, 43, 63, 69].

We already discussed in Section 5.1 thlanhust always bsimplein a successful
assembly. As such, the effect kf is that it will combine two consecutive MDSs
into a bigger composite MDS. For example, consider thigt\/, is a part of the
molecule, i.e., MDSV/; succeedd//; being separated by one IES Thus, pointer
4 has two occurrences that fladikone in the end of MDS\/5 and the other one in
the beginning of MDSV/,4. Thenld makes a fold as in Fig. 6(a) aligned by pointer
IES I is excised as a circular molecule ahfy and M, are combined into a longer
coding block as shown in Fig. 6(c).

In the case ohi anddlad, the pointers involved can be separated by arbitrarily
large sequences; e.g., in the actin | gen®.inovapointer3 has two occurrences: one
in the beginning of\/3 and one, inverted, in the end &f>. Thus,hi is applicable to
this sequence with the hairpin aligned on poirteeven though five MDSs separate
the two occurrences of point8r Similarly, dlad is applicable to the MDS sequence
Mo Mg Mg Mg My M7 Mz Mo Mg My, with the double loops aligned on point&rand
5. Here the first two occurrences of point8r$ are separated by two MDS&/; and
Mg) and their second occurrences are separated by four MRISSN/ 1o, Mo, My).

An application of thehi-operation on pointep is simpleif the part of the mole-
cule that separates the two copiegadh an inverted repeat contains only one MDS
and one IES. We have here two cases, depending on whethersthecfiurrence of
p is incoming or outgoing, see Fig. 17(a).

‘*f*lMip q|—|ﬁ "in QWH p|—|q 7’2|’f‘fw
‘*f*lMiq p|—|F ‘f’lwiﬁ p|—|q r2|‘j¢2Wv|p ql"%w

(@) (b)

Fig. 17. The MDS/IES structures where (simple hirules and (bjsimple dladrules are ap-
plicable. The MDSs are indicated by rectangles and theikiftgpointers are shown. Between
the two MDSs there is only one IES represented by a straigét J#6, 75]
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An application ofdlad on pointer, g is simpleif the sequence between the first
occurrences gf andgq, as well as the sequence between the second occurrenees of
andq consist of either one MDS or one IES. We have again two casggrling on
whether the first occurrence pfis incoming or outgoing, see Fig. 17(b).

The simple operations can be formalized as operations aregigermutations,
signed strings and signed graphs. We only give here the tlefigifor the string-
based operations, where the mathematical formulation ig wancise. For the other
formulations, including the relationships among these @madve refer to [46, 63, 8].

Thesimplehi operationfor pointerp, denotedspr,,, is applicable to strings of
the formu = u;puspus, wherelus| < 1, resulting insspr,, (u1puspus) = u1Tus.

The simpledlad operationfor pointersp, ¢, denotedssdr,, 4, is applicable to
strings of the formu = u1pguapqus, resulting inssdr, ,(u1pguapqus) = uiusus.

Let ¢ be a composition ofnr, sspr, andssdr operations such thatis applicable
to stringu. We say thap is asimple reductiorfor u if either ¢(u) = A (in which case
we say that is successfi) or ¢(u) # A and no simple operation is applicable to
¢(u) (in which case we say thatis unsuccessfiul For example, the string reduction
in Table 1(b) is simple, unlike the one in Table 1(a).

The simple model has a number of properties that do not halthiogeneral
model. One of them concerns the length of reduction strasefgir a given string.
While in the general model a string may have reduction siressof different lengths,
see the example in Table 1, the same is not true in the simptieinsee the next
result of [62]. Moreover, if one considepsirallel applications of simple operations
(a notion of [62] that is not defined in this chapter), we geewa twist: for any given
n there exists a string having maximal parallel reductionarof length between
and2n.

Theorem 5.20 ([62]).Let u be a sighed double occurrence string afyd) two re-
duction strategies fot. Theng andy have the same number of operations.

Regarding the outcome of reduction strategies, the simphetis different than
the general model in several respects; e.g., there argsthiat cannot be reduced in
the simple model, unlike in the general model where all gginave reduction strate-
gies. Indeed, no simple operation is applicable to theg®ih3 4 2 3. The following
is a result of [61].

Theorem 5.21 ([61]).No signed string has both successful and unsuccessful+educ
tions in the simple model.

On the other hand, the outcome of various strategies forengstring can dif-
fer; e.g., foru = 23467856782345, u; = ssdragossdrrg(u) = 465645,
whereasus = ssdrs 4 ossdrg 7(u) = 285825. The stringsu; anduy are, how-
ever, identical modulo a relabeling of their letters. THiservation can be extended
to define a notion oftructurethat can be used to prove that the results of various
reductions, although different, always have the same tstreicFor details, we refer
to [61], where the discussion is in terms of signed permaomatirather than signed
strings.
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Parallel gene assembly

The notion of parallelism is usually defined in concurrenogary for processes
whose application is independent of each other. In othedsy@number of processes
can be applied in parallel to a signed graph if they can beugsatiplly) applied in
any order. Adopting this approach, the following gives teérdtion of parallel appli-
cation of the three molecular operations on a signed gragta Bimilar discussion,
albeit technically more tedious, on the level of signechgisi we refer to [40].

Definition 5.22 ([40]).Let S be a set o gnr, gpr, andgdr operations and let: be
a signed graph. We say that the rulesSrare applicable in paralléb G if for any
orderingys, wa, - . ., pr Of S, the compositiorpy, o - - - 0 ¢ is applicable toG.

Based on the definition of parallelism, which presumes tiattiles are applica-
ble in any possible order, the following theorem shows thatresult is always the
same regardless of the order in which they are applied.

Theorem 5.23 ([40]).Let G be a signed graph and lef be a set of operations
applicable in parallel toG. Then for any two compositiogsand of the operations
of S, o(G) = Y(Q).

Based on Theorem 5.23, we can witéG) = ¢(G) for any setS of operations
applicable in parallel ta; and any compositiop of these operations. We define the
notion of parallel complexity as follows.

Definition 5.24 ([41]). Let G be a signed graph, and I&t,, .. ., Sk be sets ofnr,
gpr, gdr operations. If(S o ... 0 S1)(G) = @, then we say tha = Sy 0...0 5
is a parallel reductiorfor G. In this case thearallel complexityof S is C(S) = k.
Theparallel complexityof the signed grapky is:

C(G) = min{C(S) | S is a parallel reduction strategy for)G

Deciding whether a given set of graph operations is apgkcabparallel to a
given graph turns out to be a difficult problengidr operations are involved. When
at most twogdr operations are involved, then simple characterization®\we/en
in [39]. The computational complexity of the general problas upper-boundedin
theco- NP class, see [2].

It can be easily verified that the parallel complexity of tmeghs corresponding
to the currently known micronuclear gene sequences is atmvossee [38]. How-
ever, examples of graphs of higher complexity can be givenekample, the graph
with the highest known complexity h&d vertices and can be reduceddmparallel
steps. The tree with the highest known parallel complexatyiR vertices and can be
reduced irb parallel steps. We refer to [38] for more examples. Althotighparallel
complexity of certain types of graphs (e.qg., for uniformigreed trees) is known to
be finitely bounded, see [39], the general problem is culyemen and seems to be
very difficult. In particular, it seems to require a charaiztion for the parallel ap-
plicability of arbitrary sets of operations, another opesigbem. The problem is open
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even in seemingly simpler cases: for trees, or for negataplts. The computational
complexity of deciding whether the parallel complexity ofji@en graph is upper
bounded by a given contact was placed in & class in [2]. Two algorithms for
computing the parallel complexity of signed graphs weregin [1] and [2], both
with exponential computational complexity. A visual gragaditor including support
for computing the parallel complexity of signed graphs caridund in [68].

5.6 Gene assembly by folding and unfolding

In this section we consider gene assembly from a somewhat gesreral viewpoint.
The section is based on [31]. The molecular operations geavby the gene assem-
bly process each involve one molecule. This observatioerdied the model of gene
assembly as fold-and-recombine computing paradigm. Forerdence, we consider
circular graphs to be representations of DNA molecules.i@itial situation is a set
of circular DNA molecules represented by bicolored andliedbeircular graphs. The
fold-and-recombine process is reflected by a two-stagesgsieg of the graphs: (1)
fold on vertices representing pointers; (2) unfold usinga&ipg function. In this
setup, gene assembly becomes a dynamic process for reaiiobigraphs.

We allow graphs with multiple edges and loops. The vertiez®tk all pointers
of the gene. We consider bicolored graphs, where cblsrused to indicate an IES
and color2 is used to indicate an MDS. To represent the sequence ofatides
comprising various (IES or MDS) segments we use a labelingeédges.

Each edge will be oriented in both directions= (x,y) anda = (y,x) are
reverse pairsLet V be a set of vertices, and considéras a set of edge symbols
such thatt! = {ey,...,epn,€1,...,e,} With &; = ¢;. A (general) bicolored graph
G consists of arend point magg = : E — V x V such that(e) = ¢(e) for all
e € E; alabelingfg = f: E — X for an alphabet, with f(g) = f(e) for all
e € E;acoloringhg = h: E — {1,2} such thati(e) = h(e) foralle € E.

For simplicity, we writee = (z,y) fore(e) = (z,y). An edgee = (z,y) € E'is
aloop, if © = y. Thevalencyvals () of a vertexz is the number of edges leaving
A bicolored graph isevenif its valencies are all even. A bicolored graghis a
recombination graphif valg(z) € {2,4} for all 2, and every vertex of valency
is balanced: two incident edges have coloand the other two have col@; see
Fig. 18(a).

For each vertex in an even bicolored grapf let ¢, be a bijection that maps
incoming edges to outgoing edges respecting inversiow$, taty, (¢, (e)) = €
andy, (e) = eifand only ife is aloop. Then the map: « — 1, is apairing. Each
recombination graplir has thenatural pairingy> wheree andv, (¢) have the same
color wheneveralg (z) = 4.

Folding and unfolding

A pairp = {z,y} € E(V) will be called apointerwith endsz andy. A set P of
mutually disjoint pointers is gointer set The p-folded graphG = p is obtained by
identifying the ends op; see Fig. 18(a) and (b). For a pointer §ptq}, G xp*q =



28 R.Brijder, M.Daley, T.Harju, N.Jonoska, |.Petre, G.Rulzerg

G * g x p. This allows us to define, for a pointer 9et= {p, ..., pn }, the P-folded
graphG x P asG * p1 * ... % pp,.

Fig. 18.(a) A recombination graph, where colbris represented by thick edge; (b) The
folded graphG * p for p = {1, 7}. (c) They-unfolded graptG <., 1 with the natural pairing.
(31]

LetG be an even bicolored graph with a pairingFor a vertex:, leteq, eqo, . . .,
em1,em2 De the incoming edges with, (e;1) = €;2. In they-unfolded graphthe
vertex z is replaced by the new verticas, ...,2™ and the edges are redirected
according to the pairing,.; see Fig. 18(c), where the redirection is determined by
the colors.

Notice that if G is a recombination graph, so ¢, x. Also, if z # y, then
G oy x oy y = G oy y oy x. Therefore, we can Writ€ oy, A = G oy 1 0y . . . O T
for asubsetd = {z1,..., 2, }.

For an even bicolored grap@ with a pairingv, let F(G) = {z € Vg |
valg(z) > 4}. Then the grapld o, F'(G) is called they-unfolded graptof G.

Lemma 5.25 ([31]).If G is an even bicolored graph with a pairing, then itsy-
unfolded graph is a disjoint union of cycles.

Let G be a bicolored graph with a pointer st and lety) be a pairing of the
P-folded graphy « P. We denote ®,, P = (G * P) oy, P. We shall writeG ® P
for G @y P, if G x P is a recombination graph anglis its natural pairing.

Lemma 5.26 ([31]).Let G be a disjoint union of bicolored cyclic graphs. LEtbe
a pointer set of7, and lety be a pairing ofG = P. ThenG ®,, P is a disjoint union
of bicolored cyclic graphs.

Assembled graphs of genomes

Let G be a bicoloured cyclic graph withi; = {z1, ..., z,} and the edge sdi; =
{e1,...,en,€1,...,€n}, Wheree; = (z;,2,41) andx,11 = 1. A vertexz; is a
boundary vertexf G, if hg(e;—1) # ha(e;), wherei — 1 is modulon. A pathr
is a segmentif its edges have colar and the ends of are boundary vertices. For
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a disjoint unionG = ", G; of bicolored cyclic graph&7;, we let its boundary
vertex set be the union of corresponding sets of the compenen

Apair§ = (G, P) is called agenomeif G is a disjoint union of bicolored cyclic
graphs and” is a pointer set ofs containing boundary vertices only; see Fig. 19.

Fig. 19.The genoméG, P) with P = {p, ¢} for p = {2,9} andq = {5, 8}. The labels cor-
respond to the MDS31,, M, N1 and Py, P». The labels corresponding to IESs are omitted.
[31]

Theassembled genonud a genome§ = (G, P) is A(§) = (G ® P, @), and it
is a genome. Each segment of the unfolded graphP is agene

(@ (b)
Fig. 20.Let G be the genome of Fig. 19. Th&n« P is given in (a). Unfolding give&: ® P
in (b). The genes of areg;: 1 — p* — 10 (with the valueM; M), g2: 7 — ¢* — 6 (with
the valueP; ), andgs : 3 — 4 (with the valueN;).[31]

For§ = (G, P),asequencg = (Py, Ps, ..., P,) of subsets oP is anassembly
strategyof G, if {P1,..., Py} is a partition of P. One can show that in a genome
§=(G,P),if P,P, C Paredisjoint,thefG® P,) ® P, =G ® (PLUP,) =
(G ® Py) ® Py. This gives the following general invariance property:

Theorem 5.27 ([31]).Every assembly strategy= (P, P, ..., P,,) of a genome
produces the same assembled genfree(G, P): G®P = GAP, ®Pa®...®Py,.

A pointer setR C P of § = (G, P) is intracyclic, if any two partsy’ andg” of
each geng that lie in the same connected componen&ofie in the same connected
component ofy ® R.

Theorem 5.28 ([31]) For each genom§ , there exists an intracyclic assembly strat-
egyS = (P, P, ..., Py,) such thatl < |P;| < 2forall 4.

We can also show:
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Theorem 5.29 ([31]).Let § = (G, P) be a genome for a connectéti® P. Then
there is a genom§’ = (G’, P’), whereG’ is connected, such that(§) = A(9'),
and§’ has an assembly strate§y= (P, P, ..., Py,) of §’ for whichl < |P;| < 2
for all i, and eachG ® UJ_, P; is a cyclic graph for each.

6 Invariant properties of gene assembly

As discussed already in this chapter, both an intermolecutalel and an intramole-
cular model exist for gene assembly. Moreover, both modelsiandeterministic:
for a given gene there may be several assembly strategiealsmca gene may be
assembled either on a linear, or on a circular molecule. AB,sunatural question is
that ofinvariants what properties of the assembled gene and of the assentduggs
hold for all assembly strategies of both models? For exaifipl@ given gene, is the
set of molecules excised during the assembly an invariateoprocess? The same
question for whether or not the assembled gene is linearaifcgynd for whether
or not the obtained structure of the IES’s is fixed for given@is also open.

An affirmative answer to these questions was given alread$2hfor the in-
tramolecular model, showing that these properties areriavis of the intramole-
cular model. We follow here a presentation of [67], where rdmult is given in a
stronger form, showing that the properties above are iamggiofany model based
on the paradigm of pointer-directed assemAliis result may also be deduced based
on the graph-theoretical framework of [31]. The preseatatie give in this section
is in terms of strings and permutations. We refer to [67] farendetails, examples
and full proofs.

6.1 Gene structure

We introduce in this section a novel formal representatioritie gene structures of
ciliates, able to track the transformations witnessed bgreedgrom its micronuclear
form to its assembled form. We first represent a gene as adsjggrenutation over
the alphabet of MDSs by denoting their sequence and orientaive then extend
our notation to denote also the IESs and all the pointers.

We recall thaw, v € X' are callecequivalentdenoted: ~ v, if « is a conjugate
of eitherv or 7. Two finite setsX, X, C X¥ are callecequivalentdenotedX; ~
X, if they have the same number of elements and forigny X; there isr; € X;
such that; ~ z;, with 4,5 = 1,2, # j. Intuitively, if « denotes a circular DNA
molecule and: ~ v, thenv denotes the same molecule, potentially starting from a
different nucleotide and/or in the reverse direction. &nly, if X; denotes a set of
circular molecules and’; ~ X5, thenX5 denotes the same set of molecules.

We denote the MDSs of the given gene by letters from the akgtish, =
{Mi, Ms, ..., M,} in the order they occur in the macronuclear gene, wherel.
Thus, the sequence of MDSs in the macronuclear gend,i8/, ... M,,. On the
other hand, the sequence of MDSs in the micronuclear gemegerieral a signed
permutation oveM.
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Example 6.1The MDSs of the micronuclear gene actin 13n nova may be repre-
sented as the signed permutatidfy My Mg Ms M7 MoM oMy Mg, see [74]. In this
gene, MDSV/, is inverted.

We call M,,-descriptorany signed permutation ovér,,. We say thaiu is an
assembled(,,-descriptorif x orz are of the form\/; ... M, M, ... M; 4, for some
1<i<n.

Consider now the alphabet of IE$s = {Iy, I1,...,I,}. ForanyJ C M, UJ,,
a signed permutation overwill be called arivtJ,,-descriptor

Let, be the projectionr,, : (M,, UJ,)¥ — M¥. We say that ¢ (M,,UJ,)*
is anassembledJ,,-descriptor ifr,, (§) is an assembledi(,,-descriptor.

We can associate a@vJ,,-descriptor to anyM,,-descriptor as follows. Let, =
M1M2 e ]V[in be anM,,-descriptor, Wheré/v[ik € {M,,,M,,} andiy, is, ..., iy,
is a permutation ovef1,2,...,n}. Then theMJ,-descriptor associated tg is
Ty = IOJ\A/EILJ\ZJQ o ]\A/[/l-nln —we denote by, I1, . .., I, the non-coding blocks
separating the MDSs. We say in this case that amicronuclearMJ,,-descriptor

Example 6.2.(i) The MJ,-descriptor associated to the actin | gene in S.nova, see
Example 6.1, i§0M3[1M4IQM613 M5I4M7I5M916M217M1]8M8[9.
(i) § = InIsMsMoM, 1,1, is an assembled(;-descriptor.

We extend now thé\(J,,-descriptors to include also the information about the
position of pointers in the gene. Consider then the alph@het {2,3,...,n} and
denote the markers biyande. DenoteX’,, = M,, UJ, U P, U {b,e} and letr,, be
the projectionr,, : ¥ — (M,, UJ,, ). We say that € X¥ is a X,,-descriptorif
it has one of the following forms:

(') 0 = Qp1P1O1P2P2 - - - PkPRClL, QoCE 7 A, OF
(i) 0 = praipaps - . . Pr—1Pk—104D1,

wherek > 0, p; € P, UP,, a; € (X, \ P,)E, forall0 < i < k and moreover,
(o) is aMJ,,-descriptor. In case (i), we call linear, and in case (ii) we call it
circular. We say that is assembled 7, (o) is an assembledi(J,,-descriptor.

Example 6.3()) o1 = 22M>33Mj3 el,I13bM;22 is an assembled circulaEs-
descriptor.

(ii) o2 = 1y22M5331,22 M, bI>33 M3els is a linear micronucleaE;-descriptor.
(iii) o3 = 22M33Mselo13bM,22 is not aXs-descriptor.

Every MDS of micronuclear ciliate genes is flanked at its baills by a pointer
or a marker. We denote the pointers flanking Mg by writing ¢ M; (i + 1) (i + 1).
For M; and M,, we write bM122 andnnM,e, respectively. We use a double letter
notation for pointers in order to deal with splicing in a simpvay in Section 6.2.
Formally, to associate &,,-descriptor to avJ,-descriptor, consider the morphism
b+ (M, UT,)E — X defined as followsy,, (1) = I, forall I € J,,; ¢, (M;) =
iiM;(i+1)(i+1),forall2 <i <n-—1; ¢,(My) = bM22 andf (M,,) = nnMye.
For anyM3J,,-descriptors, we say that,,(9) is the X, -descriptorassociatedo 4.
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We say that,, (d) is a micronuclear X, -descriptor if§ is a micronucleatv(J,,-
descriptor. Note that all micronucleak,-descriptors are linear.

Example 6.4The micronuclea®’y-descriptor of the actin | gene in S.nova, see Ex-
ample 6.2,i9¢33M3441,44 M 4551566 MgT71355 M5661,77M7881599 Mgelg33 M o
22176 M 1221388 Mg991,.

For any micronuclea’,,-descriptors and anyp € P,, o contains two occur-
rences from the seipp, Dp}: pp represents the pointer in the beginning of MDS
and at the end a#/,,_, whilepp is its inversion.

6.2 Invariants

We give in this section a number of invariants of the generabseprocess: the
circularity of the assembled gene (whether or not the geassembled on a circu-
lar molecule), with the IES-context of the gene (the seqe@fitESs preceding and
succeeding the assembled gene), but also with the set ofaiessexcised during as-
sembly. It is worth emphasizing that we establish all thespgrties based solely on
the generic paradigm of pointer-directed assembly, indégetly of the specificities
of either the intra-, or the intemolecular model.

During the pointer-directed assembily, ciliates allegeadign their DNA mole-
cules along their pointers, and through recombination #my the MDSs in the
orthodox order. It is essential to observe that in this pgecthe two strands of any
pointer p will be separated: one strand will remain with the block pding the
pointer, while the other strand will remain with the blockceaeding the pointer.
The single strands will then recombine with the complenrgrgaands obtained by
separating in a similar way the second occurrengeinfthe gene. This splicing on
pointers can be formalized by a word-cutting operation eefiim the following.

Let o be aX,,-descriptor. Ifs is linear,c = agpipiaipopos . . . Qg 1PpPLOK,
with p; € P, UP,, a; € (5, \ )%, thenW, = {aop1, pean, picipit1 |
1 < i < k}. If ois circular,c = piaipspaas ... ap_1prprarpr, thenW, =
{picipit1, praxpr | 1 < i < k}. Forany seS C X%, we denotédVs = U,csW,.
Note that the sélV,, is equivalent to the set of edges of genome graphs (Sectiyn 5.
and to the reality edges of reduction graphs (Section 5.2).

It is important to note that we do not conjecture that cikasplit their genes
by cuttingsimultaneouslyn each pointer, to yield on the scale 8 MDSs and
IESs, followed then by a precise reassembly of all theseklsldodeed, it is diffi-
cult to imagine that such a mechanism would lead to the presfiective assem-
bly that we see in ciliates. Here we merely represent thogegredelimited coding
and non-coding blocks that will be eventually reshuffledsseanble the gene. Our
main result states that, given the fixed order in which MDSstrha assembled, the
pointer-directed assembly of all the other blocks (IESs)rigjuely determined by
the micronuclear structure of the gene.

Example 6.5For the Xy-descriptorr in Example 6.4, we have
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W, = {103,3Ms4,4114,4M45,5156,6 M7, 7135, 5M56, 61,7, TM78, 8159,
9Mgels3,3 Mo2,21;bM 12,2138, 8Mg9, 91o}.
Our invariant theorem may be stated now as follows.
Theorem 6.6 ([67]).Leto be a micronuclea#”,,-descriptor.

(i) There exists a sed, of X,,-descriptors such that
@W,UW, =Wa, UWa,_;
(b) there exists an assemblég) -descriptor inA,;

(ii) For any other setS of X,,-descriptors, ifS satisfies conditions (a)-(b) above,
thenS ~ A,.

Moreover,A, consists of exactly one linear,,-descriptor and possibly several cir-
cular ones.

Theorem 6.6 may be stated informally by saying that the firaliit of gene
assembly, including the molecule where the assembled gepladed, as well as all
the other non-coding molecules excised in the processjdsian

Example 6.7Consider theXy-descriptors associated to gene actin | in S.nova in
Example 6.4, withi/,, given in Example 6.5. It follows from Theorem 6.6 that the
results of assembling the gene are

AL 4}

Thus, the non-coding blockl; 4 is excised as a circular molecule and the gene is
asse_mbled linearly in t_he inverse order frddy to My with the non-coding block
14331 preceding it and 7221388159919 succeeding it.

Note that Theorem 6.6 holds both for the intra-, and the intaolecular mod-
els for gene assembly. Consequently, the set of moleculesrgted by the assem-
bly cannot be used to distinguish between different assestidtegies, either intra-
molecular, or inter-molecular. Instead, to (in)validatbéer model, one could exper-
imentally identify the sets of molecules generated at veristages of the assembly
and verify it against the predictions made by the two models.

Our results hold also in a more general way. We have provedttadinal result
A, of assembling a micronuclear, -descriptow is unique modulo conjugation and
inversion. As a matter of fact, our proofs apply unchanged i the following vari-
ant proved in [10] for the intramolecular model. LBtC P,,. There exists a unique
(modulo conjugation and inversion) séf , of X,,-descriptors with the following
property:M,_1ppM, < o for somea € Ap, UAp, ifand only ifp € P. In other
words, if the assembly is to be done only on a givenfséhat may be different from
the total sefP,,), then the result is unique. To prove the result, it is endogieplace
the morphismyp,, in Section 6.1 with a morphismp ,, that only insertgp in case
p € P. This extension of Theorem 6.6 does not contradict the regarthinism of
gene assembly: the ciliate may choose to reduce the pointany order. The result
above only says that after assembling dixadset of pointers, the result, including
the excised molecules, is unique.
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7 Template-guided recombination

In the previous sections we have considered models whighaalkabstract view of
the gene assembly process in ciliates. We now move to a lemptementation-
oriented, level of abstraction in which we attempt to begidrassing the question
of howthe assembly process takes place in vivo. Our quest for Soedkry of the
“biological hardware” responsible for implementing asbnbegins with a simple
examination of how MDSs might overlap to fit together, in tloerect order, while
also removing IESs. As has been noted above, each MDS is fldnkpointer se-
qguences —that is, looking at the level of DNA sequence, tvill®e a proper suffix
of MDS n which is equal to a proper prefix of MD& + 1. Considering this type
of structure for an entire gene of several MDSs, a compuiensst will immedi-
ately recognize thénked list data structurethe core of the MDS is the data while
the pointer sequence indicates the “address” of the neatittah (MDS). The ini-
tial state of MDSs, distributed throughout the MIC, is reisaent of the non-linear
distribution of linked list data in heap memory. It is wortbtimg that the ciliate
data structure is, in fact, significantly more sophistidatean a classic linked list;
whereas each element of a linked list contains two sepasat@anents, an area for
a data payload and an area for a pointer to the next elementilthte version of
the linked list actually combines these two elements. Stheepointers always lie
within the MDSs, the pointer to the next MDS is also part of‘ith&ta” contained in
the MDS and is fully integrated into the assembled gene.

Completing the process of gene assembly, starting with Mi€ ending with
MAC, can be seen as implementing a linked-list specificatitmwever, it does not
appear that the pointers alone are guiding this implemientarocess as some of
them may be too short to serve as a unique pointers to theMolpMDSs. Yet the
pointer sequences are still always present. A natural munetst be answered by any
suggested implementation of gene assembly is thus: “whatiothe pointers play
and why are they present?”.

A realistic, biologically implementable, model must inporate a number of
principal features. It must biereversible it must beself-propagatingor reusable
it cannot be sequence specific, i.e., it cannot rely on thegmee of certain fixed
sequences, as a huge variety of pointer sequences are kimstaafl it must beon-
figuration specifiy, and it must have some mechanism ifientifying the MDS/IES
boundary and hence the pointerfhe basic DNA-template model démplate-
guided recombinatiomas introduced in [76] to address exactly these requiresnent
which we will clarify in more detail after describing the maid

7.1 DNA template-guided recombination

We consider here a schematic view of DNA as a picket fence whiéh sugar-
phosphate backbones running horizontally along the tofpattdm of the strand and
the hydrogen bonds running vertically between the backbdappose now that we
wish to assemble two strands of DNA, andY’, having the sequences, a5 X2
andYie(vYa, respectively, where = (,3. In order to guide this assembly, we
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assume the existence of a DNA templdtef the form T, «8~T> which is placed
in-between the two target strandsandY’, as seen in Fig. 21. Note that we use the
notationa to denote the Watson-Crick complement of the DNA sequerened that,

in Fig. 21, then3 region of X is now aligned witha3 on the template; similarly3~y

of Y is aligned with its complement on the template. At the same tithe sequence
of 4, beginning from the first nucleotide, must not be complemsgntio v and, in a
similar way,e must not be complementary ¢o It is important to note thak’ andY
need not be physically disconnected independent strardsdyinstead be different
regions of a single, connected, strand of DNA.
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Fig. 21. SequencesX;a(6 X, and Yie8~Y> stacked with DNA templatd’} a8~T> in-
between. [76]

The template-guided recombination now takes place in theseiple steps:

e The hydrogen bonds in thes; region of X and theaf; in the template are
broken and switch from binding the backbones witikinand Y vertically to
binding complementary sequence horizontally betw&eandY’; likewise for
the second half of the template. In our fence analogy, théca¢pickets within
DNA double-strands are replaced by floors and raaf@ssDNA strands, as
pictured in Fig. 22.

e Cuts are now made in the backbones of the roof/floor asserabtp¢ ends of
the roof/floor structures) to yield the free-standing dinoe of Fig. 23.

e The same cuts also yield a new copy of the original templagsdtf shown in
Fig. 24, and the strands 3, and 826 X> (not pictured) which are left free to
float away.

e Theroof and floor structures of Fig. 23 rotate to align thebatkbones which are
then healed (via ligation) yielding the complete doublarstied DNAX; a5~Y>
which is the recombination of the prefiX; o3, of X and the suffix3,~vYs of Y
—thusX andY have been recombined.
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Tya 7T, — thus the template is reconstituted.
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Likewise, the roof and floor structures of Fig. 24 rotategmaland ligate to yield
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Fig. 22.Hydrogen bonds switch from being vertical pickets holdimgdjvidual strands together
to forming floors and roofs across strands. [76]

Fig. 23.0ne of the products resulting from cuts made in the backboh#se configuration

of Fig. 22. [76]
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Fig. 24. The reconstituted template, resulting from cuts made irbttekbones of the config-
uration of Fig. 22. [76]
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It can be seen clearly that the model, when considered in slfenterms (as
often done in computer science), meets our requirements Biologically imple-
mentable system. The process of template-guided recotitrmaay be described
by the following implication:

afd + afy +eby = afy+afy + b + P20

wherefs; 3, = (. On the left side we have the first term consisting of the neqgli
subsequences foX, the second term is the template and the third term is the re-
quired subsequence &f. On the right side, the first term expresses the fornXof
recombined witht”, the form of the reconstituted template and the last two seara

the forms of the “loose ends”. Note that we must have the corapts on the left
side present in order for the reaction to take place. If threypaesent, this equation
describesvhathappens, though not how it happens, and what we obtain iothe f
products on the right side. Note carefully that from this nemtnon, no three com-
ponents of the right hand side have the form required of theetbomponents of the
left hand side — thus the process is irreversible (one-way).

Examining the right side, we see3~y twice, demonstrating that the template
in this model is self-propagating: we begin with one comptne3y on the left
hand side and after a single iteration we get two such comysenklence as the
process progresses iteratively, we have an explanatidmeofitowth of the number
of available templates. Thus even if we begin with only a Ergpy of the template,
we very quickly end up with an “abundance” of templates. Tihisecessary as we
recall from the section on ciliate biology that many copiéhe MIC chromosomes
are present during the polytene chromosome stage so théiplmwopies of each
template are required to successfully assemble a full MA@ ge.

Further, it is clear that the whole three step process doedapend orspecific
sequences, 3, v; indeed, all that matters is the relationship between theeeces
that causes the formation of a particular configuration.

Considering this process carefully, the true nature of feenbecomes apparent:
pointers are sequence segments within which the transfesof$, and dually the
transfer of floors, takes place. Consequently, the mosh&akbackbone cuts of the
recombination process will take place in the pointer regRwinters are records of
transfers. Hence, in our scheme, pointers are the regiomstet®3 = (3,32 while
af andgy correspond to MDS38/; and M .

7.2 RNA template-guided recombination

A variant of DNA template-guided recombination has beempsad in [5] which
considersRNA templateg-ollowing through the steps of the DNA template model
one can see that a portion of the template strand ends up ineimgporated into the
final assembled product; this presents no problem for DNAptatas but is infeasi-
ble with RNA templates since DNA and RNA backbones are incatibfe. Rather
than proposing a template which sits “in-between” the sisaio be assembled, the
RNA template model suggests a template which “hangs abdee’strands to be
recombined, guiding the recombination but never direcdlstipipating in it.
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Consider DNA stranda 35 ande3-y again containing the MDSs5 and 3+ and
a double-stranded RNA template moleculéy. We stack the two substrate strands
in tandem, as in the DNA model, but place the template hotabnabove, rather
than between, the substrates as in Fig. 25. Beequence of the RNA template
begins to form hydrogen bonds with the sequefaeone of the substrates; note that
while the backbones are incompatible, it is certainly guesior RNA and DNA to
share hydrogen bonds across two strands. The complemstramg of the template
RNA similarly binds to the other substrate strand. With thieiinal “picket fence”
hydrogen bonds of the substrate strands broken, the coreptany portions at the
bottom of each strand now form a floor of hydrogen bonds. IfRINA template
is now removed, the complementary strands at the top of thsetiates will form a
roof of hydrogen bonds. Cutting the DNA backbones in the fdaces indicated in
Fig. 25 and rotating, followed by healing (ligation), theoken backbones similarly
to the DNA model yields a correctly assembled DNA strand.

Note carefully that the RNA template is not integrated irte tesulting struc-
ture; rather, the RNA template served only to break up thedgeh bonds in thg
region of the substrate strands, inducing the formationfada of hydrogen bonds
between the two substrates which then induced the formafiencomplementary
roof structure following the removal of the RNA template.

TS iy SO I
s LT 1]

B y
Template gone;
T L
cuts The blue piece

/ / \ is the newly assembled
/\ molecule
¥

N

Fig. 25. Reading left to right, top to bottom: The RNA template fornysltogen bonds with
B andg in the substrate strands, causing the formation of a floavés strands. When the
RNA template is removed, a roof structure is now formed. Fuis are made, followed by
backbones swinging back into position and being healedrto fhe assembled strand. [5]

Yet another similar approach requires only a single-sednBNA template,
which is placed “diagonally” between the two DNA picket fenstrands (details
are given in [5]).
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The development of theoretical models of template-guidsdmbination has
helped to direct biological inquiry into core questionsreunding gene assembly. It
is natural, from a biological perspective, to ask where tameg might originate. Both
the RNA and DNA template-guided models suggest that template composed
of sequence which is highly similar to that in the old MAC. Betexperimental
results in the ciliat®xytricha trifallax (Sterkiella histriomuscorujnguided by the
insight provided in the theoretical models, support thedtlgpsis that short MAC-
specific RNA templates are involved in gene assembly [66]p@it out also that the
appendix of [5] contains a straight-forward RNA-templat@nbination explanation
for the molecular operatiorid, hi, anddlad introduced in Section 5 which are the
basis of the intramolecular models presented in this chapte

7.3 Template Guided Recombination on Words and Languages

We move now to consider theoretical research on the templatkel. Together with
combinatorial models discussed in preceding sectionghéwretical work concern-
ing the template model provided both some new insights inéortature of gene
assembly and a whole spectrum of novel and interestingmatimmodels, and results
for theoretical computer science.

A formal language theoretic version of the baBiNA template-guided recom-
bination (abbreviated TGR) operation of [76] was first studied in [Z8)r words
x,y, z,t € X* and natural numbens;, no, > 1, we denote by, the product of the
recombination of: andy, guided by template, by (z,y) F+ n, n, 2. More specif-
ically, if z = wyafvy,y = vafByus,t = afy with «, 8,7, u1, us,v1,v2 € X%,
|al, |v| = n1 and|8| = ng, then we may write the TGR produet= ujafyus. If
T,L C X* are languages, themy ., ,,, (L) is defined by

MNrnyne (L) ={z : Fz,y € L,t € T suchthalz,y) Finyn, 2}

The shorthand notationy (L) is used whenevet,, ne are understood. We note
that the restriction on pointer lengthi| = no, is not as strict as it appears since it
has been proven equivalent to the restrictign> n. in [20].

Given the nature of biochemical reactions, it is naturaldasider an iterated
version of TGR as well: let (L) = Landforalli > 1, let

T,n1,n2

T (L) =00, g (DU Ty s (N7, oy (L))

T,n1,n2 T,n1,n2
Then we also defing, , . (L) as
My (L) = (J My s (D).

i>0
Finally, letL, T be classes of languages andn, > 1. We define the following
closure classes:
rh'T-,nl-,nz (L’) = {rhTﬂllﬂm (L) :TeT, Le L},
M3 (L) ={M7 i, (L) : TET, L €L}

T,n1,m2
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We denote the families of finite languages ly and regular languages IREG,
and recall that a family of languages is said to be a full AFit it closed under
homomorphism, inverse homomorphism, intersection witjul& languages, union,
concatenation and Kleene plus.

Oninitial inspection of TGR, there appears to be a simyamth the well-known
model of splicing systems, but this relationship has beemvaho be superficial in
[20]. Before we state the relevant formal result, let us lidba basic operational
scheme of splicing systems.

A splicingscheme oH schemes a pairc = (X, R) whereX' is an alphabet and
R C X*#X*§X*4 37" is a set of splicing rules whefe # are not elements of.
For aruler € R, we define the relatiofw, y) =, z if r = ui#usSusH#ug, z =
T1ULU2T2, Y = Y1U3U4LY2, 2 = T1UIU4LY2, for someusr, ug, u3, U4,Y1,Y2,T1,T2 €
2.

For a languagé C X* and an H scheme = (X, R), we defines(L) = {z €
X* . Jz,y € L,r € Rsuchtha(z,y) =, z} and extend to iterated splicing as
follows: leto°(L) = L ando?(L) be defined byr*(L) = o*~1(L) U o(c*"1(L))
for all s > 1. Finally, as expected,

o"(L) = U o' (L).

i>0

For classes of languagés R, let H(L,R) = {¢*(L) : L€ L,0 =(X,R),R €
R}.

Lemma 7.1 ([19]).For all ny,ns > 1, for all full AFLs L:

L=z

FIN,1 1,2

(L) = H(L,FIN),
while for all finite languages and templates:

FIN Crh:

FIN,1,n2

(FIN) C H(FIN,FIN) C REG.

Despite this result, it has been shown in [20] that every lsganguage is the
coding of a language im?,, (FIN) demonstrating a relatively modest computational
power for single-application TGR.

To investigate the computational power of the iterated ,c#ige necessary to
define the notion of a “useful” template; we say that a teneplat T is usefulon
L,n1,ny if there existsu;aBv1, vafByug €My, . (L) with |af, [y > ni, [8] =
ne, U1, Uz, V1, V2 € X* andt = af~. If every template € T is useful onL, ny, ns,
then we say thal” is useful onL, ny, ns. The following results, demonstrating the
surprisingly limited power of iterated TGR, were shown i8]:1

Theorem 7.2 ([19]).Letny,ne > 1, L beafull AFLandL, T € L. If T is useful on
L,ni,na, thenrh? (L) c L.

T,n1,n2

Corollary 7.3 ([19]). Letny,ne > 1. Forall full AFLS L, ieq 1y, 1y (£) = L.
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The problem of template equivalence, viz. “Given sets ofpiatesT}, 75, are
7, andrhr, identical operations?” has been considered in [27] whigkga char-
acterization of when two sets of templates define the same dpg&Ration in formal
language theoretic terms, leading the following decidighiésult:

Theorem 7.4 ([27]).Letnq,ne > 1 andTy,To € X* (| X] > 3) be regular sets of
templates. Then it is decidable whether or hat .., n, (L) =Mr, nyn, (L) for all
L C Xy~

Several variants of TGR have been studied as well, includiogmputationally
universal version with added deletion contexts [21] andr&lguntramolecular ver-
sion which resembles a templated version ofltheperation [15] discussed above.

In addition to the very literal formalization of TGR considd in this section, the
underlying theoretical model has also inspired work at aesnadastract level.

7.4 Covers from templates

The process of gene descrambling may be abstractly foretulatsimple terms as
a procedure which takes MDSs from the MIC and connects thémowerlap, to
form the MAC. The template-guided recombination modelused above provides
a concrete suggestion of how this process might be implesdemte view a tem-
plate, T, as a sort of magnet which glues together regions of MIC closomes
containing MDSs to form orthodox MAC genes. Returning to aerabstract level,
we now consider the set of all MDSs as our primary object odlstin this view,
a template is now a request: “with this set of segments(MD3sase cover me”:
and therefore our core question is now “given a set of seggnbatv can a particular
word be covered with these segments?”. This leads naturalige study of vari-
ous properties of coverings, and the notion of uniquenesswdrings formalized as
scaffoldsgpresented in [35].

An intervalis a set of integers of the fordm,n + 1,...,n+ m}, wheren € Z,
andm € N. For a given alphabe¥, we define asegmenas a functionf : A — X,
where A is an interval, and denote the set of all segments dvdiy Sx. Since
f is a function, we alternatively view segments as sets ofredipairs of the form
(n, f(n)), calledelements of , with ». called thdocationof (n, f(n)); thus elements
of f are ordered through their locations. This point of view isyMeonvenient as it
provides a set-theoretical calculus of segments: we casideninclusions, union,
intersections, differences,. of segments. Also, in this way, a set of segments is a
family of sets.

For a setC C Sx and a segment € 8y, we say thatC coversf if f =JC.
Intuitively, f is covered byC if each element of is present in at least one segment
of C, and all elements of all segments@fare present irf. Note that in general an
element off may be present in several segment€oi.e., the segments @ may
overlap. One may also have redundant segmengs, ine., segments which cover
only elements of that are already covered by other segments.dlVe thus say that
a coverC of f istightif for everyz € C, C — {z} is not a cover of.
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Often covers are chosen from a subsei of Given such art” C 8y, and a cover
C of fwith C C F, we say that is asmall coverof f (w.r.t F) if |C| < |Z] for all
7 C F coveringf. Note that the property of being a small cover is a global proyp
C'is a small cover of w.r.t. F' if any other covetZ of f, Z C F, has atleast as many
segments a€'. The set of all small covers gfw.r.t. F' is denotedSC'»(f), and the
small indexof f (w.r.t. ') is the cardinality of the small covers ¢f(w.r.t. F"). For
any small cover” of f w.r.t. F', we get a natural orde?(1), ..., C(m) of C, where
m is the small index off, and the order is determined by increasing locations of first
elements of the segments@f

Example 7.5Let X = {a,b,c} andf € Sx be defined by
f= {(3’ a)v (4’ b)7 (5’ b)7 (6, a)7 (71 C)}

which may be abbreviated gs= (3, abbac) sincef begins at location 3.

Consider the setd” = {(3,ab), (4,bb), (4,bba), (5,bac), (6,ac)} andC =
{(3,ab), (4,bb), (6,ac)}. It is clear thatC' coversf and is tight, since no element
of C' can be removed while still coveringj however, with respect té’, C is not
small sinceC| = 3 and the sef(3, ab), (5,bac)} C F also covers and has cardi-
nality 2.

From the point of view of the original biological motivatiptihe segmenf rep-
resents a descrambled MAC gene while the Beis the collection of MIC gene
fragments available for assembly. We now proceed to inyatgithe structure of
by considering the family of all small covers @fwith respect to some fixef.

Let f € 85, F C 85 be such that it contains a cover ffand letm be the small
index of f with respecttal’. Let1 < i < m. Thei-th kernel of f with respect ta?”’
(denotedier; ¢ (f)) is defined by

ken,F(f)—( N C(i)>— U cu .
()

CeSCr CeSCr(f)
J#i

We now define thescaffoldof f (with respect toF’) as the sefker; p(f),...,
kern,. r(f)} of all kernels off.

Theorem 7.6 ([35]).For eachl < i < m, ker; p(f) is @ nonempty segment.

For any segmenf, the choice off” determines a certain natural class of “maxi-
mal” subsegments gf; namely, those subsegments which are not strict subsegment
of other subsegments. L& (f) be the set of all subsegments pthat belong to
F. We say that a segmente Pr(f) is long (with respect taF’) if it is not properly
included in any other segment - (f). The set of all long segments ¢f (with
respect toF) is denotedL Pr(f). Additionally, we call a cover long if it consists
solely of long segments.

We now turn our attention to the study of the canonical cldssowers which
have both the “long” and “small” property. For eath< i < m, let LPp(f,i) =
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{y € LPr(f) : ker; r C y}. Thatis, we categorize the long segmentg efith re-
spect taF’ according to containment of kernels. SifeBr( f, ) is an ordered set, we
letrip(f,1) (resp.ltr(f,4)) be the maximal, or rightmost (resp., minimal, or left-
most) element of. Pr(f, ). The following result provides a method for constructing
“canonical” small covers of.

Theorem 7.7 ([35]).The setgrtp(f,1),...,rtr(f,m)} and{ltp(f,1),..., ltp(f,m)}
are long small covers of with respect taF'.

More detailed analysis of the structure of scaffolds is give[35].

7.5 Topology based models

An important question that arises from considering tengptatided recombination
concerns the three dimensional structure of DNA undergoingiple recombina-
tion events. Recently, two new approaches to this questoe been undertaken.
The physical structure of the DNA strand undergoing recowation is directly con-
sidered in [5] through the use of virtual knot diagrams. Miauclear genes are rep-
resented in a schematic form which explicitly denotes ohly telative locations
of the pointer sequences. Consider, e.g., the Uroleptus d&I [13] which has
the following MDS descriptoriy Ms My Mg M7 Mg M1, Mg Mg Mo Mg. The corre-
sponding legal string is the followin@:34455678 1011116789239 10. It

is now possible to interpret this sequence as a Gauss code sigmbol in a Gauss
code must occur exactly twice and to each code we associatiial knot diagram
in a similar manner to the construction of the recombinati@phs exposited above:

e For each symbol occurring in the code, we place a (discordgctossing in the
plane and label the crossing with the corresponding syn#botossing may be
thought of as similar to a vertex with predetermined ordehefincident edges
of degree 4 in a graph.

We choose an arbitrary point in the plane to denote as thepmise

Following a chosen direction, we connect crossings acogriti the order in the
Gauss code. In our example, we would draw arcs from the basetp@rossing
2, crossing 2 to crossing 3, crossing 3 to crossing 4, crggsia itself, crossing 4
to crossing 5, and so forth. Each crossing corresponds tod-floor” structure
depicted in Fig. 26 left.

e \We connect the remaining arc leaving the final crossing batike base point.

Note that during the construction of the virtual knot diagra might happen
that we have to cross an already sketched arc. This crossimgf iabeled and does
not correspond to a required pointer-guided homologousmémation, therefore
it is called a “virtual crossing”. The virtual crossings oespond to a cross-over
embedding of the DNA in space when one helix crosses ovehanot

The virtual knot diagram is now relabeled with each crosseuogiving the label
of its associated pointer and indicating inverted pointeith a bar. The process
of assembly is now reduced to one shoothingthe crossings of the virtual knot
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Fig. 26.Roof-floor structure of a crossing in a virtual knot diagrd&j.

diagram (see Fig. 26 right). The smoothing of a crossingistsef eliminating the
crossing by splicing together the arcs of the crossing ategrto the pointers: if
the pointers are not inverted, we splice together the aflt®afimg the orientation;

if the pointers are inverted, we splice together the arcosip@ to the orientation.
The result of a simultaneous smoothing of all crossings isrtaal link diagram

with no real crossings remaining; note that the link may begosed of multiple
components. If the arcs of the virtual knot diagram are ktbelith the respective
MDS and IES names (see [5]), then we have the following thaore

Theorem 7.8 ([5]). For every labeled virtual knot diagram derived from a repre-
sentation of a scrambled geidg there exists a simultaneous smoothing yielding a
link with a component C containing a subarc labeled with alD$6 in orthodox
macronuclear order.

Note that the basic mechanism of gene assembly through tbeteing of vir-
tual knot diagrams was already introduced in [31] in terma gfaph-based model,
which was also briefly discussed in Section 5.6. This modehged on the notion of
recombination graph representing pointers as vertices\iDSs and IESs as edges
between the vertices standing for their flanking pointeh& fecombination graph is
first subject to a process gfaph foldingyielding a structure similar to the virtual
knot diagram. A subsequent stepgriph unfoldings similar to that ofsmoothing
above and yields a representation of the assembled genef atidttee molecules
excised during gene assembly. In this way, the approachrofaliknot diagrams
from [5] is a translation of the graph-theoretic approacimfi31] into a topological
framework. This allows one to apply a rich set of techniquemfboth graph theory
and knot theory to the investigation of gene assembly.

One significant issue which has not yet been addressed cmiter thermody-
namics of template-guided recombination. For templatel@irecombination to be
implemented as suggested in the theoretical models rexgorae intricate position-
ing and biochemical operations; specifically, it requites puxtaposition of three
nucleic acid strands in space followed by a strand branchatigg process as is ob-
served in vivo (see, e.g., [26, 83]) and in vitro (see, e&{, B2]). In order for such
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branch migration process to start, it is possibly necegbatysome of the cuts in the
molecule (Fig. 25 bottom left) appear early in the processtlt® other side, it is
possible to suppose that the juxtaposition of the moledslestificially created by
as-yet undiscovered enzymatic mechanics. Yet anotheitildgsvould be a simple
argument indicating the thermodynamic favorability of flnecess. In the absence of
such complex additional enzymatic machinery, templateepirecombination must
rely upon diffusion processes within the cell to juxtapdsstemplate and substrate
strands. Itis a well known theorem in mathematics that randalks in three-space
need never pass through the same point twice, so the likalibbjuxtaposing three
molecules, in three-space, seems low. An alternative &rexiry based model pre-
sented in [22] attempts to reduce the complexity of this j@wbby considering the
effects of individual recombinations on the structure @& slubstrate DNA.

When circular DNA undergoes recombination, it is supeszbilue to twist ap-
plied by the recombination machinery [57, 80]. Where lineBA has unbound ends
which are free to rotate and relax, thus removing the indueest, circular DNA
cannot relax in this fashion after recombination. Insteld relaxation of the DNA
strand induces supercoiling of the DNA molecule. The cotioedetween linking,
twist, and writhe of the DNA has been observed decades agafi@defore, multiple
recombinations on a closed circle of DNA can lead to a knogagercoiled, strand.

Itis suggested in [22] that DNA is assembled in a closed trdopology where
the twist induced by a template-guided recombination (oltipla recombinations)
causes a new, potentially knotted and supercoiled, togdtofprm. This new topol-
ogy could facilitate the juxtaposition of the “next” reg®maof DNA to be assembled.

8 Discussion

In this chapter we have discussed a number of topics relatexsearch on the com-
putational nature of gene assembly in ciliates, includimg tivo main models for
gene assembly. Among others, we have discussed their maticahformalizations,
invariant properties, template-based DNA recombinatmr, topology-based mod-
els for gene assembly. Due to space restrictions, we couldisouss all lines of
research; for the sake of completeness, we now mentionybsefhe of the topics
that were not covered.

The organization of the micronuclear genes into broken anffled MDSs, sep-
arated by IESs is one of the characteristic features of thetes. To explain the
evolutionary origin of this organization, a somewhat getsioal hypothesis based
on a novel proposal for DNA repair is suggested in [34].

Approaches based on formal languages have been introdacdubth the in-
termolecular model and the intramolecular model, leadingerry diverse research
topics: computability, language equations, closure pitigse hierarchies of classes
of languages, etc. A typical approach is to consider conadiyt-based applications
of string rewriting rules, see, e.g., [58] for the internmiar model. A derivation
relation and an axiom are introduced, thus obtaining angganoee mechanism: start
with a multiset of strings, e.g., consisting of several espif the input string and
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eventually derive a multiset containing the axiom. It caphmyed that such a mech-
anism is a universal computing device. A similar result carobtained also based
on the intramolecular model, see [51], where the multisetsraplaced with sin-

gle strings. The idea is to concatenate several copies ohfhe string rather than

having them in a multiset. A generating, rather than acongptiomputing device in-

spired by gene assembly was also considered in [25]. Defirangcontextual string-

based rewriting rules inspired by the molecular operatioreither model leads to

language operations and to questions related to closupegies, or solutions of

language equations, see [16], [23], and [36], and also [@4&imore general frame-
work. Language operations inspired by the template-badédii@combination were

considered in [20] and in [27].

The original, non-contextual, intra- and inter-molecuperations were general-
ized to the synchronized insertion and deletion operatiombnear strings in [16].
Let «, 8 be two nonempty words in an alphaligt. The synchronized insertion of
into « is defined asa ® 3 = {uzvrw | @ = vzw, B = vo,z € X u,v,w € X*}.
while the synchronized deletion ¢ffrom « is defined aso & § = {uzw | a =
uzvzw, 3 = vo,x € X u,v,w € Y*}. All language families in the Chomsky
hierarchy were shown to be closed under synchronized insexhile only the fam-
ilies of regular and recursively enumerable languages wierged under synchro-
nized deletion. The existence of a solution was shown to ba&dble for language
equations of the fornk ® Y = R andX © L = R where® is one of synchronized
insertion or synchronized deletion operations dnd? are regular languages. The
same problems are undecidable in the caselihata context-free language.

More general results considering families of languagesnddfiby reversal-
bounded counter machines are also given in [16] along wghlte for a similarly
generalized version of the operation. Generalized versions of tdeanddlad op-
erations are considered in [17] while families of languadgfined by closure under
these generalized operations are examined in [18].

Two novel classes of codes based on synchronized inser&éoa defined and
studied in [14]. The synchronized outfix codes-¢odes) defined by the equation
(L ® X*)N L = @ and the synchronized hypercodes¢odes) defined byL ®
YTYNL = @ (where® is the transitive closure @, namely synchronized scattered
insertion). Thed-codes andv-codes are shown to be completely disjoint from the
regularly studied classes efcodes and it is demonstrated that it is decidable if a
regular language is am-code while the same property is undecidable for linear
context-free languages. Itis, however, decidable if aitraty context-free language
is an®-code while this same property is, unsurprisingly, undaioid for context-
sensitive languages.

A different computability approach was developed in [3],amhthe process of
gene assembly is used to solve an NP-complete problem. Guadly, this is im-
portant since gene assembly is confluent, see Section 5t iyéelds a computing
device that answers ‘yes’ to all legal inputs. A way arouna pinoblem is to make
the device highly non-deterministic by extending its sdeghl inputs. For example,
strings with more than two occurrences of each letter mayibvwed. With this mod-
ification, a suitably defined model can be introduced to stiteeHamiltonian path
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problem (HPP) by mimicking gene assembly on an encodingeirtput to HPP,
see [3]. The intermolecular model also leads to solutiom®ioputational problems,
see [50] for a solution to the satisfiability problem. Yet ey approach based on
boolean circuits was investigated in [52]. Algorithmic gtiens related to finding a
gene assembly strategy were considered in [49].

The topological model of gene assembly with virtual knoigdéans raises new
mathematical questions. Considering that a virtual knagjdim could represent the
physical structure of the micronuclear DNA at the time ofombination, in [4] it
was shown that for every such virtual knot diagram there i®mbedding of the
molecule in space, and there is smoothing of the verticemnbination along the
pointers) such that the resulting molecule is always uelhlEurther it was shown
that the smoothing guided by the pointers differs from thisternt smoothing notions
defined earlier for virtual knot diagrams [56]. This openmptetely new problems
on virtual knot diagrams that have not been studied before.

Research on the computational nature of gene assembly isaampée of gen-
uinely interdisciplinary research that contributed totbobmputer science, by a
whole range of novel and challenging models of computatiom to biology, by
increasing our understanding of the biological nature ofegessembly — it has even
led to formulating biological models of this process basethe notion of template-
guided recombination.
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