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Abstract

The vast majority of settings for which frequentist statistical properties are derived assume
a fixed, a priori known sample size. Familiar properties then follow, such as, for example, the
consistency, asymptotic normality, and efficiency of the sample average for the mean parameter,
under a wide range of conditions. We are concerned here with the alternative situation in which
the sample size is itself a random variable which may depend on the data being collected. Further
the rule governing this may be deterministic or probabilistic. There are many important practical
examples of such settings, including missing data, sequential trials, and informative cluster size. It
is well known that special issues can arise when evaluating the properties of statistical procedures
under such sampling schemes, and much has been written about specific areas3–4. Our aim is to
place these various related examples into a single framework derived from the joint modeling of
the outcomes and sampling process, and so derive generic results that in turn provide insight, and
in some cases practical consequences, for different settings. It is shown that, even in the simplest
case of estimating a mean, some of the results appear counter-intuitive. In many examples the
sample average may exhibit small sample bias and, even when it is unbiased, may not be optimal.
Indeed there may be no minimum variance unbiased estimator for the mean. Such results follow
directly from key attributes such as non-ancilliarity of the sample size, and incompleteness of
the minimal sufficient statistic of the sample size and sample sum. Although our results have
direct and obvious implications for estimation following group sequential trials, there are also
ramifications for a range of other settings, such as random cluster sizes, censored time-to-event
data, and the joint modeling of longitudinal and time-to-event data. Here we use the simplest
sequential group sequential setting to develop and explicate the main results. Some implications
for random sample sizes and missing data are also considered. Consequences for other related
settings will be considered elsewhere.

Some Keywords: Frequentist Inference; Generalized Sample Average; Informative Cluster
Size; Joint Modeling; Likelihood Inference; Missing at Random; Random Cluster Size.
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1 Introduction

In much conventional statistical methodology, it assumed that the sample has a fixed and a priori

known size. There exist many practical settings however in which sample sizes are, by contrast,

random, and the derivation of the frequentist properties of statistical procedures in such cases raises

fundamental issues that require careful attention. There are several distinct classes of problem of this

type. First, data may be missing in the sense that fewer observations are collected than planned: the

sample of units may be smaller than envisaged, or a set of observations from a unit, multivariate or

longitudinal, may be incomplete1. Second, in (group) sequential trials, the final sample size depends

on the point at which accumulating evidence crosses a pre-specified boundary2. Third, the sample

size can be completely random (CRSS), in the sense that it does not depend on the observations,

either collected already or still to be collected3–4. Here we incorporate such settings into a general

framework for problems with non-fixed sampling schemes. To allow us to develop the main ideas in

a simple way, but which still allows explication of the key problematic issues, we focus on the generic

case where a sample size N can take only one of two values: n or 2n. Having developed a full theory

for this setting we then consider in turn the three particular settings mentioned above. A large

literature already exists on various classes of the current problem. One of most familiar, and well

worked concerns group sequential trials. Several authors have pointed to fundamental problems with

the frequentist perspective of conventional estimators, when applied after conducting a sequential

trial5–8, whether they take the form of simple sample averages or those obtained through maximum

likelihood. By incorporating a probit model for the stopping rule into the simple two sample size

generic case described above, combined with normally distributed outcomes, we are able to develop

a sufficiently rich setting for development, that includes the simple sequential sampling scheme as a

limiting special case. By applying the work of Liu and Hall8 in this setup, we are able to uncover the

non-trivial implications of a random sample size, essentially making use of two important properties:

(a) excluding the CRSS case, the sample size is non-ancillary given the sum of the observations

made regardless of whether the stopping rule is probabilistic (as in many missing data applications)

or deterministic (as in sequential trials); (b) the pair made up of the accumulating sample sum and

the sample size is a minimal sufficient statistic that is not complete.

Using the above we show that the classical sample average is generally biased, but asymptotically

unbiased. An unbiased estimator can be obtained from the conditional likelihood, where the con-

ditioning is on the (non-ancillary) sample size. One consequence of this lack of ancillarity is that,
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unexpectedly, the conditional estimator has larger mean squared error than the simple sample aver-

age, a result which follows from the joint likelihood. This underscores the point that, in contrast

to some claims made in the literature, such an average is a perfectly legitimate estimator. The

finite-sample bias in the sample average is zero only in the CRSS case. Even then, it is not unique in

that a whole class of so-called generalized sample average estimators can be defined, all of which are

unbiased. This enables us to show that the ordinary sample average is only asymptotically optimal.

Indeed there is no uniformly optimal unbiased estimator in finite samples.

In addition to the three settings which we study in detail in this paper, there are several additional

classes of problem that fit within our generic framework. We now list four of these, continuing the

list of the second paragraph in this section. Fourth, so-called ‘informative cluster sizes’, in which

the cluster sizes may themselves depend on the outcomes of interest. Fifth, censored time-to-event

data have much in common with missing data. Sixth, the joint modeling of longitudinal outcomes

and time-to-event data is an extension of various earlier settings, including incomplete longitudinal

data, censored time-to-event data, and informative cluster sizes. Seventh, a longitudinal outcome

may be paired with a random measurement occasion schedule. The general results derived in this

paper also apply to these settings. The main results developed here will be applied to these four

settings elsewhere.

This paper is organized as follows. In Section 2, a general framework is sketched, encompassing the

various settings mentioned earlier. Key technical and modeling concepts are introduced. The main

ideas are developed in context of a sequential trial with probabilistic stopping rule; it is the focus of

Section 3. Ramifications for random sample sizes are discussed in Section 4, while in Section 5 we

focus on missing data. Some technical details are deferred to appendices.

2 Generic Setting as ‘Joint Modeling’

Consider the generic model for a pair of random variables Y i and Ci:

f(yi, ci|θ,ψ) = f(yi|θ) · f(ci|yi,ψ) (1)

= f(yi|ci, θ,ψ) · f(ci|θ,ψ), (2)

where Y i are outcomes of interest and Ci is a context-specific augmentation, such as sample size or

missing-data pattern. Here θ and ψ are unknown fixed parameter vectors. In line with work by Rubin

3



and Little1–9–11, (1) is the selection model factorization and (2) is the pattern-mixture factorization.

Also, following common practice in the missing-data literature, the mechanism f(ci|yi,ψ) can

be classified according to the following taxonomy. Missing data are missing complete at random

(MCAR), if f(ci|yi,ψ) = f(ci|ψ), and missing at random (MAR), if f(ci|yi,ψ) = f(ci|yo
i ,ψ),

where BY o
i is the observed portion of the sequence. Otherwise, the mechanism is missing not at

random (MNAR). We can make a distinction between Rubin’s original definition of these and a

frequentist definition according to whether these particular forms are assumed to hold just for the

data observed, or for all possible data sets respectively. Note that these concepts are not restricted

to the missing data case, but rather apply to all of the above settings.

The seven instances of the previous section can be formalized as follows.

1. Sequential trials. Consider a simple sequential trial, where n measurements Yi are observed,

after which a stopping rule is applied and, depending on the outcome, another set of n mea-

surements is or is not taken. Then, Y is the (2n × 1) vector of outcomes that could be

collected and C = N is the realized sample size, that is, N = n or N = 2n. This setting was

considered by12. More generally, a sequential trial would allow for size N = ni < · · · < nL,

for pre-specified L.

2. Missing longitudinal data. Here Y i is an sequence of planned measurements of length ni for

subject i in a trial of size N , and Ci is a vector of indicators, with Cij = 1 if measurement

Yij is taken and 0 otherwise. It is customary to decompose Y i = (Y o
i ,Y

m
i ), the observed and

missing components, respectively.

3. Completely random sample size. Here Y is an outcome vector, as above, but with C = N a

CRSS, taking values N = 0, . . . , m, with probabilities that are independent of Y .

4. Clusters of random size. Assume that data are sampled in the form of clusters. Then Y i is the

set of outcomes for cluster i = 1, . . . , N and Ci = ti is the observed cluster size. Two cases

can be distinguished. First, some members of the cluster may fail to provide a measurement,

implying that ti ≤ ni, with ni the number of cluster members. Second, in the case that there

are no missing data, that is ti ≡ ni, it is still possible that the cluster size contain relevant

information about the parameter of interest.

5. Censored time-to-event data. Now, Y i = Ti, a time-to-event for subject i = 1, . . . , N and
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Ci = Ci is a censoring time.

6. Joint models for longitudinal and time-to-event data. In this setting, Y i is a longitudinal

outcome, as in the second setting, and Ci = (Ti, Ci) is the pair of event and censoring times,

as in the previous setting.

7. Random measurement times. A situation closely related to the previous ones is that of random

measurement times. By jointly considering the outcomes Y i and the measurement times T i,

this relates directly to the previous setting, as well as to the missing data and random cluster

size settings.

In some of the settings above, covariates, Xi say, may be present. Without loss of generality these

will be suppressed from notation, throughout.

A fundamental concept, also due to Rubin9 , is that of ignorability. For pure likelihood or Bayesian

inferences, and assuming MAR, it is well known that inferences about θ can proceed by merely using

f(yo
i |θ), i.e., without explicitly modeling the missing-data mechanism. This is, provided the regularity

condition of separability holds. (Note that this concept can be transported to generic setting (1), by

letting Y o
i be the observed portion in the first factor on the right hand side.) Formally, this implies

that the parameter space of (θ′,ψ′)′ is equal to the Cartesian product of their individual product

spaces. Informally stated, this means that the missing-data model does not contain information

about the outcome model parameter. Even when separability is not satisfied, the consequence will

be efficiency loss, but validity of the estimation method will not be altered. In other words, C i can

be considered ancillary in the sense of Cox and Hinkley13(pp. 32–35). We will see that this is not

true for all situations. These considerations imply that ignorability may fail to hold for four reasons.

First and most directly, we may be in the likelihood or Bayesian framework but with an MNAR

mechanism operating. Second, ignorability does not hold in the likelihood and Bayesian framework,

under MAR but in a non-separable situation; as stated above, this is not an important issue in

practice. Third, under frequentist inferences, both MAR and MNAR are generally non-ignorable.

Fourth, for pure likelihood and Bayesian inferences, with MAR and separability holding, ignorability

in the selection model decomposition (1) does not translate to the pattern-mixture model (2), as

is clear from the presence of both θ and ψ in both factors of (2). Of course, one can consider

ignorability in the pattern-mixture context, by directly parameterizing the PMM model; in this case,

ignorability does not carry over to the selection model setting. We learn from this that the ignorability
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is parameterization specific. When ranging over the seven settings described above, all of these

situations may occur.

There may be instances where it is natural to model f(yi|ci, θ
∗) on the one hand, but scientific

interest lies with f(yi|θ∗,ψ∗) on the other. The asterisk refer to the fact that these are pattern-

mixture parameters from (2) which are then transported to (1). This could be the case for example

for the clustered-data setting. Then, the connection between both decompositions implies a natural

weight:

f(yi|θ∗,ψ∗) = f(yi|ci, θ
∗) · f(ci|ψ∗)

f(ci|yi, θ
∗,ψ∗)

= f(yi|ci, θ
∗) · wi(yi, ci, θ

∗,ψ∗). (3)

Here, ‘natural weight’ is used in the sense of being implied by a joint model, rather than following

from ad hoc specification. Note that the above fourth case for non-ignorability now reverses: while

the pattern-mixture formulation may satisfy ignorability, the derived selection model is unlikely to.

The above is not speficic to the missing-data context but applies to all cases considered.

It is useful to point out the connection between ignorability and ancillarity in the sense of Cox

and Hinkley13. These authors define an ancillary statistic T as one that complements a minimally

sufficient statistic S such that, given S, T does not contain information about the parameter of

interest. For example, when estimating the mean of a normally distributed population with mean µ

and variance 1, the sample size T = n is ancillary given the sample sum or sample average. This

is certainly true for a sample size fixed by design and also for a random sample provided the law

governing the sample size does not depend on µ. The general sequential trial case considered in this

paper is a clear counterexample to this.

A further property that has an important role to play in the present context is that of complete-

ness 14(pp. 285–286). A statistic s(Y ) of a random variable Y , with Y belonging to a family

Pθ, is complete if, for every measurable function g(·), E[g{s(Y )}] = 0 for all θ, implies that

Pθ[g{s(Y )} = 0] = 1 for all θ. The relevance of completeness in the present setting arises in

two ways. First, from the the Lehman-Scheffé theorem14, if a statistic is unbiased, complete, and

sufficient for some parameter θ, then it is the best mean-unbiased estimator for θ. This result is

important in framing the problems that occur with estimation following group sequential trials, a

point to which we return in Section 3. Second, the connection with ancillarity follows from Basu’s

theorem14–15 (p. 287): a statistic that is both complete and sufficient is independent of any ancillary
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statistic.

The above indicates that lack of completeness might correspond to violation of ignorability. Noting

that these theorems are implications rather than equivalences, we will see that there are plenty of

counterexamples in the sequential-trial setting. This means that a conventional statistical analysis,

in line with what would be undertaken with complete data and based only upon f(yi|θ) in (1), may

lead to bias. The lack of completeness may imply that there is no uniformly best way to overcome

this problem, a point that is taken up in the next section.

We now consider the ‘weights’ in (3). These provide a natural connection with inverse probability

weights; i.e., they provide a way to re-compose the population of interest from the sample data,

although we do need to make the formal distinction between this type of of weighting which ap-

plies to the likelihood itself and the more familiar inverse probability or Horvitz-Thompson type16

which essentially applies to the scores or estimating equations, and strictly lies outside the likelihood

framework. By definition, the ‘weights’ can be removed in the ignorable cases, but are needed in all

others. We will consider various cases in sections to follow. Evidently, the connection between both

frameworks is problematic if the numerator f(ci|yi, θ
∗,ψ∗) of the ‘weights’ wi ≡ wi(yi, ci, θ

∗,ψ∗)

is zero over a subset of the sample space or, more precisely, are not bounded away from zero. We

will refer to these problematic situations as degenerate or deterministic , each of the terms stressing

different aspects of the problem. This will occur for some incomplete-data and sequential-trial set-

tings. In contrast to the semi-parametric case, this issue does not occur in the parametric situation.

Nevertheless, caution is needed: the problem has been transferred to one of extrapolation, that is,

unverifiable distributional assumptions have to be made about the model governing the sample space

that cannot be reached.

A final remark is that in some cases there may fail to be replication to ensure estimability of all

parameters, as we will see in the sequential-trial case. This is why the parameters governing the

stopping rule, whether deterministic or probabilistic, will be assumed known. This does not imply a

limitation.

3 Sampling With a Deterministic or Probabilistic Stopping Rule

Sequential trials have a long history17, and throughout this, estimation following (group) sequential

trials has been both of interest and controversial. This is true for point estimation5–8 as well as
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estimation of precision12–18–20. Much of the relatively early work has been summarized by Whitehead

and colleagues21.20 point out that although maximum likelihood estimators are not affected by

stopping rules, their sampling distribution is. This follows from ignorability, while the likelihood itself

is unaffected by the stopping rule, frequentist aspects based on sampling distributions are. It was

precisely this issue that was studied in Kenward and Molenberghs12. The same issue emerges in a

different form in Hughes and Pocock6, who observe that there is usually bias towards overestimation

of the treatment effect; they aim at reducing this bias using prior information in a Bayesian analysis.

Todd, Whitehead, and Facey20 then provide methods for bias correction for the estimator. As will

be seen see below, one has to be extremely careful with the concept of bias. The issue of bias will be

revisited and it will be shown that many estimators, including the sample average, are asymptotically

unbiased. Tsiatis, Rosner, and colleagues18 and19 study precision estimation after group sequential

trials in terms of the joint sampling distribution of a test statistic K, obtained after T looks on

the one hand, and T , the number of looks, on the other. Thus, these authors also considered joint

modeling in the broad sense of Section 2. In particular, our simple sequential trial, introduced in

Section 2 and further studied below, is a special case of this situation where T can take values 1 or

2, corresponding to N = n and N = 2n, respectively. Emerson and Fleming7 propose estimators

within an ordering paradigm. Liu and Hall8 cast the sequential trial test in the framework of a drift

parameter θ of a Brownian motion Y (t) stopped at time T , and show that the sufficient statistic

[T, Y (T )] is not complete for θ. Following our discussion of completeness in Section 2, it is not

surprising that this means that there exist infinitely many unbiased estimators of θ, none of which

has uniformly minimum variance.8 then focus on the class of so-called truncation-adaptable unbiased

estimators and find the minimum-variance member among them; thus, the problem is alleviated by

making a restriction to smaller class of estimators than is usually the case. They also show that this

estimator is identical to the one proposed by Emerson and Fleming7.

The archetypical setting to be considered further was originally studied by Kenward and Molen-

berghs12. In particular, they suppose that n i.i.d. N(µ, 1) observations Y1, . . . , Yn are collected and,

if the sample fails to satisfy a given stopping rule, a further n observations Yn+1, . . . , Y2n are col-

lected, which have the same distribution. While n is not a random variable, the final sample size

N is, taking possible values n or 2n. Note that the setting is sufficiently general to be a paradigm

for any (group) sequential trial, as will be made clear in Section 3.6. The inferential goal is to

estimate µ, with an accompanying measure of precision. An obvious estimator is µ̂ = N−1
∑N

i=1 yi.
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The aim of Kenward and Molenberghs12 was to study the problems arising from such an approach,

with emphasis on precision estimation. They argued that it is necessary to use the observed rather

than the expected information matrix, because the setting is non-ignorable, in the sense that the

corresponding likelihood is non-separable. Indeed, even though the stopping rule is conventionally

defined in terms of the first n observations, and so independent of possibly missing outcomes, N

does contain information about µ, given the observed outcomes. Equivalently, this means that N

is not ancillary for µ given the observed data or, more precisely, a minimally sufficient statistic such

as the average or sum of the observations. As is clear from the above literature review, the simple

sample average is often surrounded with doubts about its sampling behavior. We will see below that

it is a legitimate estimator, in a precisely defined sense. Somewhat surprisingly, we will see that this

estimator is not constructed through conditioning on N , but rather is derived from from the joint

likelihood for the data and the sample size. We will show that this is in complete agreement with the

use of likelihood in an ignorable setting9. We will see, by contrast, that the conditional estimator

takes a different form.

12 proceeded by considering the full likelihood, using the pattern-mixture decomposition,

f(y1, . . . , yN |N )f(N ). (4)

They focused on the limiting case where the trial is stopped if
∑n

i=1 yi < 0, and continued otherwise.

This rule is deterministic, in line with common practice. They showed that the marginal probability

of stopping π = Φ(−√
nµ), with Φ(·) the standard normal cumulative distribution function, and

proceeded with the derivation of the corresponding log-likelihood and observed information. We will

now frame the deterministic stopping rule as the limiting case of a probabilistic law, by considering

the conditional probability of stopping:

π(N = n|y1) = π(y1) = F

(
α +

β

n
k

)
, (5)

where

Y 1 = (Y1, . . . , Yn) (6)

and K =
∑n

i=1 Yi. Here, K is the sum over the observations available at the time of evaluation.

So, at the time of the interim look, K is over n observations. K can also be evaluated after 2n
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observations for an experiment that continues after the interim look.

Even though the sample size N itself indicates whether or not stopping occurs, it is convenient to

introduce a random variable Z that takes the value 1 if stopping occurs and 0 if not. Alternatively,

the indicators I(N = n) and I(N = 2n) may be used. The full likelihood can be written:

L∗ =

2n∏

i=1

φ(yi; µ) · F
(

α +
β

n
k

)z

·
{

1− F

(
α +

β

n
k

)}1−z

. (7)

Here, φ(·) is the standard normal density. Because Z is not replicated, α and β cannot be estimated

from the data, so these parameters will be assumed fixed by design. This has no implications for the

conceptual issues developed with this example. The observed data likelihood then takes the form:

L =

N∏

i=1

φ(yi; µ) · F
(

α +
β

n
k

)z

·
{

1 − F

(
α +

β

n
k

)}1−z

. (8)

Expressions (7) and (8) are identical, except for the sample size, which is 2n in the first case and

N in the second. Because (7) starts from a selection model decomposition, it contains the marginal

data model, rather than the one conditional on sample size. For the sample size, the reverse is true,

in the sense that a conditional expression is given, rather than the marginal one. To reverse the

factorization, as in (4), we proceed by writing

Y 1 ∼ N (µ, In), (9)

where µ is a vector of n copies of µ and In is the n-dimensional identity matrix. By taking F (·) in

(5) to be the probit function Φ(·), we can consider a latent stopping variable

T |y1 ∼ N

(
α +

β

n
k, 1

)
, (10)

underlying Z. From this, we can derive the joint distribution of Y 1 and T , using standard multivariate

normal manipulations:



Y 1

T


 ∼ N







µ1n

α + βµ


 ,




In
β
n1n

β
n1′

n 1 + β2/n





 , (11)
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where 1n is an n-vector of ones. The marginal probability of stopping is therefore:

P (N = n) = P (Z = 1) = Φ

(
α + βµ√
1 + β2/n

)
. (12)

Note that (12) depends on the parameter µ, implying that this pattern-mixture formulation non-

separable. By contrast, although the observed data are present in the conditional stopping probability,

µ is not, implying separability in the selection model formulation. In the next section, we will

encounter an example of the reverse.

Continuing, the conditional probability for the outcomes is:

f(y1, . . . , yN |Z = z) =

∏N
i=1 φ(yi; µ)Φ

(
α + β

nk
)z [

1 − Φ
(
α + β

nk
)]1−z

Φ

(
α+βµ√
1+β2/n

)z [
1 − Φ

(
α+βµ√
1+β2/n

)]1−z . (13)

The connection between the marginal outcome model (9) and its conditional counterpart (13) again

draws attention to a natural ‘weight’ or connecting factor:

f(y1, . . . , yN) = f(y1, . . . , yN |Z = 1) · w(y1, . . . , yN , Z = 1)

with

w(y1, . . . , yN , Z = 1) =

Φ

(
α+βµ√
1+β2/n

)

Φ
(
α + β

nk
) . (14)

A similar ‘weight’ applies to the case where Z = 0.

We now derived the limiting case in which the stopping rule is a deterministic function of the first n

observations, i.e. we let β → ±∞. Focussing on the positive limit, we obtain

α + βµ√
1 + β2/n

β→+∞−→
√

nµ.

This leads to the probability derived directly by12, up to an immaterial sign reversal: we will choose,

in what follows, to avoid the minus sign. In this limiting case, the marginal outcome model retains

the form (9), but the three other expressions change. First, the conditional outcome model (13)
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becomes

f(y1, . . . , yN |Z = z) =

∏N
i=1 φ(yi; µ)

Φ (
√

nµ)
z
[1 − Φ (

√
nµ)]

1−z . (15)

Second, (5) is given by P (N = n|yi) = 1 if K > 0 and 0 otherwise. Third, (12) takes the limiting

form P (N = n) = Φ (
√

nµ).

These results, in both probabilistic and limiting deterministic forms, have important implications

which we now explore. First, when a joint modeling approach is used, beginning from (5) and (9),

the kernel of the likelihood is just

L(µ) ∝
N∏

i=1

φ(yi; µ). (16)

By contrast, for the approach that is conditional on Z = z, the more elaborate expression (13) applies.

Hence each approach leads to different inferences. Whereas in Cox and Hinkley13, in particular pages

31–35, it is argued that while conditioning on ancillary statistics is generally sensible, they also draw

attention to the point that there is no universal method for constructing these. These authors also

discuss a random sample size in this context. In their example, notwithstanding this randomness,

ancillarity is maintained, in contrast to our example. We will see below that this lack of ancillarity

leads to non-standard results.

Second, while the limiting deterministic case does not differ fundamentally from the general proba-

bilistic one in a likelihood setting, we do see that the natural ‘weight’ (14) becomes

w(y1, . . . , yN , Z = 1) =
Φ (

√
nµ)

I(K ≥ 0)
. (17)

with degeneracy in the denominator.

We now study the two likelihood estimators in more detail.

3.1 The Marginal and Conditional Likelihood Estimators

Beginning with the conditional model (13) we write, for convenience, α̃ = α/
√

1 + β2/n and

β̃ = β/
√

1 + β2/n. Further, let ν = α̃ + β̃µ. Evidently, ν = ν(µ) is a (simple linear) function of µ.

Consider first the case where Z = 1. The kernel of the likelihood `(µ), score function S(µ), and
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Hessian H(µ) are:

`(µ) = −1

2

N∑

i=1

(yi − µ)2 − ln Φ(ν), (18)

S(µ) =

N∑

i=1

(yi − µ) − β̃ · φ(ν)

Φ(ν)
, (19)

H(µ) = −N + β̃2 · [ν · Φ(ν) + φ(ν)] · φ(ν)

Φ(ν)2
. (20)

When Z = 0, the corresponding expressions are:

`(µ) = −1

2

N∑

i=1

(yi − µ)2 − ln [1 − Φ(ν)] , (21)

S(µ) =

N∑

i=1

(yi − µ) + β̃ · φ(ν)

1 − Φ(ν)
, (22)

H(µ) = −N − β̃2 · {ν · [1 − Φ(ν)] − φ(ν)} · φ(ν)

[1 − Φ(ν)]2
. (23)

Evidently, for the joint approach, the estimator agrees with that for a simple sample from a normal

distribution and we obtain the following familiar expressions:

`(µ) = −1

2

N∑

i=1

(yi − µ)2, (24)

S(µ) =

N∑

i=1

(yi − µ), (25)

H(µ) = −N. (26)

The simplicity of this estimator is a direct consequence of ignorability, given that the stopping rule

satisfies MAR.

To illustrate the difference between the joint and conditional estimators, a brief simulation study has

been conducted. A sample of size n was drawn from a N (µ, 1) distribution. For given values of α

and β, stopping rule (10) was applied. Whenever needed, a second sample, equally of size n was

generated. For all cases, a simulation run consisted of 1000 samples. Results are summarized in

Table 1. As indicated above, joint estimation is based on the simple sample average.

It is clear from (1) that both estimators are asymptotically unbiased, owing to their likelihood basis.

13



This will be studied further using the likelihood equations, in Section 3.4. Indeed, (25) is the marginal

score, and its expectation should be taken over the entire space, where each E(Yi) = µ. For the

other two, (19) and (22), expectation should be taken over the conditional space, given Z = z.

Fortunately, the score itself is derived for this space, hence a consistent estimator follows based on

standard likelihood theory. More formal arguments will be given in Section 3.4.

The results in Table 1 suggest that the precision is slightly higher for the joint approach rather than

for the conditional one. This may appear counterintuitive at first sight, because in many practical

applications a conditional approach is known to be more precise. However, this intuition draws from

our common experience of conditioning on an ancillary statistic, which is not the case here. The

superior precision for the joint estimator that is seen in Table 1 can in fact be predicted from the

likelihood equations. The expected information in the joint approach is

I(µ) = E(N ) = n ·Φ(α̃ + β̃µ) + 2n · [1 − Φ(α̃ + β̃µ)] = n[2 − Φ(α̃ + β̃µ)], (27)

where α̃ and β̃ are as above. In the conditional case, this is

Ic(µ) = n − β̃2 · φ(α̃ + β̃µ)

Φ(α̃ + β̃µ)2

[
(α̃ + β̃µ) ·Φ(α̃ + β̃µ) + φ(α̃ + β̃µ)

]

+2n + β̃2 · φ(α̃ + β̃µ)

[1− Φ(α̃ + β̃µ)]2

{
(α̃ + β̃µ) · [1− Φ(α̃ + β̃µ)] − φ(α̃ + β̃µ)

}

= n[2 − Φ(α̃ + β̃µ)] − β̃2φ(α̃ + β̃µ)2

Φ(α̃ + β̃µ)[1 − Φ(α̃ + β̃µ)]
(28)

When n → ∞, the information approaches

Ic(µ)
n→+∞−→ n

{
[2− Φ(α + βµ)] − 1

n
· β2φ(α + βµ)2

Φ(α + βµ)[1 − Φ(α + βµ)]

}
.

It is then clear that the ‘information deficit’ will tend to zero when n tends to infinity.

In the limiting case, when β̃ → +∞, the second term in (28) approaches

nφ(
√

nµ)2

Φ(
√

nµ)[1− Φ(
√

nµ)]
.

This term is non-zero for finite n but can be shown to approach 0 if n → ∞.

We conclude that the conditional estimator is less precise than the joint one, in contrast to many
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familiar settings such as contingency table analyses. The important feature here is conditioning is

made on a non-ancillary statistic. We have also seen that the joint approach leads to the ordinary

sample average, an estimator that has met with considerable concern in the past in the sequential

setting. These and related issues are studied in Section 3.2.

As an aside, the problem that exists with use of the expected, as opposed to the observed, information

matrix, as elucidated in Kenward and Molenberghs12, remains. In summary, likelihood inference is

valid, provided that the observed information matrix is used3 . We return to the maximum likelihood

estimators in Section 3.4.

3.2 Complete and Incomplete Sufficient Statistics

We now consider the role of completeness in this setting. For this, our argument owes much to that

in Liu and Hall8. A sufficient statistic for a group sequential trial, of the type we are considering

and in general, is (K, N ) as defined above. Liu and Hall8 show that (K, N ) is incomplete in general

group sequential trials. This means that the Lehmann-Scheffé theorem cannot be invoked (see

Section 2); that is if a statistic is unbiased, complete, and sufficient for a parameter µ, then it is the

best mean-unbiased estimator for µ. Of course, this in itself does not mean that there is no such

optimal estimator, but Liu and Hall8 show directly that an optimal estimator does not exist in the

group sequential case. While our simple sequential trial has only two possible sample sizes n and

2n, we have introduced a more general, probabilistic, stopping rule than is usually considered in the

group sequential setting (5), and so we need to extend appropriately the results of Liu and Hall8. We

demonstrate in this subsection that, given the lack of completeness of the sufficient statistics, there

exist classes of unbiased estimators in this problem for which no member is uniformally optimal.

Continuing with the same example in which the outcomes are assumed to be normally distributed

with mean µ and variance 1, and applying the results of Liu and Hall8 to our sequential-trial case

for either stopping at N = n or continuing to N = 2n, we find that the joint density for K and N

can be written

pµ(N, k) = p0(N, k) · exp

(
kµ − 1

2
nµ2

)
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with p0(N, k) = f0(N, k) for k in the stopping region, i.e., k < 0, and 0 otherwise, for

f0(n, k) = φn(k) · I(k > 0), (29)

f0(2n, k) =

∫ k=0

k=−∞

f0(z, n) · φn(k − z) dz, (30)

with φs(k) the normal density with mean 0 and variance s.

Now, when we apply the more general probabilistic stopping rule (5) with the probit form of F (·) =

Φ(·), the deterministic case is obtained by letting β → +∞. Hence for, for general β, we obtain the

corresponding joint densities by replacing the integration boundaries present in (29) and (30), by the

corresponding probabilities:

p0(n, k) = φn(k) · Φ
(

α +
β

n
k

)
, (31)

p0(2n, k) =

∫ k=+∞

k=−∞

φn(z) ·
[
1− Φ

(
α +

β

n
k

)]
· φn(k − z) dz

= φ2n(k) ·


1 − Φ


 α + βk

2n√
2n+β2

2n

,




 , (32)

the derivation of which is straightforward but tedious. A sketch of the proof is given in Appendix A.

When β → +∞, (32) reduces to (30). On the other hand when β = 0, we recover the CRSS case.

For this CRSS case, (31)–(32) reduces to:

p0(n, k) = φn(k) ·Φ, (33)

p0(2n, k) = φ2n(k) · (1− Φ), (34)

where Φ ≡ Φ(α), the random stopping probability. Note that this is a constant, indeed, because

β = 0 and hence the dependence on the random variable K vanishes.

We now assume that a function g(k, N ) exists such that its expectation is zero. Such a function

must satisfy, for all values of µ:

g(k, 2n) · p0(2n, k) = −
∫

φn(k − z) · g(z, n) · φn(z) · Φ
(

α +
β

n
z

)
dz. (35)

Consider the following two examples.
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Example 1. Choose

g(k, n) = λ̃, (36)

an arbitrary constant. Then it immediately follows from (35) that

g(k, 2n) = −λ̃ ·
Φ

(
α+βk

2n
q

2n+β2

2n

,

)

1 − Φ

(
α+βk

2n
q

2n+β2

2n

,

) . (37)

When β = 0, then the right hand side of (37) is constant and we can set λ̃ = λ(1− Φ), leading to

g(k, n) = λ(1− Φ) and g(k, 2n) = −λΦ.

Example 2. Choose

g(k, n) =
λ

Φ
(
α + β

nk
) , (38)

with λ a given constant, then

g(k, 2n) = − λ

1 − Φ

(
α+βk

2n
q

2n+β2

2n

,

) . (39)

Such g(k, N ) functions lead to entire classes of estimators. To see this, assume that an estimator

for µ is available, µ̂, say. For example, µ̂ could be the sample average

µ̂ =
1

N
K (40)

or a generalization of this:

µ =
K

N
· [c · I(N = n) + d · I(N = 2n)] = K ·

[
c · I(N = n)

n
+

d · I(N = 2n)

2n

]
, (41)

for constant c and d. We will return to (40) and (41), but for now we concentrate on the construction

of classes of functions.
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Example 1 (continued). Choosing (36) and (37) for the special case of β = 0 leads to the

following class of estimators:

µ̂λ = µ + λ · [(1 − Φ)I(N = n) − ΦI(N = 2n)] . (42)

It follows directly from the construction of g(k, N ) that E(µ) = E(µ̂λ) and hence, if µ is unbiased,

then so is µ̂λ.

For the variance of (42), we obtain var(µ̂λ) = var(µ) + λ2Φ(1 − Φ) which, within this class, is

minimal for λ = 0. Hence, for β = 0, i.e., the CRSS case, the original estimator is more efficient

than any member of the new class. This will change when β 6= 0. We also need to consider the basic

estimator itself, e.g., either (40) or (41). before moving on to this, we first complete the second

example.

Example 2 (continued). Choosing (38) and (39) produces the estimator

µ̃λ = µ + λ ·




I(N = n)

Φ
(
α + β

nk
) − I(n = 2n)

1 − Φ

(
α+βk

2n
q

2n+β2

2n

,

)




. (43)

3.3 The Generalized Sample Average

The two examples above both take the form of augmented sample averages. It is, however, of interest

to consider the sample average, or rather its generalization (41), in its own right. This is relevant

here because several authors in the group sequential literature have reported that the the sample

average is biased6–20. However, as shown at the beginning of Section 3.1, the sample average is the

maximum likelihood estimator from the joint model.

Consider now the generalized sample average estimator (41). Clearly the arithmetic sample average

is the special case of this for which for c = d = 1. Straightforward but tedious algebra leads to the

expectation (Appendix A):

E(µ) = dµ + (c− d)µΦ(ν) +
2c − d

2n

β√
1 + β2/n

· φ(ν) (44)
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with ν = (α + βµ)/
√

1 + β2/n.

Consider first β = 0, then we have again that Φ ≡ Φ(α) and hence the estimator (41) is unbiased

if and only if

d =
1 − cΦ

1 − Φ
. (45)

Clearly, c = d = 1 is a solution, so the ordinary sample average is an unbiased estimator. An obvious

question then concerns the optimal choices of c and d. From first principles (Appendix A), the

variance can be derived as

var(µ) = µ2(c− 1)2
(

Φ

1− Φ

)
+

1

n
Φc2 +

1

2n(1− Φ)
(1 − cΦ)2, (46)

which is minimal for

copt = 1 − 1

2n
· 1 − Φ

µ2 + 2−Φ
2n

, dopt = 1 +
1

2n
· Φ

µ2 + 2−Φ
2n

. (47)

These coefficients are different from 1 and are not uniform across µ. So, for finite samples the

ordinary sample average is not optimal, but is asymptotically.

When β 6= 0, the expression (44) does not in general simplify. Suppose that we assume existence of

a uniformly unbiased estimator, i.e., that there exist c and d such that (44) reduces to µ, for all µ,

and in particular for µ = 0. For this special case

0 =
2c− d

2n
· β√

1 + β2/n
· φ(ν).

Given that β 6= 0, this expression leads to the condition 2c = d. Substituting this into (44) produces

E(µ) = cµ [2 − Φ(ν)] ,

which equals µ only if c = [2 − Φ(ν)]−2. But given that Φ(ν) is not constant but rather depends

on µ, unless β = 0, we see that there can be no uniformly unbiased estimator for the generalized

sample average type. In other words, a simple average estimator, that merely uses the observed

measurements in a least-squares fashion, can never be unbiased unless β = 0.

It is insightful to study the generalized sample average’s asymptotic bias. This has been done for
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β = 0, with all unbiased solutions given by (45). All other choices for c and d will lead to bias that

does not disappear asymptotically.

Turning to β 6= 0, we begin with the ordinary sample average, i.e. c = d = 1, which has expectation

equal to

E(µ̂) = µ +
1

2n

β√
1 + β2/n

· φ(ν)
n→+∞−→ µ +

1

2n
β · φ(α + βµ)

n→+∞−→ µ. (48)

In particular, when β → +∞, we see that

E(µ̂) = µ +
1

2
√

n
· φ(

√
nµ)

n→+∞−→ µ. (49)

There exist other choices that also lead to asymptotically unbiased generalized sample averages. For

β 6= 0 but finite, the expectation becomes

E(µ)
n→+∞−→ dµ + (c− d)µΦ(α + βµ), (50)

which equals µ if and only if:

d =
1 − cΦ(α + βµ)

1 − Φ(α + βµ)
. (51)

While (51) and (45) are similar, there is a crucial difference between these: the latter is independent

of µ, while the former is not, except when c = d = 1. In other words, there is no uniformly

asymptotically unbiased generalized sample average for finite, non-zero β, except for the ordinary

sample average itself.

The situation is different for the deterministic β → ∞, because then (50) becomes

E(µ) = dµ + (c − d)µΦ(
√

nµ) +
2c − d

2
√

n
φ(
√

nµ)
n→+∞−→





cµ if µ > 0,

dµ if µ < 0,

0 if µ = 0.

(52)

This provides us with the interesting situation that, for positive µ, c = 1 yields an asymptotically

unbiased estimator, regardless of d, with the reverse holding for negative µ. In the special case

that µ = 0, both coefficients are immaterial. In addition, we see here as well that the only uniform

solution is obtained by requiring that the bias asymptotically vanishes for all values of µ, that is

c = d = 1.
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We have seen above that, even for β = 0, the sample average is not optimal, and that there is no

uniform optimal solution, even though the sample average approximately is. However, the sample

average is optimal in the restricted class of estimators that is invariant to future decisions. Indeed,

if stopping occurs, then the choice of the coefficient c leads to an unbiased estimator, provided the

appropriate d is chosen. However, this d will never be used as it pertains to ‘future’ observations.

This can be avoided only by setting both coefficients to be equal, from which the conventional sample

average emerges.

3.4 The Likelihood Estimators Revisited

We can also obtain the asymptotic unbiasedness of the sample average from the fact that it is the

maximum likelihood estimator from the joint likelihood (16). In terms of the conditional likelihood,

the estimator is obtained from the solution to the score equations, (19) and (22). These can be that

can be reformulated as:

S̃(µ) =
1

N

N∑

i=1

yi − µ − β√
1 + β2/n

· φ(ν) ·
{

I(N = n)

n ·Φ(ν)
− I(N = 2n)

2n · [1− Φ(ν)]

}
. (53)

The expectation of (53) results from (48), combined with the observation that the probability of

stopping is Φ(ν):

E[S̃(µ)] = µ +
1

2n

β√
1 + β2/n

· φ(ν) − µ

− β√
1 + β2/n

· φ(ν) ·
{

1

n · Φ(ν)
·Φ(ν) − 1

2n · [1 − Φ(ν)]
· [1 − Φ(ν)]

}
= 0.

Unbiasedness follows directly from the linearity of the score in the data. It follows that, while the

conditional estimator is slightly less precise than the joint estimator, as follows from comparing (27)

and (28), the former is nevertheless unbiased whereas the latter is only asymptotically so.

In other words, the difference between both score equations is bias-correcting. The correction is

a non-linear function of µ and has no closed-form solution, underscoring the point that no simple

algebraic function of K and N will lead to the same estimator.

Combining (27) with the bias, leads to the mean squared error for the joint estimator

MSE(µ̂) =
1

n[2 − Φ(ν)]
+

1

4n2
β̃2φ(ν)2, (54)
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whereas (28) produces:

MSE(µ̂c) '
1

n[2 − Φ(ν)]
+

1

[2 − Φ(ν)]2Φ(ν)[1− Φ(ν)]n2
β̃2φ(ν)2. (55)

Comparing both expressions, we see that G(ν) = [2 − Φ(ν)]2Φ(ν)[1 − Φ(ν)] < 4, the inequality

being strict. In fact, the maximal value for G(ν) equals 0.619. Hence, the joint estimator has the

smallest MSE of both, even though the difference will be very small for moderate to large sample

sizes. This holds regardless of the choice for α, β, and n, and of the true value of µ. For β finite and

when n → ∞, ν approaches α + βµ and β̃ approaches β. Then, Φ(α+ βµ) and φ(α + βµ) become

constant and the difference between the two expressions disappears because the second terms on the

right hand sides of (54) and (55) are of the order of 1/n2.

A different argument applies in the deterministic case, when β → +∞, because then ν =
√

nµ and

β̃ =
√

n, producing

MSE(µ̂|β → ∞) =
1

n[2 − Φ(
√

nµ)]
+

1

4n
φ(
√

nµ)2,

MSE(µ̂c|β → ∞) ' 1

n[2 − Φ(
√

nµ)]
+

1

[2 − Φ(
√

nµ)]2Φ(
√

nµ)[1 − Φ(
√

nµ)]n
φ(
√

nµ)2.

When n → ∞, and using the same arguments as in Section 3.1, both expressions converge to 1/(2n)

if the trial continues and 1/n if the trial stops, and the difference between them disappears.

In Section 3.1, we saw that the joint estimator appears to take a simpler form than the conditional one,

but this is deceptive, because the latter in fact removes information, as is clear from (27) and (28).

Here, we have refined this result by showing that, while the joint estimator exhibits small-sample

bias and the conditional one does not, it retains its superiority in terms of mean squared error.

Asymptotically, the difference between them vanishes, in both the probabilistic and deterministic

cases.

Further, when β = 0, the CRSS case, the expression for both the information and for the mean

squared error coincide, given that both estimators reduce to the ordinary sample average. Recall

that, for this setting, the estimator is not optimal, and no uniformly optimal estimator exists, a

consequence of non-completeness.

Finally, we note that the conditional likelihood estimator is also conditionally unbiased, i.e., it is

unbiased for both situations N = n and N = 2n separately. To see this, it is convenient to rewrite
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the expectation of the generalized sample average (44)

E(µ) = c ·
{

µ +
β√

1 + β2/n
· φ(ν)

nΦ(ν)

}
· Φ(ν) · I(N = n)

+d ·
{

µ − β√
1 + β2/n

· φ(ν)

2n[−1Φ(ν)]

}
· [1− Φ(ν)] · cdotI(N = 2n),

from which both expectations E(µ|N ) follow:

E(µ|N = n) = µ +
β√

1 + β2/n
· φ(ν)

nΦ(ν)
, (56)

E(µ|N = 2n) = µ − β√
1 + β2/n

· φ(ν)

2n[1− Φ(ν)]
. (57)

For the specific case β → ∞, these become, either by taking limits or using expressions for truncated

normals22:

E(µ|N = n) = µ +
φ(
√

nµ)√
nΦ(

√
nµ)

, (58)

E(µ|N = 2n) = µ − φ(
√

nµ)

2
√

n[1− Φ(
√

nµ)]
. (59)

Using these, it follows that E[S̃(µ)|N ] = 0.

For the sample average a little more caution is required. From (56) and (57), it follows that E(µ|N )

converges to µ at a rate of n, because ν → α + βµ. The situation is more subtle when β → ∞. To

show this, we take the limit of (58) and (59) as n → ∞. When µ < 0, applying de l’Hôpital’s rule

whenever needed, the limits are E(µ|N = n) → 0 and E(µ|N = 2n) → µ. Similarly, when µ > 0,

the corresponding expressions are E(µ|N = n) → µ and E(µ|N = 2n) → µ/2. It follows that when

µ = 0, these both are equal to 0. Strictly speaking, this shows that there is bias in the conditional

means. However, this needs careful qualification: when n grows large, the probability itself that

N = n (N = 2n) for negative (positive) µ goes to zero. This implies that, overall, conditional

inference based on the ordinary sample average is still acceptable.

In conclusion, the sample average is conditionally and marginally biased, with the bias vanishing as

n goes to infinity, except in the situations that correspond to vanishing probabilities. In contrast,

the conditional estimator is unbiased, whether considered conditionally on the observed sample size

or marginalized over it.
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3.5 Ramifications

By starting from a simple sequential trial setting with two possible sample sizes, N = n and N = 2n

and normally distributed outcomes, but allowing for a probabilistic stopping rule, expressed as a

probit of the form Φ(α + β/n · k), we simultaneously considered three important cases: (a) when

β = 0, the CRSS setting; (b) for β 6= 0 and finite, probabilistic stopping based on prior outcomes is

considered, which is an example of MAR; and (c) for β → +∞, a conventional sequential trial.

For all three cases, the sufficient statistic (K, N ) in incomplete. It follows that broad classes of

estimators with the same expectation can be constructed. This is particularly noteworthy for the

completely random stopping case (a), because it implies, in particular, that apart from the sample

average, there is an infinite class of so-called generalized sample average estimators, without there

being a uniformly optimal one. In particular, the sample average is not optimal, although it does have

this property asymptotically. This is very interesting, because the sample size is an ancillary statistic

in this case, so the comfort of the ancillarity property, combined with the of lack of completeness,

creates at first sight counterintuitive results.

Cases (b) and (c) share a large number of properties, in the sense that there is little or no difference

between the deterministic and probabilistic cases. Rather, the defining feature is the fact that

“missingness” is of the MAR rather than the MCAR type. In particular, all generalized sample

average estimators are biased, although a sub-class of them, including the ordinary sample average,

is asymptotically unbiased.

The sample average also follows as the maximum likelihood estimator from the joint likelihood,

underscoring the fact that the asymptotic bias should be zero. For the conditional likelihood, a

correction term emerges that reduces the precision but removes the bias. In terms of mean squared

error, the ordinary sample average is superior.

While the setting considered here is very specific in the sense that (1) there is only one interme-

diate look, rather than an arbitrary but fixed number, and (2) the outcomes are assumed normally

distributed, the results are sufficiently generic to make the conclusions more broadly valid. Because

all of the settings considered contain this probabilistic stopping rule, with the sequential trial as a

special case, it follows that in all cases the simple average, combined with the (random) sample or

cluster size, is an incomplete statistic. We do however need to make some further points about the

more general case and we sketch this in the next section. Following that, in Sections 4 and 5 we

24



deal in more detail with cases (a), random sample size, and (b), missing data, respectively.

3.6 Stopping Rules with Arbitrary Numbers of Looks

We now generalize the two-sample size case, with N = n or N = 2n, to the general n1 < n2 <

. . . < nL, case with L a pre-specified maximum number of looks.

In line with (5), we assume that the stopping probability takes the form F (αj + βj/nj · k), for

j = 1, . . . , L. As before, if all βj = 0, then the completely random sample size case follows, and if

all βj → +∞, then a sequential-trial setting follows. Based upon earlier derivations and the work

by8, it follows that

p0(nj , k) = f0(nj, k) · F (αj + βj/nj · k),

f0(n1, k) = φn1(k),

f0(nj , k) =

∫
f0(nj−1, z) · [1− F (αj−1 + βj−1/nj−1 · z)] · φnj−nj−1 (k − z) dz,

for j = 2, . . . , L. A zero-expectation function g(K, N ) needs to satisfy

L∑

j=1

e−
1
2
njµ2

∫
g(k, nj) · p0(nj, k) · ekµ dk = 0.

Using the same approach as in Section 3.2, such a function is obtained by choosing g(K, N ) for

N = n1, . . . , nL−1, and then computing, for N = nL:

g(k, nL) = − 1

p0(k, nL)

L−1∑

j=1

∫
g(z, nj) · p0(nj, z) · φnL−nj (k − z) dz.

One obvious choice for N = n1, . . . , nL−1 is a constant g(k, nj) = aj. This establishes non-

completeness in the general case.

The implications will be, as before, that the generalized sample average is biased, and this includes

the ordinary sample average, except when βj = 0 for all j, the CRSS case. The latter is important

in its own right, and will be studied in the next section.

For the general sequential situation, with either a probabilistic or deterministic stopping rule, the
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maximum likelihood estimators can be considered. The likelihood takes the form

L(µ|k, n`) = φn`
(k) ·

`−1∏

j=1

[
1 − F

(
αj +

βj

nj
· k
)]

· F
(

α` +
β`

n`
· k
)I(`<L)

. (60)

Let the latent variable, underlying I(N = n`) be T` for ` = 1, . . . , L− 1, defined by

T`|y1, . . . , y` ≡ T`|y1, . . . , yL ∼ N


α` +

β`

n`

n∑̀

j=1

yj , 1




∼ N



α` +

β`

n`
(1 . . .1 0 . . .0)




y1

...

ynL




, 1




.

This implies that, for the entire vector T = (T1, . . . , TL−1)
′, the conditional distribution is T |y ∼

N (A+ Cy, IL−1) with A = (α1, . . . , αL−1)
′ and

C =




1 . . . 1 0 . . . 0 0 . . . 0 . . .

1 . . . 1 1 . . . 1 0 . . . 0 . . .

...
. . .

...
...

. . .
...

...
. . .

...
. . .




,

an (L − 1)× nL matrix where the `th row starts with n` ones and ends with nL − n` zeros. Given

that Y ∼ N (µ1nL
, InL

) it follows directly that



Y

T


 ∼ N







µ1nL

α+ βµ


 ,




InL
C′

C IL−1 + CC′





 .

Hence, the set of probabilities of observing a particular sample size take a multivariate probit form:

P (N = n`) = Φ`

[
Ĩ`

(
α(`) + β(`)µ

)
, I` + D(`)

]
, (` = 1, . . . , L− 1)

P (N = nL) = ΦL−1 [− (α+ βµ) , IL−1 + D] ,

where a superscript “(`)” indicates a sub-vector of the first ` components and Ĩ` is a diagonal matrix

with −1 along the main diagonal, except in the (`, `) entry, which is set to +1.
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As a result, assuming a probit stopping rule, the conditional likelihood takes the form,

Lc(µ|k, n`) =
φn`

(k) ·∏`−1
j=1

[
1 − Φ

(
αj +

βj

nj
· k
)]

·Φ
(
α` + β`

n`
· k
)I(`<L)

Φ`

[
Ĩ`

(
α(`) + β(`)µ

)
, I` + D(`)

]I(`<L)
· ΦL−1 [− (α+ βµ) , IL−1 + D]I(`=L)

.

The score equations and information matrices are not especially difficult to derive, but require some

tedious algebra. Fitting can be done by resorting to numerical methods, possibly replacing the

multivariate probit by an appropriate product of univariate probit expressions.

The arguments used earlier for the N = n, 2n case to obtain the properties of the estimators based

on the joint likelihood, the conditional likelihood, and generalized sample average can be extended

in a straightforward way for the current more general case. We omit details, but indicate now why

such a generalization follows. There are two steps. First, earlier results derived for N = n, 2n carry

over directly to the N = n1, n2 case. Second, when L rather than 2 sample sizes are allowed, the

results can be applied sequentially to establish the key results: (a) any generalized sample average

is biased, except when β = 0, although a subclass, including the ordinary sample average, will be

asymptotically unbiased; (b) the joint likelihood estimator reduces to the ordinary sample average

and is asymptotically unbiased; (c) the maximum conditional likelihood estimator is unbiased, yet

less efficient than the joint one; (d) as we found in in Section 3.4, the joint-likelihood-based ordinary

sample average has the smallest mean squared error.

4 Completely Random Sample Size

So far the CRSS case has been dealt with by setting β = 0 in the simple two sample size setup.

We now extend this to the setting with sample size N with associated probability function πn for

n = 0, . . . , m, and m some upper bound on the sample size, n. Evidently,
∑m

n=0 πn = 1. When

only two of these are non-zero, for n and 2n, the earlier results are recovered.

4.1 Incomplete Sufficient Statistics

In this case, p0(n, k) = φn(k)πn. The condition that needs to be satisfied for a function g(k, n) to

have zero expectation is

m∑

n=0

e
1
2
nµ2

∫
g(k, n) · p0(n, k) · eµk dk = 0.
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The above expression can be rewritten as

m∑

n=0

πn

∫
φm−n(k) · eµk dk ·

∫
g(k, n) · φn(k) · eµk dk = 0.

Using the uniqueness of the Laplace transform, we find

m∑

n=0

πn

∫
g(z, n) · φn(z) · φm−n(k − z) dz = 0. (61)

Choosing g(z, n) = bn, i.e., a constant not depending on k, (61) implies

φm(k) ·
m∑

n=0

πn · bn = 0.

This is possible only when
m∑

n=0

πn · bn = 0. (62)

In other words, (62) can be interpreted as a vector b that is orthogonal to the probability vector π.

4.2 Generalized Sample Average

Consider for this case a generalized sample average estimator of the form

µ =

m∑

n=0

K

n
· an · I(N = n). (63)

The expectation of (63) equals µ if and only if the vector a can be written as a = 1 + b, with

b satisfying (62) and 1 a (m + 1)-vector of ones. In other words, the existence of an entire class

of generalized sample average estimators is directly linked to the incompleteness of the sufficient

statistic (K, N ). One possible solution is given by an = 1, which leads to the simple sample average.

This provides an additional reason to derive the variance, and explore the existence, of an optimal

choice for the coefficients.

We now assume, in a slight generalization of the previous setting, that Yi ∼ N (µ, σ2). The variance

follows from the usual iterative rule and takes the form

var(µ) = µ2
m∑

n=0

(an − 1)2 · πn + σ2
m∑

n=0

a2
n

n
· πn. (64)
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If an = 1, the variance reduces to

var(µ) = σ2
m∑

n=0

πn

n
, (65)

as expected.

To derive the optimal estimator, i.e., the optimal choice for the vector a, we begin by writing down

the objective function

F (a, λ) = µ2
m∑

n=0

(an − 1)2 · πn + σ2
m∑

n=0

a2
n

n
· πn − 2λ

(
m∑

n=0

an · πn − 1

)
, (66)

where λ is a Lagrange multiplier. The optimum follows from setting the derivatives of F (a, λ) with

respect to the components an and λ equal to zero. First, we find that

an =
1

µ2 + σ2/n
· (λ + µ2). (67)

Multiplying (67) by πn and summing leads to

λ =

(
m∑

k=0

πk

µ2 + σ2/k

)−1

− µ2,

which in turn leads to

an =

1
µ2+σ2/n∑m

k=0
πk

µ2+σ2/k

. (68)

We find that the optimal generalized sample average estimator not only differs from the ordinary

sample average, but is not uniform in the unknown parameters. Again, this is a consequence of

incompleteness of the sufficient statistics.

In the special case that only n and 2n are possible sample sizes, with probabilities of occurrence Φ

and 1 − Φ, respectively, then the earlier result (47) follows.

Throughout this section, it has been assumed that m is a finite upper limit to the sample size. It is

relatively straightforward to generalize our findings to the case where N ranges over all non-negative

integers. For example, N could be assumed to follow a Poisson distribution.
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5 Missing Data

the stopping rule with β = 0 that was used throughout Section 3, is a special case of MCAR,

whereas, if β 6= 0, the mechanism can be interpreted as MAR, in the sense that stopping, like

dropout, depends on the observed outcomes, but there is no dependence on the subsequent, and

potentially unobserved, outcomes. Note as well that β → ∞ corresponds to the missing data setting,

but now with a deterministic rule.

The difference from general missing-data settings, such as those arising in longitudinal studies is

that, up till now, our outcomes have been univariate rather than hierarchical. This implied, as stated

in Section 2, that the parameters α and β governing the stopping rule, have to be assumed known

because they cannot be estimated from the data. This is the reason we now sketch a more general

missing-data framework and indicate which results apply in this broader setting.

The missing data case can be expressed as follows through the generic form (3):

f(yo
i , y

m
i |θ∗,ψ∗) = f(yo

i , y
m
i |ti, θ∗) ·

f(ti|ψ∗)

f(ti|yo
i , y

m
i , θ∗,ψ∗)

= f(yo
i , y

m
i |ti, θ∗) ·wi(y

o
i , y

m
i , ti, θ

∗,ψ∗). (69)

Here, ti is a vector of indicator variables the missingness status (observed: 1) of the elements of

Y i. In the case of dropout in a longitudinal study, ti can be replaced by an integer, indicating the

occurrence of dropout.

When MAR holds, (69) can be replaced by an expression operating at the observed-data level only:

f(yo
i |θ∗,ψ∗) = f(yo

i |ti, θ∗) ·
f(ti|ψ∗)

f(ti|yo
i , θ

∗,ψ∗)
= f(yo

i |ti, θ∗) · wi(y
o
i , ti, θ

∗,ψ∗). (70)

In accord with the discussion in Section 2 we need to be careful when considering the extent of

ignorability. When the model is formulated in a pattern-mixture way, then the marginal observed-

data distribution is governed by θ∗ and ψ∗, and separability does not apply. In other words, ancillarity

does not hold and the missing-data model needs to taken into account for a valid analysis. This is

no longer necessary when the model is formulated in selection-model terms and under MAR, when

pure likelihood or Bayesian inferences are drawn. For semi-parametric methods, inverse probability

weighting can be used, noting that the missing-data model is required for this, but in this case

degeneracy poses severe problems, in the sense that some weights will not be defined and the
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marginal model cannot be fully recovered. For this reason the weights need to be bounded away

from zero23–24.

Example: Normally Distributed Outcomes and Probit Dropout Model

As with the sequential trial case, it is instructive to consider an example. Assume that Y i ∼
N (µi, Σi) and that the dropout model takes the form:

f(ti|yo
i ) =

ti−1∏

j=2

[1 − Φ(αj + βjyi,j−1)] · Φ(αti + βtiyi,di−1)
I(ti≤ni). (71)

For simplicity, and to emphasize the connections with our initial sequential trial setting, we partition

Y i = (Y ′
i1,Y

′
i2)

′, assuming sub-vector Y i1 is always observed and Y i2 is potentially missing. We

partition µi and Σi accordingly. We can now have ti take two value only: ti = 1 if the full vector is

observed for subject i and ti = 0 if only the first sub-vector is observed. The observed-data likelihood

is

L =

N∏

i=1

φ(yo
i ;µi, Σi) · Φ(α + yi1β)ti · [1 − Φ(α + yi1β)]1−ti . (72)

It is convenient to introduce the latent variable Zi that determines Ti:

Zi|yi ∼ N


α + (y′i1, y

′
i2)



β

0


 ; 1


 .

Given that Y i and Zi are then jointly normally distributed, standard manipulations lead to




Y i1

Y i2

Zi




∼ N







µi1

µi2

α + β′µi1




;




Σi11 Σi12 Σi11β

Σi21 Σi22 Σi21β

β′Σi11 β′Σi12 1 + β′Σi11β







, (73)

from which the marginal probability of dropping out can be obtained

P (Ti = 1) = Φ

(
α + β′µi1√
1 + β′Σi11β

)
. (74)

As in the sequential trial setting, it is interesting to consider the deterministic case, where β ap-

proaches infinity, in the sense that, for example, β = λβ0 and λ → +∞. Then, the limiting
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probability is

P (Ti = 1) = Φ

(
β′

0µi1√
β′

0Σi11β0

)
. (75)

In a similar way to expression (14), the ‘weight’ connecting the marginal (selection model) to the

pattern-mixture formulation takes the form:

w(y0
i ) =

Φ

(
α+µ′

i1β
q

1+β
′

Σi11β

)

Φ(α + y′i1β)
. (76)

This ‘weight’ shows that, even though the selection model may be separable, the corresponding

pattern-mixture model is not. Again, the degeneracy of the denominator in (76) when λ → +∞
underscores the parallels with the degeneracy of inverse probability weighting methods under such

deterministic mechanisms.

From the above expressions, it can be seen that similar algebra establishes the properties of the

maximum likelihood estimators. First, consider the joint likelihood (72) and assume the mean vector

and covariance matrix are constant across units. The more general case readily follows as well. Using

a partition as in (73), the maximum likelihood estimators are1:

µ̂1 =
1

N

N∑

i=1

yi1, (77)

µ̂2 =
1

n

n∑

i=1

yi2 − Σ21Σ
−1
11

(
1

n

n∑

i=1

yi1 −
1

N

N∑

i=1

yi1

)
, (78)

where there are N subjects all together, out of which n are fully observed and N − n are only

observed in the sub-vector Y i1.

Note that there is a fundamental difference between this and the sequential-trial case. Because of

the correlation between the repeated measurements, (78) is not a simple sample average, though it

could be termed a prediction corrected sample average. It only takes the form of a simple sample

average when the first set of measurements is independent of the second, i.e., when Σ12 = 0. As

in the sequential-trial case, we see that the joint estimator does not involve the missing-data model.

This is again the familiar property of ignorability, applied in the selection model framework. However,

the (generalized) sample average is biased, because of its failure to take f(ym
i |yo

i , θ
∗) into account.
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Again, we consider the conditional likelihood. The counterpart to (13) is obtained through the

division of (72) by the proper function of (74)

Lc =

∏N
i=1 φ(yo

i ;µi, Σi) · Φ(α + yi1β)ti · [1 − Φ(α + yi1β)]1−ti

Φ

(
α+β

′

µi1
q

1+β
′

Σi11β

)ti

·
[
1 − Φ

(
α+β

′

µi1
q

1+β
′

Σi11β

)]1−ti
(79)

Although we may be primarily interested in the parameters governing µ and/or the covariance

parameters, the missing-data mechanism will enter the likelihood equations through contributions

based on the denominator of (79). This likelihood is of the pattern-mixture form: as seen earlier,

ignorability is model-framework specific and the fact that we are be estimating selection-model

parameters through a pattern-mixture likelihood makes the missing data mechanism non-ignorable,

even under MAR. It can be shown for this setting as well (details not given) that, while the conditional

estimator is unbiased, whereas the marginal one is only asymptotically unbiased, the latter has the

smaller mean squared error.

6 Concluding Remarks

The developments in this paper show that, when the sample size is random, an estimator as familiar

as the sample average has frequentist properties that are not altogether straightforward. This arises

from the interplay between the properties of (non-)ancillarity and incompleteness.

In the case of a completely random sample size, the sample average is unbiased but not optimal. It

is one member of a class of generalized sample averages that is unbiased. This class no uniformly

optimal member. However, the sample average does converge to the optimum for increasing sample

size. The ordinary average is unique in having weights that do not change regardless of when exactly

the sequence is stopped; this is definitely an advantage. In the light of these results, the sample

average remains the most sensible practical choice.

In the cases of univariate incomplete data and sequential trials, the sample average is biased in

small samples but asymptotically unbiased, both conditionally and marginally. This follows from

direct frequentist calculations, as well as from invoking likelihood theory. The exact calculations

done here allow us to gauge the extent of the bias. The sample average follows as the maximum

likelihood estimator from the joint likelihood for outcomes and sample size. In spite of confusion

about the sample size estimator in the literature, this result is not totally surprising, given that it
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follows from invoking ignorability in the likelihood context. By contrast, the maximum conditional

likelihood estimator is unbiased but the ordinary sample average still has the smaller mean squared

error. This estimator can be interpreted as the one based on the pattern-mixture decomposition of

the likelihood. These results combined together indicate that the use of the ordinary sample average

in a sequential trial is a sensible choice, provided an estimator of precision based on the observed

information be used8–12–19.

The majority of our derivations has been in terms of specific assumptions, namely a probabilistic

stopping rule of a probit form, standard normally distributed outcomes, and two possible sample

sizes, n and 2n. Extensions to (1) arbitrary sample sizes in the completely random sample size

settings, (2) general sequential trials with L > 1 looks, (3) normal outcomes with other than unit

variance, and (4) more general missing data problems have also been considered. In (4) it has been

shown that the ordinary sample average is no longer (asymptotically) unbiased because the joint

likelihood estimator, again following from invoking ignorability under MAR, involves the predictive

mean of the unobserved outcomes, given the observed ones. This well known correction1 is a direct

consequence of the correlation between observed and unobserved measurements.

Although the probit form for the stopping rule/missing data mechanism and the normality of the

outcomes may be seen as limitations, the developments are generic. The advantage of our choices

is the existence of explicit expressions that permit insightful interpretation. These choices are also

practically relevant for many settings.

The results developed here have important practical implications for a wide range of settings. For se-

quential trials, there has been long-standing confusion and controversy regarding the (in)appropriateness

of the sample average when estimating a parameter after such a trial. Our results show that the

ordinary sample average, while small-sample biased and not uniform minimum variance unbiased,

is perfectly acceptable. This should be seen against the background of the conditional likelihood

estimator. Even though the latter is small sample unbiased, it suffers from a slightly increased mean

square error. Thus, in conclusion, while some familiar properties no longer hold, estimation after

sequential trials is more straightforward than commonly considered and there is less need for compli-

cated, modified estimators than perhaps generally thought, given that the ordinary sample average

can be used without trouble. While our results were, for clarity, presented for a fairly simple setting,

they carry over for general studies, with multiple looks, different types of stopping rules, etc.
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In the same vein, many clinical studies are prone to incompleteness. Our results provide a bridge

between them. Hence, very similar considerations apply. The main difference between both is that

incomplete data frequently occur in a setting where several measurements are collected on the same

subject and that the missing-data mechanism is generally, but not always, stochastic rather than

deterministic. Our derivations show that these differences are not fundamental and nicely connect

the likelihood-based ignorability theory to the validity of the simple sample average in the sequential

trial setting.

Further work will draw out similar results for studies with random cluster sizes, and for studies where

longitudinal and time-to-event data are collected simultaneously. Also the missing-data case will be

scrutinized further.

Our results have implications for several broad settings not considered in detail here. Examples

are clusters with random size, censored time-to-event outcomes, joint modeling of longitudinal and

survival outcomes, and random observation times. These will be the subject of further research.
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Table 1: Simulation study for the sequential trial case. n: sample size; µ: true mean for the

standard normal from which the sample is taken; α, β: parameters governing the stopping rule;

#stop: number of simulations out of 1000 for which stopping is applied; µ̂: average mean for the

joint approach; ŝ: average standard error for the joint approach; µ̂c: average mean for the conditional

approach; ŝc: average standard error for the conditional approach.

n µ α β #stop µ̂ ŝ µ̂c ŝc

10 0 0 0 486 0.018488 0.268621 0.018488 0.268621

100 0 0 0 516 -0.004514 0.085824 -0.004514 0.085824

1000 0 0 0 484 -0.000460 0.026844 -0.000460 0.026844

10 0 0 1 488 0.019749 0.268806 0.001946 0.275121

100 0 0 1 477 0.002681 0.084682 0.000972 0.084891

1000 0 0 1 488 0.000375 0.026881 0.000190 0.026887

10 0 1 0 849 0.007495 0.302242 0.007495 0.302242

100 0 1 0 846 -0.000064 0.095489 -0.000064 0.095489

1000 0 1 0 840 0.001791 0.030141 0.001791 0.030141

10 1 0 0 525 0.989761 0.272233 0.989761 0.272233

100 1 0 0 519 0.998925 0.085912 0.998925 0.085912

1000 1 0 0 515 0.999771 0.027131 0.999771 0.027131

10 1 0 1 809 1.014183 0.298537 1.003231 0.303925

100 1 0 1 844 0.996496 0.095431 0.995216 0.095609

1000 1 0 1 854 1.000929 0.030271 1.000794 0.030276

10 1 1 0 832 1.014265 0.300667 1.014265 0.300667

100 1 1 0 845 0.996084 0.095460 0.996084 0.095460

1000 1 1 0 842 0.998763 0.030159 0.998763 0.030159

10 -1 0 0 515 -1.006709 0.271307 -1.006709 0.271307

100 -1 0 0 493 -1.001493 0.085150 -1.001493 0.085150

1000 -1 0 0 501 -1.000682 0.027001 -1.000682 0.027001

10 -1 0 1 171 -1.001404 0.239445 -1.014000 0.243141

100 -1 0 1 151 -0.995329 0.075133 -0.996375 0.075249

1000 -1 0 1 140 -0.999724 0.023657 -0.999813 0.023661

10 -1 1 0 840 -1.005741 0.301408 -1.005741 0.301408

100 -1 1 0 866 -0.997533 0.096075 -0.997533 0.096075

1000 -1 1 0 842 -0.998102 0.030159 -0.998102 0.030159

10 0 0 10 479 0.050863 0.267972 -0.078807 0.400683

100 0 0 10 511 0.014664 0.085678 -0.004165 0.099474

1000 0 0 10 499 0.001780 0.026982 -0.000150 0.027620

10 1 0 10 1000 1.003133 0.316228 0.988938 0.328269

100 1 0 10 1000 1.000227 0.100000 1.000227 0.100000

1000 1 0 10 1000 1.000494 0.031623 1.000494 0.031623

10 -1 0 10 1 -1.004547 0.223699 -1.002906 0.225618

100 -1 0 10 0 -0.998418 0.070711 -0.998418 0.070711

1000 -1 0 10 0 -0.999392 0.022361 -0.999392 0.022361
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Appendix

A Completeness, Unbiasedness, and Minimum Variance Calculations for the Stop-
ping Rule Cases

Details behind key derivations in Section 3 are given here.

A.1 Derivation of p0(2n, k)

The function takes the form:

p0(2n, k) = φ2n(k)−
∫

φn(z) · φn(k − z) · Φ(α + βz/n) dz = φ2n(k) − p̃0(2n, k).

Write

p0(2n, k) =
1

(2πn)3/2

∫ z=+∞

z=−∞

∫ t=α+β/n·z

t=−∞

exp

[
−1

2

z2

n
− 1

2

(k − z)2

n
− 1

2
t2
]

dt dz

and apply the change of variables: t = β/nz + s. The integral becomes

p̃0(2n, k) =
1

(2π)3/2n

∫ s=α

s=−∞

e−
1
2n

p ds ·
∫ z=+∞

z=−∞

exp


− 1

2n

(√
2n + β2

n
z + m

)2

 dz

1



with

m =

√
2n + β2

n
(sβ − k),

p =
2n2s2 + 2nβks + k2(n + β2)

2n + β2
.

Upon rearranging terms, we obtain:

p̃0(2n, k) =

√
n

2π
√

n
√

2n + β2
e
−

1
2n

k2(n+1/2β2

2n+β2

∫ s=α

s=−∞

exp

[
− 1

2n

(
√

2ns +
√

2/2βk)2

2n + β2

]
ds.

Applying a further change of variables

q =
s + βk

2n√
2n+β2

2n

the integral reduces to

p̃0(2n, k) = φ2n(k) · Φ


 α + βk

2n√
2n+β2

2n


 .

A.2 Expectation of the Generalized Sample Average

To show that the expectation of (41) is equal to (44), it is useful to first consider the auxiliary

quantity:

I =

∫
k · fN (k) · Φ

(
A +

B

N
k

)
dk (A.1)

=
1

2π
√

N

k=+∞∑

k=−∞

dk

∫ t=A+ B
N

k

t=−∞

dt k · exp

[
− 1

2N
(k − Nµ)2 − 1

2
t2
]

=
1√
2π

∫ s=A

s=−∞

exp

[
− 1

2 + 2B2/N
(s + µB)2

]
ds,

upon applying the change of variables and t = s + B/N · k and completing the square, we obtain:

I =
1√
2π

1

(1 + B2/N )3/2



Nµ

∫ s=A

s=−∞

exp


−1

2

(
s + µB√
1 + B2/N

)2

 ds

−B

∫ s=A

s=−∞

s · exp


−1

2

(
s + µB√
1 + B2/N

)2

 ds



 .

= NµΦ

(
A + Bµ√
1 + B2/N

)
+

B√
2π
√

1 + B2/N
exp

[
−1

2

(
A + Bµ√
1 + B2/N

)]
.

2



Returning to (41), it follows that

E(µ) =
c

n

∫
k · fn(k) · Φ

(
α +

β

n
k

)
dk +

d

2n

∫
k · f2n(k) ·


1− Φ


α + β

2nk√
2n+β2

2n




 dk

= d · µ +
1

2n
(2cI1 + dI2). (A.2)

Now, both I1 and I2 are of the form (A.1) with, for I1: N = n, A = α, and B = β and, for I2:

N = 2n, A = α/
√

2n+β2

2n , and B = β/
√

2n+β2

2n . As a consequence, (A.2) can be written as:

E(µ) = d · µ + (c − d)Φ(ν) +
2c− d

2n
√

2π

β√
1 + β2/n

e−
1
2
ν2

,

with ν = (α + βµ)/
√

1 + β2/n. This result is based upon the fact that, for both I1 and I2, the

identities hold: A/
√

1 + B2/N = α/
√

1 + β2/n and B/
√

1 + B2/N = β/
√

1 + β2/n. Therefore,
(44) follows.

A.3 Variance for Generalized Sample Average When β = 0

To derive (46), observe:

E(µ|N = n) = cµ,

E(µ|N = 2n) =
1 − cΦ

1 − Φ
,

from which it follows that:

var[E(µ|N )] = µ2(1 − c)2
Φ

1 − Φ
. (A.3)

Further,

var(µ|N = n) =
c

n
,

var(µ|N = 2n) =
(1 − cΦ)2

2n(1− Φ)2
,

producing

E[var(µ|N )] =
Φ · c2

n
+

(1− cΦ)2

2n(1− Φ)
. (A.4)

Adding (A.3) and (A.4) produces (46).

Calculating the derivative of (46) with respect to c and equating it to zero yields (47). It is easy to
verify that this optimum corresponds to a minimum.

3
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