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ABSTRACT. In this paper, we introduce a semi-parametric regression model for left-censored data in
which the response variable has a positive discrete probability at the value zero. To investigate the
influence of covariates on the probability on a zero-value, a logistic regression model is used. For the
strict positive part of the response variable, a Cox’s regression model is given to model the influence of
the covariates. The different parameters in the model are estimated using a likelihood method. Hereby,
the baseline hazard function is an infinite dimensional parameter and is estimated by a step-function.
As results, we show the consistency of the estimators for the different finite- and infinite-dimensional
parameters in the model. We also present a simulation study and apply this model on a practical data
example.

1 INTRODUCTION

In some clinical, environmental or industrial studies, the primary interest is in a positive ran-
dom variable. For example, the amount of a toxic metal in a certain river system (Blackwood
(1991)). Hower, due to technical limitations, there are often difficulties in measuring this pos-
itive variable. For some subjects, we only observe an upper bound for the response variable.
These observations are left-censored. In several studies with left-censored data, the underly-
ing time until an event can also become zero. For example, in an environmental study where
researchers are interested in the amount of a certain toxic metal in an aquatic system, it is
possible that the metal is not present in the system. As a second example, we consider a bi-
ological study on ethanol induced sleeping time in genetically selected mice (Markel et al.
(1995)). Some mice did not fall asleep because their genetic metabolism was able to break
down the alcohol fast. In such studies, it is possible to distinguish between two groups of
study subjects. On the one hand there are study subjects which have a strict positive value
for the time until an event (susceptible), while on the other hand there are study subjects for
which the time until an event is equal to zero (non-susceptible).
In order to describe this problem mathematically, one assumes that the time until an event has
a mixture distribution in which there is a continuous part for the strict positive values and a
discrete probability for a zero value. Since the observed data in these studies are left-censored,
it is not possible to fully discriminate between the groups of susceptible and non-susceptible
subjects. The uncensored observations are susceptible subjects, but for the censored observa-
tions one cannot distinguish between unsusceptible subjects and susceptible subjects with a
censored time until an event.



Moulton and Halsey (1995) developed a regression model to study the influence of covariates
on the time until an event for this type of left-censored data. Hereto they assumed a para-
metric logistic regression model to determine the influence of the covariates on the discrete
probability of a zero value for the time until an event. On the other hand they assumed that the
distribution of the strict positive values for the time until an event was given by a lognormal
distribution in which the influence of the covariates was described through the mean of this
distribution. They also assumed that each subject in their model had the same censoring time
by considering a fixed detection limit. Recently, Yang and Simpson (2010) studied computa-
tional issues regarding a general class of parametric left-inflated mixture models.
The structure of this paper is as follows. In Section 2, we introduce mathematically the zero-
inflated Cox’s regression model for left censored data. To estimate the different parameters
in our model, we make use of maximum likelihood techniques. We can proof the consistency
of the MLE’s under some regularity conditions. In Section 3, a simulation study is presented.
Afterwards, in Section 4, we illustrate our model on a practical data set of ethanol-induced
sleep time in mice. In Section 5, we give some conclusions about our results.

2 METHODOLOGY

In this section, we introduce a zero-inflated semiparametric Cox’s regression model for left-
censored data. Let us denote by Y a nonnegative response variable of interest. We assume that
this variable Y has a zero-inflated mixture distribution with a positive probability of having a
value equal to zero and with a continuous distribution for the non-zero part. Furthermore we
assume that this response variable depends on two vectors of covariates X and Z which may
have covariates in common. The conditional distribution of the response Y is given by

F(y|x,z) = π(x)+(1−π(x))FY>0(y|z)

where FY>0(y|z) is a continuous conditional distribution for the non-zero part of the response
Y and π(x) = P(Y = 0|X = x) is the conditional probability on a zero response. In this paper,

we assume a logistic regression function for π(x), denoted by π(γ,x) = eγ′x

1+eγ′x .
For the conditional distribution of the non-zero part of the response FY>0(y|z), we use a Cox’s
regression model (Cox (1972)). Hereby, we assume that the conditional hazard function has
the following form: λY>0(t|z) = λ(t)eβ′z, where λ is an unknown baseline hazard function.
In most studies, it is impossible to fully observe the response variable Y . We assume that
there exists a random variable C such that we only observe T = max(Y,C) and δ = I{Y ≥C}.
We call this type of data left-censored and assume that, conditionally on X and Z, Y and C
are independent. To estimate the parameters γ and β and the baseline hazard function λ(t) in
this model, we construct a maximum likelihood function. Therefore, let (T1,δ1,X1,Z1), . . . ,
(Tn,δn,Xn,Zn) be a sample of the observed variables (T,δ,X ,Z). Hereby Xi and Zi are the
vectors of covariate values for individual i. We find the following likelihood function:

Le(γ,β,Λ) =
n

∏
i=1

{(1−π(γ,xi))λ(Ti)eβ′zi exp[−eβ′zi Λ(Ti)]}δi

{π(γ,xi)+(1−π(γ,xi))(1− exp[−eβ′zi Λ(Ti)])}1−δi .



In this expression, we estimate the baseline cumulative hazard function by a nonparametric
step function:

Λ(t) =
qn

∑
k=1

λ(uk)I(uk ≤ t),

where 0 < u1 < .. . < uqn are the unique uncensored observations.
Remarks: In a study with left-censoring, the largest observations are often uncensored. In
order to facilitate the maximum likelihood estimation procedure, we note that we can find a
closed form solution for the step sizes of the nonparametric baseline cumulative hazard func-
tion in these uncensored observations. In the most extreme case, all censored observations are
smaller than the smallest uncensored observation. Studies with a fixed detection limit follow
this scheme. Fitting the zero-inflated Cox’s regression model simplifies to fitting a logistic
regression model on the censoring indicator random variables and fitting a Cox’s regression
model on the uncensored observations.

As a result, one can proof the consistency of the maximum likelihood estimators, following
the ideas of Kim et al. (2010). Let (γ0,β0,Λ0) be the true values of the parameters.

Theorem 1. Under some regularity conditions, the maximum likelihood estimators (γ̂, β̂, Λ̂)
are consistent. This means that,

|γ̂− γ0| → 0, |β̂−β0| → 0 and sup
t
|Λ̂(t)−Λ0(t)| → 0,

with probability 1.

3 SIMULATION STUDY

In order to show the performance of the zero-inflated semi-parametric Cox’s regression model
for univariate left-censored survival data, we set up a simulation study. We generate data sets
from the following model:

(i) X = Z ∼U [0,10].
(ii) C ∼ Weibull(ac = 1,bc = 0.1).

(iii) Probability on a zero response: π(X ,γ) = exp(γ0+γ1∗X)
1+exp(γ0+γ1∗X) .

(iv) J ∼ Bernouilli(1−π(X ,γ)).
(v) If J = 0, then T =C and δ = 0. If J = 1, then T = max{Y,C} and δ = I{Y ≥C}, where

Y ∼ Cox’s model (parameter: β, baseline hazard: Weibull(a0,b0)).

In each simulation, we generate 500 data sets with n observations. We consider two settings:

γ0 γ1 β a0 b0
Setting 1 -0.3 0.15 0.3 1 1
Setting 2 -2 0.20 -0.3 0.3 1

Table 1. Different settings.
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(a) Setting 1
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(b) Setting 2

Figure 1. Probability on a zero and censoring probability.

The corresponding probabilities on a zero response and censoring probabilities are shown in
Figure 1. These probabilities depend on the value of the covariate.
We generate data sets with n = 100, n = 500 observations. For the two different settings, we
calculate the mean en standard deviation of the 500 ML estimates. The results are shown in
Table 2.

Setting 1 Setting 2
γ̂0 -0.318 (0.510) -1.445 (1.012)
γ̂1 0.172 (0.120) 0.133 (0.132)

n=100 β̂ 0.318 (0.102) -0.304 (0.058)
Λ̂(1) 1.005 (0.410) 0.791 (0.309)
Λ̂(2) 1.815 (0.557) 1.029 (0.357)

γ̂0 -0.305 (0.244) -1.552 (0.543)
γ̂1 0.157 (0.056) 0.147 (0.069)

n=500 β̂ 0.305 (0.039) -0.302 (0.026)
Λ̂(1) 0.995 (0.175) 0.857 (0.176)
Λ̂(2) 2.009 (0.398) 1.091 (0.195)

Table 2. Mean (standard deviation) of ML estimates.

The means of the maximum likelihood estimates come closer to the true values as the sample
size increases. The standard deviations of the maximum likelihood estimates decrease as
the sample size increases. This is in line with the theoretical results. In the second setting,
the bias in the estimates of the parameters in the logistic regression function is higher in
comparison to setting 1. This is due to the lower probability on a zero response for small
values of the covariate. The estimation of the logistic regression parameters γ0 and γ1 is better



in settings with high probability on a zero response. The estimation of the β-parameter and of
the baseline cumulative hazard function improve in settings with lower censoring probability.

4 EXAMPLE: MODELING ETHANOL-INDUCED ANESTHESIA.

In this section, we illustrate the zero-inflated Cox’s regression model with a practical study of
ethanol-induced anesthesia (sleep time) in genetically-selected strains of mice described by
Markel et al. (1995). The mice were injected intraperitoneally with a 4.1g/kg dose of ethanol.
Afterwards each mouse was placed on its back and was considered anesthetized if it did not
right itself within 1 min. Therefore we use 1 min as detection limit. Due to the breeding
process of the test mice it was possible that some mice were ”immune” for the administered
ethanol dose and would not fall asleep or slept only a very short time. In this example, we
consider the influence of the following covariates on sleep time: sex, albinism, trial day,
weight at trial 1, and an interaction between sex and albinism. The parameter estimates and
their standard errors are given in Table 3.

Semi-parametric Parametric
Zero-inflated Cox model Logistic-Weibull model

Logistic part
Intercept -4.0384 (1.6995) -4.0601 (1.7110)

Sex 0.7316 (0.4925) 0.7384 (0.4969)
Albinism 1.3077 (0.4464) 1.3140 (0.4488)

Sex*Albinism -1.2499 (0.6890) -1.2570 (0.6937)
Trial day -0.0006 (0.0004) -0.0006 (0.0004)
Weight 0.0682 (0.0691) 0.0694 (0.0696)

Hazard part
Sex 0.0062 (0.0909) 0.0001 (0.0902)

Albinism 0.1187 (0.1045) 0.0783 (0.1043)
Sex*Albinism -0.0280 (0.1483) 0.0204 (0.1479)

Trial day 0.0005 (0.0001) 0.0005 (0.0001)
Weight -0.0341 (0.0134) -0.0354 (0.0134)

Table 3. Estimates (standard errors) for the different covariates.

In the same table we also give a parametric Logistic-Weibull model to compare with the zero-
inflated Cox’s regression model. We notice in Table 3 that in both the zero-inflated Cox’s
model and the parametric Logistic-Weibull model, the same covariates have a significant
effect in the logistic and the hazard part of each model. In the logistic part of the models,
an albino mouse has a significant higher probability on having a zero value for the sleep
time than a non-albino mouse. Furthermore we note that the gender of a mouse also has
a significant effect in this part, through its interaction with albinism. We see that a female



albino mouse has a lower probability on non-sleep than a male mouse. The other covariates
do not have a significant effect in the logistic part of both models. For the hazard part of
each model, we see that only the covariates Trial day and Weight before the first test session
have a significant influence on the hazard. The estimate for the parameter of Trial day is
positive which indicates that the hazard increases when the study progresses. This data set
was collected over a period of 3 years and such an increasing hazard likely indicates that the
investigators became more skilled and were better able to assess sleep time in these mice.
Therefore, the observations for sleep time became shorter as the studied progressed. For the
other significant variable Weight, we have in both models a negative sign which indicates that
the hazard decreases for heavier animals. This means a longer sleep time for these animals.
In Table 3, we also see that the estimates for the different covariates are almost the same in
the zero-inflated Cox’s model and in the parametric Logistic-Weibull model. Finally, we note
that, for small values of sleep time, there is not much difference between the estimates of the
cumulative baseline hazard in the parametric model and in the zero-inflated Cox’s model.

5 CONCLUSION

In several studies with left-censored data, the underlying time until an event can also be-
come zero. To accommodate for this problem and to study the influence of covariates on the
response variable, we introduced a zero-inflated Cox’s regression model. In this model, we
assumed that the probability of having a zero response is modeled through a logistic regres-
sion. Furthermore we assumed that the hazard of the non-zero part of the response follows
a Cox’s regression model. We estimated the baseline cumulative hazard function by a non-
parametric step function. The different parameters in the model are estimated by maximum
likelihood techniques. The consistency of the maximum likelihood estimators was stated as
an important result. The simulation results showed that the model performs well. Finally, we
applied the regression model on a practical data set of ethanol-induced sleep time in mice.
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