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Abstract

There are two principal ways in which statistical models extend beyond the data available.
First, the data may be coarsened, that is, what is actually observed is less detailed than what
is planned, owing to, for example, attrition, censoring, grouping, or a combination of these.
Second, the data may be augmented, that is, the observed data are hypothetically but conve-
niently supplemented with structures such as random effects, latent variables, latent classes, or
component membership in mixture distributions. These two settings together will be referred to
as enriched data. Reasons for modelling enriched data include the incorporation of substantive
information, such as the need for predictions, advantages in interpretation, and mathematical
and computational convenience. The fitting of models for enriched data combine evidence aris-
ing from empirical data with non-verifiable model components, i.e., that are purely assumption
driven. This has important implications for the interpretation of statistical analyses in such set-
tings. While widely known, the exploration and discussion of these issues is somewhat scattered.
The user should be fully aware of the potential dangers and pitfalls that follows from this. There-
fore, we provide a unified framework for enriched data and show in general that to any given
model an entire class of models can be assigned, with all of its members producing the same fit
to the observed data but arbitrary regarding the unobservable parts of the enriched data. The
implications of this are explored for several specific settings, namely that of latent classes, finite
mixtures, factor analysis, random-effects models, and incomplete data. The results are applied
to a range of relevant examples.

Some Keywords: Compound-symmetry; Empirical Bayes; Enriched data; Exponential ran-
dom effects; Gamma random effects; Linear mixed model; Missing at random; Missing completely
at random; Non-future dependence; Pattern-mixture model; Selection model; Shared-parameter
model.

1 Introduction

It is common in statistics to use models that rely on assumptions that cannot be examined from the

data under analysis. This is not a weakness, but an inevitable consequence of drawing statistical

inferences in the settings in which such models are used. As a consequence, it is important that
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the use of these models properly reflects the implied reliance on external information. A good

example of the failure to appreciate the nature of such models is provided by the now well-known

historical developments surrounding factor analysis in so-called general intelligence measurement1 .

Factor analysis dates back to Pearson and Spearman, though it is the latter that is credited with its

introduction into psychology, a field in which it has held popularity for close to a century. Its arrival

coincided with a time when psychologists were attempting to quantify ‘mental worth’ in a scientific

sense. Motivated by the positive correlations exhibited by a set of mental tests, Spearman used

the technique to develop the so-called “two-factor” theory. The theory implies that a set of mental

tests represents an underlying general factor (g), in addition to each test’s specific information.

Spearman proceeded to accord g some real existence, terming it general intelligence. He further

proceeded to identify g as an attribute, resident in the brain, which he called general energy. Some

physical existence is also attributed to the test-specific information (s-factors): he identified them

as specific engines in the brain, which are under the influence of the general energy. He also argued

g as the theoretical basis of the IQ-testing, which was prevalent at the time: the IQ-test simply

measures g, with each component test having a certain loading on g, and certain test-specific

information, s. There was no corroborating structural neurological work to support this theory,

however. The attribution of real existence to such mathematically constructed abstractions is an

example of reification. A debate ensued, between two schools of thought: Spearman and Burt on

one side and Thurstone on the other. We note that Burt, like Spearman, believed in the supremacy

of g, though he also believed in the existence of group factors, subsidiary to g. Thurstone faulted

Spearman’s (and Burt’s) method, and produced a solution which totally dispenses with g. The

solution, which he called simple structure, is actually a rotation of Spearman’s principal-components

solution. The two solutions explain an identical amount of information, i.e., they fit the observed

data equally well. Hence, they differ only in aspects of the model that cannot be verified from the

data. As an anonymous referee has pointed out, the value of their respective solutions including their

non-verifiable assumptions rests entirely on practical considerations. We show that this phenomenon

is very common throughout statistical modeling, and extends across a range of common data-analytic

settings, well beyond factor analysis, is the central theme of our paper.

At the time, rather than view this as an indication of the need to acknowledge sensitivity, and

consequently refrain from reification, Thurstone proceeded to present his solution as a discovery

of the correct explanation of the structure of the mind. The two schools of thought passionately
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advocated the validity of their model as the proper representation of the mind. Gould1 exposes a

fundamental flaw which both parties failed to take notice of: that their respective solutions comprised

of positioning of axes at locations which represented their a priori suppositions of the nature of the

mind. Therefore, their respective models merely mirrored their prior belief.

In the following, we illustrate, through a range of settings, the common structure of problems like

that of factor analysis above, and show how the practical implications of these rest on a division of

information into that supplied by the data under analysis and that supplied externally. We distinguish

two broad types of setting that fall under our general heading. The first can be termed augmented

data, in the sense of supplementing the observed data with latent or unobserved quantities; examples

include random-effects models, latent class and latent variable models, and finite-mixture models.

The second, introduced by Heitjan2,3 is a concept called coarsening , which refers broadly to situations

where the observed data are coarser than the hypothetically conceived data structures, to which the

models of interest apply. Examples include incomplete data and censored survival data. It is obvious

that models for such augmented structures or coarsened data are identifiable only by virtue of making

sometimes strong but always partially non-verifiable assumptions. Augmentation and coarsening

taken together, and from now on termed enriched data, in line with Verbeke and Molenberghs4, will

be treated in a unified way, such that important, common features can be illuminated and scrutinized.

There is a formal distinction between the two types. In the coarse-data setting, it is understood that

a part of the data would ideally be observed but is not in practice (e.g., actual survival time after

censoring, outcomes after dropout, etc.). Augmented data refers rather to the addition of useful

but artificial constructs to the data setting, such as random effects, latent classes, latent variables,

factors, and mixture component membership. These can never be observed. Our focus will not be

so much on the distinctions between coarse and augmented data on the one hand, nor on subtle

distinctions within the coarsening and augmentation families on the other. Rather, we will review a

selected range of each and bring out commonality.

Thus, in this paper, we focus on the general enriched-data case and establish that there will always

be a part of the model that is totally unidentifiable from the observed data. This implies that the

identification of such a part can come from assumptions only. This leads us to the main message

of the paper. First, we set how models in enriched-data settings are identified by the triple: data,

design-based assumptions (such as randomization), and further unverifiable assumptions. For this we

focus on the model itself and its relationship to the data through likelihood. We are not concerned
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with subsequent inferences; the same message holds whether we are being Bayesian or frequentist.

In each setting considered we identify a part of the model for which, in the Bayesian case, the

posterior depends only on the choice of prior (assuming appropriate independence relationships among

components of the prior), and in the frequentist case that does not affect goodness-of-fit to the

observed data. Second, while various forms of this are known in various sub-fields, to variable degrees,

we emphasize the great similarity between these fields and settings; appropriate review of a number of

selected areas is presented to facilitate study of the common features. We illustrate this by showing

how non-identified parts can be replaced arbitrarily, without altering the fit to the observed data

but with potentially non-trivial consequences for inferences and substantive conclusions. It should

be clear that this can be dangerous and the user must carefully reflect on the arbitrary components.

For example, they should be supported by substantive considerations or be made part of a sensitivity

analysis. Therefore, acceptable goodness-of-fit to the observed data cannot be used as the sole

justification for the analysis. In the absence of external corroborating knowledge or information,

two alternative routes can be followed. First, it can be made clear that the conclusions drawn have

meaning only under the external assumptions built into the analysis. For example, a researcher

can choose to draw inferences given a set of scientifically plausible but otherwise non-verifiable

causal relationships. It is then important not to divorce the data analysis from the assumptions

made. Second, an appropriate sensitivity analysis can be conducted to augment the conclusions. By

sensitivity analysis, we mean in this context, either a study of how unverifiable assumptions affect

overall inferences, or an assessment of traceability5,6, i.e., how unverifiable assumptions influence

predictions for individual subjects. For example, analyses can be conducted under a number of

alternative sets of hypothesized structures as well. This then allows the researcher to examine the

sensitivity of the inferences concerning the scientific question to varying the underlying assumptions.

See, for example, Part V of Molenberghs and Kenward7.

The remainder of the paper is organized as follows. In the next section, we introduce seven illustrative

examples. In Section 3, we introduce our general results concerning enriched data structures, in

particular showing how components of the models can be chosen in an effectively infinite number of

ways without affecting the fit to the observed data. In the subsequent sections, these general results

are applied to five widely used settings, namely that of latent class models (Section 4), finite-mixture

models (Section 5), factor analysis (Section 6), random effects models (Section 7), and incomplete

data (Section 8), and practical implications are illustrated using the examples.
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2 Motivating Data Sets

2.1 A Clinical Trial in Onychomycosis

The data introduced in this section were obtained from a randomized, double-blind, parallel group,

multicentre study for the comparison of two oral treatments (in the sequel coded as A and B) for

toenail dermatophyte onychomycosis (TDO)8. TDO is a common toenail infection, difficult to treat,

affecting more than 2 out of 100 persons9 . Anti-fungal compounds, classically used for treatment

of TDO, need to be taken until the whole nail has grown out healthy. The development of new

such compounds, however, has reduced the treatment duration to 3 months. The aim of the present

study was to compare the efficacy and safety of 12 weeks of continuous therapy with treatment A

or with treatment B.

In total, 2×189 patients, distributed over 36 centres, were randomized. Subjects were followed during

12 weeks of treatment and followed further, up to a total of 48 weeks. Measurements were taken at

baseline, every month during treatment, and every 12 weeks afterwards, resulting in a maximum of 7

measurements per subject. At the first occasion, the treating physician indicates one of the affected

toenails as the target nail, the nail which will be followed over time. We will restrict our analyses

to only those patients for which the target nail was one of the two big toenails. This reduces our

sample under consideration to 146 and 148 subjects, in group A and group B, respectively. One of

the responses of interest was the unaffected nail length, measured from the nail bed to the infected

part of the nail, which is always at the free end of the nail, expressed in mm. This outcome has

been studied extensively in Verbeke and Molenberghs10. Figure 1 shows the observed profiles of 30

randomly selected subjects from treatment group A and treatment group B, respectively. In Table 1,

the amount of missingness is brought to the forefront, by listing the number of repeated measures

available per subject, for each of the two treatment arms separately. A linear mixed model will be

considered, in which enrichment arises through the inclusion of random effects.

2.2 A Developmental Toxicity Study

This developmental toxicity study investigates the dose-response relationship in mice of the potentially

hazardous chemical compound di(2-ethylhexyl)phthalate (DEHP), used in vacuum pumps11 and as

plasticizers for numerous plastic devices made of polyvinyl chloride. DEHP provides the finished

plastic products with desirable flexibility and clarity12. It has been well documented that small
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quantities of phthalic acid esters, of which DEHP is an instance, may leak out of polyvinyl chloride

plastic containers in the presence of food, milk, blood, or various solvents. Due to their ubiquitous

distribution and presence in human and animal tissues, considerable concern has developed as to

the possible toxic effects of the phthalic acid esters. The developmental toxicity study, conducted

in timed-pregnant mice during the period of major organogenesis and described by Tyl et al13, has

attracted much interest in the toxicity of DEHP. The doses selected for the study were 0, 0.025,

0.05, 0.1, and 0.15%, corresponding to a DEHP consumption of 0, 44, 91, 191, and 292 mg/kg/day,

respectively. The dams were sacrificed, slightly prior to normal delivery, and the status of uterine

implantation sites recorded. A total of 1082 live fetuses were dissected from the uterus, anesthetized,

and examined for external, visceral, and skeletal malformations, as well as for body weight. Our focus

will be on the continuous weight outcome. Evidently, fetuses are clustered within mothers; hence

the implied association needs to be accommodated in the analysis. When done through random

effects, data enrichment arises. Summary data are presented in Table 2. Table 2 makes clear, when

the number of viable fetuses (litter size) is compared to the number of implants, that there is a

substantial amount of depletion and that it, not surprisingly, increases with dose.

2.3 The 2005 United States’ National Youth Risk Behavior Survey data

This survey, conducted by the US Centers for Disease Control and Prevention, targets youths in

grades 9–12, and the questions of interest are on various health-risk behaviors. These include alcohol

and drug use, sexual behaviour, dietary habits, and physical activity. The Youth Risk Behavior

Surveillance System aims at among others to monitor the trends of health-risk behaviour and to

assess the impact of efforts to combat the same. We pay attention to 12 questions relating to

smoking, alcohol consumption, consumption of other drugs, and sexual behaviour. Collins and

Lanza14 have previously extensively analyzed these variables, in the context of latent class models.

2.4 Accident Insurance Policies Data

Böhning15 analyzes data on claims made by 9461 accident insurance policies issued by La Royale

Belge Insurance Company. These data have been attributed to Thyrion16), and have also been used

by Simar17, as well as by Carlin and Louis18. The data are on the number of policies reporting a

certain number of claims in a certain year. We use these data in the context of finite mixture models.
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2.5 Data on Recurrent Asthma Attacks in Children

These data have also been used by Molenberghs et al.19 and Duchateau and Janssen20 . The setting

is a prevention trial, where children, who are between 6 and 24 months, and who are at a high

risk of developing asthma, are involved. They are randomized, before they experience Asthmatic

attacks, to the study drug and placebo, and the attacks that occur are recorded. Since a patient

will typically experience more than one event, there is clustering. Additionally, during the entire

observation period, a patient will have different at risk times, separated by a period of attack or a

period of no observation. We present part of the data in Table 4, in calendar-time format, where

the time at risk is the time from the end of previous to the start of the next event. The end of each

period will correspond to either an event or no event.

2.6 Time-to-insemination Data

These data are collected to assess factors associated with time to insemination in dairy heifer cows21.

Dairy farmers aim for a calving interval between 12 and 13 months. The time from parturition to

first insemination is a main factor determining this interval. Duchateau et al.21 analyze data on the

time-to-insemination for dairy cows, which were clustered within herds (farms). Some cows failed

to get inseminated, and some were culled before insemination, thus there was censoring. We will

focus on the covariate “parity,” which is the number of times the cow has already calved, and which

is dichotomized into “primiparous” and “multiparous” cows. Duchateau and Janssen20 have also

analyzed the data in terms of this covariate.

2.7 National Track Records for Women

Johnson and Wichern22 present data on records for 7 women track events. For each of the seven

events (100, 200, 400, 800, 1500, and 3000 metres, and the marathon). The record times are

provided for n = 54 countries.

3 General Result About Counterparts in Enriched-data Structures

The result in this section is based upon Verbeke and Molenberghs4. Assume data Zi for an indepen-

dent unit i = 1, . . . , N are augmented with ci. The ci can take any conventional enriched-data form.

For example, the vector can refer to missing measurements, random effects, or perhaps a combination
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of both. An example of a setting where the latter situation arises naturally is the shared-parameter

framework, that will be considered in the next section.

Assume a joint model of the generic form f(zi, ci|θ,ψ), where covariates have been suppressed for

notational simplicity. We assume the parameters to be disjoint, in the sense of Rubin23, meaning

that the parameter space of θ and ψ equals the set theoretic product of the individual parameter

spaces. Consider the factorizations:

f(zi, ci|θ,ψ) = f(zi|ci, θ)f(ci|ψ), (1)

= f(zi|θ,ψ)f(ci|zi, θ,ψ). (2)

Borrowing terminology from the hierarchical-models context, such as mixed models, which are given

specific consideration in Section 7, every factor in both (1) and (2) can usefully be given a name.

The left hand side is the joint model. Consider first the right hand sides. The first factor in (1) is

the hierarchical model and the second one is the prior density for the enriched data. The first factor

in (2) may be termed the marginal model , whereas the second one is the posterior density of the

enriched data.

The above terminology makes clear the obvious link between (1)–(2) and the mixed-model setting.

The link with incomplete data follows by setting ci ≡ ym
i and zi = (yo

i , ri).

These considerations immediately establish the following theorem.

Theorem 1 (A Family of Counterparts to a Given Model for Enriched Data.) Let us assume

that data zi are enriched with ci. Then, any model (1) formulated for and fitted to such data, can

be replaced by an infinite family of models, all retaining the fit to the observed data as achieved

by the original model. This is done by preserving the marginal model f(zi|θ̂, ψ̂) and replacing the

posterior density f(ci|zi, θ̂, ψ̂) by an arbitrary conditional density

f(di|zi, γ). (3)

Here, di rather than ci is used to indicate that there need not be any connection between the original

and substituted enriched data. Also, the new density (3) can be parameterized by a completely new

parameter γ.

While it might be argued that the conventional error term in an ordinary regression equation already is

an instance of enrichment, we choose to view this as different from the theme of this paper. Broadly,
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in a univariate regression context (encompassing linear regression, analysis of variance, regression

based on generalized linear models, etc.) the response is split into signal and noise. While this surely

depends on the posited model (e.g., a linear model with a certain mean function), it is verifiable from

the data, using a realm of fit and diagnostic tools. Our situation of interest is different because of

two aspects. First, in augmented-data settings, the noise is split into several sources of noise, a split

which cannot be verified definitively from data. Second, in coarse-data settings, models describe the

unobserved outcomes, given the observed ones, and predict the same; the models, by construction,

are not verifiable from the data.

It may seem that the above derivations violate the so-called extended likelihood principle24, which

states that the extended likelihood f(zi, ci) carries all information in the data about the unobserv-

ables. Of course, this is a very sensible principle to make inferences given the posited model. Our

main point is not to take issue with the extended likelihood principle, but rather to demonstrate

how models, coinciding in f(zi) but differing in f(ci|zi), are indistinguishable in terms of the data

only. In contrast, the extended likelihood principle states that, once a particular model has been

chosen, parametric inferences about the parameters governing the joint distribution, follow through

the extended likelihood function.

4 Case I: Latent Classes and Latent Variables

Latent class (LC) models are widely used, especially in the social and behavioral sciences25,26, where

they are used to identify subgroups of individuals, based on phenomena defined in terms of categorical

data. The observed variables are assumed to be a manifestation of some underlying categorical latent

variable, the levels of which are believed to organize individuals into subgroups exhibiting distinct

tendencies. In a latent variable (LV) model the unobservable is of a continuous nature. From a

statistical perspective, use of the LC model may be viewed as a way of addressing heterogeneity

among observations. A qualitative mixture distribution is assumed, and the observed, also called

manifest or indicator, variables are assumed to be independent, conditional on the latent class. This

is termed the local independence assumption.

When considered in a broad sense, LC and LV models exhibit connections with item-response theory

models27, shared-parameter models for incomplete data (Section 8), and factor analysis (Section 6).

As in the previous cases, LC and LV models are based on unobservables. It is therefore impossible
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to decide, in terms of the data alone, whether there are in fact such latent classes and, if we assume

that there are, how many exist, and the number of categories in each. The ‘identification’ of the

number of latent classes bears similarity to the identification of the number of components in mixture

models (Section 5).

Suppose we observe response variables Y1, Y2, . . . , YT , each with Ct categories, t = 1, . . . , T , and

assume a categorical latent variable, Z, with g levels. The basic latent class (LC) model takes the

following form:

P (Y1 = y1, . . . , YT = yT , Z = z) = P (Z = z)

T∏

t=1

P (Yt = yt|Z = z). (4)

This is called the probabilistic representation of the model, the parameters of which are the conditional

(item-response) probabilities: P (Yt = yt|Z = z), and the latent class probabilities (prevalences):

P (Z = z). An equivalent representation of the basic LC model, called the log-linear representation,

takes the form:

logP (Y1 = y1, . . . , YT = yT , Z = z) = λ + λZ
z +

T∑

t=1

λYt
yt

+

T∑

t=1

λZYt
zyt

. (5)

The link between the conditional and log-linear model parameters is the following:

P (Yt = yt|Z = z) =
exp

(
λYt

yt
+ λZYt

zyt

)

∑Ct

i=1 exp
(
λYt

i + λZYt

zi

) . (6)

An iterative procedure, such as the Expectation-Maximization (EM) algorithm28, is used for model

estimation. The Akaike Information Criterion (AIC) and the likelihood ratio statistic (G2) are typically

used in evaluating the appropriate number of latent classes. The likelihood ratio statistic evaluates

the proximity of the expected cell frequencies to the observed cell frequencies, whereas AIC adds

penalty to this that depends on the number of parameters in the model. We now apply Theorem 1

to model (4), replacing the posterior distribution with two rather different choices: (a) the normal

distribution and (b) a distribution corresponding to the posterior distribution of a model with k 6= g

latent classes.

We first set out the components in (1)–(2) for model (4). The joint model is simply the exponent

of model (5), with expression

P (Y1 = y1, . . . , YT = yT , Z = z) = exp

(
λ + λZ

z +

T∑

t=1

λYt
yt

+

T∑

t=1

λZYt
zyt

)
. (7)
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From (6), and by the local independence assumption of the LC model, the hierarchical model is seen

to take the form:

P (Y1 = y1, . . . , YT = yT |Z = z) =
T∏

t=1

P (Yt = yt|Z = z) =
T∏

t=1

exp
(
λYt

yt
+ λZYt

zyt

)

∑Ct

i=1 exp
(
λYt

i + λZYt

zi

) (8)

and the prior distribution, the ratio of the joint to the hierarchical model, is:

P (Z = z) =
exp

(
λ + λZ

z +
∑T

t=1 λYt
yt

+
∑T

t=1 λZYt
zyt

)

∏T
t=1

exp
“

λ
Yt
yt

+λ
ZYt
zyt

”

PCt
i=1 exp

“

λ
Yt
i +λ

ZYt
zi

”

. (9)

The marginal model is a weighted sum of the hierarchical probabilities:

P (Y1 = y1, . . . , YT = yT ) =

g∑

z=1

P (Y1 = y1, . . . , YT = yT , Z = z) (10)

and hence, the posterior distribution follows as:

P (Z = z|Y1 = y1, . . . , YT = yT ) =
exp

(
λ + λZ

z +
∑T

t=1 λYt
yt

+
∑T

t=1 λZYt
zyt

)

∑g
z=1 exp

(
λ + λZ

z +
∑T

t=1 λYt
yt +

∑T
t=1 λZYt

zyt

) . (11)

We now turn to each of the posteriors.

4.1 Normal Posterior

We retain the marginal model (10), but replace the sets of probabilities given in (11) with a unit-

variance normal density and linear mean model:

f(h|Y ) =
1√
2π

e
1
2 [h−(α0+

PT
t=1 αtYt)]

2

. (12)

The new joint model follows as the product of (10) and (12), with now prior distribution

eλ

√
2π

∑

y1

· · ·
∑

yT

e
1
2 [h−(α0+

PT
t=1 αtYt)]

2
g∑

z=1

exp

(
λ + λZ

z +

T∑

t=1

λYt
yt

+

T∑

t=1

λZYt
zyt

)
(13)

and hierarchical model

1√
2π

e
1
2 [h−(α0+

PT
t=1 αtYt)]

2 ∑g
z=1 exp

(
λ + λZ

z +
∑T

t=1 λYt
yt

+
∑T

t=1 λZYt
zyt

)

eλ√
2π

∑
y1
· · ·∑yT

e
1
2 [h−(α0+

PT
t=1 αtYt)]

2 ∑g
z=1 exp

(
λ + λZ

z +
∑T

t=1 λYt
yt +

∑T
t=1 λZYt

zyt

) . (14)

We note here that (13) and (14) complete a new hierarchical specification, which gives the same

marginal fit (10) achieved by the initial set (8) and (9). However, as will be clear from the data

analysis below, there are consequences for ensuing inferences.
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4.2 Distribution Corresponding to the Posterior of a Model With k 6= g Latent Classes

We now couple (10) with

P (X = x|Y1 = y1, . . . , YT = yT ) =
exp

(
β + βX

x +
∑T

t=1 βXt
xt

+
∑T

t=1 βXYt
xyt

)

∑k
x=1 exp

(
β + βX

x +
∑T

t=1 βYt
yt +

∑T
t=1 βXYt

xyt

) . (15)

The prior distribution and the hierarchical model, respectively, can then be seen to take the following

forms:

∑

y1

· · ·
∑

yT

[
g∑

z=1

exp

(
λ + λZ

z +
T∑

t=1

λYt
yt

+
T∑

t=1

λZYt
zyt

)]
×

×
exp

(
β + βX

x +
∑T

t=1 βXt
xt

+
∑T

t=1 βXYt
xyt

)

∑k
x=1 exp

(
β + βX

x +
∑T

t=1 βYt
yt +

∑T
t=1 βXYt

xyt

) (16)

and
f(y1, . . . , yT )∑

y1
· · ·∑yT

f(y1, . . . , yT )
, (17)

with

f(y1, . . . , yT ) =

g∑

z=1

exp

(
λ + λZ

z +

T∑

t=1

λYt
yt

+

T∑

t=1

λZYt
zyt

)
×

×
exp

(
β + βX

x +
∑T

t=1 βXt
xt

+
∑T

t=1 βXYt
xyt

)

∑k
x=1 exp

(
β + βX

x +
∑T

t=1 βYt
yt +

∑T
t=1 βXYt

xyt

) .

Note that (16) and (17) complete yet another hierarchical specification, giving the same marginal

fit (10).

4.3 Data Analysis

We now illustrate the above developments using the 2005 United States’ National Youth Risk Behav-

ior Survey data (N = 13, 840), introduced in Section 2.3. We consider the 12 questions introduced

earlier. Collins and Lanza14 have previously extensively analyzed these variables, and chosen a 5-class

LC model. We use the SAS procedure LCA, an add-on procedure in SAS, to re-analyze these data.

In Table 5, we present the model’s latent class prevalence and item-response probabilities.

These parameters are sufficient to calculate, by using Bayes’ theorem, the posterior probability, where

the latent classes and their corresponding probabilities act as (empirical) prior: the probability of

belonging to a certain latent class, given a specific response pattern. Note that there is a total of
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5×212 posterior probabilities, where 5 represents the number of latent classes, and 212 is the number

of different response patterns possible. In practice, one needs to calculate only those that correspond

to patterns actually occurring in the data. Classification of a respondent to any of the 5 latent

classes, given his/her response pattern, is then based, for example, on the highest of the individual’s

set of 5 posterior probabilities: P (Z = z|Y1 = y1, . . . , Y12 = y12), z = 1, . . . , 5. Alternatively, the

set of posterior probabilities may be considered, which is especially instructive when a number of

patterns differ only slightly in terms of posterior probability. As an example, consider the response

pattern composed of a “Yes” response to all questions:

P (Z = z|Y1 = · · · = Y12 = “Yes”) =
P (Y1 = · · · = Y12 = “Yes”|Z = z)P (Z = z)

P (Y1 = · · · = Y12 = “Yes”)

=

∏12
t=1 P (Yt = yt|Z = z)P (Z = z)

∑5
z=1 P (Z = z)

[∏12
t=1 P (Yt = yt|Z = z)

] .

Substituting the relevant parameters from Table 5, we obtain (5.53E − 18, 1.03E − 08, 4.60E −
06, 1.00, 7.33E− 09) as the set of posterior probabilities, for latent classes 1–5 respectively. Clearly,

classification of a respondent with such a response pattern would be to latent class 4, which, generally,

has higher probabilities of a “Yes” response to the items than the other classes.

4.3.1 Normal Posterior

We now replace the posterior distribution with our first choice, the normal distribution. The pa-

rameters α0, . . . , α12 play the role of sensitivity parameters; they can be freely specified, all without

changing the marginal fit. Here, we set them to α0 = · · · = α12 = 0.5. Evidently, the concept

of classifying a respondent to a particular latent class no longer exists. h in (9) is continuous, tak-

ing values on the whole real line, meaning that for any specific response pattern (Y = y), there

exists an infinite collection of posterior densities. The prediction for the enrichment, ĥ, is given as

E(h|Y ) = α0 +
∑12

t=1 αtyt. Letting yt take the value 1 for a “Yes” response and 0 otherwise, we

can calculate the prediction for h, for a specific response pattern. For example, for the response

profile (Y1 = · · · = Y12 = “Y es”), mentioned earlier, ĥ = 0.5 + 12× 0.5 = 6.5. The point we make

is that having replaced the posterior distribution with our choice, we move to an entirely different

setting, where, in contrast to the initial case where we could allocate to classes, we now work with

a continuum. Once more, such manipulations are possible while the marginal fit remains unaffected.
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4.3.2 Changing the Posterior With k 6= 5 Latent Classes

By choosing k 6= 5 in (9), we complete our choice. There is no information in the data about the

β parameters; they can thus be specified freely. We only need to ensure that
∑

x βX
x =

∑
y1

βY1
y1

=

· · · = ∑
y12

βY12
y12

=
∑

y1
βY1X

y1x = · · · = ∑
y12

βY12X
y12x =

∑
x βY1X

y1x = · · · = ∑
x βY12X

y12x = 0, so that the

distribution is a genuine posterior from a latent class model. In so doing, we end up with completely

different latent class allocations, though once more, the marginal fit remains the same.

5 Case II: Finite-mixture-model Component Membership

Finite mixture models15 are often used to handle heterogeneity arising from the postulation of un-

known sub-populations, which are treated as latent. We assume that the response variable X follows

a finite mixture distribution, formalized as

f(x) =

g∑

j=1

πjfj(x), (18)

πj, j = 1, . . . , g being the mixing proportion, i.e., the proportion of the jth sub-population in

the population, and fj(x), j = 1, . . . , g the component densities, characterized by the parameters

λ1, . . . , λj, respectively. The πj satisfy 0 < πj ≤ 1 and
∑

j πj = 1. Sub-population membership

is considered a latent variable, Z, with a discrete distribution P with values λj and corresponding

probabilities πj, for j = 1, . . . , g. Next, we specify all components in (1) and (2), then illustrate

arbitrariness of the posterior distribution. The hierarchical model is

f(x|Z = z, z = 1, . . . , g) = f(λz), (19)

with f(λz) denoting the density characterized by the parameter λz. For instance, for a finite mixture

of Poisson distributions, f(x|Z = z) = f(λz) would be

Poi(λz). (20)

We let

P (Z = z) = πz, (21)

be the prior distribution. The marginal distribution is obtained by summing-out Z:

f(x) =

g∑

z=1

f(x|Z = z)πz. (22)
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A finite mixture of Poisson distributions, for instance, yields

f(x) = π1 · Poi(λ1) + · · ·+ πg · Poi(λg). (23)

The joint model takes the form

f(x, z) = f(x|Z = z)πz. (24)

We therefore have that the posterior distribution, the ratio of (24) to (22), takes the form

P (Z = `, ` = 1, . . . , g|x) =
f(x|Z = l) · π`∑g

z=1 f(x|Z = z) · πz
. (25)

This expression provides a channel through which data are a posteriori classified into the various

sub-populations. A datum is classified into the sub-population for which P (Z = l|x) is maximal. To

illustrate sensitivity, we proceed as follows: retain the marginal model (22) but arbitrarily alter the

posterior distribution (25). We replace the sets of probabilities in (25) by a continuous distribution,

f(g|x) =
1√
2π

e−
1
2
[g−µ(x)]

2

, (26)

µ(x) = γx. We note here that the data contains no information about γ, and we will have the

liberty to set it to some value. The new joint model follows as the product of (22) and (26):

f(g, x) =
1√
2π

e−
1
2
[g−µ(x)]

2
g∑

z=1

f(x|Z = z) · πz. (27)

For instance, for the Poisson mixture, we have

f(g, x) =
1√
2π

e−
1
2
[g−µ(x)]

2

[

g∑

j=1

πjPoi(λj)]. (28)

The prior distribution follows by integrating or summing over X , depending on whether it is contin-

uous or discrete. For discrete X ,

f(g) =
∑

x

1√
2π

e−
1
2
[g−µ(x)]

2
g∑

z=1

f(x|Z = z) · πz. (29)

For the Poisson mixture, where X is of course discrete, we have

f(g) =
∑

x

1√
2π

e−
1
2
[g−µ(x)]

2




g∑

j=1

πjPoi(λj)



 . (30)

The hierarchical distribution follows as the ratio of (27) to (29):

f(x|g) =

1√
2π

e−
1
2
[g−µ(x)]

2 ∑g
z=1 f(x|Z = z) · πz

∑
x

1√
2π

e−
1
2
[g−µ(x)]

2 ∑g
z=1 f(x|Z = z) · πz

. (31)
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For the Poisson mixture case,

f(x|g) =

1√
2π

e−
1
2
[g−µ(x))]

2
[∑g

j=1 πjPoi(λj)
]
)

∑
x

1√
2π

e−
1
2
[g−µ(x)]

2
[∑g

j=1 πj · Poi(λj)
] . (32)

Thus, finally, (19) and (21) on the one hand, and (31) and (29) on the other, are two different

hierarchical specifications, yielding the same marginal model, (22). Once more we have two models

that are indistinguishable in terms of fit to the observed data, while the ensuing inferences are sensitive

to the particular hierarchical formulation chosen. In the first formulation, it is possible to attribute

a posteriori component membership to a given datum, through classification, based on (25). In the

second formulation, however, this concept of classification disappears, because the posterior consists

of a continuous density, naturally leading to prediction of the value of the (now continuous) latent

variable, g, by noting that E(g|x) = γx.

5.1 Data Analysis

The above developments are illustrated using the Accident Insurance Policies Data, introduced in

Section 2.4. Böhning15 employed the Non-parametric Maximum Likelihood Estimation method, as

implemented in the package C.A.MAn (Computer-Assisted Analysis of Mixtures and Applications),

to fit a finite mixture of Poisson distributions to these data, and reaches a three-component solution.

We re-analyze these data and use the analysis to illustrate our result. The following model for X ,

the number of claims, is found:

f(x) = 0.4184Poi(0) + 0.5730Poi(0.3356) + 0.0087Poi(2.5454). (33)

With this result, (25) can be used to allocate a specific datum, corresponding to x claims, to any of

the mixture model components z = 1, 2, 3. For instance, for x = 2 counts, the set of probabilities

P (Z`|x), ` = 1, 2, 3, is easily found to be (0.0000, 0.9125, 0.0875). Based on the maximal posterior

allocation criterion, such a datum would be allocated to component 2. On the other hand, for x = 5

counts, the set would be (0.0000, 0.0234, 0.9766), in which case the datum would be allocated to

the third component. Of course, this is a clear situation; in cases where there is not a clear winner

among the three component, presenting all three would be more insightful. No need to add, though,

that this does not remove the enrichment aspect of the problem.

We now move to our second hierarchical formulation, where we assume a normal posterior. Fix the

parameter γ to 0.5. Given the continuous nature, the action parallel to the above mixture component
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membership is to compute the predicted value for the latent variable, g. For x = 2 and x = 5 claims,

respectively, we obtain 1 and 2.5, respectively.

In keeping with the theme of this paper, the choice between these very different routes is not possible

in terms of the observed data. Rather, a researcher must carefully consider the substantive knowledge

available, together with the scientific goal of the analysis.

6 Case III: Factor Analysis

In the introduction, we referred to reification as a typical consequence of naively using methods that

combine data with external information, through unobservables. A very early context in this respect

was the debate regarding general intelligence, based on different but, in terms of the data alone,

indistinguishable forms of factor analysis. We now consider the factor-analytic case from a technical

perspective.

We consider the following factor-analytic model:

Yj − µj =

k∑

m=1

`jmFm + εj , (34)

(j = 1, . . . , p), where Yj is a continuous response variable, with mean µj . The variable Fj is a

latent continuous variable, called factor, and εj are errors. The coefficients `jm are called factor

loadings. In matrix notation, the model is Y −µ = LF + ε. In line with convention, we make the

following assumptions: E(F ) = 0, E(ε) = 0, cov(F ) = I (the assumption of uncorrelated factors),

and cov(ε,F ) = 0. We make the distributional assumptions that F has a multivariate normal

distributional with mean 0 and covariance matrix Ik, and that ε also has a multivariate normal

distribution, with mean vector 0 and covariance matrix Ψ. The response vector for an individual is

enriched with a vector of factors. We therefore first set out all the components in (1)–(2) for model

(34). The prior distribution is:

F ∼ N (0, Ik). (35)

The marginal distribution is readily shown to be:

Y ∼ N (µ,LL′ + Ψ). (36)

The joint distribution, when joint normality of Y and F is assumed, can also be represented as:
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(Y ′,F ′)′ with mean vector (µ′, 0′)′ and covariance matrix



LL′ + Ψ L

L′ Ik


 .

Finally, by the conditional distribution property of subsets of multivariate normal distributions, the

hierarchical and the posterior distributions, respectively, are

Y |F ∼ N [µ+ (LL′ + Ψ)Ik(f −µf), Ψ], (37)

F |Y ∼ N [L(LL′ + Ψ)−1(y − µy), Ik −L(LL′ + Ψ)−1L]. (38)

The mean of the posterior distribution provides the predictive distribution of the enrichment, given

the data. This is ordinarily used in the estimation of factor scores, where the vector of factor scores

for the ith individual, i = 1, . . . , n, is given by f̂ i = L̂(L̂L̂′ + Ψ̂)
−1

(yi − µ̂y).

To illustrate arbitrariness of the posterior distribution, and the attendant consequences, we retain

the marginal model (36) whilst replacing the posterior distribution (38). First note that L, in the

posterior is a p × k matrix. A particular way, therefore, to change the posterior distribution, is to

change L to L1, with L1 being a p × k′ matrix, k 6= k′. The new posterior, therefore, becomes

G|Y ∼ N [L1(L1L
′
1 + Ψ)−1(y − µy), Ik1 − L1(L1L

′
1 + Ψ)−1L1]. (39)

This corresponds to the posterior of a factor-analytic model with a different number of factors than

the initial model (34). The new joint model follows as the product of (36) and (39):

f(Y ,G) = 2π−(
p+k1

2
)|Σ1|

−1
2 |Σ2|

−1
2 e

−1
2 [(y−µy)′|Σ1|−1(y−µy)+(g−µg|y)′|Σ2|−1(g−µg|y)], (40)

where Σ1 = cov(Y ), Σ2 = cov(g|Y ), and µg|y = E(g|Y ), components which are all described

above. The new prior distribution follows as

∫

y
2π−(

p+k1
2

)|Σ1|
−1
2 |Σ2|

−1
2 e

−1
2 [(y−µy)′|Σ1|−1(y−µy)+(g−µg|y )′|Σ2|−1(g−µg|y)]dy. (41)

The new hierarchical model is therefore

2π
−

“

p+k1
2

]
”

|Σ1|
−1
2 |Σ2|

−1
2 e

−1
2 [(y−µy)′|Σ1|−1(y−µy)+(g−µg|y)′|Σ2|−1(g−µg|y )]

∫
y 2π

−
“

p+k1
2

]
”

|Σ1|
−1
2 |Σ2|

−1
2 e

−1
2 [(y−µy)′|Σ1|−1(y−µy)+(gµg|y)′|Σ2|−1(g−µg|y)]dy.

(42)

We note that (41) and (42) complete a new hierarchical formulation, which produces the same

marginal model, hence with the same marginal fit, as that from the initial formulation composed of
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(35) and (37). At the same time, however, important inferences ensuing from the two formulations are

totally different. In particular, the estimation of factor scores, which uses the predictive distribution

of the enrichment given the data, will be sensitive to the full model formulation. From the (1 × k)

vectors of factor scores for the respondents, which would be the outcome of the initial formulation,

we move to very different (1 × k′) sets of factor scores, resulting from the new formulation. In

addition, whereas ranking of individual respondents would be with respect to k components in the

first formulation, it would be with respect to an arbitrary k′, in the second. Vindication of any one

formulation can only come through independent substantive information. Our illustration reiterates

the fact that there is a completely unidentifiable part of the model. Therefore, we can view Gould’s

argument expressed through indeterminacy of the axis rotation, in the same way as the arbitrariness

of the posterior in our enrichment terms. We emphasize that the enrichment view merely presents

the well-known result about indeterminacy of factor rotation in a broader framework, underlining the

commonality with other data-enrichment settings. Thus, also here, it follows that a good working

knowledge of the difference between what can be learned from the data and what is identifiable

through assumptions only, is a necessary part of the appropriate use of factor analysis.

6.1 Data Analysis

We analyze the track record data, described in Section 2.7, converting the record times into speed

(in metres/second). We fit a 2-factor analysis model, using the maximum likelihood method, as

implemented in SAS Version 9.2. In Table 6, the factor-loading pattern for the rotated solution is

presented. Factor 1 loads rather highly on the distances from 800 metres to the marathon, while

factor 2 loads highly on the distances from 100 metres to 400 metres. We may therefore deem factor

1 to represent the middle and long-distance events, with factor 2 representing the short-distance

events. We now turn to the factor scores, and, indeed, consider ranking of the countries involved,

based on the respective factors. The U.S.A., Germany, the Czech Republic, France, and Russia

complete the list of the top 5 countries with respect to the short-distance factor, while Kenya,

Ireland, China, North Korea, and Norway top the middle-and-long-distance factor. Note that, for

each country, there is a 1×2 vector of factor scores. As described earlier, by arbitrarily replacing the

number of columns in the matrix L, in the posterior, from 2 to, say, 4, and, of course, leaving the

marginal model unaltered, we would end up with, for each country, a 1 × 4 vector of factor scores.

We also note that in that case, we would also have complete freedom to arbitrarily specify the
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parameters in the now 7× 4 matrix L1, in the new posterior, because the data carry no information

about them. In view of these developments, the ranking that we initially conducted, based on the 2

factors, would completely change. Indeed, we would now be considering ranking based on completely

different 1 × 4 vectors for the countries. Neither formulation is self-evidently appropriate and only

independent substantive information can allow us to distinguish between them.

Thus, rather than extracting additional insight out of the data, our analysis shows that one has to

be very aware of the arbitrary nature of at least some part of the conclusions.

7 Case IV: Random Effects Models

In Section 7.1, the linear mixed model will be considered for illustration. In Section A, the special

but important case of clustered data will be considered, with constant mean within clusters and

compound-symmetry variance-covariance structure.

7.1 Case IVA: The Standard Linear Mixed-effects Model

In line with Verbeke and Molenberghs10, we consider the linear mixed-effects model, in all components

featuring in (1)–(2), and then apply Theorem 1 to replace the posterior density of the random effects,

ordinarily normal, by two versions of the exponential density.

7.1.1 Standard Formulation of the Linear Mixed Model

Using notation as in Section 8, the fully hierarchically specified linear mixed-effects model takes the

form10:

Y i|bi ∼ N (Xiβ + Zibi, Σi), (43)

bi ∼ N (0, D), (44)

where β is a vector of fixed effects, and Xi and Zi are design matrices.

Based on (43) and (44), the marginal model and posterior distribution of the random effects can be

derived:

Y i ∼ N (Xiβ, Vi = ZiDZ ′
i + Σi), (45)

bi|Y i ∼ N [DZ ′
iV

−1
i (Y i − Xiβ), (Z ′

iΣ
−1
i Zi + D−1)−1]. (46)
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It is useful to present as well the empirical Bayes predictions10,18. For the random effects, these

follow in a straightforward fashion as the mean of (46), i.e.,

b̂i = E(bi|Y i) = DZ ′
iV

−1
i (Y i − Xiβ). (47)

For the prediction of outcome Y i, the value in (47) is plugged into the mean of the hierarchical

model (43):

Ŷ i = (ZiDZ ′
i) · V −1

i yi + (Σi) · V −1
i Xiβ, (48)

the familiar “weighted average” of the observed outcomes yi and the marginal mean Xiβ.

7.1.2 A First Normal-exponential Version of the Linear Mixed Model

To illustrate the arbitrariness of the posterior density, brought forward by Theorem 1 and in this case

referring to the posterior density of the random effects, let us replace the normally distributed random

effects by a vector of ni independent gamma random effects, where each outcome component Yij is

paired with a gamma random effect gij. The conventional density for a gamma variable φ is

f(φ) = [βα∗
∗ Γ(α∗)]

−1 φα∗−1e−φ/β∗ , (49)

with α∗, β∗ ≥ 0 parameters. For convenience, let us set α∗ = 1 and δ = 1/β∗ in (49), producing

f(φ) = δe−φδ , (50)

which is the exponential density special case of the gamma family. Clearly, the mean of φ then is

E(φ) = δ−1. Note that the choice for an exponential distribution here is not aimed at proposing

a viable model for data analysis. The choice is made to illustrate Theorem 1, in such a way that

reasonably tractable closed-form solutions can be obtained, at the same time allowing for choice

within the exponential framework. Indeed, the choice to be made next can be juxtaposed with the

one of Section 7.1.3.

Our first choice is completed by choosing a conditional density of the form (50) for φ = gij, with

δ = γjyij, where γj is an unspecified parameter. The marginal model (45) is retained and coupled

with the posterior:

f(gi|yi) =

ni∏

j=1

γjyije
−gijγjyij . (51)
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The joint density of yi and gi obviously follows as the product of the density corresponding to (45)

and density (51), and hence, after some algebra, the hierarchical model and prior can be seen to take

the forms:

f(gi) =




ni∏

j=1

γj



 eµ
′
iθi+

1
2
θ

′
iViθiMni

(µi + Viθi, Vi), (52)

f(yi|gi) =

(∏ni

j=1 yij

)
eθ

′
i(yi−µi)e

− 1
2

h

(yi−µi)
′V −1

i (yi−µi)+θ
′
iViθi

i

(2π)ni/2|Vi|1/2Mni
(µi + Viθi, Vi)

, (53)

where µi = Xiβ, θi has components θij = −gijγj, and Mn(k, V ) = E(Y1 . . . Yn; k, V ), i.e., the

sole nth order moment, relative to a normal distribution with mean k and variance V , where each

component occurs exactly once. From Willink29 it follows that a simple recursive relationship can

be used, based on the concept of Hermite polynomials, to calculate such moments:

Mn(k, V ) = knMn−1(k, V ) +
n−1∑

j=1

vjnM1...j−1,j+1...n−1(k, V ),

where the last term is an (n − 2)th order moment, with both the jth and nth components left out;

kj is the jth element of the vector k and vjn is the (j, n)th entry of the matrix V .

The empirical Bayes predictions take the form:

ĝij = 1/(γjyij), (54)

ŷi =
P ni

(µi − Vizi, Vi)

Mni
(µi − Vizi, Vi)

, (55)

where P ni
(µi − Vizi, Vi) is an ni-dimensional vector with components defined by:

Pnj(k, Vi) = E(Y1 . . .Yi,j−1Y
2
ijYi,j+1 . . .Yn; k, V ). (56)

Also here, the following recursive relationship is useful to calculate the components of (56)29:

Pnj(k, V ) = kjMn(k, V ) +
∑

k 6=j

vjkE(Y1 . . .Yi,j−1Y
2
ijYi,j+1 . . .Yi,k−1Yi,k+1 . . . Yn)

+vjjE(Y1 . . . Yi,j−1Yi,j+1 . . .Yn).

Finally, zi is a vector with components zij = 1/yij.

There is an obvious consequence resulting from these developments regarding the meaning of model

parameters. In specifying the original hierarchical model (43)–(44), the parameters β, Σi, and D in
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general, but D in particular, are part of a hierarchical specification. Since (45)–(46) taken together

are equivalent to the original pair of equations, one might argue that the hierarchical interpretation

still holds. The difference now is that all three sets of parameters occur in each of the two models,

whereas in the original specification (43)–(44) there is a separation between β and Σi on the one

hand and D on the other hand. However, it has been argued10,30,31 that there is a fundamental

difference in parameter interpretation, even to the point of bearing on the inferences made, when

one solely considers the marginal model (45). This is clear when considering the model composed

of (45) and, for example, either (51) or (57). Indeed, now all three parameters β, Σi, and D

feature in the marginal model only. The hierarchical parameters, γj in our particular instance, are

completely separated from the marginal ones. This further implies that the so-called hierarchical

parameter is estimable only because it also occurs in marginal model (45) for which, by definition,

there is information in the data. Put differently, in the conventional hierarchical marginal model,

all parameters are identifiable from marginal model (45), which is the only route by which the data

convey information about these parameters. The model merely appears interpretable at a hierarchical,

or enriched, level since (46) contains these, and only these parameters.

Note that the choice δ = γjyij is pragmatic, in the sense that δ should be non-negative. This is

acceptable for a data set where the outcomes are sufficiently bounded away from zero, such as body

length. However, it may be deemed less elegant, in which case it may make sense to square or

exponentiate yij, motivating the following, alternative formulation.

If the Bayesian interpretation of the original model is maintained then bi ∼ N (0, D) is a conven-

tional prior distribution, and arbitrariness pertains to the posterior distribution. While conventionally

uncommon to specify the posterior first and then work back to the prior, it does help to illustrate the

point that there is an observable and an unobservable part of the joint distribution. Also, it opens

avenues for sensitivity analysis, as we will discuss further in Section 9.

7.1.3 A Second Normal-exponential Version of the Linear Mixed Model

We consider now an alternative choice for (50): δ = eγjyij . Straightforward algebra, thereby making

use of the identity:

ni∏

j=1

e−qije
γj yj

=
∞∑

m1=0

· · ·
∞∑

mni
=0

(−qi1)
m1 · · · (−qini

)mni

m1! · · ·mni
!

em1γ1yi1+···+mni
γni

yini ,
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leads to the following model equations, that are in the same order and with the same notation as in

the first normal-exponential case:

f(qi|yi) =

ni∏

j=1

eγjyij e−qijeγjyij
, (57)

f(qi) =
∑

m




ni∏

j=1

(−qij)
mj

mj!



 eµ
′
iλm+ 1

2
λ

′
mViλm , (58)

f(yi|qi) =

∏ni

j=1 eγjyij e−qije
γj yij

e
−µ′

iλm− 1
2

h

(yi−µi)
′V −1

i (yi−µi)+λ
′
mViλm)

i

(2π)ni/2|Vi|1/2
∑
m

(∏ni

j=1
(−qij )mj

mj !

) , (59)

q̂ij = e−γj yij , (60)

ŷi =

∑
m

[∏ni

j=1
(−e−γj yij )mj

mj !

]
eµ

′
iλm+ 1

2
λ

′
mViλm(µi + Viλm)

∑
m

[∏ni

j=1
(−e−γj yij )mj

mj !

]
eµ

′
iλm+ 1

2
λ

′
mViλm

, (61)

where m ranges over all non-negative integer vectors m = (m1, . . . , mni
), and λm has components

λmj = (mj + 1)γj.

The specific but insightful case of exchangeable data with compound-symmetry covariance structure

can be found in Appendix A.

7.1.4 Analysis of the Toenail Data

For the unaffected nail length, we specify a linear mixed-effects model (43)–(44):

Yij|(bi0, bi1) ∼ N (β0 + bi0 + (β1 + bi1)tj + β2Ti + β3Titj , σ
2), (62)




bi0

bi1


 ∼ N







0

0


 ,




d00 d01

d10 d11





 , (63)

where Ti = 0 if patient i received standard treatment and 1 for experimental therapy (i = 1, . . . , 298).

Further, tj is the time at which the jth measurement is taken (j = 1, . . . , 7). Parameter estimates

and standard errors, obtained through maximum likelihood10, are presented in Table 7.

We are now able to partially replace the model specified by (62)–(63) with the exponential-defined

models. We choose, for illustration, the second exponential model of Section 7.1.3. This implies

that the marginal model resulting from (62)–(63) is retained:

Y i ∼ N [Xi(β0, β1, β2, β3)
′, σ2Ini

+ Z ′
iDZi], (64)
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and coupled with (57). Here, Xi and Zi are the obvious ni×4 and ni×2 design matrices, respectively.

Then, we can calculate empirical Bayes predictions under both the normal and the second exponential

model. These produce two different subject-specific profiles, in addition to the observed-data and

marginal mean profiles. Note that, for the posterior density (57), we have the freedom of specifying

the parameters γj, because there is no information contained in the data. Indeed, they can be

identified by additional assumptions only; they play the role of sensitivity parameters. We set them

equal to γj = 0.05. Figure 2 presents these four profiles for four selected subjects, two from each

treatment arm, respectively. This is a way to assess tracebility of the unverifiable assumptions.

Other instances will be given using the other datasets as well. It is clear that the exponential choice

produces predictions that lie much closer to the marginal mean profile and further away from the

observed profile, than is the case with the normal random effects.

In theory, one could estimate the parameters γj, but the point here is that one can freely vary

the parameters specific to the posterior distribution of the random effects, without affecting the

marginal fit, i.e., without affecting what is verifiable directly from the data. One might argue that

the gamma-based posterior is uncommon and few practitioners would consider it as their first option.

This does not take away the risk of proceeding by selecting one particular, convenient model, that

then happens to produce one particular description of the unobservables. The motivation for this is

usually no other than that it is convenient to use, implemented in standard software, and therefore

in use by a large research community. A better way forward is then to surround any given analysis

by a sensitivity analysis. This point is taken up in the Concluding Remarks.

7.1.5 Analysis of the Developmental Toxicity Study

We consider the following hierarchically specified, exchangeable model for the DEHP data, introduced

in Section 2.2:

Yij|bi ∼ N (β0 + bi + β1xi, σ
2), (65)

coupled with (105). Here xi is rescaled dose, in the sense that the DEHP consumption doses of 0,

44, 91, 191, and 292 mg/kg/day are replaced by unit-interval standardized values 0.0000, 0.1507,

0.3116, 0.6541, and 1.0000, respectively. Parameter estimates and standard errors are presented in

Table 8.

Following the developments in Section A, model (65), combined with (105), can be replaced by, for
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example, the models with exponential posterior distributions, described in Sections 7.1.2 and 7.1.3,

respectively. This implies that the marginal model is retained, with

Yij ∼ N (β0 + β1xi, σ
2 + d), (66)

but with alternative posterior distributions, and hence EB estimates for the random effects and

predictions, as presented by (118) and (119), respectively. The results are graphically depicted in

Figure 3. For 11 selected clusters, spread over the various dose groups, the figure shows (1): observed

average weight per cluster (2): the estimated marginal mean as given by (66); (3), (4), and (5):

predictions following the normal, first, and second exponential models, respectively. We observe that,

in line with the analysis of the toenail data, the exponential predictions lie closer to the marginal

averages than is the case with the normal model.

7.2 Case IVB: Frailty Models for Repeated Survival Outcomes

Whereas for linear models and, more broadly, for generalized linear models, hierarchies are often

accommodated using normal random effects, repeated survival data are frequently modeled using

so-called frailty models20, which are random effects models with, typically, random effects drawn

from distributions other than the normal. A common choice is the gamma, combined with a Weibull

model for the outcomes.

While such models are now well established, there are non-trivial implications for their use. For ex-

ample, Molenberghs and Verbeke32 showed that the marginal distribution, generated from a Weibull-

gamma frailty model, is of log-logistic type and only has a finite number of finite moments. There

are examples where not even the second and first moments would be finite. However, this is an issue

that takes us beyond the arbitrariness described above for the linear mixed model case, an analogy

of which for the Weibull-gamma case will be described next.

The term “frailty”, and its use in survival data, has its roots in gerontology. In the latter field, it is

used to indicate the increased mortality and morbidity risks of the more frail patients; in line with

natural history, it is expected to increase with age. In statistics, it is taken to be constant within

a patient in general statistical modeling and rather describe heterogeneity between patients. The

introduction of random effects in survival data modelling dates back to Beard33, who, in modeling

mortality, introduced the random effect in a univariate setting, and called it the “longevity factor.”

Vaupel, Manton, and Stallard34 on the other hand, in attempting to allow individual differences in

26



mortality hazard rates, introduced the random effect and termed it “frailty.” In illustrating our general

result on the arbitrariness of the posterior in frailty models, we focus on the parametric proportional

hazards Weibull-Gamma frailty model:

hij(t|u) = h0(t)ui exp(Xt
ijβ), (67)

where hij(t|u) is the hazard of the jth individual from the ith cluster, h0(t) = λρtρ−1, λ > 0, ρ > 0,

X t
ij is the covariates’ vector, β is the fixed effects vector, and ui is the frailty for cluster i. The

frailty distribution is gamma, which, in this context, is normally taken such that its mean equals one

and hence the one-parameter gamma distribution is used:

f(u) =
αα

Γ(α)
uα−1e−αu. (68)

We now spell-out, for (67), all components in (1) and (2). The prior distribution, f(u), is, of course,

(68). For the hierarchical distribution, using the fact that fij(t) = hij(t)Sij(t), where

Sij(t) = exp

(
−
∫ t

0
λρsρ−1ui exp(X t

ijβ)ds

)
,

it follows that the event times, given the frailty, are Weibull distributed with parameters λui exp(Xt
ijβ)

and ρ. It follows that the hierarchical distribution is

f(t|u) = λρtρ−1u exp
[
X t

ijβ) exp(−λutρ exp(X t
ijβ)

]
. (69)

The marginal distribution, f(t), given as
∫
u f(t|u)f(u)du, is easily shown to be

λ exp(X t
ijβ)ρtρ−1αα+1

[α + λ exp(Xt
ijβ)tρ]α+1

. (70)

The posterior distribution, f(u|t), follows as the product of (69) and (68), divided by (70). Evaluating

this gives the posterior as

Gamma

(
α + 1,

1

ζρ + α

)
, (71)

where ζρ ≡ λ exp(Xt
ijβ)tρ. This implies that

E(u|t) =
α + 1

ζρ + α
= ûi. (72)

Prior to arbitrarily replacing (71), we derive some further quantities, which are of particular relevance

in survival data settings. The population survival function, Sf (t), corresponding to (67), is evaluated

as
∫∞
0 Sij(t)fu(u)du, giving [(1 + ζρα

−1)α]−1. This implies that the population hazard function is

hf(t) =
ζρ−1ρ

1 + ζρα−1
. (73)
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We now return to our arbitrary replacement of the posterior. Specifically, we replace the Gamma

posterior (71) with a normal posterior with mean µ and variance σ2, for which we choose σ2 = 1

and µ = µ(t) = ϕXt
ijt, X ij being as defined earlier. We note here that the normal posterior implies

that

E(x|t) = ϕX t
ijt = x̂i. (74)

The new joint model follows as:

ζρ−1ραα+1e−
1

2σ2 (x−µ)2

[α + ζρ]α+1
√

2π
. (75)

The new prior distribution follows as

∫ ∞

0

ζρ−1ραα+1e−
1

2σ2 (x−µ)2

[α + ζρ]α+1
√

2π
dt. (76)

Hence, the new hierarchical model is

ζρ−1ραα+1e
− 1

2σ2 (x−µ)2

[α+ζρ]α+1
√

2π

∫∞
0

ζρ−1ραα+1e
− 1

2σ2 (x−µ)2

[α+ζρ]α+1
√

2π
dt

. (77)

We note that (77) and (76) complete a new formulation, which, as with the initial formulation

consisting of (69) and (68), defines the same marginal distribution for the event times, given by

(70). Thus our new, admittedly contrived, model is indistinguishable from the original model in

terms of fit to the data. Like in the other enrichment settings, though, the prediction of hij (the

conditional hazard), through the mean of the hierarchical model, is different from what it was before.

This difference will have an impact on inferences, without ability for the data to testify whether this

or the original formulation is better or worse.

7.3 Data Analysis

7.3.1 Data on Recurrent Asthma Attacks in Children

We now illustrate our results using the recurrent asthmatic attacks in children’ data (Section 2.5).

Though various time-representations exist to analyze data of this type, we hereby assume that interest

is on the event rate in calendar time, leading to the model given below. Furthermore, for purposes of

illustration, we restrict ourselves to risk times which culminate in an event (asthmatic attack), i.e.,

we only consider that subset of data not consisting of censored observations (we only consider data

points for which the corresponding “end-of-observation” period corresponds to an attack). Consider
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the following model

hij(t|u) =






h0(t)u exp(X t
iβ) if yij1 ≤ t ≤ yij2;

0 otherwise,

(78)

where u ∼ Gamma(α, 1/α) and hij denotes the hazard for the ith child, time j. We note that in the

model specification above, the subscript j has been dropped in denoting the drug covariate, X , since

a given child is under either study drug or placebo at all time points. Further, β is the parameter

corresponding to the drug effect, (yij1, yij2), j = 1, . . . , ni, denotes the pairs corresponding to the

beginning and end of each risk period for child j, and t is the time since entry into the trial. We

optimize the marginal likelihood using the R 2.11.1 software. Following Duchateau and Janssen20 ,

we convert time from days to months, to avoid convergence issues arising when λ is too small.

Parameter estimates obtained are λ̂=0.2306 (s.e. 0.0234), ρ̂=1.2576 (s.e. 0.0309), β̂=-0.0159 (s.e.

0.0749) and θ̂= 0.1606 (s.e. 0.0290). We now partially replace the model defined above, by retaining

its resultant marginal model, and coupling it with a normal posterior. We set ϕ = 0.5, which is

required because the data contain no information about this parameter. We then consider predictions

for the conditional hazard under the two model formulations. In Figure 4, we present, for the study

drug and placebo, the population and conditional hazard functions, for the models composed of

marginal model (70) with each of the two different posterior specifications. We note that the

two formulations give totally different predictions for the conditional hazard. The Gamma choice

produces a prediction which lies much closer to the population hazard than the normal choice, which,

clearly, produces a prediction which is very different. These disparate inferences occur in disturbing

conjunction with an unaltered marginal model, but is, in line with all other illustrations in this paper

and the general result spelled out in Section 3.

7.3.2 Time-to-insemination Data

This data set was introduced in Section 2.6. For our purposes, we restrict attention to event times

and only consider that subset of data not consisting of censored observations. For these data, we also

consider (78), with now hij the hazard for the jth cow in the ith herd, X t
ij the parity covariate, and

β the corresponding parameter. We convert time to months. Optimization of the marginal likelihood

is done in R 2.11.1 software. Due to computational challenges, we use, for our model fitting, at most

20 cows in a herd. Parameter estimates obtained are λ̂=0.0569 (s.e. 0.0035), ρ̂=2.538 (s.e. 0.082),

β̂=-0.2210 (s.e. 0.0331) and θ̂= 0.3248 (s.e. 0.0394). We now partially replace the model defined
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by (78), by retaining its resultant marginal model, and coupling it with a normal density. Again, we

set ϕ = 0.5 and consider predictions for the conditional hazard under the two model formulations. In

Figure 5, we present, for each parity category, the population and conditional hazard functions, for the

models composed of marginal model (70) with each of the two different posterior specifications. Also

here, we note that the two formulations give totally different predictions for the conditional hazard.

The prediction based on the gamma choice is closer to the population hazard than is the case for

the normal choice; this is similar to what was observed for the linear mixed model (Section 7.1.4).

8 Case V: Incomplete Data

Let the random variable Yij denote the response of interest, for the ith study subject, designed to

be measured at occasions tij , i = 1, . . . , N , j = 1, . . . , ni. Independence across subjects is assumed.

The outcomes can conveniently be grouped into a vector Y i = (Yi1, . . . , Yini
)′. In addition, define

a vector of missingness indicators Ri = (Ri1, . . . , Rini
)′ with Rij = 1 if Yij is observed and 0

otherwise.

In principle, one would like to consider the density of the full data f(yi, ri|θ,ψ), where the parameter

vectors θ and ψ describe the measurement and missingness processes, respectively. Covariates are

assumed to be measured and grouped in a vector xi but, throughout, are suppressed from notation.

We now sketch the modeling frameworks (Section 8), present the definition of MAR in each one

of them (Section 8.1), and then establish that every MNAR model can be doubled up with a MAR

counterpart that preserves the fit to the observed data (Section 8.2).

The full density function can be factored in different ways, each leading to a different framework,

already briefly mentioned in the introduction.

The selection model (SeM) framework is based on the following factorization23,35:

f(yi, ri|θ,ψ) = f(yi|θ)f(ri|yi,ψ). (79)

The first factor is the marginal density of the measurement process and the second one is the density

of the missingness process, conditional on the outcomes. As an alternative, one can consider so-called

pattern-mixture models (PMM)36,37 using the reversed factorization

f(yi, ri|θ,ψ) = f(yi|ri, θ)f(ri|ψ). (80)
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The name is intimately linked to Heckman’s38 selection model, which has been popular in economet-

rics for a third of a century. As we will underscore in what follows, one has to be very careful with

the non-verifiable assumptions made by such models. The shared-parameter model39−−44 assumes

a vector of random effects bi, shared between both processes, conditional upon which the measure-

ment and missingness processes are independent, and often taking the form of random effects with

a specific parametric distribution. This shared-parameter model (SPM) is formulated by way of the

following factorization

f(yi, ri|bi, θ,ψ) = f(yi|bi, θ)f(ri|bi,ψ), (81)

and hence

f(yi, ri|θ,ψ) =

∫
f(yi|bi, θ)f(ri|bi,ψ)f(bi) dbi. (82)

For our purposes, we will need a slightly more general SPM formulation, as presented by Creemers et

al45. Indeed, while most formulations assume that a single, common set bi drives the entire process,

one can expand bi to a set of latent structures.

We will now move beyond the above standard concepts by enlarging the family of shared-parameter

models, then zoom in on missingness at random and study the impact of our general result for this

particular case.

Definition 1 (A General Shared-parameter Model Family.) A general shared-parameter model

is defined as one of the form

f(yo
i |gi,hi, ji, `i)f(ym

i |yo
i , gi,hi, ki,mi)f(ri|gi, ji, ki ni), (83)

where gi, hi, ji, ki, `i, mi, and ni are independent random-effects vectors, vectors of latent

variables, etc.

Here, yo
i (ym

i ) refers to the observed (missing) components for subject i. While fixed effects are

allowed to accompany each of the random effects, they are suppressed from notation.

Several remarks are in place. First, this is the most general random-effects model that can be

considered in the sense that gi is common to all three factors in (83), hi, ji, and ki are shared

between pairs of factors, and `i, mi, and ni are restricted to a single factor. Depending on the

application, one may choose to either retain all random effects or to omit some. For example, ji is

present in the first factor but not in the second, with the reverse holding for ki. Retaining these is
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useful when it is deemed plausible that, at the time of dropout, the process governing the outcome

is sufficiently altered so as to modulate the effects of gi and hi, which are common to both. Note

also that mi is never identifiable from data but is introduced as the basis for sensitivity analysis. It

is important to understand the consequences of such simplifications, preferably also in terms of the

missing-data mechanism operating. This is why it is useful to establish conditions under which MAR

operates on the one hand, and missingness does not depend on future, unobserved measurements

in a longitudinal context on the other hand46. Second, in full generality, model (83) may come

across as somewhat contrived. The objective of formulating Definition 1 is not to postulate (83)

as a model for use in every possible application of SPM, but rather as the most general SPM

from which substantively appropriate models follow as sub-classes. Related to this, it may seem

that (83) assumes two completely different distributions for the outcome vector, i.e., divorcing the

observed from the missing components. This is not entirely the case because gi and hi still tie

both components together. The impact of ji, ki, `i, and mi is to modify an individual’s latent

process in terms of missingness. In other words, the most general model assumes that observed and

missing components are governed in part by common processes and partly by separate processes.

Third, in principle, we could expand (83) with the densities of the random effects. This is generally

not necessary for our purposes, though. Fourth, the assumption of independent random-effects

vectors is not restrictive, because association is captured through the sets common to at least two

factors. Fifth, a conventional SPM formulation follows by removing all random effects but gi. For

convenience, write

bi = (gi,hi, ji, ki, `i,mi,ni). (84)

8.1 Defining Missing at Random

The taxonomy of missing-data mechanisms, introduced by Rubin23 and informally described in the

introduction, is customarily formalized using the second factor on the right hand side of (79): A

mechanism is MAR if

f(ri|yi,ψ) = f(ri|yo
i ,ψ), (85)

i.e., the missing-data mechanism depends on the observed outcomes but, given these, not further

on the unobserved ones. In the MNAR case, missingness depends on the unobserved outcomes ym
i ,

regardless of the observed outcomes and the covariates.

Molenberghs et al47,48, among others, formulated MAR in the PMM sett ing:
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Theorem 2 (Missingness at Random in the Pattern-mixture Framework.) In the PMM frame-

work, the missing-data mechanism is MAR if and only if

f(ym
i |yo

i , ri, θ) = f(ym
i |yo

i , θ). (86)

This means that the predictive distribution in every pattern is equal, and hence also equal to the

one averaged over all patterns. By predictive distribution, we mean the conditional distribution of

the unobserved components given the observed ones. Put differently, prediction of the unobserved

outcomes can be done merely using the observed ones with no further information coming from the

missing-data mechanism. Note that, owing to this result, MAR can be formulated in terms of R

given Y , but also in terms of Y given R.

Creemers et al45 characterized MAR in the SPM framework:

Theorem 3 (Characterization of MAR in the General Shared-parameter Family.) A member

of the general SPM family (83) is MAR if and only if

∫
f(yo

i |gi,hi, ji)f(ym
i |yo

i , gi,hi, ki)f(ri|gi, ji, ki)f(bi) dbi∫
f(yo

i |gi, ji)f(ri|gi, ji)f(bi) dbi

=

∫
f(yo

i |gi,hi)f(ym
i |yo

i , gi,hi)f(bi) dbi

f(yo
i )

. (87)

Note that the random effects `i, mi, and ni, pertaining to a single factor only, are suppressed

from notation but are allowed to be present. Clearly, this result is not as intuitive as the SeM and

PMM versions and, as such, the above result has little immediate data-analytic value. Therefore,

fortunately, Creemers et al.46 also showed that the following family satisfies the MAR property:

Definition 2 (A Sub-class of SPM Models.) Define a sub-class of shared-parameter model (83):

f(yo
i |ji, `i)f(ym

i |yo
i ,mi)f(ri|ji,ni), (88)

where ji, `i, mi, and ni are independent random-effects vectors.

At the same time, they established that there are members of the SPM family satisfying Theorem 3

but that are not of the (88) type. It is thus a proper sub-set. From their example of a model

satisfying Theorem 3 but not belonging to the sub-class, one can infer that these typically would be

rather contrived. Definition (88) has the advantage of having a clear, intuitive interpretation.
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8.2 Every MNAR Model Has an MAR Counterpart

In this section, based on the argument of Molenberghs et al48, we restate that for every MNAR

model fitted to a set of data, there is a unique MAR counterpart providing exactly the same fit to

the data. Whereas Molenberghs et al48 confined attention to the missing-data setting, in the next

section we will provide a much more general result, pertaining to all data-enriched structures.

The concept of model fit should be understood as being measured using such conventional methods

as deviance measures, as applied to the observed data. The following steps are involved: (1) fitting

an MNAR model to the data; (2) reformulating the fitted model in PMM form; (3) replacing the

density or distribution of the unobserved measurements given the observed ones and given a particular

response pattern by its MAR counterpart; (4) establishing that such an MAR counterpart uniquely

exists.

In the first step, we fit an MNAR model to the observed set of data. The observed data likelihood

equals

L =
∏

i

∫
f(yi

o, yi
m, ri|θ,ψ)dyi

m. (89)

Upon denoting the obtained parameter estimates by θ̂ and ψ̂ respectively, the fit to the hypothetical

full data is

f(yi
o, yi

m, ri|θ̂, ψ̂) = f(yi
o, yi

m|θ̂)f(ri|yi
o, yi

m, ψ̂). (90)

To undertake the second step, full density (90) can be re-expressed in PMM form as:

f(yi
o, yi

m|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂) = f(yi
o|ri, θ̂, ψ̂)f(ri|θ̂, ψ̂)f(yi

m|yi
o, ri, θ̂, ψ̂). (91)

Note that the final term on the right hand side of (91), f(yi
m|yi

o, ri, θ̂, ψ̂), is not identified from the

observed data. In this case, it is determined solely from modeling assumptions, the latter of which

may or may not be inspired by substantive knowledge. Within the PMM framework, identifying

restrictions have to be considered37,47,49.

The third step requires replacing this factor by the appropriate MAR counterpart. Now, using

Theorem 2, it is clear that f(yi
m|yi

o, ri, θ̂, ψ̂) needs to be replaced with

f∗(yi
m|yi

o, ri) = f∗(yi
m|yi

o) = f(yi
m|yi

o, θ̂, ψ̂), (92)

where the f∗(·) notation is used for shorthand purposes. Note that the density in (92) follows from

the SeM-type marginal density of the complete data vector. Sometimes, therefore, it may be more
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convenient to replace the notation yi
o and yi

m by one that explicitly indicates which components

are observed and missing in pattern ri under consideration:

f∗(yi
m|yi

o, ri) = f∗(yi
m|yi

o) = f [(yij)rj=0|(yij)rj=1, θ̂, ψ̂]. (93)

Thus, (93) provides a unique way of extending the model fit to the observed data, within the MAR

family. As stated before, the above construction does not lead to a member of a conventional para-

metric family. While this obviously implies limitations on its use, its use is similar to the construction

of some semi- and non-parametric estimators. Also, it helps to understand that an overall, definitive

conclusion about the nature of the missing-data mechanism, solely based on the observed outcomes,

is not possible, even though one can make progress if attention is confined to a given parametric

family, in which one puts sufficiently strong prior belief50. Molenberghs et al48 showed formally that

the fit remains the same, leading to:

Theorem 4 (MAR Counterpart to MNAR Models.) Every fit to the observed data, obtained

from fitting an MNAR model to a set of incomplete data, is exactly reproducible from an MAR

decomposition.

The characterization of Theorem 3 allows us to construct an MAR counterpart to an arbitrary SPM

of the form (83). It is necessary to (a) retain the fit of the model to the observed data, while

(b) ensuring that (87) holds. This is easily done by a-posteriori integrating over the shared random

effects in the densities describing the unobserved measurements, given the observed ones. Practically,

integration takes place over the densities of gi, hi, and ki, where fitted parameters are plugged into

the densities.

Theorem 5 (An MAR Counterpart to a General SPM.) The MAR counterpart, to an arbitrary

general SPM of the type (83) is found by replacing f(ym
i |yo

i , gi,hi, ki,mi) with

f∗(ym
i |yo

i ,mi) =

∫

gi

∫

hi

∫

ki

f(ym
i |yo

i , gi,hi, ki,mi)f(gi,hi, ki)dgidhidki. (94)

First, it is clear that this marginalization describes only the model-based prediction of the unobserved

outcomes, given the observed ones. Hence, the choice for f∗(·) does not alter the fit. Second, observe

that using f∗(·) in (87), instead of f(ym
i |yo

i , gi,hi, ki,mi), of Theorem 3, reduces the equation to

an identity, and hence the MAR condition is also satisfied. The importance of this result is that (94)
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provides an MAR scenario for the missing-data mechanism, consistent with the previously achieved

model fit.

Some comments are in place. Note that our general result follows quite easily in this case by observing

that any missing-data model can be recast as a full PMM, as in (91). This framework readily allows

the construction of an MAR substitute (92), which renders Theorem 4 almost trivial. Indeed, a

PMM factors the joint distribution of observed measurements, missing measurements, and missing-

data indicators such that the predictive distribution of what is unobserved, given what is observed,

is an explicit factor in the model.

Note that the same feature is employed in Theorem 5, relative to the SPM. Indeed, also here the

distribution of what is unobserved, given what is observed, is used. Two remarks are worth making.

First, the right hand side of (94) does not condition on ri, in spite of it being observed. Now, this

absence is a key characteristic of SPM and therefore entirely logical.

Second, uniqueness results in the missing-data case come from the requirement that the counterpart

is of MAR type. This can be relaxed by observing that, in (91), the factor f(yi
m|yi

o, ri, θ̂, ψ̂) may

be replaced by any valid density. This well-known result is: (1) placed in the broader context of

enriched data; (2) also phrased in a shared-parameter context; (3) is illustrated in an insightful way.

8.3 Analysis of the Toenail Data

Consider a general model of the form (83), with random effects confined to gi, i.e., common to all

three components. For the measurement model, assume a linear mixed model10, with general form:

Y i|gi ∼ N (Xiβ + Zigi, Σi), (95)

gi ∼ N (0, D). (96)

Based on (95) and (96), the so-called marginal model can be derived

Y i ∼ N (Xiβ, ZiDZ ′
i + Σi). (97)

Note that Section 7 focuses on random effects as such, whereas here the random effects play the role

of shared parameters in the generalized shared-parameter model. To compute the model’s prediction

for the unobserved data, given the observed measurements, the corresponding density needs to be
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derived. To this end, construct the conditional density, with obvious notation:

Y m
i |yo

i , gi ∼ N
[
(Xm

i − Σmo
i {Σoo

i }−1 Xo
i )β + Σmo

i {Σoo
i }−1

yo
i + (Zm

i − Σmo
i {Σoo

i }−1 Zo
i )gi,

Σmm
i − Σmo

i {Σoo
i }−1 Σom

i

]
. (98)

Now, (98) corresponds to the model as formulated, and will typically be of the MNAR type. To

derive the MAR counterpart, we need to integrate over the random effect. With similar logic that

leads to (97), now applied to (98), we obtain:

Y m
i |yo

i ∼ N
[
(Xm

i − Σmo
i {Σoo

i }−1 Xo
i )β + Σmo

i {Σoo
i }−1

yo
i ,

(Zm
i − Σmo

i {Σoo
i }−1 Zo

i )D(Zm
i − Σmo

i {Σoo
i }−1 Zo

i )′

+Σmm
i − Σmo

i {Σoo
i }−1 Σom

i

]
. (99)

Hence, (99) is the MAR counterpart to (98). For the unaffected nail length, we choose for (95)–(96):

E(Yij|gi, Ti, tj,β) = β0 + gi + β1Ti + β2tj + β3Titj , (100)

gi ∼ N (0, d), and Σi = σ2I7, where I7 is a 7×7 identity matrix. Further, Ti = 0 if patient i received

standard treatment and 1 for experimental therapy (i = 1, . . . , 298). Finally, tj is the time at which

the jth measurement is taken (j = 1, . . . , 7).

Given these choices, (98) and (99) simplify to

Y m
i |yo

i , gi ∼ N (Xiβ + Zm
i gi, σ

2Ii), (101)

Y m
i |yo

i ∼ N (Xiβ, dJi + σ2Ii), (102)

with Ii an identity matrix and Ji a matrix of ones, with dimensions equal to the number of missing

measurements for subject i. As a result of the conditional independence assumption, the simplification

is dramatic.

Next, we formulate a model for the missingness mechanism in (83). The sequence ri can take one

of two forms in our case. Either, it is a length-7 vector of ones, for a completely observed subject,

or it is a sequence of k ones followed by a sole zero 1 ≤ k ≤ 6, for someone dropping out. Note

that k is 1 at least, since for everyone the initial measurement has been observed. It is convenient

to assume a logistic regression of the form:

logit [P (Rij = 1|Ri,j−1 = 0, gi, Ti, tj, γ)] = γ0 + γ01gi + γ1Ti + γ2tj + γ3Titj , (103)
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(j > 1), where γ01 is a scale factor for the shared random effect in the missingness model; forcing

the variance in the measurement and dropout indicator sequences to be equal would make no sense.

As a result, γ01gi ∼ N (0, γ2
01d).

Parameter estimates and standard errors are displayed in Table 9. Note that the scale factor γ01 has a

negative estimate, even though it is not significant. While we should not overly stress its importance,

there is some indication that a higher subject-specific profile of unaffected nail length corresponds

to a lower dropout probability, which is not surprising. The magnitude of the scale factor allows

us to ‘translate’ the subject-specific effect from the continuous outcome scale, expressed in mm, to

the unit-less logit scale on which the probability of missingness is described. The random-intercept

variance is highly significant among unaffected nail length outcomes; the same is not true for the

dropout model, with p = 0.2487, using a 50 : 50 mixture of a χ2
0 and χ2

1 distribution10 .

Figure 6 displays the incomplete profiles, extended beyond the time of dropout, using prediction based

on: (1) the original model (dashed lines); (2) the MAR counterpart (solid lines). Within each of the

treatment arms, three profiles are highlighted. The MAR counterpart reduces all predictions to the

same profile, whereas the MNAR model predicts different evolutions for different subjects, implied by

the presence of the random effect. The simple MAR-based prediction structure follows directly from

the conditional independence assumption, present in (101). When deemed less plausible, the fully

general structure (98) can be implemented. But the most important realization is that no distinction

between both whatsoever is possible, based on the data.

9 Concluding Remarks

In this paper, we have used the unified framework of enriched data, encompassing coarse and aug-

mented data, to bring out the common feature of unobservables, shared by all. The information

required to identify such models is divided in that supplied by the data and that supplied exter-

nally, through assumptions and/or scientific knowledge. This implies that entire classes of models

exist, coinciding in their description of the observed data, but different in their representation of the

unobservables given the observed data.

For the data analyst, this means that every model in an enriched-data setting can be factored into

a product of two components: the first one, termed the marginal model, fully identifiable from the

observed data; the second one, the predictive distribution, entirely arbitrary. Failure to appreciate
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this could result in grave errors. As a consequence, the conventional modeling route, consisting of

formulating a model and judging its quality based on goodness-of-fit alone, is inadequate. This is

because the inferences drawn and the assumptions made about the unobservables cannot be divorced.

As we see it, there are therefore two alternative modes of analysis, that nevertheless fully exploit the

information contained in the empirical data. In the first one, non-verifiable assumptions are based

on substantive knowledge and/or statistical design. In the second one, sensitivity of the inferences

to the non-verifiable assumptions are assessed formally.

As we have illustrated, this common issue is pertinent in a range of seemingly disparate settings,

namely, incomplete data, random-effects and frailty models, latent classes, latent variables, factor

analysis, and mixture models. Of course, various of these are interconnected and can be placed under

the general umbrella of structural equations modeling51. Bringing it out has some value, we believe,

as there are instances in the literature where it is missed52.

We have not been exhaustive in our coverage of enrichment. Other areas include censored survival

data, which is very similar to the incomplete-data case, grouped data, and situations where more

than one type of enrichment occur simultaneously, such as, for example, incomplete data in random-

effects models. Another major omission is that of methodology for causal inference. The issues

raised here have been widely discussed in the appropriate literature. For example, Pearl53 states:

“Alternative causal models usually exist that make contradictory claims and, yet, possess identical

statistical implications. Statistical test (sic) can be used for rejecting certain kernels, in the rare

cases that such cases have testable implications, but the lion’s share of supporting causal claims falls

on the shoulders of untested causal assumptions.” By kernel, Pearl refers broadly to a minimal set of

assumptions required to identify the underlying causal model. Within the causal framework, we can

include inferences drawn from randomized clinical trials55. In the incomplete-data setting sensitivity

analysis is particularly well developed, for both the parametric and non-parametric settings7,10,55,56,57.

For example, Creemers et al45 showed how the generalized shared-parameter model for incomplete

data can be used, not only to demonstrate that one cannot choose based on the data between MAR

and MNAR, but also how it can be used as a vehicle for sensitivity analysis. Much work on sensitivity

analysis can also be found in the causal literature56,47

Data sets and programs are available from the authors and through the journal’s web pages.
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Table 1: Toenail Data. Number of available repeated measurements per subject, for each treatment

arm separately.

Group A Group B

# Obs. N % N %

1 4 2.74% 1 0.68%

2 2 1.37% 1 0.68%

3 4 2.74% 3 2.03%

4 2 1.37% 4 2.70%

5 2 1.37% 8 5.41%

6 25 17.12% 14 9.46%

7 107 73.29% 117 79.05%

Total: 146 100% 148 100%

Table 2: Developmental Toxicity Study (DEHP). Summary data by dose group.

# dams with # live average

dose implants viable implants fetuses litter size weight

0 mg/kg/day 30 30 330 13.2 0.9483

44 mg/kg/day 26 26 288 11.1 0.9592

91 mg/kg/day 26 26 277 10.7 0.8977

191 mg/kg/day 24 17 137 8.1 0.8509

292 mg/kg/day 25 9 50 5.6 0.6906

Table 3: Accident insurance policies data of Thyroin (1960).

Count (No. of claims) 0 1 2 3 4 5 6 7

Frequency (No. of policies) 7840 1317 239 42 14 4 4 1
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Table 4: Asthma data: The first four data points for the first two patients.

Patient ID Drug Begin End Status

1 0 0 15 1

1 0 22 90 1

1 0 96 325 1

1 0 329 332 1

2 1 0 180 1

2 1 189 267 1

2 1 273 581 1

2 1 582 600 0

Table 5: National Youth Risk Behavior Survey Data. Latent class model parameters.

Latent Class

1 2 3 4 5

Latent class prevalence 0.6741 0.1383 0.0910 0.0546 0.0420

Probability “Yes”

Driving after taking alc. 0.0058 0.4208 0.1488 0.4537 0.1098

Smoked before age 13 0.0422 0.1083 0.7584 0.6387 0.1738

Smoked daily for 30 days 0.0202 0.2670 0.3144 0.6588 0.1247

First alc. drink before age 13 0.1433 0.2075 0.7875 0.6790 0.3928

≥5 alc. drinks/day, in past 30 days 0.0805 0.7421 0.4789 0.7875 0.1621

Took marijuana first before age 13 0.0074 0.0286 0.4596 0.5530 0.2173

Have ever used cocaine 0.0040 0.1919 0.0716 0.8800 0.0255

Tried glue sniffing, etc to get high 0.0550 0.1886 0.2153 0.5778 0.0420

Used methamphetamines 0.0035 0.0997 0.0245 0.7271 0.0102

Used ecstasy 0.0035 0.1093 0.0630 0.6429 0.0556

<13 years at first sexual intercourse 0.0138 0.0015 0.1753 0.2957 0.8073

Have had sex with at least 4 people 0.0639 0.2859 0.2409 0.5641 0.8348
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Table 6: National Track Records for Women: Factor analysis.

Distance Factor 1 Factor 2

100 metres 0.4406 0.8376

200 metres 0.4352 0.8908

400 metres 0.4116 0.8164

800 metres 0.7266 0.5673

1500 metres 0.8592 0.4822

3000 metres 0.9138 0.3859

Marathon 0.7654 0.3888

Table 7: Toenail Data. (Unaffected nail length outcome). Parameter estimates (standard errors)

for the model specified by (62) and (63).

Effect Parameter Estimate (Standard error)

Fixed effects:

Intercept β0 2.46 (0.24)

Time effect β1 0.59 (0.05)

Dose effect β2 0.28 (0.34)

Dose by time interaction β3 0.04 (0.06)

Variance components:

Random intercept variance d00 7.32 (0.70)

Random slope variance d11 0.22 (0.02)

Random effects covariance d01 -0.50 (0.10)

Residual variance σ2 3.15 (0.13)
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Table 8: Developmental Toxicity Study (DEHP). Parameter estimates (standard errors) for the

model specified by (65) and (105).

Effect Parameter Estimate (Standard error)

Fixed effects:

Intercept β0 0.9733 (0.0138)

Dose effect β1 -0.2563 (0.0327)

Variance components:

Random intercept variance d 0.0086 (0.0015)

Residual variance σ2 0.0195 (0.0009)

Table 9: Toenail Data. Continuous, longitudinal unaffected-nail-length outcome. Parameter esti-

mates (standard errors) for the model specified by (100) and (103).

Unaffected nail length Dropout

Effect Parameter Estimate (s.e.) Parameter Estimate (s.e.)

Mean structure parameters

Intercept β0 2.510 (0.247) γ0 -3.127 (0.282)

Treatment β1 0.255 (0.347) γ1 -0.538 (0.436)

Time β2 0.558 (0.023) γ2 0.035 (0.041)

Treatment-by-time β3 0.048 (0.031) γ3 0.040 (0.061)

Variance-covariance structure parameters

Residual variance σ2 6.937(0.248)

Scale factor γ01 -0.076 (0.057)

Rand. int. variance τ2 6.507 (0.630) γ2
01τ

2 0.038 (0.056)
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Figure 1: Toenail Data. Individual profiles of 30 randomly selected subjects in each of the treatment

groups in the toenail experiment.

Figure 2: Toenail data. For 4 selected subjects, two per treatment arm: (1): observed profile; (2)

marginal mean profile (which solely depends on treatment); (3) prediction from the normal model

(48); (4) prediction from the second exponential model (61).
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Figure 3: Developmental Toxicity Study (DEHP). For 12 selected clusters from the control group

(for which the size is shown in the x-axis): (1): observed average weight per cluster (2): the estimated

marginal mean as given by (66); (3) prediction from the normal model (109); (4) prediction from

the first exponential model (114); and (5): prediction from the second exponential model (119).
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Figure 4: Population and Conditional Hazard Functions.
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Figure 5: Population and Conditional Hazard Functions.

Figure 6: Toenail Data. Individual profiles of subjects with incomplete data, for each treatment

arm, extended using MNAR Model (100) (dashed line) and using the model’s MAR counterpart

(solid line). In each group, three subjects are highlighted.
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Supplementary Materials

A Exchangeable Data With Compound-symmetry Covariance

We now consider the special but enlightening case of exchangeable, compound-symmetry data, in

the sense that all members of a cluster have the same mean µi and the variance-covariance matrix

is of a compound symmetry structure Vi = σ2Ini
+ dJni

, where Ini
is an ni-dimensional identity

matrix and Jni
is an ni × ni matrix consisting of ones. We will simply refer to this setting as the

“exchangeable” one.

For each of the three model formulations in Section 7, we present the six model equations considered

there, for the special case of interest here.

A.1 The Standard Linear Mixed-effects Model

Let 1ni
be a length ni vector of ones and denote by yi the average of the components of the outcome

vector yi. Further, the following expressions are useful:

V −1
i =

1

σ2

(
Ini

− d

dni + σ2
Jni

)
, |Vi| = σ2ni + niσ

2(ni−1)d.

1



The exchangeable versions of (44)–(48) are:

Y i|bi ∼ N (1ni
µi + 1ni

bi, σ
2Ini

), (104)

bi ∼ N (0, d), (105)

Y i ∼ N (1ni
µi, Vi = σ2Ini

+ dJni
), (106)

bi|Y i ∼ N

[
nid

σ2 + nid
(yi − µi),

σ2

σ2 + nid
d

]
, (107)

b̂i =
nid

σ2 + nid
(yi − µi), (108)

Ŷ i =
nidyi + σ2µi

σ2 + nid
· 1ni

. (109)

A.2 A First Normal-exponential Version of the Linear Mixed Model

It now makes sense to assume, like in Section 7.1.2, that there is a single, exponentially distributed,

random effect. This alters the model from Section A.1 a bit, in addition to obvious simplification.

This means that (106) will be coupled with

f(gi|yi) = γyie
−giγyi . (110)

We obtain the following sequence of model equations:

f(gi) = γe
−giµiγ+ 1

2

g2
i γ2

ni
(σ2+nid)

[
niµi − giγ(σ2 + nid)

ni

]
, (111)

f(yi|gi) =
niyie

− 1
2

»

1
σ2 (yi−1ni

yi)
′(yi−1ni

yi)+
ni

σ2+nid
(yi−µi)

2

–

−giγ(yi−µi)

(2π)ni/2|Vi|1/2e
1
2

g2
i

γ2

ni
(σ2+nid)

[niµi − giγ(σ2 + nid)]

(112)

ĝi = 1/(γyi), (113)

ŷi =

{[
niµi − 1

yi
(σ2 + nid)

]2
+ ni(σ

2 + nid)

}
1ni

ni

[
niµi − 1

yi
(σ2 + nid)

] . (114)

A.3 A Second Normal-exponential Version of the Linear Mixed Model

Now, (105) will be coupled with

f(qi|yi) = eγyie−qie
γyi . (115)

2



This then produces the following sequence of model equations:

f(qi) =
∞∑

m=0

(−qi)
m

m!
e
µiγ(m+1)+ 1

2
γ2(m+1)2

ni
(σ2+nid)

, (116)

f(yi|qi) =
e
− 1

2

»

1
σ2 (yi−1ni

yi)′(yi−1ni
yi)+

ni
σ2+nid

(yi−µi)2
–

+γyi−qieγyi

(2π)ni/2|Vi|1/2
∑∞

m=0
(−qi)m

m! e
µiγ(m+1)+ 1

2
γ2(m+1)2

ni
(σ2+nid)

, (117)

q̂i = e−γyi , (118)

ŷi =

∑∞
m=0

(e−γyi)m

m! e
µiγ(m+1)+ 1

2
γ2(m+1)2

ni
(σ2+nid)

[
µi +

γ(m+1)
ni

(σ2 + nid)
]
1ni

∑∞
m=0

(e−γyi)m

m! e
µiγ(m+1)+ 1

2
γ2(m+1)2

ni
(σ2+nid)

. (119)
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