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Abstract Serial cognitive assessment is conducted to mon-
itor changes in the cognitive abilities of patients over time.
At present, mainly the regression-based change and the
ANCOVA approaches are used to establish normative data
for serial cognitive assessment. These methods are straight-
forward, but they have some severe drawbacks. For exam-
ple, they can only consider the data of two measurement
occasions. In this article, we propose three alternative nor-
mative methods that are not hampered by these problems—
that is, multivariate regression, the standard linear mixed
model (LMM), and the linear mixed model combined with
multiple imputation (LMM with MI) approaches. The
multivariate regression method is primarily useful when
a small number of repeated measurements are taken at
fixed time points. When the data are more unbalanced,
the standard LMM and the LMM with MI methods are
more appropriate because they allow for a more adequate
modeling of the covariance structure. The standard LMM
has the advantage that it is easier to conduct and that it
does not require a Monte Carlo component. The LMM
with MI, on the other hand, has the advantage that it can
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flexibly deal with missing responses and missing cova-
riate values at the same time. The different normative
methods are illustrated on the basis of the data of a large
longitudinal study in which a cognitive test (the Stroop
Color Word Test) was administered at four measurement
occasions (i.e., at baseline and 3, 6, and 12 years later).
The results are discussed and suggestions for future
research are provided.

Keywords Serial testing - Norms - Practice effects -
Longitudinal data - Linear mixed model - Multiple imputation -
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Cognition is an umbrella term that refers to various higher-
order behavioral abilities, such as memory, attention, and
executive functions (Lezak, Howieson, & Loring, 2004).
These higher-order behavioral abilities are latent variables
that cannot be directly observed. Instead, they have to be
inferred from proxy measures (Mitrushina, Boone, Razani,
& D’Elia, 2005). For example, a person’s verbal memory
cannot be directly observed; what can be observed is the
person’s ability to recall verbal material that is presented in a
specific standardized test setting.

Cognitive assessment is widely used in medical settings
and in the behavioral sciences—for example, in clinical
psychology, educational practice, and rehabilitation settings
(Lezak et al., 2004; Pasquier, 1999). In diagnostic settings,
the “raw” score of a person on a cognitive test (e.g., the
number of items that were recalled in a memory test) is
usually not of direct interest. The reason for this is that the
raw scores on cognitive tests are strongly affected by demo-
graphic variables (such as age and educational level;
Mitrushina et al., 2005; Strauss, Sherman, & Spreen, 2006;
Van der Elst, 2006). For example, the same raw test score
may be indicative of a severe memory problem in a 50-year-
old person, while it is within the normal limits of test
performance for an 80-year-old person (Van der Elst, Van
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Boxtel, Van Breukelen, & Jolles, 2005). Clinicians therefore
use relative measures (rather than raw test scores) to evalu-
ate a patient’s test performance (e.g., what is the percentage
of demographically matched “cognitively healthy” peers
who obtain a test score that is equal to or worse than the
test score of this patient?). So-called normative data are used
to convert raw test scores into demographically corrected
relative measures (Mitrushina et al., 2005; Van der Elst,
2006).

In many diagnostic situations, the same cognitive test (or
a parallel test version) is repeatedly administered to the same
person. For example, a clinician may need to determine
whether a patient with mild cognitive impairment has expe-
rienced cognitive decline since his or her last evaluation, or
a clinician may need to evaluate whether a stroke patient has
benefited from taking part in a rehabilitation program. Ide-
ally, the observed changes in the test scores at subsequent
measurement occasions would be directly interpretable in
terms of true changes in the latent cognitive trait of interest.
This is, however, generally nof the case (Calamia, Markon,
& Tranel, 2012). The main reason for this is that practice
effects occur in serial testing situations. Practice effects refer
to a variety of factors—such as procedural learning, mem-
ory for specific items, and increased comfort with formal
testing situations (McCaffrey, Duff, & Westervelt, 2000)—
that result in systematic improvements in test scores at
retesting occasions, even though there was no true change
in the latent trait that is measured by the cognitive test
(Bartels, Wegrzyn, Wiedl, Ackermann, & Ehrenreich,
2010; Calamia et al., 2012; Dikmen, Heaton, Grant, &
Temkin, 1999; Temkin, Heaton, Grant, & Dikmen, 1999;
Van der Elst, Van Breukelen, Van Boxtel, & Jolles, 2008).
Practice effects are especially pronounced when the test—
retest intervals are short (e.g., Theisen, Rapport, Axelrod, &
Brines, 1998), but they also occur in studies with test-retest
intervals of several years (Ronnlund & Nilsson, 2006; Salt-
house, Schroeder, & Ferrer, 2004). In the latter case, the
changes in the test scores over time reflect the combined
influences of practice effects and true changes in the latent
cognitive abilities (Van der Elst et al., 2008). Furthermore,
the extent to which practice effects occur is affected by
person characteristics such as the age and the educational
level of a tested person (Mitrushina & Satz, 1991; Rapport,
Brines, Axelrod, & Theisen, 1997; Stuss, Stethem, &
Poirier, 1987; Van der Elst et al., 2008).

Failure to take practice effects into account may invali-
date the conclusions that are drawn from a serial cognitive
assessment (Calamia et al., 2012; Van der Elst et al., 2008).
For example, practice effects may mask the cognitive de-
cline in a patient with early dementia, or practice effects
may lead to the incorrect conclusion that a stroke patient has
benefitted from a rehabilitation program. Normative data for
serial cognitive assessment should thus take the testing
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history and the demographic characteristics of a patient into
account, but it is not clear which statistical method is opti-
mal for achieving this aim (Heaton et al., 2001; Temkin et
al., 1999; Van der Elst et al., 2008).

Existing normative methods

In nonserial (i.e., single-measurement) cognitive testing sit-
uations, normative data are established on the basis of
classical univariate statistical methods. For example, an
often-used procedure is the regression-based normative ap-
proach (Testa, Winicki, Pearlson, Gordon, & Schretlen,
2009; Van Breukelen & Vlaeyen, 2005; Van der Elst et al.,
in press; Van der Elst et al. 2006a, 2006b, 2006¢, 2006d). In
this method, a classical multiple linear regression model is
fitted to the data of a large sample of cognitively healthy
people who were administered the cognitive test of interest
(the normative sample). The multiple linear regression mod-
el assumes that ¥; = X;[3 + €; where ¥, is the vector of the
responses, X; is the design matrix (which typically includes
age, gender, and educational level in normative studies), 3 is
the vector of regression parameters, and g; is the vector of
the residual components (for details on this model, see, e.g.,
Kutner, Nachtsheim, Neter, & Li, 2005).

On the basis of the established regression model, the test
performance of a future patient j can be evaluated. This
requires three steps. First, the expected test score of patient

J is computed (i.e., 17] =X jﬁ). This score reflects the expected
test score for a cognitively healthy person who has the same
demographic background as the tested patient. Second, the
difference between the patient’s observed and expected test
scores is computed (i.e., ¢; = ¥; — }/;j-) and standardized (i.e.,
Z; = ej /| SD(e)). The SD(e) is the SD of the residuals in the
normative sample (which is approximately equal to the posi-
tive square root of the residual mean squares). Third, the
standardized residual of the patient is converted into a percen-
tile value as based on the distribution of the standardized
residuals in the normative sample. A percentile value below
5 is often considered as being indicative of a cognitive prob-
lem (because 95 % of the “cognitively healthy” people per-
form better).

An important assumption of the classical linear regres-
sion model is that 6?{e} = 01 (with I = an n x n identity
matrix). Thus, it is assumed that the residuals (or equiva-
lently, the responses) are uncorrelated. This assumption is
not realistic in serial cognitive-testing situations, because the
cognitive test scores at subsequent measurement occasions
tend to be highly correlated within individuals (Dikmen et
al., 1999; Lezak et al., 2004; Temkin et al., 1999; Van der
Elst et al., 2008). One possible solution for dealing with this
problem is to summarize the vector of the repeated
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measurements into change scores (change = endpoint score —
baseline score) and, subsequently, regress these responses on
the demographic covariates of interest in the normative sam-
ple (the regression-based change approach). Alternatively, the
dependence issue can be solved by fitting a model in which
the endpoint scores are regressed on the baseline scores and
the demographic covariates in the normative sample (the
ANCOVA approach).

Motivating example

To illustrate the problems with the existing normative meth-
ods and to exemplify the newly proposed methods (see
below), data from the Maastricht Aging Study (MAAS)
are used. The MAAS is a longitudinal research project into
the determinants of cognitive aging (Jolles, Houx, Van
Boxtel, & Ponds, 1995). The MAAS baseline measurement
took place between 1993 and 1996, and three follow-up
measurements were conducted (3, 6, and 12 years after
baseline). All participants were thoroughly screened for
medical pathology that could interfere with normal cogni-
tion, such as dementia or cerebrovascular disease.

The MAAS participants were administered an extensive
battery of cognitive and medical tests. In the present article,
we will focus on the data of the Stroop Color Word Test
(SCWT; Stroop, 1935). The SCWT is a well-known cogni-
tive paradigm that is used to assess inhibition and other
components of executive functioning (Lezak et al., 2004;
Moering, Schinka, Mortimer, & Graves, 2004). The test
consists of three subtasks. The first subtask shows color
words in random order (red, blue, yellow, green) that are
printed in black ink. The second subtask displays solid color
patches in one of these four basic colors. The third subtask
contains color words that are printed in an incongruous ink
color (e.g., the word “red” printed in yellow ink). The
participants are instructed to read the words, name the
colors, and name the ink color of the printed words as
quickly and as accurately as possible in the three subsequent
subtasks. The SCWT outcome variable of interest is the
difference between the time that is needed to complete
subtask three and the average time that is needed to com-
plete the first two subtasks [i.e., SCWT score = time in
seconds needed for subtask 3 — (time in seconds needed
for subtasks 1 + 2) / 2]. Higher SCWT scores are thus indic-
ative of worse test performance.

In the MAAS, the SCWT was administered to N = 887,
N =696, N = 614, and N = 454 participants at the subse-
quent measurement occasions. Missingness in the responses
was thus substantial. Basic demographic data for the sample
at baseline and at the three follow-up measurement occa-
sions are provided in Table 1. Level of Education (LE) was
categorized into three levels using a classification scheme

that is often used in the Netherlands (De Bie, 1987), with
low = at most primary education, average = at most junior
vocational training, and high = senior vocational or academ-
ic training. More details regarding the SCWT and the sam-
ple frame, participant recruitment, stratification criteria, and
other aspects of the MAAS can be found elsewhere (Jolles et
al., 1995; Van der Elst, 20006).

Limitations of the existing normative methods

Suppose that the regression-based change method or the
ANCOVA approach were used to establish normative data
for serial SCWT administration (as based on the MAAS
data). This would have two major drawbacks.

First, the ANCOVA and the regression-based change
approaches cannot handle missing data appropriately.
Both methods simply discard incomplete cases from the
analyses, but a complete case analysis is unbiased only
when the responses are Missing Completely At Random
(MCAR; Little & Rubin, 1987; Rubin, 1976), and even
then it is usually inefficient (Verbeke & Molenberghs,
2000). MCAR means that the probability of an observa-
tion being missing is independent of the observed or
unobserved responses. The MCAR assumption is not
realistic in most serial testing settings. For example, the
probability that a participant drops out of the MAAS is
strongly affected by his or her baseline cognitive test
score (Van Beijsterveldt et al., 2002), and thus the MCAR
assumption is not valid.

Second, the regression-based change and the ANCOVA
methods can only use the data for a maximum of two
measurement occasions. In the MAAS, the SCWT was
administered four times. The application of the regression-
based change or the ANCOVA approach would thus result
in a substantial loss of information and, consequently, a
lowered precision of the parameter estimates and a loss of
power (Verbeke & Molenberghs, 2000). Note that it might
be argued that the endpoint score could be regressed on the
test scores of multiple earlier testing occasions in the
ANCOVA method (rather than on a single one), but this is
generally not the case because the test scores at subsequent
measurement occasions are highly correlated and, thus,
collinearity issues would arise.

Alternative normative methods: Multivariate regression,
the standard linear mixed model, and the linear mixed
model combined with multiple imputation

As was noted in the previous sections, normative data for

serial cognitive assessment should take the testing history
and the demographic characteristics of a patient into
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Table 1 Demographic characteristics of the participants who were administered the Stroop Color Word Test at the different measurement occasions

Measurement Age group N Age (at baseline) Level of education Female:Male
moment (age at baseline) M SD High Average Low ratio
Baseline <60 years 286 54.71 2.94 129 102 55 137:149
>60 and <70 years 319 64.71 3.23 161 118 40 153:166
>70 years 282 74.72 3.23 145 92 45 141:141
Total 887 64.67 8.59 435 312 140 431:456
First follow-up <60 years 236 54.67 2.93 96 91 49 105:131
>60 and <70 years 266 64.67 3.16 128 106 32 121:145
> 70 years 194 74.31 3.09 101 61 32 102:92
Total 696 63.97 8.29 325 258 113 328:368
Second follow-up <60 years 229 54.57 2.96 96 85 48 111:118
>60 and <70 years 240 64.57 3.15 116 94 30 111:129
>70 years 145 73.88 2.81 76 43 26 81:64
Total 614 63.04 8.03 288 222 104 303:311
Third follow-up <60 years 210 54.63 3.02 90 79 41 105:105
>60 and <70 years 179 64.22 3.02 86 71 22 89:90
>70 years 65 73.68 2.7 31 22 12 43:22
Total 454 61.14 7.4 207 172 75 237:217

Note. The first, second, and third follow-up measurements were conducted 3, 6, and 12 years after baseline, respectively.

account, but it is not clear which statistical method is opti-
mal to achieve this aim. The existing methods (i.e., the
regression-based change and the ANCOVA methods) are
fundamentally flawed. Applying these methods to the
SCWT data (from the MAAS) would lead to a substantial
loss of information and biased results. What we need are (1)
methods that can deal with two or more correlated responses
(within individuals) and (2) methods that can handle miss-
ing data appropriately.

On the basis of these criteria, the use of the multivariate
regression model, standard linear mixed model, and linear
mixed model with multiple imputation approaches are pro-
posed in the present article. These methods are described in
the next sections.

The multivariate regression model

The multivariate regression model assumes that ¥; = X;
B +e;, with ¥; = the vector of the repeated measure-
ments for subject i (1 < i < N, with N = the number of
subjects), X; = the design matrix, § = the vector of
the regression parameters, and €; = the vector of the
error components. It is assumed that € ~ N(0,Y), with
0 = a zero matrix and ) = a general (unstructured)
variance—covariance matrix of the residuals (for details
on the model, see Johnson & Wichern, 2007).

In contrast to the classical (or univariate) linear regres-
sion model, the multivariate regression model can handle
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vectors of repeated observations for individuals. The param-
eter estimates in the multivariate regression model are based
on likelihood methods, which allow for using all available
outcomes in the calculations (Molenberghs & Kenward,
2007). Moreover, the use of likelihood-based methods has
the advantage that inferences can be based on the observed
likelihood given a model that does not include a distribution
for the missing data mechanism (Little & Zhang, 2011;
Molenberghs & Verbeke, 2005; Verbeke & Molenberghs,
2000). These so-called ignorable analyses require that the
missingness mechanism is Missing At Random (MAR; i.e.,
the probability of an observation being missing is indepen-
dent of the unobserved outcomes conditional on the ob-
served data) or MCAR (as defined above) when likelihood
or Bayesian inferences are chosen, though this assumption
can be relaxed in the context of normative analyses (see the
Discussion section). Note that the parameter estimates in a
multivariate regression model can also be based on ordinary
least squares methods (rather than on likelihood-based
methods), but this situation will not be considered here
because it largely suffers from the same drawbacks as the
regression-based change and the ANCOVA methods.

The standard linear mixed model
The random-effects approach toward extending the classical

linear regression model to a longitudinal setting is based on
the assumption that the responses of a participant can be
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appropriately modeled on the basis of a linear regression
model in which subject-specific regression coefficients are
used (Verbeke & Molenberghs, 2000). In particular, the
standard Linear Mixed Model (LMM) assumes that ¥; = X;
B + Z:b; + €;, with ¥; = the vector of the repeated measure-
ments for subject i (1 <7 < N, with N = the number of
subjects), X; = the design matrix for the fixed effects (i.e., the
population-averaged parameters), 3 = the vector of regres-
sion coefficients, Z; = the design matrix for the subject-
specific effects (capturing how individuals deviate from the
population average, where the population is understood as
any subject with the same fixed-effect design), b; = the
vector of the random effects, and €; = the vector of the
residual components. Because the participants in a study
are a random sample of a larger population, it is natural to
assume that b, ~ N (0, D), where 0 is a zero matrix and D is a
general variance—covariance matrix. It is furthermore as-
sumed that &; ~ N(0,Y;), where ) is a variance—covari-

ance matrix (which was chosen to be equal to ¢*1,, in the
present study, with 1,,, = an identity matrix of dimension #;).
The random components b;,...,b,, €;,...,€y are assumed to
be independent. For more details on the estimation and
inference for the marginal model and the variance compo-
nents in a LMM, the reader is referred to Verbeke and
Molenberghs (2000).

As compared with the multivariate regression model,
the standard LMM has the additional advantage that both
fixed and random effects can be included in the model.
Random effects are not of substantive interest in norma-
tive studies (the focus is on the marginal evolutions—i.e.,
on the fixed effects), but it is nevertheless useful to model
the covariance structure adequately, because this generally
leads to more efficient inferences for the fixed effects (i.e.,
smaller standard errors; Verbeke & Molenberghs, 2000).
This is particularly important in the case of unbalanced
data—that is, when different subjects provide different
numbers of outcome values (either by design or because
of missingness in the data). As was also the case for the
multivariate regression model, the standard LMM has the
advantage that it can take the uncertainty of dealing with
missing values into account in the analyses (Verbeke &
Molenberghs, 2000).

The linear mixed model combined with multiple imputation

In the LMM combined with Multiple Imputation (LMM with
MI) approach, the MI algorithm is first applied to fill in the
missing observations in the data set. The key idea of Ml is to
replace each missing value with M plausible values (Rubin,
1996). Each value can be seen as a Bayesian drawn from the
conditional distribution of the unobserved responses given the
observed ones (Beunckens, Molenberghs, & Kenward, 2005;
Little & Rubin, 1987).

To fix ideas on this method, let us consider a problem
where we have two unknown parameters 'y, and 'y, and a data
set y. In a Bayesian context, these have a joint posterior
distribution f(y,,¥,|y). Suppose that parameter y, is of
interest and that 'y, is a nuisance parameter (i.e., a parameter
that is not of substantive interest but that has to be accounted
for in the analysis). The posterior can be partitioned as f
(71, 721y) = £(711y)£(72l71,¥), so it follows that the margin-
al posterior for v, can be expressed as f(y,|y) =E,,
(f(72ly1,y)), with E, = the expectation over the distribution

of y1. The posterior mean and variance for 'y, equal E(y,y)

=E,1 (Ey, (72]71,y)) and var(y,|y) = Ey1 (varya(valy,.0))+
vary, (Ey,(72]71,»)), with var , = the variance computed over
the distribution of 'y,. These quantities can be approximated by
way of empirical moments. Let y '1” be draws from the marginal

posterior distribution of y; for m = 1, . .., M. It holds that
E(yly) 24 ¥M (Eyz(yz‘y’{',y)) . Defining the right hand

side of the previous equation as 7, , it furthermore holds that

var(raly) = & E8vary, (ra[7oy) + 5 D (Be(alrty) - 72) - In

the MI procedure, these formulas are generalized for
vector-valued parameters, and <, is used to represent
the substantive model where 7; is used to represent
the missing data. In sufficiently large samples, the con-
ditional posterior moments for -, can be approximated
by maximum likelihood estimators from the completed
data set. The MI estimates of the parameters of interest
and their variance approximate the first two moments of
the posterior distribution in a fully Bayesian analysis (Ken-
ward & Carpenter, 2007).

After imputing the missing values M times using Bayesian
draws, a LMM analysis is conducted on each of the completed
data sets (or any analysis of interest in a context other that the
one considered here), and the different inferences are subse-
quently combined into a single one (for more details on MI,
see chap. 9 of Molenberghs & Kenward, 2007).

As was also the case with the multivariate regression
model and the standard LMM, the LMM with MI takes
the uncertainty of dealing with missing values into account
in the analyses (Rubin, 1996; Verbeke & Molenberghs, 2000).
This is to be contrasted with so-called simple imputation
methods, in which each missing response is substituted by
a single value (Molenberghs & Verbeke, 2005). The
standard LMM and the LMM with MI methods are
largely equivalent (provided that the imputation model
includes all relationships that will be considered in the analy-
ses and the inference tasks; Molenberghs & Kenward, 2007),
but the MI method allows for some additional flexibility in
dealing with complex data sets. That is, MI can be used to deal
with missing covariate values and missing responses at the
same time (Molenberghs & Kenward, 2007; Molenberghs &
Verbeke, 2005).
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Application to the motivating example

In this section, we will illustrate the use of the multivariate
regression, standard LMM, and LMM with MI methods to
establish norms for serial SCWT administration (as based on
the MAAS data described earlier). All analyses were con-
ducted with R 2.14.0 for OS X and SAS v9.2 for Windows.
An «-level of .05 was used.

The multivariate regression model

The initial multivariate regression model included the vector
of the log(SCWT) scores as the outcome and age, age”,
gender, LE low, LE high, time, and time? as the covariates.
The SCWT score was log-transformed because preliminary
analyses showed that the residuals were positively skewed.
Age was centered (age = calendar age in years — 65) prior to
the computation of the quadratic age effect (to avoid multi-
collinearity; Kutner et al., 2005). Gender was coded as 1 =
male and 0 = female. The three levels of education (LEs) were
coded with two dummies—that is, LE low, 1 = at most
primary education and 0 = otherwise; and LE high, 1 = senior
vocational or academic training and 0 = otherwise. Time was
dummy coded using three dummies and baseline measure-
ment as the reference category. In addition to the main effects,
the age x time, age x time?, age® x time, age® x time?, LE low
x time, LE high x time, LE low x timez, and LE high x time?
interaction terms were included in the mean structure of the
initial model. This was done because previous studies have
suggested that older age and lower LEs are associated with a
more pronounced cognitive decline over time (see, e.g.,
Salthouse, 1996; Schmand, Smit, Geerlings, & Lindeboom,
1997; Stern, 2003; Van der Elst et al., 2006d).

The initial model had a —2 / value that equaled 648.2 (see
model 1 in Table 2). To obtain the most parsimonious model, it
was first evaluated whether the mean structure of the initial model
could be simplified by removing interactions and main effect
terms. Likelihood ratio tests suggested that the model fit did not
significantly deteriorate when the LE x time and the age® x time
interaction terms were removed from the model (all ps > .05; see

models 2 and 3 in Table 2). Next, it was evaluated whether the
mean structure could be simplified by assuming linear and
quadratic effects of time (instead of using dummies to model
the effects of time). In these models, time was centered (time =
time since baseline in years — 5.25) prior to the computation of
the quadratic terms (to avoid multicollinearity). The likelihood
ratio tests suggested that the models in which linear (model 4)
and quadratic (model 5) time effects were assumed both
adequately fitted the data (using model 3 as the comparison
model). The linear, rather than the quadratic, model was
retained because it is more parsimonious.

Next, it was evaluated whether age group-, gender-,
or LE-specific covariance structures were needed. Age
group was constructed on the basis of a median split of
the continuous variable age (i.e., younger = <65 years
at baseline, older = >65 years at baseline). Smoothed
(loess) average trends of the squared ordinary least
square residuals {0‘2(1‘) = E{Y(t) - ﬁ(t)z}} were plotted
for the different subgroups (using age, age’, gender, LE low,
LE high, time, and age x time as covariates in the model). As
is shown in Fig. 1, the residual variances for older people
tended to be higher, as compared with the residual variances
for younger people, at most of the measurement moments. A
separate residual variance—covariance matrix  was thus fitted
for older and younger people (model 6), and this model indeed
had a significantly better fit to the data than did model 4 (see
Table 2). The variance functions for males and females and for
people with a low, average, and high LE were similar (figures
not shown), suggesting that gender- and LE-specific covari-
ance structures are not needed.

The most parsimonious multivariate regression model
that still adequately fitted the data was thus model 6. The
parameter estimates for this model are provided in Table 3a.
As is shown, males and lower educated participants had
significantly higher log(SCWT) scores at all measurement
moments. There was a significant time x age interaction
term, which suggested that the increase in the log(SCWT)
scores over time was more pronounced for people who were
older at baseline. The interaction is graphically depicted in

Table 2 Likelihood ratio tests to evaluate the fit of a series of nested multivariate regression models

Model Model structure Number of pars. =21 Ref. Model |G?| df p-value
1 All 31 648.2

2 Exclude LE x time 25 656.5 1 8.3 6 22
3 Exclude age® x time 22 657.4 2 0.9 3 .83
4 Time linear 18 660.9 3 3.5 4 A48
5 Time quadratic 19 660.6 3 32 3 .36
6 Separate cov. age group 28 600.7 4 60.2 10 <.01

Note. G* = —2 [ difference value, LE = Level of Education.
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Fig. 1 Scatterplots of the
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Fig. 2a for 50-, 65-, and 80-year-old females with an aver-
age LE (note that the shape of these plots is identical for
males and for people with a low or a high educational level
—i.e., the predicted log(SCWT) values are the same up to a
constant). There was also a small (but significant) effect of

2
age”.

The standard linear mixed model

The preliminary mean structure of the initial standard LMM
was identical to the mean structure in the initial multivariate
regression model (see above). A random intercept and two
random slopes (for time and time?) were included in the
preliminary covariance structure (unstructured type). We
first evaluated whether the random effects were all needed
in the model, by removing one random effect after the other
in a hierarchical way. Note that these tests cannot be con-
ducted by using classical likelihood ratio procedures. In-
stead, a mixture of two X° distributions should be used
(with equal weights of 0.5; Verbeke & Molenberghs,
2000). The p-values of all the —2 [ difference scores were
significant (all ps < .05; data not shown), indicating that the
covariance structure could not be simplified by deleting
random effects from the model.

Next, the nonsignificant fixed-effect terms were removed
from the model (one after the other, in a hierarchical way) to
obtain a more parsimonious mean structure. This procedure
yielded a model that included age, age®, gender, LE low, LE
high, time, and the age x time interaction as the covariates
(see models 2 to 7 in Table 4). Finally, age-group-specific
(model 8) and age group x time-specific (model 9) covari-
ance structures were requested. The difference between
models 8 and 9 is that model 8 makes the assumption that

Time since baseline (in years)

the differences in the estimated residual variances for the
two age groups remain constant as a function of time (i.e.,
parallel variance functions for older and younger people are
assumed), whilst model 9 does not make this assumption.
As is shown in Table 4, model 9 had the best fit to the data.

The parameter estimates for the final standard LMM
(model 9) are presented in Table 3b. In agreement with the
results of the multivariate regression model, being male and
having a lower LE were associated with higher log(SCWT)
scores at all measurement moments. There was again a
significant age x time interaction, which suggested that the
increase in the log(SCWT) scores over time was more
pronounced for people who were older at baseline (see
Fig. 2b). The effect of age” was small but significant.

The linear mixed model with multiple imputation

The Markov Chain Monte Carlo method was used in the MI
process to replace the missing values by 10 different impu-
tations (Little & Rubin, 1987; Molenberghs & Verbeke,
2005; Rubin, 1996). The imputation model included the
log(SCWT) scores at the different measurement moments
and the covariates (i.e., age, gender, LE low, and LE high).
The final standard LMM (see Table 3b) was fitted in each of
the 10 “complete” data sets, and the 10 inferences were
combined into a single one. The r statistic was computed
to quantify the uncertainty portion that is stemming from

~1
W (where M = the

number of imputations, B = the between-imputation vari-
ance, and p = the within-imputation variance; Schafer,
1999). The final LMM with MI model is presented in
Table 3c. The age x time and time parameters had the

incompleteness—that is, r =

@ Springer
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[c] Linear mixed model with multiple imputation

[b] Standard linear mixed model

Table 3 The final multivariate regression model (a), standard linear mixed model (b), and linear mixed model with multiple imputation (c)

[a] Multivariate regression model
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SE

B

Parameter

SE

B k

Parameter

SE

Be

Parameter

.001

216.62

0.018

3.878
0.026

Intercept

Age

.001
.001

157.19

0.025

3.879
0.025

Intercept

Age

.001
.001
.001
.015
.001
.061

0.025 157.75

3.880
0.025

Intercept
Age

.001

24.70

0.001

18.47

0.001

18.50
4.08
2.25
7.57

—1.88

0.001

.001
.001
.001
.002
.001
.001

5.09
4.

0.0001
0.017

0.0006
0.078

Age2

.001
.017
.001
.054
.001
.001

4.03
2.39
7.43
-1.93
15.25

0.0002
0.022
0.024
0.032

0.0006
0.052

Age2

0.0002
0.022
0.024
0.032

0.0006
0.048

Age2

84
27

Gender

Gender

Gender

9.
-3.20

0.017

0.160
—0.080

LE low

0.176
—0.062

LE low

0.178
—0.060

LE low

0.025

LE high
Time

LE high

Time

LE high
Time

9.39
3.97

0.001

0.019

0.001

0.019

.001
.001

14.93
7.99

0.001

0.019

0.0002

0.0011

Age X time

0.0001 7.85

0.0012

Age x time

0.0002

0.0012

Age x time

otherwise;

female, 1 = male; Low LE, 1 = at most primary education, 0

Level of Education. Coding of the predictors: age = calendar age — 65; age2 = (calendar age — 65)2 ; gender, 0

Note. LE

otherwise; time = time since baseline — 5.25.

High LE, 1 = senior vocational or academic training, 0

highest  values (i.e., 2.28 and 1.28, respectively). The r
values for the other covariates were substantially lower
and ranged from 0.14 to 0.48. In agreement with the
results of the multivariate regression model and the
standard LMM, there was a significant age X time
interaction, which suggested that the increase in the
log(SCWT) scores over time was more pronounced for
people who were older at baseline (see Fig. 2¢). Being
male and having a lower LE were associated with
higher log(SCWT) scores at all measurement moments.
The effect of age® was again small but significant.

Obtaining normative data

Analogously to the classical regression-based normative ap-
proach that is used in nonserial (i.e., single-measurement)
testing situations (see the Introduction), three steps are needed
to convert a future patient’s log(SCWT) scores into percentile
values. First, the expected log(SCWT) scores of patient j at

time ¢ are computed (: }7,1) . Time ¢ refers to the number of

years since baseline. These calculations are based on the
parameter estimates of the fixed effects that were provided
in Table 3.

Second, the differences between the actually observed log
(SCWT) scores of patient j at time ¢ and the corresponding

expected test scores are computed i.e., [e;,- =— (Yt, — )?t,)]

and standardized [i.e., z; = e;/SD(e,)]. Note that the sign
of'the residuals is reversed here because a higher SCWT score
is indicative of worse test performance. The SD(e,, ) values are
the standard deviations of the residuals at time ¢ for a person of
age group g (younger, <65 years at baseline; older, >65 years
at baseline) in the normative sample. These values are pre-
sented in Table 5.

Third, the standardized residuals (i.e., z,) are con-
verted into percentile values. Histograms and QQ-plots
suggested that the standardized residuals for the differ-
ent models at all measurement moments were normally
distributed in the MAAS (figures not shown), and
Kolmogorov—Smirnov tests supported this conclusion
(all p-values > .098). The standardized residuals can
thus be converted into percentile values by means of
the standard normal distribution.

An example

Suppose that a 75-year-old average educated woman with
mild cognitive impairment is monitored over time. The
patient was administered the SCWT at a baseline moment
and 3, 6, and 12 years later. At the subsequent measurement
occasions, she obtained SCWT test scores that equalled 80,
85, 90, and 100. The patient’s log(SCWTy), log(SCWT3),
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Fig. 2 Predicted marginal evolutions of the log(SCWT) values over
time as based on a the multivariate regression model, b the standard
LMM, and ¢ the LMM with MI. The plots show the predicted values

log(SCWTy), and log(SCWT,) scores thus equalled 4.382,
4.442, 4.500, and 4.605, respectively.

The clinician uses the LMM with MI approach to evalu-
ate the patient's test performance. This requires three steps.
First, the expected log(SCWT,) test score is computed as
based on Table 3c—that is, 4.0405 [= 3.878 + (10*0.026) +
((10%*0.0006) + (-5.25%0.019) + ((10*=5.25) * 0.0011)].
Second, the standardized residual is computed (as based on
Table 5)—that is, —1.035 (= —(4.382 — 4.0405)/0.33). Third,
the standardized residual is converted into a percentile value
by means of the standard normal distribution. A standard-
ized residual that equals —1.035 corresponds to a percentile
value of 15. Thus, 15 % of the population of 75-year-old
cognitively healthy females with an average level of educa-
tion obtain a log(SCWT,) score that is equal to or higher
than the score that was obtained by this woman. Using the

for 50-, 65- and 80-year-old females (at baseline) with an average level
of education. SCWT = Stroop Color Word Test, LMM = linear mixed
model, and MI = multiple imputation

same three-step procedure, the patient's log(SCWT;3), log
(SCWTg), and log(SCWT,,) scores were normed. This
yielded percentile values equal to 20, 24, and 32, respec-
tively. Thus, the SCWT test performance of the patient is
within normal limits at all the measurement moments.

User-friendly normative tables

A clinician can norm the test scores of a patient by performing
the required computations by hand (as was illustrated in the
previous paragraph), but this procedure is time consuming and
prone to making errors. To increase the user-friendliness of the
normative data for clinical use, we established normative
tables that present the raw SCWT scores that correspond to
percentiles 5, 10, 25, 50, 75, 90, and 95, stratified by age (50,
55, ..., 80 years), gender, and LE (the normative tables can be

Table 4 Likelihood ratio tests to evaluate the fit of a series of nested standard linear mixed models

Model Model structure Number of pars. -2/ Ref. Model |G?| df p-value
1 All 23 652.7

2 Exclude age” x time? 22 652.9 1 0.2 1 65
3 Exclude age” x time 21 652.9 2 0 1 .00
4 Exclude age x time? 20 655.5 3 2.6 1 A1
5 Exclude time® x LE 18 660.3 4 4.8 2 .09
6 Exclude time” 17 660.7 5 0.4 1 53
7 Exclude time x LE 15 662.9 6 2.2 2 .33
8 Separate cov. age group 16 636.8 7 26.1 1 .01
9 Separate cov. time x age 23 615.9 8 20.9 7 .01
Note. G* = -2 difference value, LE = Level of Education.
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Table S SD(e) values at time # (in years since baseline) for a person of
age group g (younger, <65 years at baseline; older, >65 years at
baseline), as based on the final multivariate regression model (left),

the final standard linear mixed model (middle), and the final linear
mixed model with multiple imputation (right)

Time ¢ Multivariate regression Standard linear mixed model Linear mixed model with multiple imputation
Younger Older Younger Older Younger Older

0 0.33 0.33 0.33 0.33 0.33 0.33

3 0.32 0.38 0.32 0.38 0.33 0.37

6 0.36 0.38 0.36 0.38 0.37 0.39

12 0.36 0.44 0.36 0.44 0.38 0.43

downloaded at http://home.deds.nl/~wimvde/). The use of the
normative tables is straightforward. For example, Table 1 in
the online document immediately shows that the SCWT,
score equal to 80 that was obtained by the 75-year-old average
educated women of the previous example corresponds to a
percentile value between 10 and 25. Note that the normative
tables are based on the LMM with MI approach, because this
method has some advantages over the other methods (see the
Introduction and the Discussion section).

An automatic scoring program

The normative tables are easy to use but lack some accuracy,
because (1) the tested patient’s age has to be rounded-off if he
or she is not exactly 50, 55, . . ., 80 years old and (2) because
only a limited number of percentile values can be presented in
the normative tables (to limit their size to a convenient for-
mat). To maximize both the user-friendliness and the accuracy
of the normative data, the normative conversion procedure
was implemented into an Excel worksheet (which can be
downloaded at http://home.deds.nl/~wimvde/). The use of
the worksheet is straightforward: the clinician simply types
in the age, gender, and LE of the tested patient, together with
his or her obtained raw SCWT scores at the different measure-
ment moments, and the worksheet automatically computes the
corresponding percentile values (on the basis of the LMM
with MI approach).

Discussion
The multivariate regression model or the LMM?

The multivariate regression method is primarily useful
when normative data have to be established for bal-
anced data structures in which a relatively small num-
ber of repeated measurements are considered. Such
data structures may arise in a longitudinal context,
but they also occur in more general serial testing sit-
uations. For example, Rey’s Verbal Learning Test (Rey,
1958; Van der Elst et al., 2005) is a cognitive
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paradigm in which a sequence of 15 words is repeat-
edly presented to a participant on five subsequent
learning trials. Suppose that we were interested in
establishing normative data for these learning trial
scores. In this situation, a (almost) perfectly balanced
data structure would arise in the normative sample
(i.e., fixed time points are used, and missingness
would be minimal), and thus the multivariate regres-
sion method would provide an adequate tool for estab-
lishing the normative data.

In situations where normative data have to be established for
highly unbalanced data structures, the LMM approach is the
preferred method. For example, a limitation of the present study
is that the normative SCWT data can be used only to evaluate
the test performance of future patients who are administered the
SCWT using (approximately) the same time intervals as the
ones that were used in the MAAS. In many clinical settings,
variable test—retest intervals are used. For example, a first patient
may be tested today, 6 months later and 5 years later, while a
second patient may be tested today, 2 weeks later, and 6 weeks
later (depending on the clinical profile of the patient). Suppose
that we were interested in establishing a single set of normative
data that allows for taking such variable test—retest intervals
into account. This would, of course, require a normative sample
in which variable test—retest intervals are used. For example, a
study design may be used in which the lengths of the subsequent
test—retest intervals are randomized per person (using some
upper and lower limits of clinically relevant test-retest intervals
—say, e.g., a value between 0 and 3 years). Thus, the first person
in the normative sample may be tested at, for example, time
points 0, 0.5,4,4.8, 6, 8.3, 10, and 12 years, the second person at
time points 0, 2.8, 3,4.2,5,6,7.8,9,9.3, 10, and 11.2 years, and
so on. The data structure in the normative sample would thus be
highly unbalanced, but this is not a problem when the LMM is
used. Only one minor modification to the normative procedure
would be required. Indeed, the residual standard deviation
values could no longer be computed for each time point
separately but would have to be modeled as a continu-
ous function of time (by, e.g., taking the square root of

the estimated variances f/\i:ZiﬁZ;—i—Gz Verbeke &
Molenberghs, 2000).
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The standard LMM or the LMM combined with MI?

The standard LMM and the LMM with MI methods are
largely equivalent, provided that the imputation model
includes all relationships that are considered in the analyses
and the inference tasks (Molenberghs & Kenward, 2007;
Molenberghs & Verbeke, 2005). Both methods have their
advantages and disadvantages. The standard LMM has the
advantage that it is easier to conduct and does not require a
Monte Carlo component, but it has the disadvantage that it
cannot handle missing covariate values. The LMM with M1,
on the other hand, has the advantage that it can handle
missing covariate values and missing responses simulta-
neously, but it has the disadvantage that it is more difficult
to conduct and requires a Monte Carlo component.

In the present study, none of the covariate values were
missing (because only easy-to-measure demographic cova-
riates were considered), but there are several normative
settings conceivable in which substantial missingness in
the covariate values could arise. For example, suppose that
one were interested in establishing IQ-corrected (rather than
demographically corrected) normative data for serial test
administration (see, e.g., Rentz et al., 2004). Especially in
older people, it is not always straightforward to obtain 1Q
estimates (because of the lengthy and cognitively demand-
ing test procedures that are typically used in IQ tests; La
Rue, 1992). Missingness would thus arise in both the cova-
riate values (i.e., the 1Q scores) and the responses (i.e., the
scores on the cognitive test of interest). In such situations,
the use of the LMM with MI method would have the
substantial advantage that it allows for using all available
data in the normative analyses (while in the standard LMM,
the data for people who have missing covariate values
would be discarded from the analyses).

Note that the same argument applies in the context of
establishing normative data for nonserial testing situations;
that is, MI can be used to deal with the missing covariate
values, after which classical (i.e., univariate) regression
analyses can be conducted on the different completed data
sets (and the inferences are combined into a single one).

Is the missingness mechanism relevant
when likelihood-based methods are used?

As was noted in the Introduction, ignorable methods assume
that the missingness process that generates the missing
responses is MCAR or MAR (when likelihood or Bayesian
inferences are chosen). In the MAAS and in most other
cognitive aging studies, the MCAR assumption is not valid
(Van Beijsterveldt et al., 2002). Thus, the missingness
mechanism is either MAR or MNAR (Missing Not At
Random; i.e., the missingness depends on unobserved data).
A definitive test of MAR versus MNAR is not possible

(because every MNAR model can be exactly reproduced
by a MAR counterpart; Molenberghs, Beunckens, Sotto, &
Kenward, 2008), but Verbeke, Molenberghs, and Rizopou-
los (2010) argued that ignorable analyses provide reason-
ably stable results even when the MAR assumption is
violated. The reason for this is that such analyses constrain
the behavior of the unobserved data to be similar to the
behavior of the observed data (Verbeke et al., 2010), and
this is exactly what we want in the context of normative
analyses. For example, suppose that a MAAS participant
dropped out of the study at the second follow-up measure-
ment occasion because he or she developed dementia. The
missingness would clearly be associated with the unob-
served log(SCWTy) score (i.e., it would be MNAR), but
this is not a problem, because the unknown log(SCWTs)
score of the demented patient is not of interest. Indeed, in
normative studies, we are interested only in the test scores of
cognitively healthy participants. When likelihood-based
methods are used, the “unobserved” log(SCWTg) and log
(SCWT),) scores of the demented patient are modeled on
the basis of the observed data of the patient at the previous
measurement moments (at which the patient was still
cognitively healthy) and on the basis of the observed
data at all measurement moments in the normative sample.
Since the observed data include only “cognitively healthy”
individuals, appropriate estimates are obtained.

So, in the specific case of normative studies, the
missingness mechanism is of less importance—at least, when
appropriate likelihood-based methods are used. As was noted
in the introduction, this is not the case when the regression-
based change or the ANCOVA methods are used (i.e., the
MCAR assumption is critical for obtaining unbiased norms
when these methods are used).

No Reliable Change Indices?

Early attempts to deal with practice effects and establish
norms for serial testing situations consisted of computing
so-called Reliable Change Indices (RCIs) with correction
for practice (Chelune, Naugle, Liiders, Sedlak, & Awad,
1993, see also Jacobson & Truax, 1991). The RCI method
uses the overall mean change score and the overall SD
(change score) in a normative sample to establish confi-
dence intervals for change scores. By comparing the change
score of a patient with these upper and lower boundaries, it
can be evaluated whether the patient’s performance has
changed significantly (i.e., declined or improved) over time.

We did not consider the RCI method in the present study,
because it is merely a special case of the regression-based
change method. Indeed, when the change score is not af-
fected by any of the demographic covariates (in the norma-
tive sample), the final regression-based change model will
include only the intercept (i.e., the overall mean change
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score), and the SD(e) value will be equal to the overall SD
(change score). Thus, apart from the general problems that
hamper the validity of the regression-based change method
(see the Introduction), the RCI method has the additional
limitation that it makes the (unrealistic) assumption that the
change scores are not affected by any of the demographic
covariates.

Some limitations of the proposed methods

The multivariate regression, LMM, and LMM with MI
approaches have some substantial advantages over the
regression-based change and the ANCOVA methods (see
above), but these models also require some considerations
that are not needed when these simple methods are used.

Some assumptions of the models

The (maximum-likelihood-based) multivariate regression and
the LMM assume multivariate normality of the residuals. In
addition, the LMM assumes normally distributed random
effects. No straightforward procedures exist to formally test
these assumptions (see Johnson & Wichern, 2007; Verbeke &
Molenberghs, 2000), but this is not a severe problem. Indeed,
it has been shown that the maximum likelihood estimators for
the fixed effects (that are obtained under the assumption of
normally distributed random effects) are consistent and as-
ymptotically normally distributed even when the distributions
of the random effects are not normal (Verbeke & Lesaffre,
1997). Similarly, the multivariate regression and LMM were
shown to be robust against violations of the residual normality
assumption (Jacqmin-Gadda, Sibillot, Proust, Molina, &
Thiébaut, 2007).

The LMM also assumes that the variance—covariance ma-
trix is correctly specified (to obtain unbiased estimates for the

standard errors of E). For (sufficiently large) balanced and
complete data sets, the problem of correctly specifying the
covariance structure is less stringent because a robust variance
estimator can be used (Liang & Zeger, 1986; Verbeke &
Molenberghs, 2000). Such an estimator is consistent as long
as the mean structure is correctly specified. In settings where
there are missing data (which is almost always the case in
serial cognitive-testing situations), a more careful reflection on
the covariance structure may be warranted. Indeed, too simple
a covariance structure (e.g., first-order autoregressive) could
lead to bias in the mean model parameters, whereas a too
complex covariance structure (e.g., unstructured) may lead to
a loss of power (Molenberghs & Kenward, 2007). These
issues mainly apply to situations where the sample size is
small, because the loss in power that results from using an
unstructured covariance matrix is negligible when the sample
size is moderate to large. Since normative studies typically
include moderate-to-large sample sizes (say, at least 200
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people), an unstructured covariance matrix is the first choice.
In normative studies with fewer participants, the specification
of the covariance structure (and its impact on the established
norms) should be evaluated more carefully.

Modeling time trends

The appropriateness of normative data that are established
using the multivariate regression, LMM, and LMM with MI
approaches depends—among other things—on the assump-
tion that the evolution of the test scores over time is cor-
rectly modeled. Indeed, a misspecification of the model in
terms of the assumed time effect (e.g., assuming a linear
time trend while the true time evolution is quadratic or
cubic) has an impact on the predicted test scores and the
SD(e) values (both of which are used in the normative
conversion procedure).

It is thus important to evaluate whether the assumed time
effect corresponds sufficiently well to the actual time evolu-
tion. When only a small number of repeated measurements are
collected, a straightforward approach is to compare the fit of a
model in which time is dummy-coded (thus, a model in which
no particular assumptions regarding the time evolution of the
outcome are made) with the fit of a model in which a more
specific time trend is assumed (e.g., a linear or a quadratic time
effect). Since these models are nested, their relative fit can be
formally compared by means of likelihood ratio tests (as we
also did in the present study; see Table 2). When a larger
number of repeated measurements are considered (which are
possibly taken at different measurement occasions), it is often
no longer feasible (or sensible) to dummy-code time. In this
situation, the relative fit of a model in which the effect of time
is captured by means of a high-degree polynomial can be
compared with the fit of simpler model in which a lower-
degree polynomial is used. Again, a likelihood ratio test can
be used to formally compare the relative fits of the different
models.

It may also be useful to take a more practical perspective
and informally evaluate the extent to which the established
normative data are affected by the assumed time trend (as a
form of sensitivity analysis). By means of illustration, we
first converted the raw test scores of the participants in the
normative sample into percentile values on the basis of the
final LMM that was presented in Table 3b (in which a linear
time effect was assumed). Next, the participants’ raw test
scores were converted into percentile values on the basis of
a second LMM that contained the same covariates as the
first model but in which time was dummy-coded. Thus, two
percentile values were obtained for each participant at each
measurement moment (on the basis of models that made
different assumptions regarding the time evolution). The
results indicated that the maximum absolute differences
between the percentile values that were obtained with both
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models equalled 1, 3, 1, and 1 units (at the subsequent
measurement moments). Such small differences are proba-
bly not of clinical relevance, but if these differences are
deemed to be too large to be acceptable in a clinical setting,
one can still retain the model in which time was dummy-
coded as the final model. Thus, considerations of a statistical
(e.g., the results of likelihood ratio tests), as well as a
practical (e.g., differences in the established norms), nature
can be taken into account in the decision process on how the
time trend should be optimally modeled.

General conclusion

At present, mainly the regression-based change and the
ANCOVA approaches are used to establish normative data
for serial cognitive assessment. These methods have the
advantage that they are based on the classical (or univariate)
linear regression model (which is well-known to most be-
havioral researchers and straightforward to perform), but
they have some major disadvantages (i.e., they can only
consider the data of two measurement occasions, and they
cannot deal with missing values in an appropriate way).

The multivariate regression, standard LMM, and LMM
with MI approaches are not hampered by these problems.
The multivariate regression model is primarily applicable
when a small number of repeated measurements are taken at
fixed time points. As compared with the multivariate regres-
sion model, the standard LMM and the LMM with MI
approaches allow for a more adequate modeling of the
covariance structure. The standard LMM and the LMM with
MI are largely equivalent, because they are valid under the
same assumptions and neither artificially decrease nor in-
crease the amount of information available. The advantage
of the standard LMM is that it is easier to conduct and that it
does not require a Monte Carlo component. On the other
hand, the LMM with MI has the advantage that it can
flexibly deal with missing responses and missing covariates
at the same time. When MI is used, it is important that all
relationships between the covariates and responses to be
studied in the scientific model of interest are included in
the imputation model (to avoid “imputing under the null”;
Molenberghs & Verbeke, 2005).

The different normative methods were applied to the
SCWT data from the MAAS. The results showed that the
log(SCWT) scores were significantly affected by age, age?,
time, gender, and LE. These covariates should thus be taken
into account in the construction of the normative data. There
was also a significant time x age interaction, which suggested
that the increase in the log(SCWT) scores over time was more
pronounced for older people (as compared with their younger
counterparts). These results are in line with previous findings
in the cognitive aging literature (Salthouse, 1996; Schmand et
al., ; Stern, 2003; Van der Elst, 2006; Van der Elst et al.,

2006d). To increase the user-friendliness of the normative
SCWT data, normative tables and an automatic scoring pro-
gram were provided (based on the results of the LMM with MI
approach).
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