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Abstract

The shared-parameter model and its so-called hierarchical or random-effects extension are
widely used joint modeling approaches for a combination of longitudinal continuous, binary, count,
missing, and survival outcomes that naturally occurs in many clinical and other studies. A random
effect is introduced and shared or allowed to differ between two or more repeated measures or
longitudinal outcomes, thereby acting as a vehicle to capture association between the outcomes in
these joint models. It is generally known that parameter estimates in a linear mixed model (LMM)
for continuous repeated measures or longitudinal outcomes allow for a marginal interpretation,
even though a hierarchical formulation is employed. This is not the case for the generalized
linear mixed model (GLMM), i.e., for non-Gaussian outcomes. The aforementioned joint models
formulated for continuous and binary or two longitudinal binomial outcomes, using the LMM and
GLMM will naturally have marginal interpretation for parameters associated to the continuous
outcome but a subject-specific interpretation for the fixed effects parameters relating covariates
to binary outcomes. To derive marginally meaningful parameters for the binary models in a joint
model, we adopt the marginal multilevel model due to Heagerty (1999; Heagerty and Zeger 2000)
and formulate a joint marginal multilevel model for two longitudinal responses. This enables to
(1) capture association between the two responses and (2) obtain parameter estimates that have
a population-averaged interpretation for both outcomes. The model is applied to two sets of
data. Results are compared with existing approaches such as generalized estimating equations
(GEE), GLMM, and the model of Heagerty (1999). Estimates were found to be very close to
those from single analysis per outcome but the joint model yields higher precision and allows
for quantifying the association between outcomes. Parameters were estimated using maximum
likelihood. The model is easy to fit using available tools such as the SAS NLMIXED procedure.

Keywords: Generalized estimating equation; Joint model; Marginal multilevel model; Maxi-
mum likelihood estimation; Random effects model; Shared-parameter model.

1 Introduction

Joint modeling has received massive attention in recent years, owing to researchers’ desire for more

insight into their data with a single statistical model. The reason to find this type of analysis is

because commonly researchers simultaneously record several kinds of outcomes in their studies. These

outcomes are often of a mixed nature. Prevalent examples are situations where a combination of

continuous, binary, ordinal, survival, and missing outcomes occurs. Continuous and binary outcomes

often appear in longitudinal studies where one observes follow up measurements on patients. For time-

to-event outcomes, patients are followed up until they experience an event of interest. Oftentimes,

because studies are conducted in humans, data are incomplete owing to dropout or other reasons for
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missingness. These issues requires careful attention.

Earlier, emphasis has been on separate analyses per outcome. Even in situations where joint analysis

of outcomes were required, relatively naive approaches had been used. For a single longitudinal or

survival outcome, we may be interested in finding out if a particular treatment has an effect on the

outcome. We may also want to know if the longitudinal evolution of an outcome differs for example

between males and females. Such questions could be addressed with well-known methods, such

as the Cox model for time-to-event outcomes or mixed-effect and marginal models for longitudinal

outcomes. This type of single analyses are limited in that they do not provide answers to questions

that take several or all outcomes simultaneously into account. Conducting a joint analysis allows

addressing additional scientifically relevant questions. For example, when one is interested in knowing

whether a new treatment could improve all outcomes simultaneously or in the measurement of the

association between the various responses and how this association evolves over time, a joint model

is advisable. Also, joint models are popular owing to the fact that they ensure unbiased statistical

inferences (Tsiatis, DeGruttola, and Wulfsohn 1995, Wulfsohn and Tsiatis 1997) in a variety of

settings. As mentioned earlier, though scientific interest may be in the longitudinal or survival

outcomes, we may also be required to accommodae incompleteness of measurements. Failure to do

so can lead to biased parameter and precision estimates (Prentice 1988). Another situation that

requires joint modeling techniques is when there is interest in improving predictions. For instance, to

improve the prediction of the probability of survival, one could usefully include all available outcomes.

There are several instances in the statistical literature where joint models have been adopted. For

example, in HIV/AIDS clinical trials, quality of life studies, cancer trials, etc., joint modeling of

survival and longitudinal data are commonly found (DeGruttola and Tu 1994; Clayton 1992; Tsiatis,

DeGruttola, and Wulfsohn 1995; Wulfsohn and Tsiatis 1997; Faucett and Thomas 1996) to assess

the association between both outcomes. An excellent review of various joint modeling approaches for

longitudinal and time to event data can be found in Tsiatis and Davidian (2004). These techniques

have been made flexible so that they can handle different types of longitudinal outcomes. Horrocks

and van den Heuvel (2009) used a joint longitudinal and GLM model, developed by Wang et al

(2000), to predict pregnancy in a group of women undergoing treatment for infertility, based on

longitudinal adhesion measurements. Li et al (2007) considered a semi-parametric joint model to

study the association between bone status in peri-menopausal women, being the primary endpoint,

and longitudinal hormone levels. Molenberghs and Verbeke (2005) discuss a number of techniques

that jointly model continuous and discrete outcomes. Other studies have employed joint models to

investigate how early measurements of a trial or an alternative outcome can be used as a surrogate for

the primary endpoint (Buyse and Molenberghs 1998; Burzykowski, Molenberghs, and Buyse 2005).

Consider a scientific study where the research interest is not only in the association between the

outcomes but also in the effect of some covariates on the outcomes and their interpretation. The

random effects approach to joint modeling uses random effects to capture the correlation between
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the outcomes, as well as within each longitudinal outcome (Laird and Ware 1982). It is generally

known that the parameter estimates from a linear mixed model have a marginal interpretation even

though a hierarchical formulation is employed. Such is not the case for the generalized linear mixed

model for non-Gaussian outcomes, where the generalized linear mixed model parameters have a

subject-specific interpretation. When continuous and binary or count longitudinal outcomes are

modeled jointly, it is obvious that parameters associated with the continuous outcome will have a

marginal interpretation while those for the non-Gaussian outcome will have their usual conditional

interpretation. It is therefore of interest to have a model where population-averaged interpretations

of the parameters are also available for the discrete outcomes. Heagerty (1999) proposed a now well-

established marginalized multilevel model by formulating a separate model for the marginal means

for a single binary outcome, which can depend on covariates only and another one for the conditional

means which is related to a term that links the marginal with conditional means and random effects.

In so doing, the model enjoys the various strengths of marginal and conditional modeling techniques.

Particularly, effects of covariates will have a direct marginal interpretation.

We followed the modeling concepts of Heagerty (1999) and formulated a joint model for two longitu-

dinal outcomes. The generalized linear mixed model component in a shared-parameter model and its

so-called hierarchical extensions was replaced by the model of Heagerty (1999). The proposed model

therefore has a marginal interpretation for fixed parameters of known covariates that are associated

to the binary outcome, it also enables inferences about the association between the outcomes. We

offered a brief review of models for correlated continuous and binary data. Full maximum likelihood

estimation with iterative numerical quadrature methods are adopted to obtain parameter estimates.

The remainder of the paper is organized as follows. We devote Section 2 to the introduction of two

datasets; these are analyzed in Section 5. Methodology for existing marginal and hierarchical models

for continuous and binary longitudinal outcomes are reviewed, and our proposed Joint Marginal

Multilevel Model (JOMMM) technique is presented in Section 3. The estimation method is the

subject of Section 4. Section 6 reports a simulation study undertaken to explore the performance of

the proposed method.

2 Case Studies

2.1 Serological HCV and HIV Data from Italy

This dataset is taken from an annual serological survey conducted between 1998 and 2006 from

20 regions in Italy. The study was conducted by the European Monitoring Center for Drugs and

Drug Addition (Mathei et al 2006). The data consist of hepatitis C virus (HCV) and human im-

munodeficiency virus (HIV) status and risk factors of drug users who made an appointment in the

drug treating center. Individual drug users data were not available but rather the total number of
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drug users who visited the facility each year and the number tested positive for HCV and HIV per

region. The resulting dataset is a sequence of binary outcomes for each of the 20 Italian regions

over the years. Not all regions are present at all years. Consider, for example, the HCV data. The

maximum number of respondents is 15,401 (average 3866.61), and the maximum of positive tests

is 10,875 (average 2578.12). The aim is to investigate the change in HCV over time, i.e., whether

year-effects are present in the profiles. Table 1 lists the overall HCV prevalence for each of the 20

regions. From these aggregated serological data, we can consider: (1) the evolution of each infection,

i.e., whether year-effects are present in the profiles, both at the regional and population levels; (2)

for each infection, the association between measurements taken over time; and (3) the association

between both infections at regional and population levels. Observed prevalence profiles are shown

in Figure 1. Unsurprisingly, the prevalence of HCV is seen to be higher than that for HIV. For both

infections, there apparently is much more between variability as opposed to within variability. This

is an indication of possible correlation between prevalence over time from the same region.

2.2 The Age Related Macular Degeneration Trial

The Age Related Macular Degeneration (ARMD) has been presented and studied by Buyse and

Molenberghs (1998) and Molenberghs and Verbeke (2005). Primary trial results have been reported

elsewhere (Pharmacological Therapy for Macular Degeneration Study Group 1997). The data re-

sulted as a product of a randomized multi-centric clinical trial for patients with ARMD, a condition

associated with progressive loss of vision in the elderly. The aim of the trial was to compare experi-

mental interferon-α to placebo. The outcome of the trial was the patients’ visual acuity, which was

measured at 4 follow-up visits (4, 12, 24, and 52 weeks). During each visit, patients were made to

read lines of letters on standardized vision charts and the total number of letters that were correctly

read was recorded as the patients’ visual acuity. Buyse and Molenberghs (1998) studied if patients’

performance at 6 months could be used as a surrogate for their performance at 1 year with respect

to the effect of the experimental treatment. They investigated whether the loss of vision of at least

2 lines at 6 months could serve as a surrogate for the loss of vision of at least 3 lines at 1 year. The

full longitudinal profile was subjected to analysis in Molenberghs and Verbeke (2005).

For our purposes, two different versions of visual acuity will be considered, namely (1) change in

visual acuity at the different time points, assumed to be normally distributed, after onset of treatment

and (2) a binary variable indicating whether or not there is loss of vision at the various visit periods

compared to when treatment started. While one outcome derives from the other, the setting is

relevant because the continuous sequence obviously is the directly obtained one, while the derived

binary sequence is often the one requested for regulatory purposes. It is then useful to assess the

connection between the results derived from both, in particular the association between them and

the correspondence between the treatment effect. Indeed, while there is a deterministic rule in

deriving the second from the first sequence, it is not clear whether this will automatically result in
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a treatment effect of the same magnitude; neither is it clear a priori what the correlation between

the two sequences will be. These issues can be addressed satisfactorily only in the context of a joint

model.

3 Methodology

3.1 Models for a Single Longitudinal Continuous Response

The hierarchical linear mixed model (LMM) and its corresponding marginal models are appropriate

statistical models for continuous hierarchical data, given that they duly acknowledge dependence

between observations within subjects, through the use of random effects. Assume that there are

i = 1, . . . , N subjects and j = 1, 2, . . . , ni follow-up continuous measurements Yij taken for each

subject. The LMM is specified as:

Yij = x′

ijβ + z′

ijbi + εij. (1)

This model involves two set of covariates xij and zij. The ni × p covariates xij are associated with

a p-dimensional vector of fixed-effects parameters β and the ni × q set of covariates zij associated

with the random effects bi ∼ N (0, D). In addition, εij ∼ N (0, Ri) represents the residual of

the jth observation on the ith subject. Given the random effects bi, the residuals εij are often

(but not always) assumed independent. The variance-covariance matrix D indicates the degree

of heterogeneity of subjects. When all dependent residuals are considered, a variety of covariance

structures are then possible for both D and Ri, such as unstructured, compound symmetry, and

first-order autoregressive matrices. Note that E(Yij) = E[E(Yij|bi)] = x′

ijβ and so marginal and

conditional parameters are equal.

Alternatively, one can postulate the following marginal model:

Yij = x′

ijβ + ε∗ij, (2)

with correlated residuals ε∗ij ∼ N (0, V ∗

i ). The marginal distribution of the response is then Yij ∼

N (x′

ijβ, V ∗

i ). In this case, correlation is taken into account through covariance parameters in V ∗

i .

Again, different specifications of the covariance structure can be imposed for the covariance V ∗

i as

mentioned above for D and Ri. It is well known that the marginal model resulting from (1) is a

special case of (2). The hierarchical linear mixed model therefore implies a specific marginal model

with ε∗ij ∼ N (0, V ∗

i ) where V i = ZiDZ′

i + Ri. A very important fact is that the implied marginal

model removes the positive definiteness restrictions on the D and Ri matrices, merely requiring

that V i be positive definite; thus, weaker restrictions on the covariance parameters apply (Verbeke

and Molenberghs 2003). Maximum likelihood (ML) and restricted maximum likelihood (REML) are

popular estimation methods for the mixed-model parameters (Laird and Ware 1982, Verbeke and

Molenberghs 2000). The latter is used to obtain less biased estimates of the covariance parameters
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(Patterson and Thompson 1971, Harville 1997, Cooper and Thompson 1977, Verbyla 1990). The EM

algorithm (Dempster, Laird and Rubin 1977) and Newton-Raphson-based procedures (Lindstrom and

Bates 1988) are common updating methods. These have been implemented in statistical packages

such as SAS and R. Bayesian alternatives are also available for estimation (Gelman et al 1995).

3.2 Models for a Single Longitudinal Binary Response

For correlated non-Gaussian outcomes, the generalized linear mixed model (GLMM) and generalized

estimating equations (GEE) are widely used statistical tools. The former is an extension to the

linear mixed model and the (univariate) generalized linear model (GLM). The GLMM is based upon

specifying a exponential-family distribution for the outcome, a link function, and a random-effect

structure. The model formulation for binary data will be discussed in Section 3.3. Unlike for their

continuous counterparts, the marginal and conditional means are not equal. For example, using a

logit link to relate covariates and random effects to the expectation of Yij,

E(Yij) = E[E(Yij|bi)] = E

[

exp(x′

ijα + z′

ijbi)

1 + exp(x′

ijα + z′

ijbi)

]

6=
exp(x′

ijα)

1 + exp(x′

ijα)
.

An alternative route is offered by a direct marginal specification. GEE was first introduced by Liang

and Zeger (1986; Zeger and Liang 1986). The approach extends GLM by allowing for correlation

within subject through a so-called working correlation matrix. Score equations are formulated and

solved. Commonly used working structures are independence, exchangeability, autoregressive, and

unstructured. As opposed to GLMM, GEE is a marginal model and so parameters have a marginal

interpretation. The main advantage of GEE is that even when the working correlation structure is

misspecified, parameter estimators are consistent and asymptotically normal. Empirically corrected

standard errors are unbiased. The methodology has been implemented in various packages. One

of it weaknesses lies in the fact that it is only valid under missing completely at random (MCAR)

and not when data are missing at random (MAR) (Diggle et al 2002). Also, it performs well only

with relatively large sample sizes, particularly for binary data. Evidently, it lacks a likelihood basis.

Extensions, based on inverse probability weighting, allow for MAR missingness (Fitzmaurice et al

2009). Details about GEE and its extensions can be found in Molenberghs and Verbeke (2005).

Heagerty (1999) and Heagerty and Zeger (2000) proposed the concept of a marginally specified

logistic-normal model for longitudinal binary data. This model brings together the strength of both

GEE and GLMM. For a binary outcome Yij, the model formulation is given by

η(µm
ij ) = x′

ijα
m,

η(µc
ij) = δij + z′

ijbi,

bi ∼ Fb (0, D) ,

Yij ∼ FY

(

µc
ij, υ

)

.
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A separate model for the marginal mean µm
ij = E(Yij) and the conditional mean µc

ij = E(Yij|bi) are

specified and linked together by δij , which is allowed to depend on covariates, marginal parameters,

and random-effect components. The term δij is obtained from the integral equation:

µm
ij = g(x′

ijα
m) =

∫

b
g(δij + z′

ijbi)dFb, (3)

where g(·) = η−1(·) is an inverse link function. When, for example, the link function is logit and the

distribution of the random effect is normal, then δij is obtained from

expit(x′

ijα
m) =

∫

b
expit(δij + z′

ijbi)f(bi)dbi.

where bi ∼ N (0, D). It is known from logistic-normal regression models that this integral has no

closed form solution. Therefore, an iterative numerical approximation may be required to execute

the integration. This is less than straightforward because another numerical integration is required

to obtain the marginal density from the conditional density. Griswold and Zeger (2004) extended

this model to allow for different link functions for the marginal and conditional model specification.

Therefore, instead of a logit-logit-normal model, we may specify a logit link for the marginal model

and a probit link for the conditional model. In this case, we will retain the odds ratio interpretation

of the marginal parameters while taking advantage of the computational ease emanating from the

probit-normal relationship. We then obtain a closed form expression for δij:

δij =
√

1 + z′

ijDzij · Φ
−1[expit(x′

ijα
m)].

with Φ−1 (·) the probit link function. Expressions for δij for other data types and their convenient

link functions can be found in Griswold and Zeger (2004). These authors also discuss maximum

likelihood estimation. Apart from combining both marginal and conditional parameter interpretation,

the models enjoys a likelihood basis and allows derivation of the the full probability distribution

for the response (Fitzmaurice and Laird 1993; Molenberghs and Lesaffre 1994). Heagerty and

Zeger (2000) demonstrated through a simulation study that parameters from this marginal multilevel

model (MMM) are less sensitive to random-effects assumptions than the conditional GLMM model.

Furthermore, the model produces valid inferences when data are missing at random (MAR).

3.3 Models for Joint Longitudinal Responses

Consider two longitudinal outcomes Y1ij and Y2ik, denoting the jth and kth measurement on the ith

subject for continuous and binary type outcomes, respectively, (i = 1, . . . , N , j = 1, 2, . . . , n1i, and

k = 1, 2, . . . , n2i). This means that we need to develop an appropriate model for the joint distribution

f(Y 1i, Y 2i) of the continuous vector Y 1i and binary vector Y 2i. An attractive joint modeling

technique is the shared-parameter model (Molenberghs and Verbeke 2005), where an unobserved

random variable is introduced, given which, the two outcomes are further assumed independent. In
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other words, the random effects are solely responsible for generating the association between the

outcomes.

We begin by formulating a linear mixed model for the continuous outcomes. This means that Y 1i

follows a linear mixed model of the type (1). Next to this, a generalized linear mixed model is

specified for the binary outcome. For Y2ik ∼ Bernoulli(µik), the expectation of Y2ik is related to

covariates and random effects through a known link function η(.) in the following way:

η(µik) = η [E(Y2ik|bi)] = x′

2ikα + Λz′

2ikbi. (4)

In our general notation, we will subscript the covariate vectors with ‘2’ for the binary sequence

and ‘1’ for the continuous sequence. The covariates can but do not have to have components in

common. The fixed-effects parameters β for the continuous outcome and α for the binary outcome

are kept separate because the type of response variable is different in the first place. Nevertheless, the

random effects bi have to be considered common because they are employed to generate both within-

and between-sequence association. Because of the aforementioned difference of scale, a (usually

diagonal) re-scaling matrix Λ is included in the GLMM; equivalently, it could be introduced into (1).

The parameter Λ allows us to have the random effects bi shared between the two outcomes, even

though the two outcome sequences are of a different type and can also have different measurement

units. Supposing the two outcomes are of binomial nature, two GLMM’s will be used with the scale

parameter Λ introduced in any of the models to relax the assumption of common variance between the

two outcomes. Because of the aforementioned conditional independence, the conditional joint density

of the two outcomes becomes the product of the density of the individual outcomes conditional on

the latent variable. Integrating out the random effect gives the marginal joint density. This shared-

parameter modeling approach is flexible and convenient. For instance, it is straightforward to have

different types of outcomes and very easy to postulate the model. Also, parameters in the joint model

will still have the same interpretation as in their corresponding univariate versions. Extensions to

very high dimensions are very straightforward as well, although it is important to choose sufficiently

efficient updating algorithms when implementing a parameter estimation routine.

The shared-parameter joint model however is known to suffer from some drawbacks. Notable among

them is that it imposes a specific kind of association between the responses. For example, in a random

intercept shared-parameter model for two continuous longitudinal outcomes, the random intercept

is used to capture the association in one outcome and at the same time in the other outcome and

so a particular association is imposed between the two outcomes. This can easily be dealt with by

what is known as the hierarchical or random effect approach where different random effects are used

for the different longitudinal profiles. For example, using a single random effect for the individual

response models, they can be expressed for two binomial outcomes as follows:

η(µ1ij) = x′

1ijβ + z′

1ijb1i, (5)

η(µ2ik) = x′

2ikα + z′

2ikb2i, (6)
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and further

bi = (b1i, b2i)
′ ∼ N









0

0



 ,





d11 d12

d12 d22







 . (7)

This implies that the random intercepts in (5) and (6) not only have their individual variances d11

and d22, respectively; they are also connected through the covariance d12. The conditional means

µ1ij = E(Y1ij|b1i) and µ2ik = E(Y2ik|b2i) are related to linear fixed and random factors through a

link function η(.). Similar to the shared-parameter model, given these random effects, the outcomes

are assumed to be independent of each other. If the random effects are assumed to be uncorrelated,

then the resulting model is equivalent to modeling the two outcomes separately using a generalized

linear mixed model. The joint marginal density can also be obtained by integrating out the two

random effects from the conditional independence model.

In our proposal, we replace (4) by Heagerty’s (1999) proposal. This yields what we refer to as a

joint marginalized multilevel model (JOMMM). The logit-probit normal version is adopted so that

analytical expressions can be derived for the joint distribution of the two responses. The new model

is completely spelled out for continuous and binary data as (1) combined with logit(µm
2ik) = x′

2ikα
m

and Φ−1(µc
2ik) = δik + w′

ikbi for a continuous and binary outcome.

Here, w′

ik is a vector of scale parameters and covariates (i.e., w′

ik = Λz′

2ik), µm
2ik = E(Y2ik = 1),

µc
ik = E(Y2ik = 1|bi) and δik =

√

1 + w′

ikDwik · Φ−1 {expit(x′

2ikα
m)}. We can derive the joint

marginal distribution by integrating out the random effect. Thus, the contribution of the ith subject

to the likelihood is given by

fi(Y 1i = yi, Y 2i = 1) =
1

(2π)
ni
2 |Ri|

1
2 |D|

1
2

× e
−

1
2

[

(yi−X1iβ)′R
−1

(yi−X1iβ)

]

×
∏

k

|D−1 + Z′

iRiZ1i + wikw
′

ik|
−

1
2









e
1
2

(

r2
2

4r1
−r3

)

r1

1
2









× Φ

[(

δik +
r2

2r1

)

r1

1
2

]

, (8)

where

r1 = r1(k) = I − w′

ik

[

(

D−1 + Z′

iRiZ1i + wikw′

ik

)

−1
]

′

wik,

r2 = r2(k) = w′

ik

[

(

D−1 + Z ′

iRiZ1i + wikw′

ik

)

−1
]

′

Q′,

r3 = r3(k) = −
1

4
Q

[

(

D−1 + Z′

iRiZ1i + wikw′

ik

)

−1
]

′

Q′,

Q =
[

(yi − X1iβ)′R−1
i Z1i + (yi − X1iβ)′(R−1

i )′Z1i

]

.
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For two longitudinal binary or binomial responses, the JOMMM is formulated by replacing each of

the two conditional models (5) and (6) in a joint model by the marginal and conditional model of

the MMM, where the same or different random effects are introduced in the conditional models for

the two outcomes.

4 Estimation

Parameters in the joint model are estimated using maximum likelihood, based on

L(β, αm, D) =
N
∏

i=1

fi(Y 1i = yi, Y 2i = 1).

Even though this analytical joint marginal likelihood can be maximized, it is cumbersome to manipu-

late. It is therefore more convenient to maximize the likelihood after employing numerical techniques,

rather than to integrate out the random-effects distribution. Gaussian and adaptive Gaussian quadra-

ture are designed for such purpose, up to a pre-specified level of accuracy (Pinheiro and Bates 1995,

2000). The standard errors of the parameter estimates are computed from the inverse Hessian ma-

trix (second derivatives) at the estimates obtained numerically. Major statistical tools, such as the

SAS procedure NLMIXED, are readily available for fitting the models specified in this paper. Other

estimation techniques are discussed in Molenberghs and Verbeke (2005) for discrete and in Verbeke

and Molenberghs (2000) for continuous outcomes.

5 Analysis of Case Studies

5.1 Analysis of the HCV and HIV Data

We begin by analyzing the serological survey data which collates the HCV and HIV status of drug

users. The prevalence sequence of these two infections will be modeled jointly to capture association

between them, as well as the association within a sequence over time. Suppose Y1ij and Y2ij are

the number of positive cases of HCV and HIV, each assumed to follow a binomial distribution with

probability of success µ1ij and µ2ij, respectively, and with n1ij and n2ij trials, for the ith region

at the jth year. We will begin by fitting to each outcome separately a GLMM model, GEE with a

compound symmetry working assumption, and a MMM. The purpose of these models is to make

comparisons between estimates from the hierarchical and the marginal models, the latter of which

has a population-averaged interpretation for the fixed effects. The mean structure of all models is of

the form: logit(µ1ij) = α0 +αjTij and logit(µ2ij) = β0 +βjTij, where Tij is a year indicator defined

as Tij = 1 if the measurement was taken in the jth year (j = 1, 2, . . . , 8) and 0 otherwise. Year 9

is taken as the reference year. The α and β parameters are the effect of time associated with the

prevalence of HCV and HIV, respectively. To capture the correlation inherent in the data, a random
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intercept is added to the conditional mean models. Thus,

η(µ1ij) = α0 + αjTij + b1i, η(µ2ij) = β0 + βjTij + b2i,

(b1i, b2i)
′ ∼ N









0

0



 ,





d11 d12

d12 d22







 .

Apart from separate models, GLMM and MMM, a shared parameter version of the joint hierarchical

model was formulated and fitted with the scale factor (λ) inserted into the HCV model.

As is expected, we observe from Table 2 that parameter estimates from the GLMM model are higher

in magnitude than those of the marginal models (Molenberghs and Verbeke 2005), precisely the

reason why MMM type models are considered. This is not surprising in the case of the HCV data

given that the random effect variance is small in the GLMM. Also for HCV, the GEE and MMM

model have similar estimates, albeit not in terms of their standard errors. The full likelihood MMM

model enjoys higher precision of parameter estimates. However, for HIV, due to the relatively high

random-effect variance, the GLMM and GEE estimates are quite more different, with the estimates

from the MMM lying in between.

To turn to the joint models, results of the various joint models are presented in Table 3. We observed

from these results that parameters associated with HCV and HIV in the joint models are similar to

those from the separate GLMM models with the former superior in terms of precision. Also, the joint

MMM models estimates are close in magnitude to the GEE and MMM models. These models have

a population average interpretation for the effect of time on the prevalence of HCV and HIV. The

magnitudes of the estimates from the joint hierarchical models again are higher than their marginal

counterparts. The correlated version of the joint model is fitting better than the shared parameter

models based on their log-likelihood or Akaike’s Information Criterion derived thereof.

Note that both the hierarchical as well as the marginalized model are of relevance. The former can

be used to derive regional prevalence, the latter corresponds to national prevalence. We observe that

the association is stronger within the HIV sequence than within the HCV sequence. Also, there is a

high correlation between the prevalence of both infections.

5.2 Analysis of the Age Related Macular Degeneration Trial

Results of fitting the various approaches to the longitudinal continuous visual acuity and the binary

vision-loss outcome in the ARMD data are presented. The covariate structure is maintained across

models, for ease of comparison. The models have an intercept and the effect of treatment at each

time point for both outcomes. Precisely, we assume the predictors to be: µ1ij = β0j + β1jTi and

logit(µ2ij) = α0j + α1jTi, where j = 1, 2, 3, 4 and Ti is treatment allocation. In the corresponding

conditional models, a random intercept, bi ∼ N (0, d), was used. The single marginal models were

fitted with a compound symmetry (exchangeable) variance or correlation structure. Also, the joint
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models were fitted using the shared-parameter model where the inflation factor (λ) was introduced

in the model for the continuous sequence. Results of all models fitted are presented in Table 4.

We observe from these results that parameter estimates and standard errors associated with the

continuous sequence are all similar. Therefore, whether or not a marginal or hierarchical formulation is

employed, parameters retain both their interpretation as well as their magnitude. In the few instances

where the standard errors are not exactly the same, the joint models are much more precise. On the

other hand, the story for the binary sequence is different. Observe that the GEE, MMM, and the joint

MMM models have marginal parameters that are numerically similar to each other, but that a higher

precision is observed for the estimates from the joint MMM model. Also note that the parameters

in the conditional models are not similar to those in the marginal models. This is not surprising

given that in the GLMM, the random effect variance was very high. These observations are also a

reflection of the fact that so-called marginally meaningful models are different from their hierarchical

counterparts in terms of parameter interpretation. Furthermore, the conditionally interpreted GLMM

has less similar parameters than those obtained from the joint hierarchical model. Due to these

differences in estimates, the resulting standard errors seem to suggest that there is higher precision

in the GLMM than the joint hierarchical model. This is, however, unwarranted. A close examination

of the relative precision defined as the ratio of the standard error of the estimates and the value

of the estimates reveals that the joint model yields higher relative precision than the single GLMM.

This is consistent with the marginal models, where relative precision also tends to favor the joint

marginalized multilevel model. In summary, our proposed joint marginal multilevel model, produces

parameter estimates similar to those of GEE and the MMM which gives an indication that the

JOMMM model parameters will indeed have a marginal interpretation. Finally, we again see the

benefit of joint modeling against separate analyses for each outcome in their precision estimates.

Those in the joint models tend to yield higher precision than those of the separate analyses.

6 Simulation Study

Further to the results from both case studies, a small simulation study was carried out. In the first

part of the simulation, data were generated from a joint marginalized multilevel model with correlated

random effects. The generating model for two Bernoulli outcomes was as follows:

logit(πm
1ij) = β0 + β1Ti × tij , Φ−1

(

πc
1ij

)

= δ1ij + b1i,

logit(πm
2ij) = α0 + α1Ti × tij , Φ−1

(

πc
2ij

)

= δ2ij + b2i,

with the random effects assumed to follow a normal distribution as in (7). Ti is a binary indicator for

treatment allocation and tij is the time at with the jth measurement for subject i is taken. The true

parameters were assumed to be (β0, β1, α0, α1, d11, d12, d22) = (3.8, 1.2, 2.4, 0.8, 1.22, 0.57, 1.56).

Three marginally specified models were fitted to each of the 500 generated datasets under varying
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number of subjects and measurement point per subject. Also, two treatment levels were used, in

the sense that two different treatments (e.g., active treatment and placebo) are compared. The

JOMMM with shared random effect, MMM, and GEE for each outcome are compared. From the

results presented in Table 5, we observed the semblance between the three models in terms of their

parameter estimates. In terms of relative precision, the effect of the shared joint MMM model is

not extremely pronounced when compared with the MMM model. However, the added advantage to

fitting such a joint model is the prospect of capturing the association arising from a joint collection

of outcomes in practice. The GEE with exchangeable working assumption was also found to have

parameter estimates rather close to the true.

In the second part of the simulation study, we investigated the performance of the shared JOMMM

model and the MMM model when a common treatment evolution is assumed (i.e., β1 = α1) for

the two longitudinal outcomes. The same simulation model above was used but with a common

treatment effect and different true model parameters. Each of the two models was fitted to 500

simulated datasets. Results are presented in Table 6. The true values employed are: β0 = 1.8,

β1 = −3.2, α0 = 2.4, α1 = −3.2, d11 = 1.22, and d22 = 1.56. One can observe from these results

that the shared joint MMM model reduced bias and increased precision when compared to the single

MMM models. Of course, the single MMM is only modestly biased in the first place. It is therefore

apparent to conclude that when the true treatment effect is common to the two outcomes, a single

analysis per outcome may fail to capture this effect accurately and precisely.

7 Concluding Remarks

We have shown that a joint longitudinal model can be formulated where all parameters enjoy a

marginal interpretation. This was achieved by incorporating the model of Heagerty (1999) into the

shared-parameter and hierarchical joint models used to jointly model two longitudinal outcomes.

Two analyses have been performed to show how these models are fitted. The resulting model at

the same time captures association between the two responses, and yields parameter estimates that

have a population-averaged interpretation for both outcomes. Estimates were found to be close to

those from single-outcome analyses but provided higher precision. The difference in precision could

affect inferences. Thus, it is important to make use of such joint modeling approaches, which tend to

provide unbiased and more precise estimates. Note that in both real data examples, only a random

intercept was used in the sub-models. This is not to say the model is merely restricted to one-

dimensional random effect. It is indeed possible to add as many random effects as it is practicable.

The user ought to be reminded that even for single response models, adding more random effects

increases the complexity of the model and thus difficult or impossible to fit in some cases. In terms

of implementation, the proposed method allows to efficiently make use of available resources, such

as the SAS procedure NLMIXED. Little additional coding effort is required; see the Appendix for the
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SAS code to the most complex of the models used to analyze the HCV and HIV data. The code is

available at the authors’ web pages.
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Table 1: HCV data. Overall prevalences of HCV per Italian region, 1998–2006.

Region Prevalence Region Prevalence

Abruzzo 0.56 Molise 0.67

Basilicata 0.66 Piemonte 0.73

Calabria 0.53 Puglia 0.59

Campania 0.44 Sardegna 0.80

Emilia Romagna 0.84 Sicilia 0.61

Friuli Venezia Giulia 0.75 Toscana 0.68

Lazio 0.64 Trentino Alto Adige 0.86

Liguria 0.77 Umbria 0.63

Lombardia 0.68 Valle d’Aosta 0.48

Marche 0.62 Veneto 0.66

Table 2: Independent models for HIV and HCV prevalence in Italy. Parameter estimates (standard

errors). RE: random effect.

Hierarchical models Marginal models

GLMM GEE MMM

Effect Par. HCV HIV HCV HIV HCV HIV

Intercept α0, β0 0.5921(0.1124) -2.1293(0.1839) 0.5088(0.1487) -2.1474(0.2278) 0.5586(0.1049) -1.9018(0.1716)

Time 1 α1, β1 0.2226(0.0111) 0.0197(0.0156) 0.2268(0.0796) 0.1180(0.1429) 0.2074(0.0110) 0.0283(0.0148)

Time 2 α2, β2 0.2091(0.0111) -0.0283(0.0159) 0.2132(0.0685) 0.0519(0.1536) 0.1976(0.0110) -0.0110(0.0151)

Time 3 α3, β3 0.2878(0.0111) 0.0432(0.0159) 0.2864(0.0629) 0.1064(0.1372) 0.2748(0.0114) 0.0417(0.0151)

Time 4 α4, β4 0.1792(0.0109) -0.0035(0.0159) 0.1800(0.0574) 0.0507(0.1179) 0.1694(0.0107) 0.0021(0.0150)

Time 5 α5, β5 0.1060(0.0108) -0.0081(0.0160) 0.1143(0.0531) 0.0410(0.1407) 0.1013(0.0104) -0.0078(0.0151)

Time 6 α6, β6 0.1138(0.0107) -0.0423(0.0161) 0.1199(0.0521) -0.0006(0.1270) 0.1091(0.0103) -0.0402(0.0153)

Time 7 α7, β7 0.0722(0.0107) -0.0443(0.0163) 0.0692(0.0545) -0.0268(0.1072) 0.0704(0.0102) -0.0433(0.0155)

Time 8 α8, β8 -0.0369(0.0108) -0.0776(0.0164) -0.0276(0.0314) -0.0494(0.0885) -0.0350(0.0103) -0.0742(0.0158)

RE Var. d 0.2514(0.0796) 0.6710(0.2149) 0.0902(0.0286) 0.1802(0.05743)

Corr. ρ 0.8377 0.9066

-2 log-likelihood 9973 9987
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Table 3: Joint models of HIV and HCV prevalence in Italy. Parameter estimates (standard errors).

RE: random effect.

Joint hierarchical models Joint marginalized multilevel model

Shared RE Correlated RE Shared RE Correlated RE

Effect Par. HCV HIV HCV HIV HCV HIV HCV HIV

Intercept α0, β0 0.5033 -1.9939 0.5909 -2.1249 0.4839 -1.8833 0.5574 -1.9008

(0.0902) (0.1741) (0.1125) (0.1823) (0.0895) (0.1684) (0.1050) (0.1708)

Time 1 α1, β1 0.2044 0.0193 0.2226 0.0110 0.1943 0.0337 0.2073 0.0284

(0.0110) (0.0155) (0.0111) (0.0156) (0.0108) (0.0154) (0.0110) (0.0148)

Time 2 α2, β2 0.1909 -0.0226 0.2091 -0.0283 0.1831 -0.0121 0.1976 -0.0199

(0.0110) (0.0159) (0.0111) (0.0159) (0.0108) (0.0158) (0.0110) (0.0151)

Time 3 α3, β3 0.2734 0.0477 0.2878 0.0433 0.2629 0.0496 0.2747 0.0417

(0.0110) (0.0159) (0.0111) (0.0159) (0.0110) (0.0158) (0.0114) (0.0151)

Time 4 α4, β4 0.1669 -0.0007 0.1792 -0.0034 0.1592 0.0077 0.1693 0.0022

(0.0108) (0.0158) (0.0109) (0.0159) (0.0105) (0.0157) (0.0107) (0.0150)

Time 5 α5, β5 0.1008 -0.0069 0.1060 -0.0080 0.0974 -0.0042 0.1013 -0.0077

(0.0107) (0.0159) (0.0108) (0.0160) (0.0103) (0.0158) (0.0104) (0.0151)

Time 6 α6, β6 0.1086 -0.0390 0.1138 -0.0422 0.1048 -0.0361 0.1091 -0.0401

(0.0107) (0.0160) (0.0107) (0.0161) (0.0103) (0.0160) (0.0103) (0.0153)

Time 7 α7, β7 0.0685 -0.0417 0.0722 -0.0443 0.0673 -0.0406 0.0704 -0.0433

(0.0106) (0.0163) (0.0107) (0.0163) (0.0102) (0.0162) (0.0102) (0.0155)

Time 8 α8, β8 -0.0426 -0.0750 -0.0369 -0.0776 -0.0403 -0.0737 -0.0350 -0.0743

(0.0108) (0.0164) (0.0108) (0.0164) (0.0103) (0.0164) (0.0103) (0.0158)

Scale λ 1.9338 1.6222

(0.0176) (0.0137)

RE Var. d 0.1613 0.2517 0.6589 0.0646 0.0903 0.1784

( 0.0511 ) (0.0798) (0.2107) (0.0205) (0.0286) (0.0568 )

Corr. ρ 0.7868 0.7906

(0.0862) (0.0846)

-2 log-likelihood 17181 9954 17221 9967
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Table 4: The Age Related Macular Degeneration Trial: Comparison of joint and separate models for

continuous and binary visual acuity sequences. Parameter estimates (standard errors). RE: random

effect.

Continuous sequence Binary sequence

(1) (2) (6) (7) (3) (4) (5) (6) (7)

Marg. Sep. Joint Joint Joint Joint

Effect Par. Corr. hier. hier. MMM GEE GLMM MMM hier. MMM

Int. 4 β04, α04 -3.2353 -3.2526 -3.2675 -3.2682 1.0151 1.7424 0.9965 2.0111 1.0346

(0.8074) (1.2968) (1.2964) (1.2964) (0.2442) (0.4204) (0.2375) (0.4625) (0.2326)

Int. 12 β0,12, α0,12 -4.6207 -4.6207 -4.6207 -4.6207 0.9083 1.5610 0.9103 1.8151 0.9280

(1.0707) (1.2922) (1.2922) (1.2922) (0.2369) (0.4108) (0.2372) (0.4535) (0.2307)

Int. 24 β0,24, α0,24 -8.3678 -8.3678 -8.3678 -8.3678 1.1451 1.9534 1.1496 2.2375 1.1648

(1.2634) (1.2922) (1.2922) (1.2922) (0.2505) (0.4294) (0.2515) (0.4707) (0.2454)

Int. 52 β0,52, α0,52 -15.1609 -15.1609 -15.1609 -15.1609 1.6514 2.7633 1.6308 3.1073 1.6296

(1.6414) (1.2922) (1.2922) (1.2922) (0.2918) (0.4805) (0.2867) (0.5200) (0.2792)

Trt. 4 β0,4, α0,4 2.3323 2.3356 2.3864 2.3858 -0.4187 -0.6724 -0.3732 -0.6879 -0.3568

(1.0551) (1.7609) (1.7602) (1.7603) (0.3198) (0.5395) (0.3143) (0.5922) (0.3045)

Trt. 12 β0,12, α0,12 2.3391 2.3391 2.3391 2.3391 -0.5351 -0.8769 -0.5120 -0.9260 -0.4774

(1.5220) (1.7551) (1.7551) (1.7551) (0.3104) (0.5305) (0.3114) (0.5851) (0.3036)

Trt. 24 β0,24, α0,24 2.8338 2.8338 2.8338 2.8338 -0.5240 -0.8392 -0.5013 -0.8757 -0.4686

(1.8422) (1.7551) (1.7551) (1.7551) (0.3248) (0.5442) (0.3260) (0.5956) (0.3176)

Trt. 52 β0,52, α0,52 4.1221 4.1221 4.1221 4.1221 -0.4049 -0.6077 -0.3651 -0.6214 -0.3382

(2.3078) (1.7551) (1.7551) (1.7551) (0.3756) (0.5922) (0.3689) (0.6376) (0.3556)

Res. Var. σ2 - 70.9225 67.4893 67.7113 - - - - -

(4.2076) (3.8163) (3.8292)

RE Var. d - 74.3544 - - - 4.7951 1.5858 - -

(9.5060) (1.1643) (0.3712)

Inflation λ - - -3.3122 -5.8694 - - - - -

(0.3379) (0.5697)

-2 log-likelihood 5480.73 5168.5 - - - 773.4 773.4 - -

Common parameters in joint models

(6) (7)

RE Var. d 7.0905 2.2515

(1.5485) (0.4695)

- 2log-likelihood 5744.7 5744.6
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Table 5: Simulation Study. Results comparing shared JOMMM, MMM, and GEE, based on 500

simulations. (Relative precision: ratio of standard error to estimate; Relative bias: ratio of bias to

parameter value.)

Shared JOMMM MMM GEE

Rel. Rel. Rel. Rel. Rel. Rel.

N Par. Estimates Bias Precision Estimates Bias Precision Estimates Bias Precision

For 5 time points

200 β0 3.7513 -0.01 0.109 3.8112 0.00 0.105 3.7880 -0.00 0.102

β1 1.0879 -0.09 0.605 1.0570 -0.12 0.614 1.0663 -0.11 0.465

α0 2.3944 -0.00 0.102 2.4037 0.00 0.102 2.3955 -0.00 0.101

α1 0.9084 0.14 0.331 0.9331 0.17 0.328 0.9368 0.17 0.304

d11 1.3285 0.09 0.423 1.0953 -0.10 0.502

d22 1.5643 0.00 0.214

λ 1.3986 0.474

500 β0 3.8182 0.01 0.069 3.8083 0.00 0.069 3.8183 0.01 0.068

β1 1.3073 0.09 0.407 1.3142 0.10 0.405 1.2912 0.08 0.374

α0 2.3996 -0.00 0.064 2.4004 0.00 0.064 2.4054 0.00 0.064

α1 0.8502 0.06 0.204 0.845 0.06 0.204 0.8328 0.04 0.207

d11 1.2514 0.03 0.251 1.2511 0.03 0.251

d22 1.5618 0.00 0.131

λ 1.3216 0.283

For 15 time points

200 β0 3.8146 0.00 0.093 3.7905 -0.00 0.091 3.7569 -0.01 0.090

β1 1.0437 -0.13 0.558 1.0954 -0.09 0.561 1.1025 -0.08 0.446

α0 2.4076 0.00 0.093 2.4035 0.00 0.093 2.4106 0.00 0.092

α1 0.8845 0.11 0.299 0.9097 0.14 0.300 0.8239 0.03 0.301

d11 1.2455 0.02 0.255 1.2233 0.00 0.261

d22 1.554 -0.00 0.152

λ 1.353 0.298

500 β0 3.8222 0.01 0.058 3.8075 0.00 0.058 3.8336 0.01 0.057

β1 1.253 0.04 0.383 1.3351 0.11 0.391 1.104 -0.08 0.342

α0 2.4031 0.00 0.059 2.3992 -0.00 0.059 2.3745 -0.01 0.060

α1 0.8515 0.06 0.188 0.8494 0.06 0.188 0.8497 0.06 0.208

d11 1.2056 -0.01 0.153 1.2242 0.00 0.153

d22 1.5747 0.01 0.095

λ 1.3293 0.181
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Table 6: Simulation Study. Results comparing shared JOMMM and MMM when a common treat-

ment evolution is assumed based on 500 simulations. (Relative precision: ratio of standard error to

estimate; Relative bias: ratio of bias to parameter value.)

Shared JOMMM MMM

Rel. Rel. Rel. Rel.

N Par. Estimates Bias Precision Estimates Bias Precision

For 5 time points

200 β0 1.8030 0.00 0.098 1.8415 0.02 0.107

β1 -3.2247 0.01 -0.066 -3.2623 0.02 -0.092

α0 2.4121 0.01 0.088 2.4448 0.02 0.102

α1 -3.2475 0.02 -0.092

σ11 1.2336 0.01 0.178 1.2234 0.00 0.180

σ22 1.5367 -0.02 0.224

λ 1.3538 0.278

500 β0 1.8132 0.01 0.0615 1.8015 0.00 0.068

β1 -3.2157 0.01 -0.0414 -3.2164 0.01 -0.059

α0 2.4103 0.00 0.0553 2.4205 0.01 0.065

α1 -3.2381 0.01 -0.059

σ11 1.2272 0.01 0.1106 1.2354 0.01 0.111

σ22 1.5686 0.01 0.137

λ 1.2923 0.1735

For 20 time points

200 β0 1.8165 0.01 0.088 1.8111 0.01 0.096

β1 -3.2331 0.01 -0.063 -3.2388 0.01 -0.089

α0 2.4199 0.01 0.081 2.4363 0.02 0.093

α1 -3.2474 0.02 -0.088

σ11 1.2172 -0.00 0.114 1.2145 -0.01 0.116

σ22 1.5599 0.00 0.147

λ 1.3004 0.181

500 β0 1.8029 0.00 0.056 1.8241 0.01 0.060

β1 -3.2042 0.00 -0.040 -3.2417 0.01 -0.056

α0 2.4008 0.00 0.052 2.4202 0.01 0.059

α1 -3.2284 0.01 -0.056

σ11 1.2127 -0.01 0.072 1.2116 -0.01 0.073

σ22 1.565 0.00 0.093

λ 1.2938 0.113
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Figure 1: HCV and HIV data. Region-specific prevalence profiles, 1998–2006.
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Appendix

A SAS Code

A.1 Joint Hierarchical Model with Correlated Random Effects for the HCV and HIV Data

proc nlmixed data=italy.nlmdata qpoints=10 maxiter=100 technique=newrap;

title ’Unstructured means - correlated’;

parms alpha0=0.59 alpha1=0.22 alpha2=0.21 alpha3=0.29 alpha4=0.18 alpha5=0.11

alpha6=0.11 alpha7=0.07 alpha8=-0.04

beta0=-2.39 beta1=0.27 beta2=0.13 beta3=0.15 beta4=0.08 beta5=0.04

beta6=0.01 beta7=-0.07 beta8=-0.02 var1=0.25

var2=0.57 cov12=0.3;

if hcv=1 then do;

eta = alpha0+alpha1*time1+alpha2*time2+alpha3*time3+alpha4*time4+alpha5*time5

+alpha6*time6+alpha7*time7+alpha8*time8+a;

p = exp(eta)/(1+exp(eta));

end;

if hiv=1 then do;

eta = beta0+beta1*time1+beta2*time2+beta3*time3+beta4*time4+beta5*time5+beta6*time6

+beta7*time7+beta8*time8+b;

p = exp(eta)/(1+exp(eta));

end;

model events ~ binomial(trials,p);

random a b ~ normal([0,0],[var1,cov12,var2]) subject=geoarea;

estimate ’rho’ cov12/(sqrt(var1)*sqrt(var2));

run;

A.2 Joint Marginal Multilevel Model with Correlated Random Effects for the HCV and

HIV Data

proc nlmixed data=italy.nlmdata qpoints=10 maxiter=100 technique=newrap;

title ’Unstructured means - fixed effects’;

parms alpha0=0.59 alpha1=0.22 alpha2=0.21 alpha3=0.29 alpha4=0.18 alpha5=0.11

alpha6=0.11 alpha7=0.07 alpha8=-0.04

beta0=-2.39 beta1=0.27 beta2=0.13 beta3=0.15 beta4=0.08 beta5=0.04

beta6=0.01 beta7=-0.07 beta8=-0.02 var1=0.25
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var2=0.57 cov12=0.3;

if hcv=1 then do;

eta = alpha0+alpha1*time1+alpha2*time2+alpha3*time3+alpha4*time4+alpha5*time5

+alpha6*time6+alpha7*time7+alpha8*time8;

pim = exp(eta)/(1+exp(eta));

delta = sqrt(1+(var1)) * probit(pim);

pic = probnorm(delta+a);

ll=lgamma(trials+1)-lgamma(trials-events+1)-lgamma(events+1)+events*log(pic)

+(trials-events)*log(1-pic) ;

end;

if hiv=1 then do;

eta = beta0+beta1*time1+beta2*time2+beta3*time3+beta4*time4+beta5*time5

+beta6*time6+beta7*time7+beta8*time8;

pim = exp(eta)/(1+exp(eta));

delta = sqrt(1+(var2)) * probit(pim);

pic = probnorm(delta+b);

ll=lgamma(trials+1)-lgamma(trials-events+1)-lgamma(events+1)+events*log(pic)

+(trials-events)*log(1-pic) ;

end;

model events~general(ll);

random a b ~ normal([0,0],[var1,cov12,var2]) subject=geoarea;

estimate ’rho’ cov12/(sqrt(var1)*sqrt(var2));

run;
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