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Abstract

The aim of this paper is to propose a multilevel combined model for repeated, hierarchical,
and overdispersed time-to-event outcomes, extending the so-called combined model proposed by
Molenberghs et al (2010), and using three different estimation strategies: full likelihood, pseudo-
likelihood, and Bayesian estimation. For the first two estimation methods, we implemented the
Alternating Imputation Posterior (AIP) algorithm (Clayton and Rasbash, 1999). It is shown
that the multilevel combined model can be fitted nicely using all three estimation methods. In
addition, the multilevel combined model has the advantage that it not only can capture the
hierarchical structure of the data but also can accommodate overdispersion within the dataset.
From our simulation results, it follows that the multilevel combined model performs well in terms
of point estimation and its precision, fitted with the three different estimation methods. We also
observed that pairwise likelihood estimation, a particular form of pseudo-likelihood, is more time-
intensive than full likelihood and Bayesian estimation. However, pseudo-likelihood estimation is
less sensitive to starting values.

Some Keywords: Bayesian estimation; Combined model; Maximum likelihood; Multilevel
model; Pairwise likelihood; Random-effects model; Weibull distribution.

1 Introduction

The substantial growth in use of time-to-event outcomes started when Cox’s proportional hazard
model (Cox, 1972) was introduced; it has become the most popular model used in this context.
While popular, it is not without limitations and hence a variety of extensions have been proposed.
One of its basic assumption is independence between the survival times. In case there is possible
association induced by multiple observations on the same patient, or in general on the same unit,
the model tends to incorrectly estimate precision.

Building upon standard generalized linear models (Nelder and Wedderburn, 1972; McCullagh and
Nelder, 1989), there have been extensions towards accommodating the hierarchical structure for
repeated survival outcomes via frailties and/or random effects. A regression model with frailty was
fitted for repeated measures of recurrent times in McGilchrist and Aisbett (1991). Sargent (1998)
introduced a general framework for random-effects survival data within the Cox proportional hazard
tradition, the so-called hierarchical Cox model. O’Quigley and Stare (2002) discussed the concepts
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underlying the development of frailties and random-effects models in survival. A nice frailty-model
summary is offered in Duchateau and Janssen (2008). Simultaneously, Hinde and Demétrio (1998)
addressed overdispersion. Building upon these strands of research, Molenberghs et al (2010) defined
a broad modeling framework for exponential models to accommodate overdispersion and correlation in
repeated, overdispersed binary, count, and time-to-event outcomes. The authors combined so-called
conjugate random effects for overdispersion with generalized linear mixed model concepts (GLMM,
Engel and Keen (1994), Breslow and Clayton (1993), Wolfinger and O’Connell (1993)) for between-
subject effects. For simplicity, the model is merely called combined model. A combined survival-type
model is presented in Molenberghs et al (2011), where also censorship is allowed for. These authors
also supplemented the model-fitting tool box with a method based on pairwise likelihood.

Research on hierarchical or, equivalently, multilevel models is gaining popularity, whether in the
survival-data setting or beyond. Such models allow for both longitudinal as well as clustered aspects
in the data. This broad umbrella makes the model versatile and widely applicable. For instance, in
clinical trials, patients often come from various centers, hospitals, regions, or countries, and/or are
followed up repeatedly over time. Yau (2001) described a method for modeling survival data with
random effects following the approach by McGilchrist (1993) and generalized the estimation procedure
to models with arbitrary number of levels. Wang et al (2007) incorporated two random components
in the survival frailty model to simultaneously account for heterogeneity between centers and for the
within-patient autoregressive structure. In terms of the frailty distribution, recently Kim and Dey
(2008), rather than using gamma-distributed frailties, developed a class of heavy-tailed distributions.
They fitted frailty models to multilevel survival data and employed Bayesian estimation. Overall,
the aforementioned multilevel models mentioned so far accommodate an individual or a cluster level
effect through frailties or random effects. Our goal is to formulate and fit a multilevel survival model
by following the approach of Molenberghs et al (2011), so as to accommodate the hierarchical data
structure of the data through normal random effects and overdispersion through conjugate random
effects, often also called frailties. We offer three estimation strategies: maximum likelihood, pairwise
likelihood, and Bayesian estimation. Having several tools is useful, especially when different analyses
produce rather different point and interval estimates (Browne and Draper, 2002).

The rest of the article is organized as follows. In Section 2, two motivating case studies are described,
with their analyses reported in Section 5. The proposed combined model is described and further
studied in Section 3. The estimation strategies will be presented in Section 4. Section 6 describes
design and results of a simulation study.

2 Motivating Case Studies

2.1 Comet Assay Data

A comet assay, a common name for the single cell gel electrophoresis assay, is an easy-to-perform
and sensitive technique for the detection of DNA damage at the level of the individual eukaryotic
cell. Specifically, the data presented in this paper refer to four groups of six male rats that received
a daily oral dose of a compound in three dose levels (low, medium, high) or vehicle control. On
the day of necropsy, an extra group of three animals received a single dose of a positive control
(200 mg/kg ethyl methanesulfonate, EMS, PC). The animals were sacrificed three hours after the
last dose administration, their liver removed and processed for the comet assay. A cell suspension
was prepared for each animal, from each of which three replicate samples were prepared for scoring.
There are 50 randomly selected non-overlapping cells per sample, scored for DNA damage using a
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semi-automated scoring system. A total of 150 liver cells per animal were scored. DNA damage
was assessed through the software system by measuring tail migration, percentage of tail intensity,
and tail moment. We are focusing in this paper on the tail intensity percentage measurement. It
is the percentage of DNA fragments present in the tail. The resulting data present themselves in
a multilevel structure where a cell suspension or slide, containing three replicate samples, is nested
within an animal.

2.2 Cardiovascular Health Study Data

These data encompass study endpoint events which occurred prior to July 1, 2002 and include all
incident and recurrent MI, angina, CHF, stroke, TIA, and claudication events and all deaths through
June 30, 2002. The study involves recurrent events with respect to a particular type of event. This
is dealing with intra subject correlation; multiple events recorded per subject. Futhermore, there are
eleven types of event: no event, TIA, MI, angioplasty, angina, coronary artery bypass surgery, stroke,
other deaths (non-CHD), CHF, ECG MI (silent), claudication, and other CHD deaths. Additionally,
there are 5772 patients or participants involved in the study, 3416 (59%) with a single observation
from one event type. Among patients with more than one observation, 742 have two observations and
471 have three. Every event constitutes are record and participants without events are represented
by means of single record spelling out that fact. Event-independent covariates, such as age, body
mass index, hypertension, death, are repeated in every record for that particular patient.

3 Methodology

We briefly present and build upon the combined model of Molenberghs et al (2010) and Ghebretinsae
et al (2011). Ample detail can be found there. The combined model brings together two sets of
random effects. One set of random effects, usually normally distributed, accounts for the hierarchical
structure of the data while the other, often conjugate random effects, is used for accommodating
overdispersion. We build upon this concept for the context of survival data, in a hierarchical context,
where the hierarchy is made up of repeated events and other types of clustering, simultaneously.
Non-informative censoring is allowed for. It can take the form of right-, left-, and interval censoring.
Details are given in Section 4.1. Precisely, the model is specified as:

Yij |bi, θij ∼ Weibull(ρ, kij), (1)

kij = λθije
x′

ijξ+z′
ijbi , (2)

bi ∼ N(0, D), (3)

θij ∼ Gamma(α, β). (4)

with Yij the time-to-event outcome of individual i and observation j. The model extends the general
survival model with random effects in the Cox proportional hazard setting (Sargent, 1998), where
κij is the GLMM component with bi normally distributed random effects, λ the shape parameter
of the Weibull distribution, and ρ its scale parameter. The conjugate random effects, θij , follow a
Gamma distribution with parameters α and β.

Up to here, the model allows for one hierarchical level only. This falls short of analyzing the comet
assay data. For these, it is necessary to extend (1)–(4) by including an additional normal random
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effect to account for sub-cluster (slide) with cluster (animal). The model becomes:

Yi1i2i3 |bi1 , bi1i2 , θi1i2i3 ∼ Weibull(ρ, ki1i2), (5)

ki1i2i3 = λθi1i2i3e
x′

i1i2i3
ξ+z′

i1i2
bi1

+z′
i1i2i3

bi1i2 , (6)

bi1 ∼ N(0, D1), (7)

bi1i2 ∼ N(0, D2), (8)

θijk ∼ Gamma(α, β). (9)

The extended notation is straightforward. Let us term this the Weibull-gamma-normal-normal model.
To ensure identifiability, it is common to impose αβ ≡ 1, in both (4) and (9). The two-cluster-level
model (5)–(9), is one of four possible hierarchical overdispersed non-Gaussian models, proposed in
Ghebretinsae et al (2011) for comet data.

We can easily extend model (5)–(9) to a more complex combined model for m cluster levels, with
additionally presence of overdispersion. Evidently, while such model is useful in practice and easy to
write down, estimation will become increasingly complex with growing m. Therefore, we propose to
make use of Alternating Imputation Posterior (AIP), introduced by Clayton and Rasbash (1999) and
further studied by Ecochard and Clayton (2002). Suppose we have a general multilevel combined
model with m cluster levels:

Yi1i2...im |bi1 , bi1i2 , . . . , bi1i2...im−1 , θi1i2...im ∼ Weibull(ρ, ki1i2...im), (10)

ki1i2...im = λθi1i2...im exp
(
x′

i1i2...imξi1i2...im +
∑m

`=1 zi1...ı`bi1...i`

)
. (11)

The θi1i2...im are Gamma distributed, whereas all bi1...i` ∼ N(0, D`). Using the AIP algorithm, the
model can be partitioned such that, for ` = 1, · · · ,m, the jth order random-effects structure is fitted
by considering

o(j) = exp

∑
` 6=j

zi1...ı`bi1...i`


a known offset. At the tth iteration, the following steps are carried out, for each ` = 1, . . . ,m:

1. Fit the jth nested sub-model using the offset o(j) calculated from current values of the random
effects.

2. Sample the model parameters from an approximation to their joint posterior distribution
[ξ|y,x, o(j)].

3. Sample bi1...ij from [bi1...ij |y,x, o(j)], which is normally distributed.

The AIP has been implemented in both a sequential as well as a parallel fashion (Ecochard and
Clayton, 2002). The overall estimate (ξ, b) is the mean of the estimates at each step, whereas its
variance is the mean of the variances plus the variance of the estimates, using the law of iterated
expectations. Note that our method follows the principles laid out in (Ecochard and Clayton, 2002,
page 327), using their so-called alternative proposal, where a Gaussian approximation is obtained
using Rao-Blackwellization.
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4 Estimation Strategies

Within each AIP set, the model needs to be fitted. This can be done using the three distinct
strategies of full likelihood, pairwise likelihood, and Bayesian nature, respectively.

4.1 Maximum Likelihood Estimation

Within each AIP step, we fit a combined model with one normally distributed random effect as well
as a conjugate random effect. A closed-form expression, useful for maximum likelihood estimation,
is given in Molenberghs et al (2011), and using the partial marginalization of Molenberghs et al
(2010). The idea behind this is to integrate the conditional density over the gamma random effects
only, leaving the normal random effects in the density function. For the Weibull case, using two
levels, this produces:

f(yij |bi) =
λκije

µijρyρ−1
ij αjβj

(1 + λκijeµijβjy
ρ
ij)

αj+1 . (12)

The same approach is followed when censoring occurs, simply by integrating (12) over the interval
[0, Cij ] in the right-censored case:

f(Cij |bi) =
∫ +∞

Cij

f(yij |bi)dyij =
1

(1 + λκijeµijCρ
ij)

αj
. (13)

Left- and interval-censoring are handled analogously.

It is then straightforward to obtain the fully marginalized probability by numerically integrating the
normal random effects out of (12) for the uncensored cases and (13) for the right-censored cases,
using a common statistical tool, e.g., the SAS procedure NLMIXED.

4.2 Pairwise Likelihood Estimation

As an alternative to full likelihood, we use so-called pairwise likelihood (Renard, Molenberghs, and
Geys, 2004). Such an approach can alleviate the cumbersome nature of the joint model expressions
needed for full likelihood, especially when there is a lot of within-cluster replication. le Cessie and
van Houwelingen (1991) and Geys, Molenberghs, and Ryan (1999) replace the proper contribution
of a vector of correlated binary data to the full likelihood, written as f(yi1, . . . , yini), by the product
of all pairwise contributions f(yij , yik) (1 ≤ j < k ≤ ni), to obtain a so-called pseudo-likelihood
function. Grouping the outcomes for subject i into a vector Y i, the contribution of the ith cluster
to the log pseudo-likelihood is:

p`i =
∑
j<k

ln f(yij , yik).

This is evidently only for units with more than one observations. Otherwise, p`i = f(yi1) is to
be used. Pairwise likelihood is a special case of pseudo-likelihood, studied in detail in Arnold and
Strauss (1991) and Molenberghs and Verbeke (2005). When it comes to implementation, the ideas
of maximum likelihood are used, but applied to the pairs rather than to the full set of measurements
for a particular unit. This creates a problem for precision estimation, but using standard sandwich-
estimator ideas, a consistent estimate of the variance-covariance matrix of the estimated parameters
can easily be obtained Molenberghs and Verbeke (2005).
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4.3 Bayesian Estimation

Unlike with maximum and pairwise likelihood, Bayesian estimation does not combine with AIP.
Rather, direct implementation is possible using standard statistical programs such as Winbugs,
R2Winbugs, and R2jags. These packages allow for Monte Carlo Markov Chain based integration
over multiple random effects (Browne and Draper, 2002).

Consider fitting Weibull-gamma-normal-normal model (5)–(9). In the context of the comet assay
data, Yi1i2i3 represents tail intensity, in particular the i3th (i3 = 1, · · · , 50) measurement in the i2th
slide (i2 = 1, 2, 3) from the i1th animal (i1 = 1, · · · , 27). The model can be expressed in the form
(5), with

ki1i2i3 = λθi1i2i3e
ξ1x1i1i2i3

+ξ2x2ij`+ξ3x3i1i2i3
+ξ4x4i1i2i3

+ba,i1
+bs,i1i2 , (14)

where θi1i2i3 ∼ Gamma(α, β), ba,i1 ∼ N(0, d1) and bs,i1i2 ∼ N(0, d2). θi1i2i3 is the conjugate
random effect, ba,i1 is the random intercept corresponding to the animal specific effect, and bs,i1i2 is
the random intercept that corresponds to the slide effect i2 within animal i1. Furthermore, x1i1i2i3 ,
x2i1i2i3 , x3i1i2i3 , and x4i1i2i3 are indicators for the dose given to the animals.

5 Data Analysis

Both sets of data introduced in Section 2 will be analyzed using model (14), by means of all three
estimation methods detailed in Section 4.

The overdispersion parameter α is relatively difficult to estimate, due to the large number of 50
observations per slide, compared to only 3 slides per animal in the comet assay data. Another
problem occurs with the CHS data, where the random-effects variance is hard to estimate in the
presence of overdispersion. This can be explained because 3416 out of 5772 subjects, i.e., 59%,
contribute a single observation only. For the same reason, it is hard to pinpoint overdispersion.
These issues are brought forward to the simulation study, presented in the next section.

For the aforementioned reason, the overdispersion parameter is dropped from the model. The model
does retain its two levels of clustering: animal and slide in the comet assay case, and patient and
event type in the CHS study. Precisely, the model takes the form

ki1i2i3 = eβ0+β1x1i1i2i3
+β2x2i1i2i3

+β3x3i1i2i3
+β4x4i1i2i3

+ba,i1
+bs,i1i2

for the comet assay data, while for CHS we have:

ki1i2i3 = eβ0+β1Gi1i2i3
+β2BMI2i1i2i3

+β3BMI3,i1i2i3
+β4Hi1i2i3

+bp,i1
+be,i1i2 ,

where G· refers to gender, BMI2· indicates overweight, BMI3· indicates obesity, and H· stands for
hypertension. The model was fitted using the SAS procedure NLMIXED, supplemented with a SAS
macro. Results can be found in Tables 1, and 2.

Comfortingly, all analyses indicate that there is generally little difference between the three estimation
methods. For some parameters, e.g., β0 and σ2

e in the CHS study, the difference is slightly more
pronounced. In terms of precision, maximum likelihood provides the smallest standard errors, and
pairwise likelihood the largest. This is not unexpected, because pairwise likelihood, due to its non-
likelihood basis, does not enjoy the same optimality properties as full maximum likelihood.

A graphical display to assess the fit of the model to the comet assay data is given in Figure 1.
Precisely, the average observed and fitted profiles are plotted (tail intensity), with both the slide and
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animal levels as basis of replication. The fitted values were generated based on equations (5) and
(9), i.e., the multilevel model with two normal random effects. The steps involved are: fitting the
multilevel model to then obtain parameter estimates and empirical Bayes estimates of one random
effect, after which the other are generated using the estimated parameters in the last AIP iteration
by way of offset. Thereafter, the predicted values of the Weibull distributed random variables are
obtained, using the aforementioned estimates and given the covariates. Additionally, for each plot,
we compare it to the fit obtained from a simpler model with only one normal random effect. As can
be seen from the figure, the fitted values of the multilevel model exhibit slightly higher values that
are more similar to the observed values than these obtained from the simpler model.

Furthermore, a formal assessment of the treatment effects in the comet assay case and of the
covariates for CHS, based on every one of the three estimation strategies is presented in Table 3. As
can be seen from that table, treatment-effect levels in the comet assay are similar in strength across
estimation methods. Furthermore, although all covariates are statistically significant in the CHS
study, we find that the covariates’ importance is ordered across estimation methods, with relatively
weaker evidence under pseudo-likelihood and strongest in the Bayesian case.

The contrast between the Bayesian and other strategies can be seen as an analysis of the sensitivity
of the model to the specification of the prior. While we considered one choice here only, users
can contrast Bayesian estimation under a variety of priors with the likelihood and pseudo-likelihood
estimates.

Also, in line with Molenberghs et al (2010), our method can be seen as an assessment of fit relative
to more conventional methods, where a model with either gamma or normal random effects would
be considered, but not both. These features, together with the fact that the Weibull family is very
flexible, owing to the inclusion of a shape parameter, makes the proposed model family very general,
which has a beneficial impact on the quality of fit. Evidently, targeted goodness-of-fit tools could
usefully be constructed, a topic of further research.

6 Simulation Study

Our main aim is to evaluate the performance of the multilevel combined model in terms of point
and precision estimation, under full likelihood, pairwise likelihood, and in a Bayesian way. The
simulation study was designed to range across different parameter and sample-size settings. For the
AIP algorithm to work, each sub-model should properly allow fitting. Assessing the feasibility of this
was therefore also included among the goals of the simulation study.

First, we generated dataset under the set of true parameters: β = 2, λ = 0.2, α = 2, and σ = 0.5.
The one covariate is taken to follow a N(0, 0.1) distribution. λ is the shape parameter of the
Weibull distribution; we set the scale parameter ρ = 1, i.e., the exponential distribution. α is used
to generate gamma distributed frailties, with parameterization G(α, 1/α) (Duchateau and Janssen,
2008). Lastly, the random effects are generated from a N(0, σ2). We consider sample sizes of 20
and 40, with 10 repeated measures per subject. Combined with the three estimation methods, this
makes for six settings, under each of which 500 datasets were generated. The simulation result are
reported in Table 4.

The average of the parameter estimates (Est.), average of the estimated standard errors (s.e.), the
standard error of the parameter estimates [s.e.(MC)], the bias, and the relative bias are reported.
The relative bias ranges from 0.0005 to 0.4869. We found that among four parameters, the relative
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bias gets bigger, with the smallest value for λ, then β1 and α, and the largest one for σ. This
behavior occurs under all three estimation methods. For the first setting, maximum likelihood and
pairwise likelihood converged in roughly 72% of the cases; for the second setting this became a little
over 80%. In the Bayesian case, in contrast, the convergence rate is virtually 100%. This behavior
will be revisited in the ensuing simulation setting, for the multilevel combined model. While pairwise
likelihood takes more time, it converges slightly more easily as the pairwise contributions are much
stabler and easier to manipulate than the multivariate contributions needed under full likelihood.
It also is considerably less sensitive to starting values. The precision estimates are adequate, as
shows from the agreement between s.e. and s.e.(MC). Overall, the behavior of the combined model
is satisfactory.

An additional simulation run was carried out with true parameters β = 2, λ = 0.2, α = 2, and
σ = 0.5, but with sample sizes of 5 and 10, and further with number of observations 2, 5, 10, 20,
and 40. Details are omitted here. From comparing the results across sample sizes we understand
better the difficulty in convergence for the case studies, when the overdispersion parameter is present.
Precisely, we learn that, for sample size 5, the larger the number of observations, from 5, over 10
and 20, to 40, the less accurate the estimate of the overdispersion parameter α. This result, at first
sight counterintuitive, can be explained as follows. The overdispersion parameter in many models
will exhibit partial or total aliasing with the intercept. Due to a lack of precision, this may not be
noticeable in small samples, but the effect may become more visible with increasing sample sizes.
This result should not be worrisome, because the estimation of all other model parameters, whether
covariate effects, variance components, or shape parameters is unaffected by it.

Next, let us turn to the multilevel combined model. True parameters in this simulation are β = 2,
λ = 0.2, α = 2, σ1 = 0.5, and σ2 = 0.5. The setting is largely similar to the setting for the combined
model above, with now additional random effects. The assumptions about the covariate and the
scale parameter are retained. Both random effects are generated from normal distribution N(0, σ2

1)
and N(0, σ2

2). We set the number of first-level clusters (subjects) to 20, and the second level to
20 and 40. The number of replicates is retained at 10. Again combining with the three estimation
methods, we reach also here six settings. For each, 500 sets of data were generated. The simulation
results are reported in Table 5.

From these results, it follows that, in all settings, we reach (virtually) 100% of convergences. All
estimates, except for the variance components, come within close reach of their true values. There
is good agreement across estimation strategies. This confirms the good point estimate performance
of the multilevel combined model. We can also see that when the second-level sample size doubles,
the relative bias of the fixed effect estimates halves. Next, turning to σ̂2

1 and σ̂2
2, we see that these

variance components rather deviate from their true values. σ̂2
1 is slightly underestimated by full

likelihood and Bayesian estimation whereas using pairwise likelihood it is somewhat overestimated.
As for σ̂2

2, the simulation results shows that model fitting using full likelihood and Bayesian estimation
underestimates it, while pairwise likelihood produces some overestimation. Still, for the estimate,
full likelihood and Bayesian estimation give similar relative bias whereas pairwise likelihood yields
higher relative bias. Overall, it can be observed that increasing the sample size decreases the relative
bias. Also, in terms of time consumed for model fitting, full likelihood shares time requirements
with Bayesian estimation, i.e., around 22 minutes and 45 minutes, respectively, for sizes 20 and
40, respectively, using a VSC cluster computer, while pairwise likelihood needs considerably more
time (3 and 6 hours on average) using the same computing tools. Lastly, we observed that the s.e.
and s.e.(MC) reach almost similar values, in all settings via the three different estimation strategies,
confirming the good precision performance of the multilevel combined model.
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The contrast between the Bayesian and other strategies can be seen as an analysis of the sensitivity
of the model to the specification of the prior. While we considered one choice here only, users
can contrast Bayesian estimation under a variety of priors with the likelihood and pseudo-likelihood
estimates.

7 Concluding Remarks

We have shown that, for time-to-event outcomes, the ordinary combined model introduced by Molen-
berghs et al (2010) can be extended to a multilevel combined model. The multilevel combined model
not only captures multiple hierarchical structures in the data, but also allows for overdispersion. Our
extended model poses numerical challenges, which we have overcome by the use of the AIP algorithm
and by offering a triple of estimation methods.

Practically, model fitting is achieved by putting together the combined model as a sub-model and
the AIP algorithm of Clayton and Rasbash (1999). It is shown, through targeted simulation, that the
multilevel combined model proposed here can be fitted without too much difficulty. The model fitting
can easily be done through common statistical software. For example, we combined the concept of
partial marginalization (Molenberghs et al , 2010) to enable the use of the SAS procedure NLMIXED,
surrounded by a dedicated SAS macro.

We have shown that several estimation strategies can be used to fit this model, adding flexibility to
the modeler’s toolkit. We focused on full likelihood, pairwise likelihood, and Bayesian estimation.
The ordinary combined model was given attention as a dedicated sub-model of the one proposed.
Broadly, in cases where the simpler model fits well, so does the multilevel version. This result, derived
from simulations, is useful in that it suggests that the extended model does not add undue additional
computational complexity.

It has been shown that the multilevel combined model performs well in terms of point estimates
and corresponding precision, with the three different estimation methods. Additionally, we observed
that pairwise likelihood estimation needs notably more time to fit the model as compared to full
likelihood and Bayesian estimation. This seems a drawback but is offset somewhat by the fact that
the pairwise likelihood version is considerably less sensitive to starting values. Finally, in the case of
larger number of cluster levels, i.e., more than two, we expect that it will still be straightforward to
fit the multilevel combined model via the three different estimation strategies. Additional research
may be in place to further optimize computation, when more hierarchical levels rare needed than in
the case studies considered here.
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Table 1: Comet study. Weibull model with two normal random effects. (e.c.s.e.: empirically
corrected s.e.)

Bayesian Full likelihood Pseudo-likelihood

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.; e.c.s.e.)

ξ0 -3.7940 (1.5800) -2.4712 (0.0773) -2.4087 (0.0083; 0.5621)

ξ1 -1.7950 (0.1321) -2.8142 (0.0908) -2.7642 (0.0109; 0.3770)

ξ2 -1.0220 (0.1301) -3.0400 (0.0917) -3.1243 (0.0112; 0.4152)

ξ3 -1.2640 (0.1313) -3.2871 (0.0927) -3.1833 (0.0116; 0.4492)

ξ4 -1.4890 (0.1314) -1.7894 (0.1075) -1.7878 (0.0106; 0.2438)

γ 2.0370 (0.2910) 1.4173 (0.0189) 1.3907 (0.0030; 0.2316)

σa 0.1092 (0.0352) 0.1629 (0.0276) 0.1663 (0.0064; 0.0566)

σs 0.2198 (0.0282) 0.2192 (0.0248) 0.1370 (0.0074; 0.0566)
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Figure 1: Comet assay data: Plots of average profiles based on subject levels of slide and animal.
’WN’ refers to Weibull-normal model and ’WNN’ to Weibull-normal-normal model.
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Table 2: CHS study. Weibull model with two normal random effects. (e.c.s.e.: empirically corrected
s.e.)

Bayesian Full likelihood Pairwise likelihood

Parameter Estimate (s.e.) Estimate (s.e.) Estimate (s.e.; e.c.s.e.)

without censoring

ξ0 -9.711 (0.3586) -17.530 (0.16125) -25.698 (0.16282; 1.40839)

ξ1 0.449 (0.0496) 0.1030 (0.01753) 0.4261 (0.02670; 0.19541)

ξ2 -0.249 (0.0535) -0.1890 (0.01964) -0.1564 (0.02956; 0.19833)

ξ3 -0.214 (0.0658) -0.1925 (0.02358) -0.1689 (0.03687; 0.14530)

ξ4 0.281 (0.0503) 0.0927 (0.01753) 0.2916 (0.02678; 0.16527)

γ 3.787 (1.5400) 2.0285 (0.01495) 3.1846 (0.02002; 0.17481)

σ2
p 1.529 (0.0492) 0.1081 (0.00512) 4.7469 (0.44571; 3.38655)

σ2
e 18.28 (4.4340) 1.6896 (0.11924) 1.8482 (0.15347; 1.44623)

with censoring

ξ0 -19.4095 (0.0940) -36.3169 (0.37887) -42.3589 (0.32284; 1.80329)

ξ1 0.0082 (0.0596) 0.1096 (0.02272) 0.0451 (0.01874; 0.03453)

ξ2 -0.3220 (0.0994) -0.0110 (0.02530) -0.0849 (0.02175; 0.11336)

ξ3 -0.3524 (0.1204) -0.0621 (0.03031) -0.1059 (0.02580; 0.09152)

ξ4 0.1932 (0.0572) 0.1045 (0.02252) 0.1156 (0.01875; 0.05628)

γ 14.512 (2.4006) 4.2893 (0.03967) 5.0123 (0.03814; 0.27125)

σ2
p 5.7056 (0.4133) 0.3341 (0.04805) 0.0403 (0.00068; 0.00107)

σ2
e 17.345 (8.9886) 0.1506 (0.00291) 0.1479 (0.01800; 0.02427)
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Table 3: Comet assay and CHS study. Wald test for covariate effect’s assessment.

Covariate Bayesian Full likelihood Pseudo- likelihood

Z-value p-value Z-value p-value Z-value p-value

Comet assay data

Low -13.588 <0.0001 -30.993 <0.0001 -7.3321 <0.0001

Medium -7.8555 <0.0001 -33.152 <0.0001 -7.5248 <0.0001

High -9.6268 <0.0001 -35.460 <0.0001 -7.0866 <0.0001

VC -11.332 <0.0001 -16.646 <0.0001 -7.3331 <0.0001

CHS study – without censoring

Gender 9.0524 <0.0001 5.8756 <0.0001 2.1805 0.0146

BMI2 -4.6542 <0.0001 -9.6232 <0.0001 -0.7886 0.2152

BMI3 -3.2523 0.0006 -8.1637 <0.0001 -1.1624 0.1225

Hypertension 5.5865 <0.0001 5.2881 <0.0001 1.7644 0.0388

CHS study – with censoring

Gender 0.1376 0.4453 4.8239 <0.0001 1.3061 0.0958

BMI2 -3.2394 0.0006 -0.4348 0.3319 -0.7489 0.2269

BMI3 -2.9269 0.0017 -2.0488 0.0202 -1.1571 0.1236

Hypertension 3.3776 0.0004 4.6403 <0.0001 2.0540 0.0110
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