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Abstract

This paper presents, extends, and studies a model for repeated, overdispersed time-to-event
outcomes, subject to censoring. Building upon work by Molenberghs, Verbeke, and Demétrio
(2007) and Molenberghs et al. (2010), gamma and normal random effects are included in a
Weibull model, to account for overdispersion and between-subject effects, respectively. Unlike
these authors, censoring is allowed for. Two estimation methods are presented. The partial
marginalization approach to full maximum likelihood of Molenberghs et al. (2010) is contrasted
with pseudo-likelihood estimation. A limited simulation study is conducted to examine the relative
merits of these estimation methods. The modeling framework is employed to analyze data on
recurrent asthma attacks in children on the one hand and on survival in cancer patients on the
other.

Some Keywords: Exponential Model; Generalized Cauchy distribution; Conjugacy; Maxi-
mum likelihood; Frailty model; Pseudo-likelihood; Strong conjugacy; Weibull model.

1 Introduction

Time-to-event data are prominent in contemporary statistical analysis, not only for univariate out-
comes, but also in hierarchical settings. Apart from the need to accommodate such data hierarchies

for repeated survival outcomes, recurrent events, and the like (Duchateau and Janssen 2007), it is
possible that overdispersion (Hinde and Demetrio 1998) is present in the data, relative to the stan-

dard generalized linear model (Nelder and Wedderburn 1972, McCullagh and Nelder 1989) assumed,
as well as censored observations.

While each of these features have received attention, it is uncommon to treat all of them simulta-

neously. Molenberghs et al. (2010), building upon Molenberghs, Verbeke, and Demétrio (2007),
presented a general modeling framework for (non-)Gaussian overdispersed and hierarchical outcomes.

The time-to-event case is but one of the applications of their framework. They combine so-called
conjugate random effects for overdispersion with generalized linear mixed model ideas (GLMM, En-

gel and Keen 1994, Breslow and Clayton 1993, Wolfinger and O’Connell 1993) for between-subject
effects. Here, we supplement their method with the possibility to accommodate censorship.
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Whereas Molenberghs et al. (2010) focused on maximum likelihood, using so-called partial marginal-

ization, we supplement this inferential option with pairwise likelihood ideas (Molenberghs and Verbeke
2005). A simulation study is conducted to study the relative merits of these methods.

The methodology is applied to analyze data on recurrent asthma attacks in children on the one hand

and on survival in cancer patients on the other.

The paper is organized as follows. In Section 2, motivating case studies with a time-to-event outcome
are described, with analyses reported in Section 7. Basic ingredients for our modeling framework,

standard generalized linear models, extensions for overdispersion, and the generalized linear mixed
model, are the subject of Section 3. The proposed, combined model is described and further studied
in Section 4. Avenues for parameter estimation and ensuing inferences are explored in Section 5,

with particular emphasis on so-called partial marginalization and pseudo-likelihood estimation. Some
cautionary remarks regarding the existence of the corresponding marginal distributions’ moments are

issues in Section 6. A simulation study is described and results presented in Section 8.

2 Case Studies

2.1 Recurrent Asthma Attacks in Children

These data have been studied in Duchateau and Janssen (2007). Asthma is occurring more and
more frequently in very young children (between 6 and 24 months). Therefore, a new application of

an existing anti-allergic drug is administered to children who are at higher risk to develop asthma in
order to prevent it. A prevention trial is set up with such children randomized to placebo or drug,

and the asthma events that developed over time are recorded in a diary. Typically, a patient has
more than one asthma event. The different events are thus clustered within a patient and ordered

in time. This ordering can be taken into account in the model. The data are presented in calendar
time format, where the time at risk for a particular event is the time from the end of the previous

event (asthma attack) to the start of the next event (start of the next asthma attack). A particular
patient has different periods at risk during the total observation period which are separated either

by an asthmatic event that lasts one or more days or by a period in which the patient was not under
observation. The start and end of each such risk period is required, together with the status indicator
to denote whether the end of the risk period corresponds to an asthma attack or not. Data for the

first two patients are listed in Table 1.

2.2 Survival in Cancer Patients

Hand et al. (1994, p. 255) presented data on patients with advanced cancer of the stomach, bronchus,

colon, ovary, or breast, who were treated, in addition to standard treatment, with ascorbate. The
outcome of interest, survival time in days, is recorded to address the question as to whether survival

times differ with the organ being affected. Individual-patient data are listed in Table 2. There are
no censored observations in this case.

3 Background

Our model is based upon the generalized linear model and two of its extensions, the fist one to
accommodate overdispersion, the second one to account for data hierarchies, such as in longitudinal
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Table 1: Asthma Data for the First Two Patients. The column labeled ‘Status’ referred to whether
(1) or not (0) censoring has occurred

Patient ID Drug Begin End Status

1 0 0 15 1

1 0 22 90 1

1 0 96 325 1

1 0 329 332 1

1 0 338 369 1

1 0 370 412 1

1 0 418 422 1

1 0 426 474 1

1 0 477 526 1

1 0 530 600 0

2 1 0 180 1

2 1 189 267 1

2 1 273 581 1

2 1 582 600 0

data. We briefly review these building blocks.

A random variable Y follows an exponential family distribution if the density is of the form

f(y) ≡ f(y|η, φ) = exp
{
φ−1[yη − ψ(η)] + c(y, φ)

}
, (1)

for a specific set of unknown parameters η and φ, and for known functions ψ(·) and c(·, ·). Of-
ten, η and φ are termed ‘natural parameter’ (or ‘canonical parameter’) and ‘dispersion parameter,’

respectively. It is well known that

E(Y ) = µ = ψ′(η), (2)

Var(Y ) = σ2 = φψ′′(η), (3)

implying a mean-variance relationship: σ2 = φψ′′[ψ
′
−1(µ)] = φv(µ), with v(·) the so-called variance

function. In the exponential case, one assumes

f(y) = ϕe−ϕy, (4)

with mean ϕ−1 and variance ϕ−2. This extends in the Weibull case to

f(y) = ϕρyρ−1e−ϕyρ
,

E(Y ) = ϕ−1/ρΓ(ρ−1 + 1),

Var(Y ) = ϕ−2/ρ
[
Γ(2ρ−1 + 1)− Γ(ρ−1 + 1)2

]
.

Note that the Weibull model does not belong to the exponential family in a conventional sense, unless

in a somewhat contrived fashion where Y is replaced by Y ρ. In the mean and variance expressions
for the Weibull, Γ(·) represents the gamma function.
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Table 2: Advanced Cancer Data. Survival time in days per patient and per organ affected.

Stomach Bronchus Colon Ovary Breast

124 81 248 1234 1235

42 461 377 89 24

25 20 189 201 1581

45 450 1843 356 1166

412 246 180 2970 40

51 166 537 456 727

1112 63 519 3808

46 64 455 791

103 155 406 1804

876 859 365 3460

146 151 942 719

340 166 776

396 37 372

223 163

138 101

72 20

245 283

Average

286.0 211.6 457.4 884.3 1395.9

When the standard exponential-family models constrain the mean-variance relationship, so-called
overdispersion is introduced. Early reviews are provided by Hinde and Demétrio (1998) provide

general treatments of overdispersion. The Poisson case received particular attention by Breslow
(1984) and Lawless (1987). A natural step is to allow the overdispersion parameter φ 6= 1, so that

(3) produces Var(Y ) = φv(µ). A convenient route is through a two-stage approach. Generally, the
two-stage approach is made up of considering a distribution for the outcome, given a random effect

f(yi|θi) which, combined with a model for the random effect, f(θi), produces the marginal model:

f(yi) =

∫
f(yi|θi)f(θi)dθi. (5)

In our exponential and Weibull cases, it is in line with the data range to assume such a random

effect to follow a gamma distribution, giving rise to the exponential-gamma and Weibull-gamma
models. The model elements are listed in Table 3. The choice of the gamma distribution can also
be motivated through the concept of conjugacy (Cox and Hinkley 1974, p. 370; Lee, Nelder, and

Pawitan 2006, p. 178). To simplify notation, drop the indices for the purpose of the definition. The
hierarchical and random-effects densities are said to be conjugate if and only if they can be written

4



Table 3: Model elements for the exponential-gamma and Weibull-gamma models.

Element notation Exponential-gamma Weibull-gamma

Hier. model f(y|θ) ϕθe−ϕθy ϕθρyρ−1e−ϕθyρ

RE model f(θ) θα−1e−θ/β

βαΓ(α)
θα−1e−θ/β

βαΓ(α)

Marg. model f(y) ϕαβ
(1+ϕβy)α+1

ϕρyρ−1αβ
(1+ϕβyρ)α+1

h(θ) −θ −θ
g(θ) − ln(θ)/ϕ − ln(θ)/ϕ

φ 1/ϕ 1/ϕ

γ ϕ(α− 1) ϕ(α− 1)

ψ [βϕ(α− 1)]−1 [βϕ(α− 1)]−1

c(y, φ) ln(ϕ) ln
(
ϕρyρ−1

)

c∗(γ, ψ) γ+ϕ
ϕ ln(γψ)− ln Γ

(
γ+ϕ

ϕ

)
γ+ϕ

ϕ ln(γψ)− lnΓ
(

γ+ϕ
ϕ

)

Mean E(Y ) [ϕ(α− 1)β]−1 Γ(α−ρ−1)Γ(ρ−1+1)
(ϕβ)1/ρΓ(α)

Variance Var(Y ) α[ϕ2(α− 1)2(α− 2)β2]−1 1
ρ(ϕβ)2/ρΓ(α)

[
2Γ(α− 2ρ−1)Γ(2ρ−1)

−Γ(α−ρ−1)2Γ(ρ−1)2

ρΓ(α)

]

in the generic forms:

f(y|θ) = exp
{
φ−1[yh(θ)− g(θ)] + c(y, φ)

}
, (6)

f(θ) = exp {γ[ψh(θ)− g(θ)] + c∗(γ, ψ)} , (7)

where g(θ) and h(θ) are functions, φ, γ, and ψ are parameters, and the additional functions c(y, φ)

and c∗(γ, ψ) are so-called normalizing constants. It can then be shown that the marginal model
resulting from (6) and (7) equals:

f(y) = exp

[
c(y, φ) + c∗(γ, ψ)− c∗

(
φ−1 + γ,

φ−1y + γψ

φ−1 + γ

)]
. (8)

Should the data be hierarchical, with Yij denoting the jth outcome measured for cluster (subject) i,

i = 1, . . . , N , j = 1, . . . , ni and Yi the ni-dimensional vector of all measurements available for cluster
i, then the scalar θi becomes a vector θi = (θi1, . . . , θini)

′, with E(θi) = µi and Var(θi) = Σi. In

line with the univariate case produces E(Yi) = µi and Var(Yi) = Mi + Σi, where Mi is a diagonal
matrix with the vector µi along the diagonal.

Next, it is possible to include normal random effects in the linear predictor of the generalized linear

model, giving rise to the family known as generalized linear mixed model (Thall and Vail 1990, Dean
1991, Engel and Keen 1994, Breslow and Clayton 1993, Wolfinger and O’Connell 1993). Assume that,

in analogy with (1), conditionally upon q-dimensional random effects bi ∼ N (0, D), the outcomes
Yij are independent with densities of the form

fi(yij|bi, ξ, φ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij, φ)

}
, (9)

5



with

η[ψ′(λij)] = η(µij) = η[E(Yij|bi, ξ)] = x′

ijξ + z′

ijbi (10)

for a known link function η(·), with xij and zij p-dimensional and q-dimensional vectors of known
covariate values, with ξ a p-dimensional vector of unknown fixed regression coefficients, and with φ

a scale (overdispersion) parameter. Finally, let f(bi|D) be the density of the N (0, D) distribution
for the random effects bi.

This kind of models are a bit less common for survival data, where so-called frailty models (Duchateau

and Janssen 2007), rather of the type with conjugate random effects, are more standard. In any
case, the next section presents a framework to combine both types of random effects, with focus on

time-to-event data.

4 Models Combining Conjugate and Normal Random Effects

4.1 General Model Formulation

Combining both the overdispersion and the normal random effects led Molenberghs et al. to the
combined model family:

fi(yij|bi, ξ, θij, φ) = exp
{
φ−1[yijλij − ψ(λij)] + c(yij, φ)

}
, (11)

with notation similar to the one used in (9), but now with conditional mean

E(Yij|bi, ξ, θij) = µc
ij = θijκij , (12)

where the random variable θij ∼ Gij(ϑij, σ
2
ij), κij = g(x′

ijξ + z′

ijbi), ϑij is the mean of θij and
σ2

ij is the corresponding variance. Finally, as before, bi ∼ N (0, D). Write ηij = x′

ijξ + z′

ijbi. We

now need two different notations, ηij and λij, to refer to the linear predictor and/or the natural
parameter. The reason is that λij encompasses the random variables θij, whereas ηij refers to the

‘GLMM part’ only.

It is convenient, but not strictly necessary, to assume that the two sets of random effects, θi and bi,
are independent of each other. Regarding the components θij of θi, three useful special cases result

from assuming that: (1) they are independent; (2) they are correlated, implying that the collection
of univariate distributions Gij(ϑij, σ

2
ij) needs to be replaced with a multivariate one; and (3) they

are equal to each other, useful in applications with exchangeable outcomes Yij .

Obviously, parameterization (12) allows for random effects θij capturing overdispersion, and formu-
lated directly at mean scale, whereas κij could be considered the GLMM component. The relationship
between mean and natural parameter now is

λij = h(µc
ij) = h(θijκij). (13)

Details and generic expressions are provided in Appendix A.

Molenberghs et al. (2010) set up a framework to describe under what conditions Model (11) still

allows for conjugacy. They considered conjugacy, conditional upon the normally-distributed random
effect bi. To this effect, they wrote (suppressing non-essential arguments from the functions):

f(y|κθ) = exp
{
φ−1[yh(κθ) − g(κθ)] + c(y, φ)

}
, (14)
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generalizing (6), and retain (7). Applying the transformation theorem to (7) leads to

f(θ|γ, ψ) = κ · f(κθ|γ̃, ψ̃).

Next, we request that the parametric form (7) be maintained:

f(κθ) = exp {γ∗[ψ∗h(κθ) − g(κθ)] + c∗∗(γ∗, ψ∗)} , (15)

where the parameters γ∗ and ψ∗ follow from γ̃ and ψ̃ upon absorption of κ. Then, the marginal

model, in analogy with (8), equals:

f(y|κ) = exp

{
c(y, φ) + c∗∗(γ∗, ψ∗) + c∗∗

(
φ−1 + γ∗,

φ−1y + γ∗ψ∗

φ−1 + γ∗

)}
. (16)

The condition is termed strong conjugacy. Fortunately, the Weibull and exponential cases satisfy

this property, with gamma random effects. Other examples include the normal and Poisson cases,
with normal and gamma random effects, respectively (Molenberghs et al. 2010).

4.2 Weibull- and Exponential-type Models for Time-to-event Data

The general Weibull model for repeated measures, with both gamma and normal random effects can
be expressed as

f(yi|θi, bi) =
ni∏

j=1

λρθijy
ρ−1
ij ex

′

ijξ+z′

ijbie−λy
ρ
ijθije

x′

ijξ+z′

ijbi

, (17)

f(θi) =
ni∏

j=1

1

β
αj

j Γ(αj)
θ
αj−1
ij e−θij/βj , (18)

f(bi) =
1

(2π)q/2|D|1/2
e−

1

2
bi

′

D−1bi. (19)

A few observations are in place. First, it is implicit that the gamma random effects are independent.

This need not be the case and, like in the Poisson case, extension via multivariate gamma distribu-
tions is possible. Second, setting ρ = 1 leads to the special case of an exponential time-to-event

distribution. Third, it is evident that the classical gamma frailty model (i.e., no normal random ef-
fects) and the Weibull-based GLMM (i.e., no gamma random effects) follow as special cases. Fourth,

strong conjugacy applies. This is typically considered for the exponential model, but it holds for the
Weibull model too, by observing that the Weibull model is nothing but an exponential model for the

random variable Y ρ
ij . It is equally possible to derive this result by merely re-writing the factor φ = λκ.

Fifth, the above expressions are derived for a two-parameter gamma density. It is customary in a

gamma frailty context (Duchateau and Janssen 2007) to set αjβj = 1, for reasons of identifiability.
In this case, (18) is replaced by

f(θi) =
ni∏

j=1

1(
1
αj

)αj
Γ(αj)

θ
αj−1
ij e−αjθij , (20)

Alternatively, assuming αj = 1 and βj = 1/δj, one could write

f(θi) =
ni∏

j=1

δje
−δjθij , (21)
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implying that the gamma density is reduced to an exponential one, of the form (4) with ϕ now

taking the role of δj = 1/βj. . Closed-form expressions for the marginal density, means, variances,
covariances, and moments are derived in Appendix B, where also a number of related facts are

derived.

5 Estimation

A priori, fitting a combined model of the type described in Section 4, proceeds by integrating over
the random effects. The likelihood contribution of subject i is

fi(yi|ϑ, D,ϑi,Σi) =

∫ ni∏

j=1

fij(yij|ϑ, bi, θi) f(bi|D) f(θi|ϑi,Σi) dbi dθi. (22)

Here, ϑ groups all parameters in the conditional model for Yi. From (22) the likelihood derives as:

L(ϑ, D,ϑi,Σ) =
N∏

i=1

∫ ni∏

j=1

fij(yij|ϑ, bi, θi) f(bi|D) f(θi|ϑi,Σi) dbi dθi. (23)

The key problem in maximizing (23) is the presence of N integrals over the random effects bi and
θi. We consider so-called partial marginalization, in agreement with Molenberghs et al. (2010) but,

unlike these authors, also allowing for censorship. We further explore the use of pseudo-likelihood as
an alternative to full maximum likelihood.

5.1 Partial Marginalization

While closed-form expressions, as derived in Appendix B), can be used to implement maximum
likelihood estimation, with numerical accuracy governed by the number of terms included in the

Taylor series, one can also proceed by what Molenberghs et al. (2010) termed partial marginalization.
By this we refer to integrating the conditional density over the gamma random effects only, leaving

the normal random effects untouched. The corresponding probability in the Weibull case is:

f(yij|bi) =
λκije

µijρyρ−1
ij αjβj

(1 + λκijeµijβjy
ρ
ij)

αj+1 . (24)

Now, in the survival case it is evidently very likely that censoring occurs. Focusing on right-censored
data, it is then necessary to integrate the marginal density over the survival time within the interval

[0, Ci]. The corresponding cumulative distribution is given in (B.9).

In the spirit of (24), the partial marginalization of a censored component takes the form:

f(Cij |bi) =

∫ +∞

Cij

f(yij |bi)dyij =
1

(1 + λκijeµijCρ
ij)

αj
. (25)

The concept of partial integration always applies whenever strong conjugacy holds. Indeed, an

expression of the form (16) corresponds to integrating over the conjugate random effect θ, while
leaving the normally distributed random effect embedded in the predictor, κ in this notation. Recall

that, while expressions of the type (16) appear to be for the univariate case, they extend without
problem to the longitudinal setting as well.
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5.2 Pseudo-likelihood

Pseudo-likelihood (Aerts et al. 2002, Molenberghs and Verbeke 2005), as generalized estimating
equations (Liang and Zeger 1986) are useful when the computational burden of full likelihood becomes

burdensome and/or when robustness against misspecification of higher-order moments is desirable.
This is especially the case when the joint marginal distribution is available but cumbersome to

manipulate and evaluate. Essentially then, the joint distribution is replaced with a product of factors
of marginal and/or conditional distributions of lower dimensions. Because such a product does

not necessarily re-compose the original joint distribution, sandwich-estimator ideas are then used to
provide not only valid point estimates, but also precision estimates and inferences derived therefrom.

Let us define pseudo-likelihood in general and formally, after which we turn to the special case

of pairwise likelihood. Also the term composite likelihood is encountered in this context. Using
Arnold and Strauss (1991), we introduce pseudo-likelihood, the principal idea of which is to replace

a numerically challenging joint density by a simpler function assembled from suitable factors.

Define S to be the set of all 2n − 1 vectors of length n, consisting solely of zeros and ones, with

each vector having at least one non-zero entry. Denote by y
(s)
i the subvector of yi corresponding

to the components of s that are non-zero. The associated joint density is fs(y
(s)
i ; ξ). To define a

pseudo-likelihood function, one chooses a set δ = {δs|s ∈ S} of real numbers, with at least one
non-zero component. The log of the pseudo-likelihood is then defined as

p` =
N∑

i=1

∑

s∈S

δs ln fs(y
(s)
i ; ξ). (26)

Adequate regularity conditions have to be invoked to ensure that (26) can be maximized by solving
the pseudo-likelihood (score) equations, the latter obtained by differentiating the logarithmic pseudo-
likelihood and by equating its derivative to zero. More detail can be found in Appendix C, where the

regularity conditions are given. In particular, when the components in (26) result from a combination
of marginal and conditional distributions of the original distribution, then a valid pseudo-likelihood

function results. More specifically, the classical log-likelihood function is found by setting δs = 1 if s
is the vector consisting solely of ones, and 0 otherwise. More details can be found in Varin (2008),

Lindsay (1988), and Joe and Lee (2008). Note that Joe and Lee (2008) use weighting for reasons
of efficiency in pairwise likelihood, similar in spirit to Geys, Molenberghs, and Lipsitz (1998), but

differently from its use here, which focuses on bias correction when data are incomplete. Another
important reference is Cox and Reid (2004).

Let θ0 be the true parameter. Under suitable regularity conditions (see also Arnold and Strauss 1991,

Geys, Molenberghs, and Ryan 1999, Aerts et al. 2002), it can be shown (Molenberghs and Verbeke
2005) that maximizing the function (26) produces a consistent and asymptotically normal estimator

ξ̃0 so that
√
N (ξ̃0 − ξ0) converges in distribution to Np[0, I0(ξ0)

−1I1(ξ0)I0(ξ0)
−1] with I0(θ) and

I1(θ) defined by their elements:

I0,k1k2
(θ) = −

∑

s∈S

δsEθ

(
∂2 ln fs(y

(s)|θ)

∂θk1
∂θk2

)
,

I2,k1k2
(θ) =

∑

s,t∈S

δsδtEθ

(
∂ ln fs(y

(s)|θ)

∂θk1

∂ ln ft(y
(t)|θ)

∂θk2

)
.

As stated earlier, models for non-Gaussian data can become prohibitive when subjected to full maxi-
mum likelihood inference, especially with large within-unit replication. le Cessie and van Houwelingen
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(1991) and Geys, Molenberghs, and Lipsitz (1998) replace the true contribution of a vector of cor-

related binary data to the full likelihood, written as f(yi1, . . . , yini), by the product of all pairwise
contributions f(yij, yik) (1 ≤ j < k ≤ ni), to obtain a pseudo-likelihood function. Also the term

composite likelihood is encountered in this context. Renard, Molenberghs, and Geys (2004) refer to
this particular instance of pseudo-likelihood as pairwise likelihood. Grouping the outcomes for subject
i into a vector Yi, the contribution of the ith cluster to the log pseudo-likelihood then specializes to

p`i =
∑

j<k

ln f(yij , yik), (27)

if it contains more than one observation. Otherwise p`i = f(yi1). Extension to three-way and
higher-order pseudo-likelihood is straightforward. All of these are special cases of (26).

6 Marginal Distributions and Moments

In Appendix B, along the lines of Molenberghs et al. (2010) and Molenberghs and Verbeke (2011),
the marginal density and moments are derived. Molenberghs and Verbeke (2011) showed that only

a finite number of moments is finite. This holds not only for the combined model, but as soon as
gamma random effects are combined with Weibull outcomes, i.e., it also applies to the conventional
Weibull-gamma model. Because it is possible that even the second and first moments may be infinite,

it is wise to check the number of finite moments. Given the moment expression:

E(Y k
ij) =

αjB(αj − k/ρ, k/ρ+ 1)

λk/ρβ
k/ρ
j

exp

(
−k
ρ
x′

ijξ +
k2

2ρ2
z′

ijDzij

)
, (28)

with B(·, ·) the beta function, it follows that the order k ≤ αjρ for the corresponding moment to be
finite.

7 Analysis of Case Studies

7.1 Recurrent Asthma Attacks in Children

We will analyze the times-to-event, introduced in Section 2.1. We consider an exponential model, i.e.,

a model of the form (17) with ρ = 1, and further a predictor of the form κij = ξ0 + bi + ξ1Ti, where
Ti is an indicator for treatment and bi ∼ N (0, d). Results from fitting all four models (with/without

normal random effect; with/without gamma random effect) can be found in Table 4.

A formal assessment of the treatment effect from all four models is given in Table 5. The treatment
effect ξ1 is stably identifiable in all four models. As can be seen from Table 5, the treatment

effects are similar in strength, but including both random effects reduces the evidence, relative to
the exponential model. Needless to say that too parsimonious an association structure might lead

to liberal test behavior.

Moreover, still considering the combined model, we can also proceed by means of pseudo-likelihood.
This is combined with proper inclusion of the censored observations. The model fitting was performed

using a SAS macro (available from the authors) in conjunction with the SAS procedure NLMIXED.
The result of this analysis can be found in Table 6. Note that the combined model was conveniently

fitted by pseudo-likelihood (specifically pairwise likelihood) based on all the pairs of outcomes within
a subject.
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Table 4: Asthma Study. Full likelihood. Parameter estimates and standard errors for the regression
coefficients in (1) the exponential model, (2) the exponential-gamma model, (3) the exponential-
normal model, and (4) the combined model. Estimation was done by maximum likelihood using

numerical integration over the normal random effect, if present.

Exponential Exponential-gamma

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 -3.3709 (0.0772) -3.9782 (15.354)

Treatment effect ξ1 -0.0726 (0.0475) -0.0755 (0.0605)

Shape parameter λ 0.8140 (0.0149) 1.0490 (16.106)

Std. dev random effect
√
d — —

Gamma parameter γ — 3.3192 (0.3885)

−2log-likelihood 18,693 18,715

Exponential-normal Combined

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Intercept ξ0 -3.8095 (0.1028) -3.9923 (20.337)

Treatment effect ξ1 -0.0825 (0.0731) -0.0887 (0.0842)

Shape parameter λ 0.8882 (0.0180) 0.8130 (16.535)

Std. dev random effect
√
d 0.4097 (0.0386) 0.4720 (0.0416)

Gamma parameter γ — 6.8414 (1.7146)

−2log-likelihood 18,611 18,629

It seems that in the result of the combined model (Table 6), there is overdispersion, regardless

of whether censoring is taken into account and irrespective of the estimation method, when full
likelihood is employed. Note, however, that the standard errors in this case are far from plausible

and may point to difficulties with convergence in this case. The pseudo-likelihood methodology does
not seem to suffer from this problem. As a result, overdispersion now disappears, given that the

standard error values are more trustworthy.

To further address this issue, it might make sense to set the shape parameter equal to one. Re-fitted
results for all four models in this way is reported in Table 7. We now find that the standard errors

are plausible throughout and that there is no disparity in the overdispersion results. In addition, we
performed Wald test for the assessment of treatment effect in the combined model under several

different conditions (full likelihood versus pseudo-likelihood; with/without censoring), based on the
analyses reported in Table 7. The test results are presented in Table 8. The treatment effect ξ1 is still
stably identifiable in all four combined models. It can be seen from Table 8 that the treatment-effect

strengths are still similar to the one in combined model treatment effect assessment in Table 5.

Two remarks are in place. First, convergence is reached faster with pseudo-likelihood as opposed to
full likelihood. A related finding was reported in Geys, Molenberghs, and Ryan (1999) where excessive

computational requirements could be avoided when using pseudo-likelihood. Second, we noticed that
pseudo-likelihood is more robust against the choice of starting values. This is intuitively plausible,
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Table 5: Asthma Study. Wald test results for the assessment of treatment effect.

Model Z-value p-value

Exponential -1.5283 0.1264

Exponential-gamma -1.1293 0.2588

Exponential-normal -1.2480 0.2120

Combined -1.0534 0.2921

Table 6: Asthma Data. Combined model fitted with maximum likelihood and pseudo-likelihood,

with and without censoring. (model-based s.e.; empirically corrected s.e.).

Full likelihood Pseudo-likelihood

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Without censoring

Intercept ξ0 -3.9923 (20.337) -3.4862 (6.2316; 0.0856)

Treatment effect ξ1 -0.0887 (0.0842) -0.1060 (0.0203; 0.0953)

Shape parameter λ 0.8130 (16.534) 0.8272 (5.1551; 0.0049)

Gamma parameter γ 6.8414 (1.7146) 6.7758 (0.6648; 1.1875)

Std. dev. random effect
√
d 0.4720 (0.0416) 0.3958 (0.0202; 0.0383)

With censoring

Intercept ξ0 -4.0195 (28.663) -3.6233 (0.4998; 0.09381)

Treatment effect ξ1 -0.1115 (0.0996) -0.1269 (0.0221; 0.10571)

Shape parameter λ 0.7882 (22.592) 0.9189 (0.4590; 0.00003)

Gamma parameter γ 3.5633 (0.6281) 4.5882 (0.3627; 0.71248)

Std. dev. random effect
√
d 0.5620 (0.0506) 0.4443 (0.0211; 0.03906)

because from a computational standpoint, our pseudo-likelihood behaves as when analyzing bivariate
data. The higher the order of the likelihood, the more vulnerable to numerical instabilities.

In conclusion, given that full likelihood nicely converged for the combined models, given that it is

best to account for censoring, and given that the shape parameter is redundant, we can consider the
bottom left analysis in Table 7 as the final one.

7.2 Survival in Cancer Patients

Let us fit to the data introduced in Section 2.2, the generalized log-logistic model:

f(y) =
ϕρyρ−1αα+1

(α+ ϕyρ)α+1
,
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Table 7: Asthma Data. Combined model fitted with maximum likelihood and pseudo-likelihood,
with and without censoring. (model-based s.e.; empirically corrected s.e.).

Full likelihood Pseudo-likelihood

Effect Parameter Estimate (s.e.) Estimate (s.e.)

Without censoring

Intercept ξ0 -4.1993 (0.0713) -3.6758 (0.0176; 0.0869)

Treatment effect ξ1 -0.0887 (0.0842) -0.1060 (0.0203; 0.0953)

Gamma parameter γ 6.8410 (1.7144) 6.7754 (0.6648; 1.1874)

Std. dev. random effect
√
d 0.4721 (0.0416) 0.3958 (0.0202; 0.0383)

With censoring

Intercept ξ0 -4.2575 (0.0833) -3.7072 (0.0160; 0.0875)

Treatment effect ξ1 -0.1116 (0.0996) -0.1267 (0.0218; 0.1122)

Gamma parameter γ 3.5634 (0.6282) 4.5833 (0.1747; 0.1895)

Std. dev. random effect
√
d 0.5620 (0.0506) 0.4446 (0.0177; 0.0424)

Table 8: Asthma Study. Wald test for treatment effect’s assessment in combined model.

Model Z-value p-value

Without censoring full likelihood -1.0534 0.1461

Without censoring pseudo-likelihood -1.1123 0.1330

With censoring full likelihood -1.1205 0.1312

With censoring pseudo-likelihood -1.1292 0.1294

generalized logistic model:

f(y) =
ρϕeρy

(1 + ϕβeρy)1/β+1
,

and generalized Cauchy model:

f(y) =
1

π
· γρ|y|

ρ−1

γ2 + |y|2ρ
.

In the former two cases, we set:

κi = exp[β1I(Ti = 1) + β2I(Ti = 2) + β3I(Ti = 3) + β4I(Ti = 4) + β5I(Ti = 5)],

where i is the patient index and cancer type Ti = 1, . . . , 5 for stomach, bronchus, colon, ovarian,
and breast cancer, respectively. For the generalized Cauchy model, predictor function ϕ is set equal

to γ instead. Parameter estimates are presented in Table 9. Model fitting is performed using the
SAS procedure NLMIXED. The code can be obtained from the authors, upon request.

A few remarks are worth making. First, the parameters of the log-logistic and generalized logistic are

similar, given that the two families are in one-to-one relationship through the logarithmic transforma-
tion on the one hand, and the fact that in the second case the data are, of course, log-transformed,
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Table 9: Parameter estimates (standard errors) for generalized log-logistic, generalized logistic, and

generalized Cauchy models, respectively, fitted to the survival data in cancer patients.

Effect Parameter Gen. log-logistic Gen. logistic Gen. Cauchy

Stomach β1 -96.789(75.740) -96.792(75.612) 11.095(1.353)

Bronchus β2 -90.607(70.403) -90.610(70.284) 11.311(1.339)

Colon β3 -90.607(70.403) -90.606(70.282) 12.426(1.450)

Ovary β4 -133.02(105.80) -133.02(105.62) 12.699(1.553)

Breast β5 -95.396(84.817) -95.399(74.690) 13.664(1.614)

Weibull param. ρ 29.220(23.571) 29.221(23.532)

Gamma param. α 0.014(0.0116) 0.014(0.0116)

Shape param. ρ 7.063(0.802)

# finite moments k 0 all 7

on the other. Second, the previous observation notwithstanding, while ρα = 0.4178 < 1, thence no
finite moments exist, in the generalized logistic case all moments are finite! Third, in the generalized

Cauchy case, there are 7 finite moments, implying, of course, that there is a finite mean and a finite
variance.

The key scientific question is directed towards the difference in survival across cancer types. The

null hypothesis H0 : β1 = β2 = β3 = β4 = β5 can be tested by means of an approximate F4,64 test
statistic. For the generalized log-logistic and generalized logistic distributions, we obtain F = 0.36

(p = 0.8344), while for the generalized Cauchy, we obtain F = 5.04 (p = 0.0013). The difference is
enormous and arguably, can be ascribed to the lack of finite moments in the latter case.

Thus, our analysis illustrates the occurrence, in real life, of distributions without finite moments,

with all moments finite, and with a finite number of finite moments. The first one is the more acute
one, and it is precisely this one that corresponds to the Weibull-Gamma frailty model, providing an

example where the usual regularity conditions are called into question. In conclusion, we evidently
discard the generalized log-logistic analysis for the lack of finite mean and variance. The generalized
Cauchy model has a finite mean and finite variance, and provides a parsimonious description, unlike

the generalized logistic model, in spite of its full series of finite moments. Hence, the generalized
Cauchy is our preferred choice to summarize the structure in the data.

8 Simulation Study

In this simulation study, we aim to evaluate the performance of the combined model, Weibull model
with gamma frailties and normal random effects, under full likelihood and pseudo-likelihood. The

design of the simulation study was carried out under different settings, to investigate the impact of
sample size, censoring percentage, and method of estimation.

We used two sets of true parameters, similar in spirit to the ones in Table 7, without and with

censoring (full likelihood). The true parameters are not exactly equal to these in Table 7, to avoid
convergence issues during the simulation runs. Starting values were chosen so as to reach good

14



convergence properties: ξ0 = 2, ξ1 = 0.1, γ = 0.2, and
√
d = 0.5. Sample sizes considered were:

50, 100, and 200 subjects. In addition, we generated the number of observations within a subject
from a normal N (µ = 12, σ2 = 4). A censoring covariate is generated from a Bernoulli(π) with π

= 0.9, 0.75, and 0.5, corresponding to 10%, 25%, and 50% of the observations within a subject are
censored. This amounts to nine distinct settings, for each of which 500 data sets were generated.

Simulation results are reported in Tables 10, 11, and 12. Each one represents one of the three
censoring proportions. The average of the parameter estimates, average of the estimated standard

errors of the estimates (mean s.e.), bias, and relative bias are included. The relative bias ranges from
−1.47 to 4.62. The proportion of non-converging analysis was relatively small, ranging from 0 to 43

among 500 simulation runs; we found that this proportion increases with censoring.

Furthermore, as a measure of consistency, Mahalanobis distance is used. Precisely, the relative
distance between the vector of estimates and the vector of true parameters is computed, for each

simulation setting. Some authors use the Euclidian distance as a measure of consistency, including
Litière (2007). The Mahalanobis distance has the advance of taking the variance-covariance structure

into account. Let ξ0 = (β0, β1, γ,
√

d)T represents the vector of the true parameters and ξ̂0 =

(β̂0, β̂1, γ̂,
√̂

d)T the corresponding vector of estimates, then the Mahalanobis distance is defined by

DM(ξ̂0) =

√
(ξ̂0 − ξ0)

TS−1(ξ̂0 − ξ0),

where DM(ξ̂0) denotes Mahalanobis distance and S is the covariance matrix. Based on our simula-
tions, consistency is reached over different sample sizes as well as varying censoring proportions. The

set of estimators said to be consistent if the Mahalanobis distance is minimal. Figure 1 displays the
evolution of relative distance over increasing proportions of censoring, for a given sample size (panels

a, b, and c) and over increasing sample size, for a given censoring proportion (panels d, e, and f).
It can be seen in from all panels that pseudo-likelihood estimation method has reduced consistency

relative to full likelihood estimation. It can also be observed that, for a given censoring percent-
age, the relative distances clearly increase with sample size. These occurred for both estimation

methods. While with increasing proportion of censored observations, within the same sample size,
the relative distance seems to be stable when using pseudo-likelihood estimation method. However,

with full likelihood estimation, the relative distance increases as the censoring percentage increases.
In other word, there will be loss of some consistency of estimates of the combined model, with in-
creasing censoring percentage, under full likelihood estimation. This result stems from the fact that

the pseudo-likelihood method has increased bias in a number of settings, which contributes to the
Mahalanobis distance. A similar result was observed by van Duijn, Gile, and Handcock (2007).

9 Concluding Remarks

Building upon work by Molenberghs et al. (2010) we have studied the combination of normal
and non-normal random effects in the time-to-event case. We gave particular attention to Weibull

models for repeated time-to-event outcomes, with gamma and normal random effects, the so-called
combined model. Unlike in the original paper, we allow for right censoring. Furthermore, in line

with Molenberghs and Verbeke (2011), we made remarks about the lack of finite moments in the
Weibull-gamma model, and hence also in the Weibull-gamma-normal model. On the other hand,
the Weibull-gamma-normal model enjoys the so-called strong conjugacy property, which is taken

to be a version of the well-known conjugacy that is compatible with the additional introduction of
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Table 10: Results of the simulation study, with 10 percent censored observation.

Method Full.Lik PL

Subjects Par. β0 β1 γ
√
d β0 β1 γ

√
d

2 0.1 0.2 0.5 2 0.1 0.2 0.5

50 Estimate 2.5692 -0.0477 1.0003 0.9056 2.0832 -0.0401 1.1245 1.9200

Mean(s.e.) 0.2937 0.3843 0.2391 0.2351 0.2671 0.3134 0.2400 0.1774

Bias 0.5692 -0.1477 0.8003 0.4056 0.0832 -0.1401 0.9245 1.4200

Rel.Bias 0.2846 -1.4770 4.0015 0.8112 0.0416 -1.4011 4.6226 2.8400

100 Estimate 2.4243 -0.0182 0.8328 0.8955 2.0037 -0.0076 0.9596 1.8588

Mean(s.e.) 0.2027 0.2653 0.1078 0.1555 0.1936 0.2224 0.1225 0.1256

Bias 0.4243 -0.1182 0.6328 0.3955 0.0037 -0.1076 0.7596 1.3588

Rel.Bias 0.2121 -1.1824 3.1639 0.7909 0.0018 -1.0766 3.7982 2.7175

200 Estimate 2.0476 0.0031 0.8878 0.7459 1.7850 0.0015 1.0493 1.6035

Mean(s.e.) 0.1281 0.1666 0.0697 0.0984 0.1299 0.1499 0.0593 0.0861

Bias 0.0476 -0.0968 0.6878 0.2459 -0.2150 -0.0985 0.8493 1.1035

Rel.Bias 0.0238 -0.9686 3.4389 0.4918 -0.1075 -0.9851 4.2467 2.2070

normal random effects. This is advantageous when deriving closed-form expressions for the marginal
distribution and its corresponding moments.

Whereas Molenberghs et al. (2010) confined attention to maximum likelihood estimation, we in-

troduce a pairwise-likelihood version of pseudo-likelihood. Both estimation methods are compared,
based on data analysis and simulations. A subtle picture emerges. In a number of cases, maximum

likelihood estimation is more efficient in terms of computation time. The statistical loss of efficiency
of pseudo-likelihood is relatively small, although the consistency behavior for the maximum-likelihood
case is better. That said, pseudo-likelihood has a tremendous advantage in terms of computational

stability. Indeed, as illustrated in the data analysis, there are situations where maximum likelihood
estimation produces unreliable results due to divergence, no matter what starting values are chosen

and other stabilizing measures are taken.

The gamma and normal random effects play distinct roles. In our model formulation, the gamma
random effects captures overdispersion, while the normal random effects allows for within-subject

association across repeated measures. The model can be extended further and/or adapted to specific
cases. For example, when the gamma random effects would be allowed to be correlated from one

occasion to the other, then a form of serial (or temporal) association would result. Furthermore, it
is possible to generalize the current, two-level formulation, to higher-level hierarchies, should this be

required.

Computations have been implemented in the SAS procedure NLMIXED, supplemented with user-
defined macros. All datasets, software code, and outputs can be found in a WinZip archive on the

website www.ibiostat.be/software. Relevant SAS code is also available in Appendix D.
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Table 11: Results of the simulation study, with 25 percent censored observation.

Method Full.Lik PL

Subjects Par. β0 β1 γ
√
d β0 β1 γ

√
d

2 0.1 0.2 0.5 2 0.1 0.2 0.5

50 Estimate 1.8312 0.0019 0.5892 0.7786 1.4798 -0.0052 0.6810 1.7775

Mean(s.e.) 0.2734 0.3534 0.0831 0.2332 0.2663 0.3113 0.0991 0.1828

Bias -0.1688 -0.0981 0.3892 0.2786 -0.5202 -0.1052 0.4810 1.2775

Rel.Bias -0.0844 -0.9808 1.9461 0.5571 -0.2601 -1.0518 2.4050 2.5550

100 Estimate 1.6196 0.0180 0.6484 0.7068 1.3118 0.0167 0.7434 1.6544

Mean(s.e.) 0.1809 0.2337 0.0687 0.1693 0.1825 0.2109 0.0811 0.1241

Bias -0.3804 -0.0820 0.4484 0.2068 -0.6882 -0.0832 0.5434 1.1544

Rel.Bias -0.1902 -0.8200 2.2419 0.4135 -0.3441 -0.8325 2.7168 2.3088

200 Estimate 1.3714 0.0046 0.7475 0.6265 1.1153 0.0019 0.8631 1.4733

Mean(s.e.) 0.1176 0.1510 0.0608 0.1062 0.1214 0.1392 0.0718 0.0797

Bias -0.6286 -0.0954 0.5475 0.1265 -0.8847 -0.0981 0.6631 0.9733

Rel.Bias -0.3143 -0.9542 2.7374 0.2530 -0.4424 -0.9813 3.3157 1.9467
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(d) 10 percent censoring
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Figure 1: Mahalanobis distance for different sample sizes and censored observation percentages
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Supplementary Materials

A Generic Approximations for Marginal Model Elements

In general, an approximate mean can be derived using the expansion, around bi = 0,

κij ≈ g(ηij) + g′(ηij)z
′

ijbi +
1

2
g′′(ηij)z

′

ijbibi
′zij ,

i.e.,

E(Yij) ≈ ϑij

[
g(η

(0)
ij ) +

1

2
g′′(η

(0)
ij )z′

ijDzij

]
,

where η
(0)
ij = x′

ijξ. A general variance expression can be derived in a similar fashion, based upon:

Var(Yij) = E{E[Var(Yij|bi, θij)]}+E{Var[E(Yij|bi, θij)]}+ Var{E[E(Yij|bi, θij)]}.
To simplify ensuing derivations, write the variance function as

ω(µc
ij) = ωij(θijκij) = φψ′′[h(θijκij)]. (A.1)

Note that ω(·) allows for all of the traditional mean-variance relationships of GLMs for Gaussian,

binary, binomial, count, and time-to-event data. Straightforward but tedious algebraic derivations,
based on expansions around θij = 1 and bi = 0, leads to:

Var(Yij) ≈ ω[g(η
(0)
ij )] + ω′[g(η

(0)
ij )](ϑij − 1) +

1

2
ω′′[g(η

(0)
ij )]g2(η

(0)
ij )(σ2

ij + ϑ2
ij − 2ϑij + 1)

+
1

2
ω′′[g(η

(0)
ij )]g(η

(0)
ij )g′(η

(0)
ij )(ϑ2

ij + σ2
ij)z

′

ijDzij + σ2
ijg

2(η
(0)
ij )

+
1

2
ω′[g(η

(0)
ij )]g′′(η

(0)
ij )ϑijz

′

ijDzij + ξ2ij[g
′(η

(0)
ij )]2z′

ijDzij

+σ2
ij [g

′2(η
(0)
ij ) + g(η

(0)
ij )g′′(η

(0)
ij )]z′

ijDzij . (A.2)

Likewise, for the covariance function:

Cov(Yij , Yik) ≈ σijk

[
g(η

(0)
ij )g(η

(0)
ik ) +

1

2
g(η

(0)
ij )g′′(η

(0)
ik )z′

ikDzik

+
1

2
g(η

(0)
ik )g′′(η

(0)
ij )z′

ijDzij + g′(η
(0)
ij )g′(η

(0)
ik )z′

ijDzik

]

+ϑijξikg
′(η

(0)
ij )g′(η

(0)
ik )z′

ijDzik. (A.3)
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Here, σijk is the covariance between θij and θik. In case these effects are assumed to be independent,

a large portion of (A.3) then cancels, with covariance induced solely by the effects bi. In case all θij
are equal, σijk ≡ σij. Evidently, (A.2) and (A.3) lead to approximate expressions for the correlations,

too. Of course, in situations where closed forms exist, these expressions need not be used.

Needless to say that the above approximations may or may not be accurate, depending on the
context. Therefore, their use should be seen as poor man’s choice, when no explicit forms are
available. Fortunately, closed forms are available for the normal and Poisson cases (Molenberghs et

al. 2010), and the Weibull case (Section 4.2) on the other.

B Marginal Density and Moments

Let us derive the marginal density of the model specified by (17)–(18). First replace the predictor
x′

ijξ + z′

ijbi in (17) by µ, and integrate

f(y|θ) = λρyρ−1θeµe−λyρθeµ

over the general gamma distribution of θ, i.e., over one component of (18):

f(y) =
λρyρ−1eµ

βαΓ(α)

∫
θαe−θ[1/β+λyρeµ]dθ =

λρyρ−1eµαβ

(1 + λβyρeµ)α+1
, (B.1)

which easily follows upon setting z = 1/β + λyρeµ.

Now, for the general case, first observe that

e−λyρ
ijθije

µij+z′

ij
bi

=
+∞∑

mj=0

(−1)mj

mj !
λmjy

mjρ
ij θ

mj

ij e
mj (µij+z ′

ijbi).

It then follows that

f(yi|θi) =
ni∏

j=1

λρθijy
ρ−1
ij

× 1

(2π)q/2|D|1/2

∫
eµij+z′

ijbie−λy
ρ
ijθije

µij+z′

ij
bi

e−
1

2
bi

′

D−1bidbi (B.2)

=
∑

(m1,...,mni
)

ni∏

j=1

(−1)mj

mj!
λmj+1ρy

(mj+1)ρ−1
ij θ

mj+1
ij

× 1

(2π)q/2|D|1/2

∫
e(mj+1)(µij+z ′

ijbi)−
1

2
bi

′

D−1bidbi (B.3)

Now, similar to the binary case (Molenberghs et al. 2010), write

−1

2
bi

′D−1bi + (mj + 1)(µij + z′

ijbi) = −1

2
(bi − t)′D−1(bi − t) + `, (B.4)

with

t = (mj + 1)Dzij, ` = (mj + 1)

[
µij +

1

2
(mj + 1)z′

ijDzij

]
.
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Combining (B.3) with (B.4) produces

f(yi|θi) =
∑

(m1,...,mni )

ni∏

j=1

(−1)mj

mj!
λmj+1ρy

(mj+1)ρ−1
ij θ

mj+1
ij e(mj+1)[µij+

1

2
(mj+1)z′

ijDzij]. (B.5)

Further integration over the gamma distribution produces

f(yi) =
∑

(m1,...,mni )

ni∏

j=1

(−1)mj

mj!

λmj+1ρy
(mj+1)ρ−1
ij e(mj+1)[µij+ 1

2
(mj+1)z′

ijDzij ]

β
αj

j Γ(αj)
· Ij,mj (B.6)

with

Ij,mj =

∫
θ
mj+αj

ij e−θij /βjdθij = β
mj+αj+1
j Γ(mj + αj + 1). (B.7)

Plugging (B.6) into (B.7) yields

f(yi) =
∑

(m1,...,mni )

ni∏

j=1

(−1)mj

mj!

Γ(αj +mj + 1)β
mj+1
j

Γ(αj)
λmj+1ρy

(mj+1)ρ−1
ij

× exp

{
(mj + 1)

[
x′

ijξ +
1

2
(mj + 1) · z′

ijDzij

]}
. (B.8)

In case censorship applies, it is easy to integrate (B.8) over the interval [0, Cij] or, in a multivariate
fashion, over the cube [0, BCi]:

F (C i) =
∑

(m1,...,mni)

ni∏

j=1

(−1)mj

(mj + 1)!

Γ(αj +mj + 1)β
mj+1
j

Γ(αj)
λmj+1C

(mj+1)ρ
ij

× exp

{
(mj + 1)

[
x′

ijξ +
1

2
(mj + 1) · z′

ijDzij

]}
. (B.9)

Evidently, if censorship applies to some but not all of the times within the vector, then the integration

can be restricted to these, and the corresponding contribution will be an amalgamation of components
taken from (B.8) and (B.9).

As for the moments, let us first derive the moments based upon (B.1):

E(Y k) =

∫ +∞

0

λρyρ−1+keµαβ

(1 + λβyρeµ)α+1
dy

=
α

ϕk/ρβk/ρ

∫ +∞

1
t−α−1(t− 1)k/ρdt

=
α

ϕk/ρβk/ρ

∫ 1

0
zα−1−k/ρ(1 − z)k/ρdz

=
α

ϕk/ρβk/ρ
B(α − k/ρ, k/ρ+ 1), (B.10)

where ϕ = λeµ, and the integrator transformations t = 1 + λβyρeµ and t = 1/z have been used.

Now, (B.10) can be used as the kth moment, conditional upon bi, as follows:

E(Y k
ij |bi) =

αj

ϕ
k/ρ
ij β

k/ρ
j

B(αj − k/ρ, k/ρ+ 1), (B.11)
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where ϕij = λeµij+z′

ijbi. The unconditional moment follows as:

E(Y k
ij) =

αjB(αj − k/ρ, k/ρ+ 1)

λk/ρeµijk/ρβ
k/ρ
j

1

(2π)q/2|D|1/2

∫
e−

1

2
bi

′

D−1bi−
k
ρ
z ′

ijbidbi

=
αjB(αj − k/ρ, k/ρ+ 1)

λk/ρeµijk/ρβ
k/ρ
j

e
k2

2ρ2 z′

ijDzij , (B.12)

where we rewrote

−1

2
bi

′D−1bi −
k

ρ
zijbi = −1

2
(bi − t)′D−1(bi − t) + `,

with

t =
k

ρ
Dzij, ` =

1

2

k2

ρ2
z′

ijDzij.

From (B.12), we immediately derive, the following moment expression, with mean, variance, and

covariance expressions:

E(Y k
ij) =

αjB(αj − k/ρ, k/ρ+ 1)

λk/ρβ
k/ρ
j

exp

(
−k
ρ
x′

ijξ +
k2

2ρ2
z′

ijDzij

)
, (B.13)

E(Yij) =
αjB(αj − 1/ρ, 1/ρ+ 1)

λ1/ρβ
1/ρ
j

exp

(
−1

ρ
x′

ijξ +
1

2ρ2
z′

ijDzij

)
, (B.14)

Var(Yij) =
αj

λ2/ρβ2ρ
j

exp

(
−2

ρ
x′

ijξ +
1

ρ2
z′

ijDzij

)

×
[
B (αj − 2/ρ, 2/ρ+ 1) exp

(
1

ρ2
z′

ijDzij

)

−αjB

(
αj −

1

ρ
,
1

ρ
+ 1

)2
]
, (B.15)

Cov(Yij, Yik) =
αjαk

λ2/ρβ
1/ρ
j β

1/ρ
k

exp

[
−1

ρ
(x′

ijξ + x′

ikξ)

]

×B
(
αj −

1

ρ
,
1

ρ
+ 1

)
B

(
αk −

1

ρ
,
1

ρ
+ 1

)

× exp

[
1

2ρ2
(z′

ijDzij + z′

ikDzik)

] [
exp

(
1

ρ2
z′

ijDzik

)
− 1

]
. (B.16)

It is customary, in the standard frailty model (Duchateau and Janssen 2007), to set βj = 1/αj, as
in (20) for identifiability purposes. The change to (B.8) on the one hand, and to (B.13)–(B.16) is

then both evident and minor. Likewise, the exponential version follows from setting ρ = 1.

It is of interest to explore in a bit more detail the special case induced by (21). Setting αj = 1 and
βj = 1/δj implies, for (B.13), upon some rewriting:

E(Y k
ij) =

δ
k/ρ
j k

λk/ρ
Γ

(
1 − k

ρ

)
Γ

(
k

ρ

)
exp

(
−k
ρ
x′

ijξ +
k2

2ρ2
z′

ijDzij

)
. (B.17)
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Reducing the Weibull distribution to the exponential one, i.e., setting ρ = 1, we find:

E(Y k
ij) =

δk
j k

λk
Γ (1 − k) Γ (k) exp

(
−kx′

ijξ +
k2

2
z′

ijDzij

)
. (B.18)

The cases corresponding to (B.17) and, especially, (B.18) deserve further attention. Generally,
Γ(α− k/ρ) poses a problem when α− k/ρ is a negative integer. For simplicity focusing on a single

outcome Y for the case where α = 1 and β = 1/δ assuming there are no normal random effects,
assembling the linear predictor in µ, and writing ϕ = λeµ, we find:

f(y) =
ϕρyρ−1δ

(δ + ϕyρ)2
, (B.19)

E(Y k) =
k

ρ

(
δ

ϕ

)k/ρ

· Γ(1 − k/ρ) · Γ(k/ρ) (B.20)

Note that (B.19) provides a family of distributions, special cases of the Weibull-gamma model in
Table 3 that we could describe as Weibull-exponential. Considering further the exponential case with

ρ = 1, yields exponential-exponential distributions, with:

f(y) =
ϕδ

(δ + ϕy)2
, (B.21)

E(Y k) = k

(
δ

ϕ

)k

· Γ(1 − k) · Γ(k). (B.22)

Clearly, (B.21) defines a family of distributions without finite moments, exactly like but different from
the Cauchy distribution, because Γ(1− k) is undefined for k = 1, 2, . . .. When ρ 6= 1 but fractional,

some but not all moments in (B.20) exist, whereas for irrational values of ρ, all moments in (B.20)
are properly defined. Finally, observe that in the general case, there are combinations possible for

(α, ρ, k) that would lead to negative integers and hence undefined moments (B.17).

Specification (B.19) opens the door for the construction of distributions with arbitrarily wide tails,
yet finite moments. it suffices to choose ρ = 1 + ε, with ε an arbitrarily small irrational value.

Still concentrating on the single-outcome case for notational simplicity, note that the mean-variance

relationship, for the Weibull model with normal and gamma random effect, takes the form:

Var(Y ) = E(Y )2




2B
(
α − 2

ρ ,
2
ρ

)

B
(
α− 1

ρ ,
1
ρ

)2 · ρ · ed/ρ2 − 1


 .

When ρ = 1, this becomes

Var(Y ) = E(Y )2
[
2(α− 1)

α− 2
ed − 1

]
.

Finally, when also d = 0, we find:

Var(Y ) = E(Y )2
(

α

α − 2

)
.
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C Regularity Conditions for Pseudo-likelihood

Here, we list the required regularity conditions on the density functions fs(y
(s)|θ).

A0 The densities fs(y
(s)|θ) are distinct for different values of the parameter θ.

A1 The densities fs(y
(s)|θ) have common support, which does not depend on θ.

A2 The parameter space Ω contains an open region ω of which the true parameter value θ0 is an
interior point.

A3 ω is such that for all s, and almost all y(s) in the support of Y (s), the densities admit all third
derivatives

∂3fs(y
(s)|θ)

∂θk1
∂θk2

∂θk3

.

A4 The first and second logarithmic derivatives of fs satisfy

Eθ

(
∂ ln fs(y

(s)|θ)

∂θk

)
= 0, k = 1, . . . , p,

and

0 < Eθ

(
−∂2 ln fs(y

(s)|θ)

∂θk1
∂θk2

)
<∞, k1, k2 = 1, . . . , p.

A5 The matrix I0, to be defined in (??), is positive definite.

A6 There exist functions Mk1k2k3
such that

∑

s∈S

δsEθ

∣∣∣∣∣
∂3 ln fs(y

(s)|θ)

∂θk1
∂θk2

∂θk3

∣∣∣∣∣ < Mk1k2k3
(y)

for all y in the support of f and for all θ ∈ ω and mk1k2k3
= Eθ0

[Mk1k2k3
(Y )] <∞.

D SAS Code for Asthma Data

D.1 Full Likelihood

/*****************************************************************************

OBJECTIVE: to analyze the Asthma dataset using the extended Weibull model with Gamma

frailty and random normal effects to deal with the longitudinal survival

times.

DATASET: Example 9 of Duchateau & Janssen (2007);

VARIABLE DESCRIPTION:

Patid: Patient ID;

Begin and End: time interval between events for each

patient;

Status: Right censoring indicator (1=Asthma Attack, 0=censored);

Drug: Treatment indicator (1=Drug, 0=Placebo).
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Author: Achmad Efendi.

*******************************************************************************/

libname d <mydirectory>;

options nocenter papersize=A4;

%let linkdata=A:\Phd pre-doc\Project PL [NIH]\PL data;

PROC IMPORT OUT= WORK.asma

DATAFILE= "&linkdata\asma.xls"

DBMS=EXCEL2003 REPLACE ;

Range="asmadel$";

GETNAMES=YES; RUN;

data asthma; set asma;run;

proc print data=asthma;run;*/

* Sorting dataset by Drug, in descending way;

proc sort data=asthma;

by descending Drug Patid;run;

/* Fitting a Weibull regression model */

proc lifereg data=asthma order=data ;

class Drug;

model Time = Drug / distribution=weibull;run;

proc lifereg data=asthma order=data; /* with censoring*/

class Drug;

model Time*Status(0) = Drug / distribution=weibull;run;

proc sort data=asthma; by Patid;run;

/* Weibull model, Exponential model as setting rho=1, via NLMIXED */

proc nlmixed data=asthma tech=newrap;

/*PH model: lamda=rho, rho=gamma, mu=eta*/

parms Beta_0=-3 Beta_1=-0.2 gamma=1;

rho=1;

eta = Beta_0 + Beta_1*(Drug=1);

expeta = exp(eta);

ll = log(rho) + log(gamma) + (gamma-1)*log(Time) + eta - (rho)*(Time**gamma)*expeta;

model Time ~ general(ll);

run;

/* Weibull model with random effects, Exponential-Normal */

proc nlmixed data=asthma qpoints=50;

rho=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);
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ll = log(rho) + log(gamma) + (gamma-1)*log(Time) + eta - rho*(Time**gamma)*expeta;

model Time ~ general(ll);

random b1 ~ normal(0,sigma**2) subject=Patid;

run;

/* Weibull model with gamma frailty, Exponential-Gamma */

proc nlmixed data=asthma tech=quanew;

parms Beta_0=-3 Beta_1=-0.2 lambda=1 alpha=1;

/* Beta starting values from Weibull Model via LIFEREG */

rho=1;

eta = Beta_0 + Beta_1*(Drug=1);

expeta = exp(eta);

ll = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

model Time ~ general(ll);

run;

/* Weibull model with gamma frailty and random Effects, Weibull-Gamma-Normal*/

proc nlmixed data=asthma tech=quanew qpoints=50 maxit=1000;

bounds lambda > 0, alpha > 0;

parms Beta_0=-3 Beta_1=-0.2 lambda = 1 alpha=3.3 sigma=1;

rho=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

ll = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=Patid;

run;

proc nlmixed data=asthma tech=quanew qpoints=50 maxit=1000;/*setting lambda=1*/

bounds alpha > 0;

parms Beta_0=-3 Beta_1=-0.2 alpha=3.3 sigma=1;

rho=1; lambda = 1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

ll = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=Patid;

run;

/* incorporating censoring*/

proc nlmixed data=asthma tech=quanew qpoints=50 maxit=1000;

bounds lambda > 0, alpha > 0;

parms Beta_0=-3 Beta_1=-0.11 lambda = 1 alpha=3.3 sigma=1;
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rho=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

c0 = 1/((1 + lambda*expeta*(Time**rho)*(1/alpha))**alpha);

c1 = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

ll = (status=0)*log(c0) + (status=1)*c1;

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=Patid;

run;

/*setting lambda=1, and with censoring*/

proc nlmixed data=asthma tech=quanew qpoints=50 maxit=1000;

bounds alpha > 0;

parms Beta_0=-3 Beta_1=-0.11 alpha=3.3 sigma=1;

rho=1; lambda = 1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

c0 = 1/((1 + lambda*expeta*(Time**rho)*(1/alpha))**alpha);

c1 = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

ll = (status=0)*log(c0) + (status=1)*c1;

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=Patid;

run;

D.2 Pseudo-likelihood, No censoring

/*****************************************************************************

The objective is fitting Weibull-Gamma-Normal model.

Author: Achmad Efendi.

******************************************************************************/

libname d <mydirectory>;

options nocenter papersize=A4;

%let linkdata=A:\Phd pre-doc\Project PL [NIH]\PL data;

PROC IMPORT OUT= WORK.asma

DATAFILE= "&linkdata\asma.xls"

DBMS=EXCEL2003 REPLACE ;

Range="asmadel$";

GETNAMES=YES; RUN;

data asma1; set asma;

keep patid drug time; run;

proc sort data=asma1; by patid; run;
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%macro pseudosurv(data= ,subject= ,fixed= ,response= );

proc freq data=&data; tables &subject / out=freq noprint; run;

data freq;set freq; keep &subject count;run;

/*getting pairs*/

proc iml;

use freq; read all into f;

/*subj dose resp*/

use &data; read all into y[colname=coln];

nf=nrow(f);

ny=nrow(y);

do i=1 to nf;

codesubject = f[i,1];

free newdata;

/*getting matrix when subject=i */

do b=1 to ny;

if y[b,1]=codesubject then do;

m=y[b,];

newdata=newdata//m;

end;

end;

ni=nrow(newdata);

npair=ni*(ni-1)/2;

pairs=J(npair,4,0);

h=1;

do j=1 to (ni-1);

do k=j+1 to ni;

/*subject*/

pairs[h,1]=codesubject;

pairs[h,2]=newdata[1,2];

/*one subject is treated with only one dose*/

pairs[h,3]=newdata[j,3];

pairs[h,4]=newdata[k,3];

h=h+1;

end;

end;

result=result//pairs;

end;

/*to create longitudinal data, but first deviding the data into two sets*/

x=result;

x1=x[,1]||x[,2]; *subject and treat;

x2=x[,3]||x[,4]; *responses;

npair=nrow(x1); *new npair, after creating pairs;

z1=x1//x1;

/*sorting matrix by the first of two columns*/

call sort(z1,{1 2});

z2=shape(x2,npair*2,1);
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/*combining two sets as well as creating the pair numbers*/

a1=1:npair;

a2=a1‘||a1‘;

z3=shape(a2,npair*2,1);

z=z1||z2||z3;

create last from z; append from z;

quit;

/*creating pair numbers within subject*/

proc freq data=last;

tables col1 / out=freq noprint; run;

data freq;

set freq; keep col1 count; run;

proc iml;

use freq; read all into f;

use last; read all into w;

nf=nrow(f);

do i=1 to nf;

a1=1:f[i,2]/2;

a2=a1//a1;

a3=shape(a2‘,f[i,2],1);

b=b//a3;

end;

c=w||b;

cname = {"Subj", "Fixed", "Resp", "Pairnum", "Pairsubj"};

create last1 from c[colname=cname]; append from c;

quit;

%mend pseudosurv;

%pseudosurv(data=asma1, subject= patid,fixed= drug,response= time);

data asma2; set last1;

patid=subj;

drug=fixed;

time=resp;

keep patid drug time pairnum pairsubj;run;

proc lifereg data=asma2 order=data ;

class drug;

model time = drug / distribution=weibull;run;

/* Weibull model via NLMIXED */

/*PH model: lamda=rho, rho=gamma, mu=eta*/

proc nlmixed data=asma2 tech=newrap;

parms Beta_0=-3.9 Beta_1=-0.09 gamma=1;

rho=1;

eta = Beta_0 + Beta_1*(Drug=1);

expeta = exp(eta);
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ll = log(rho) + log(gamma) + (gamma-1)*log(Time) + eta - (rho)*(Time**gamma)*expeta;

model Time ~ general(ll);

run;

/*******************************************************************************

Weibull model with gamma frailty and random Effects,

fitting model that has five parameters in it

*******************************************************************************/

proc nlmixed data=asma2 tech=quanew qpoints=50 maxit=1000;

bounds lambda > 0, alpha > 0;

parms Beta_0=-3.3 Beta_1=-0.08 lambda=1 alpha=3.3 sigma=1;

rho=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

ll = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=pairnum;

ods output ParameterEstimates=initial;

run;

data initial;

set initial;

keep estimate;

run;

proc iml;

use initial; read all into r;

b0=r[1,1];

b1=r[2,1];

b2=r[3,1];

b3=r[4,1];

b4=r[5,1];

call symput(’es0’,left(char(b0)));

call symput(’es1’,left(char(b1)));

call symput(’es2’,left(char(b2)));

call symput(’es3’,left(char(b3)));

call symput(’es4’,left(char(b4)));

quit;

data asma3;

set asma2;

drop pairnum;

run;

proc sort data=asma3;
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by patid;

run;

%macro se5;

%do i=1 %to 230;

data asm&i; set asma3; where patid=&i; run;

proc sort data=asm&i; by pairsubj; run;

proc nlmixed data=asm&i tech=quanew qpoints=50 noad maxit=1000 start hess;

bounds lambda > 0, alpha > 0;

parms Beta_0=&es0 Beta_1=&es1 lambda=&es2 alpha=&es3 sigma=&es4;

rho=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

ll = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=pairsubj;

ods output startingvalues=grad startinghessian=hes&i;

run;

data grad&i; set grad; keep gradient; run;

%end;

data score; set _null_; run;

data hess; set _null_; run;

%do i=1 %to 230;

data score;set score grad&i;run;

data hess;set hess hes&i;run;

%end;

data hess; set hess; drop row parameter; run;

proc iml;

use score; read all into s;

use hess; read all into h;

nid=nrow(s)/5;

nidh=nrow(h)/5;

a=1:nid; b=J(5,1,1); c=b@(a‘);

a1=1:nidh; b1=J(5,1,1); c1=b1@(a1‘);

create s1 from c; append from c;

create s2 from c1; append from c1;

quit;

proc sort data=s1; by col1; run;

proc sort data=s2; by col1; run;

proc iml;

use score; read all into scor;

use hess; read all into hes;

use s1; read all into j1;

use s2; read all into j2;

scor1=j1||scor;

/*combined score functions and hessian matrices*/
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hes1=j2||hes;

/*start summing up all score functions*/

I1=J(5,5,0);

do i=1 to 230;

free g;

do b=1 to (230*5);

if scor1[b,1]=i then do;

m=scor1[b,2];

g=g//m;

/*score functions for one subject*/

end;end;

sg=g*g‘;

I1=I1+sg;

end;

/*start summing up all hessian matrices*/

I0=J(5,5,0);

do i=1 to 226;

free g1;

do b=1 to (226*5);

if hes1[b,1]=i then do;

m=hes1[b,2]||hes1[b,3]||hes1[b,4]||hes1[b,5]||hes1[b,6];

/*hessian matrices for one subject*/

g1=g1//m;

end;end;

I0=I0+g1;

end;

vmatn=inv(I0);

naiv_se=sqrt(vecdiag(vmatn));

vmat=inv(I0)*I1*inv(I0);

emp_se=sqrt(vecdiag(vmat));

/*naive and empr se*/

se=naiv_se||emp_se;

print se;

quit;

%mend;

%se5;

/*******************************************************************************

Weibull model with gamma frailty and random Effects,

fitting model that has four parameters in it, lambda fixed

*******************************************************************************/

proc nlmixed data=asma2 tech=quanew qpoints=50 maxit=1000;

bounds alpha > 0;

parms Beta_0=-3.3 Beta_1=-0.08 alpha=3.3 sigma=1; /*works*/

rho=1; lambda=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;
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expeta = exp(eta);

ll = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=pairnum;

ods output ParameterEstimates=initial2;

run;

data initial2;

set initial2;

keep estimate;

run;

proc iml;

use initial2; read all into r;

b0=r[1,1];

b1=r[2,1];

b2=r[3,1];

b3=r[4,1];

call symput(’esa0’,left(char(b0)));

call symput(’esa1’,left(char(b1)));

call symput(’esa2’,left(char(b2)));

call symput(’esa3’,left(char(b3)));

quit;

proc sort data=asma3;

by patid;

run;

%macro se4;

%do i=1 %to 230;

data asm&i; set asma3; where patid=&i; run;

proc sort data=asm&i; by pairsubj; run;

proc nlmixed data=asm&i tech=quanew qpoints=50 maxit=1000 start hess;

bounds alpha > 0;

parms Beta_0=&esa0 Beta_1=&esa1 alpha=&esa2 sigma=&esa3;

rho=1; lambda=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

ll = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=pairsubj;

ods output startingvalues=grad startinghessian=hes&i;

run;

data grad&i; set grad; keep gradient; run;

%end;
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data score;set _null_; run;

data hess;set _null_; run;

%do i=1 %to 230;

data score;set score grad&i;run;

data hess;set hess hes&i;run;

%end;

data hess; set hess; drop row parameter; run;

proc iml;

use score; read all into s;

use hess; read all into h;

nid=nrow(s)/4;

nidh=nrow(h)/4;

a=1:nid; b=J(4,1,1); c=b@(a‘);

a1=1:nidh; b1=J(4,1,1); c1=b1@(a1‘);

create s1 from c; append from c;

create s2 from c1; append from c1;

quit;

proc sort data=s1; by col1; run;

proc sort data=s2; by col1; run;

proc iml;

use score; read all into scor;

use hess; read all into hes;

use s1; read all into j1;

use s2; read all into j2;

scor1=j1||scor;

/*combined score functions and hessian matrices*/

hes1=j2||hes;

/*start summing up all score functions*/

I1=J(4,4,0);

do i=1 to 230;

free g;

do b=1 to (230*4);

if scor1[b,1]=i then do;

m=scor1[b,2];

/*score functions for one subject*/

g=g//m;

end;end;

sg=g*g‘;

I1=I1+sg;

end;

/*summing up all hessian matrices*/

I0=J(4,4,0);

do i=1 to 226;

free g1;

do b=1 to (226*4);

if hes1[b,1]=i then do;

m=hes1[b,2]||hes1[b,3]||hes1[b,4]||hes1[b,5];
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/*hessian matrices for one subject*/

g1=g1//m;

end;end;

I0=I0+g1;

end;

vmatn=inv(I0);

naiv_se=sqrt(vecdiag(vmatn));

vmat=inv(I0)*I1*inv(I0);

emp_se=sqrt(vecdiag(vmat));

/*naive and empr se*/

se=naiv_se||emp_se;

print se;

quit;

%mend;

%se4;

D.3 Pseudo-likelihood, Censoring

/*******************************************************************************

The objective is fitting Weibull-Gamma-Normal model.

The data used in this analysis is from recurrent asthma data in children.

Author: Achmad Efendi.

******************************************************************************/

libname d <mydirectory>;

options nocenter papersize=A4;

%let linkdata=A:\Phd pre-doc\Project PL [NIH]\PL data;

PROC IMPORT OUT= WORK.asma

DATAFILE= "&linkdata\asma.xls"

DBMS=EXCEL2003 REPLACE ;

Range="asmadel$";

GETNAMES=YES;RUN;

data asma1; set asma; keep patid status drug time; run;

proc sort data=asma1; by patid; run;

/*modified macro for incorporating censorship*/

%macro plcensor(data= ,subject= ,status= status, fixed= , response= );

proc freq data=&data; tables &subject / out=freq noprint; run;

data freq;set freq; keep &subject count;run;

/*getting pairs*/

proc iml;

use freq; read all into f;
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/*subj dose resp*/

use &data; read all into y[colname=coln];

nf=nrow(f);

ny=nrow(y);

do i=1 to nf;

codesubject = f[i,1];

free newdata;

/*getting matrix when subject=i */

do b=1 to ny;

if y[b,1]=codesubject then do;

m=y[b,];

newdata=newdata//m;

end;end;

ni=nrow(newdata);

Npair=ni*(ni-1)/2;

pairs=J(Npair,6,0);

h=1;

do j=1 to (ni-1);

do k=j+1 to ni;

/*subject*/

pairs[h,1]=codesubject;

/*status1, of censoring*/

pairs[h,2]=newdata[j,2];

/*status2, of censoring*/

pairs[h,3]=newdata[k,2];

/*treatment covariate, one subject is treated with only one dose*/

pairs[h,4]=newdata[1,3];

pairs[h,5]=newdata[j,4];

pairs[h,6]=newdata[k,4];

h=h+1;

end;

end;

result=result//pairs;

end;

/*to create longitudinal data, but first deviding the data into two sets*/

x=result;

x1=x[,1]||x[,4];

x2=x[,2]||x[,3];

x3=x[,5]||x[,6];

z1=x1//x1;

/*sorting matrix by the first of two columns*/

call sort(z1,{1 2});

z2=shape(x2,nrow(x2)*2,1);

z3=shape(x3,nrow(x3)*2,1);

/*combining three sets as well as creating the pair numbers*/

npair=nrow(z1)/2;

a1=1:npair;
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a2=a1//a1;

z4=shape(a2‘,nrow(z1),1);

z=z1||z2||z3||z4;

create last from z;append from z;

quit;

/*creating pair numbers within subject*/

proc freq data=last;

tables col1 / out=freq noprint; run;

data freq;set freq; keep col1 count; run;

proc iml;

use freq; read all into f;

use last; read all into w[colname=coln];

nf=nrow(f);

do i=1 to nf;

a1=1:f[i,2]/2;

a2=a1//a1;

a3=shape(a2‘,f[i,2],1);

b=b//a3;

end;

c=w||b;

cname = {"Subj", "Fixed", "Status", "Resp", "Pairnum", "Pairsubj"};

create last1 from c[colname=cname];append from c;

quit;

%mend plcensor;

%plcensor(data=asma1, subject=patid, status=status, fixed=drug, response=time);

data asma2; set last1;

patid=subj;

drug=fixed;

time=resp;

keep patid status drug time pairnum pairsubj;run;

proc sort data=asma2;

by patid;

run;

proc lifereg data=asma2 order=data ;

class drug;

model time = drug / distribution=weibull;

run;

proc lifereg data=asma2 order=data; /* with censoring*/

class Drug;

model Time*Status(0) = Drug / distribution=weibull;

run;
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/*******************************************************************************

Weibull model with gamma frailty and random Effects, incorporating censoring,

fitting model that has five parameters in it.

*******************************************************************************/

proc nlmixed data=asma2 tech=quanew qpoints=50 maxit=1000;

bounds lambda > 0, alpha > 0;

parms Beta_0=-3.8 Beta_1=-0.15 lambda=1 alpha=5 sigma=1;

rho=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

c0 = 1/((1 + lambda*expeta*(Time**rho)*(1/alpha))**alpha);

c1 = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

ll = (status=0)*log(c0) + (status=1)*c1;

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=Pairnum;

ods output parameterestimates=initial;

run;

data initial;

set initial;

keep estimate;

run;

proc iml;

use initial; read all into r;

b0=r[1,1];

b1=r[2,1];

b2=r[3,1];

b3=r[4,1];

b4=r[5,1];

call symput(’es0’,left(char(b0)));

call symput(’es1’,left(char(b1)));

call symput(’es2’,left(char(b2)));

call symput(’es3’,left(char(b3)));

call symput(’es4’,left(char(b4)));

quit;

data asma3;

set asma2;

drop pairnum;

run;

proc sort data=asma3;

by patid;

run;
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%macro se5;

%do i=1 %to 230;

data asm&i; set asma3; where patid=&i; run;

proc sort data=asm&i; by pairsubj; run;

proc nlmixed data=asm&i tech=quanew qpoints=50 noad maxit=1000 start hess;

bounds lambda > 0, alpha > 0;

parms Beta_0=&es0 Beta_1=&es1 lambda=&es2 alpha=&es3 sigma=&es4;

rho=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

c0 = 1/((1 + lambda*expeta*(Time**rho)*(1/alpha))**alpha);

c1 = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

ll = (status=0)*log(c0) + (status=1)*c1;

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=pairsubj;

ods output startingvalues=grad startinghessian=hes&i;

run;

data grad&i; set grad; keep gradient; run;

%end;

data score; set _null_; run;

data hess; set _null_; run;

%do i=1 %to 230;

data score;set score grad&i;run;

data hess;set hess hes&i;run;

%end;

data hess; set hess; drop row parameter; run;

proc iml;

use score; read all into s;

use hess; read all into h;

nid=nrow(s)/5;

nidh=nrow(h)/5;

a=1:nid; b=J(5,1,1); c=b@(a‘);

a1=1:nidh; b1=J(5,1,1); c1=b1@(a1‘);

create s1 from c; append from c;

create s2 from c1; append from c1;

quit;

proc sort data=s1; by col1; run;

proc sort data=s2; by col1; run;

proc iml;

use score; read all into scor;

use hess; read all into hes;

use s1; read all into j1;

use s2; read all into j2;

scor1=j1||scor;

/*combined score functions and hessian matrices*/
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hes1=j2||hes;

/*start summing up all score functions*/

I1=J(5,5,0);

do i=1 to 230;

free g;

do b=1 to (230*5);

if scor1[b,1]=i then do;

m=scor1[b,2];

/*score functions for one subject*/

g=g//m;

end;end;

sg=g*g‘;

I1=I1+sg;

end;

/*summing up all hessian matrices*/

I0=J(5,5,0);

do i=1 to 226;

free g1;

do b=1 to (226*5);

if hes1[b,1]=i then do;

m=hes1[b,2]||hes1[b,3]||hes1[b,4]||hes1[b,5]||hes1[b,6];

/*hessian matrices for one subject*/

g1=g1//m;

end;end;

I0=I0+g1;

end;

vmatn=inv(I0);

naiv_se=sqrt(vecdiag(vmatn));

vmat=inv(I0)*I1*inv(I0);

emp_se=sqrt(vecdiag(vmat));

se=naiv_se||emp_se; /*naive and empr se*/

print se;

quit;

%mend;

%se5;

/*******************************************************************************

Weibull model with gamma frailty and random Effects, incorporating censoring,

fitting model that has four parameters in it, lambda fixed.

*******************************************************************************/

proc nlmixed data=asma2 tech=quanew qpoints=50 maxit=1000;

bounds alpha > 0;

parms Beta_0=-3.8 Beta_1=-0.1 alpha=4.5 sigma=0.2;

rho=1; lambda=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);
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c0 = 1/((1 + lambda*expeta*(Time**rho)*(1/alpha))**alpha);

c1 = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

ll = (status=0)*log(c0) + (status=1)*c1;

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=Pairnum;

ods output parameterestimates=initial2;

run;

data initial2;

set initial2;

keep estimate;

run;

proc iml;

use initial2; read all into r;

b0=r[1,1];

b1=r[2,1];

b2=r[3,1];

b3=r[4,1];

call symput(’esa0’,left(char(b0)));

call symput(’esa1’,left(char(b1)));

call symput(’esa2’,left(char(b2)));

call symput(’esa3’,left(char(b3)));

quit;

proc sort data=asma3; by patid; run;

%macro se4;

%do i=1 %to 230;

data asm&i; set asma3; where patid=&i; run;

proc sort data=asm&i; by pairsubj; run;

proc nlmixed data=asm&i tech=quanew qpoints=50 maxit=1000 start hess;

bounds alpha > 0;

parms Beta_0=&esa0 Beta_1=&esa1 alpha=&esa2 sigma=&esa3;

rho=1; lambda=1;

eta = Beta_0 + Beta_1*(Drug=1) + b1;

expeta = exp(eta);

ll = log(lambda) + log(rho) + (alpha+1)*log(alpha)+ (rho-1)*log(Time) + eta

- (alpha+1)*log(lambda*(Time**rho)*expeta + alpha);

model Time ~ general(ll);

random b1 ~ normal(0, sigma**2) subject=pairsubj;

ods output startingvalues=grad startinghessian=hes&i;

run;

data grad&i; set grad; keep gradient; run;

%end;

data score;set _null_; run;

data hess;set _null_; run;
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%do i=1 %to 230;

data score;set score grad&i;run;

data hess;set hess hes&i;run;

%end;

data hess; set hess; drop row parameter; run;

proc iml;

use score; read all into s;

use hess; read all into h;

nid=nrow(s)/4;

nidh=nrow(h)/4;

a=1:nid; b=J(4,1,1); c=b@(a‘);

a1=1:nidh; b1=J(4,1,1); c1=b1@(a1‘);

create s1 from c; append from c;

create s2 from c1; append from c1;

quit;

proc sort data=s1; by col1; run;

proc sort data=s2; by col1; run;

proc iml;

use score; read all into scor;

use hess; read all into hes;

use s1; read all into j1;

use s2; read all into j2;

scor1=j1||scor;

/*combined score functions and hessian matrices*/

hes1=j2||hes;

/*summing up all score functions*/

I1=J(4,4,0);

do i=1 to 230;

free g;

do b=1 to (230*4);

if scor1[b,1]=i then do;

m=scor1[b,2];

/*score functions for one subject*/

g=g//m;

end;end;

sg=g*g‘;

I1=I1+sg;

end;

/*summing up all hessian matrices*/

I0=J(4,4,0);

do i=1 to 226;

free g1;

do b=1 to (226*4);

if hes1[b,1]=i then do;

m=hes1[b,2]||hes1[b,3]||hes1[b,4]||hes1[b,5];

/*hessian matrices for one subject*/

g1=g1//m;
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end;end;

I0=I0+g1;

end;

vmatn=inv(I0);

naiv_se=sqrt(vecdiag(vmatn));

vmat=inv(I0)*I1*inv(I0);

emp_se=sqrt(vecdiag(vmat));

se=naiv_se||emp_se; /*naive and empr se*/

print se;

quit;

%mend;

%se4;
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