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Abstract

Generalized Estimating Equations (GEE) are a widespread tool for mod-

eling correlated data, based on properly formulating a marginal regression

function, combined with working assumptions about the correlation function.

Should interest be placed in addition on the correlation function, then, apart

from second-order GEE, pseudo-likelihood (PL) also provides an attractive

alternative, especially in its pairwise form, where the covariance between each

pair of the response vector is modeled as well. An elegant PL approach is

formulated in this paper, based on a flexible bivariate Poisson model. The

performance of the PL-method is studied, relative to GEE, using simulations.

Data on repeated counts of epileptic seizures in a two-arm clinical trial are

analyzed. A macro has been developed by the authors and made available

on their web pages.

Key words and phrases: Bivariate Poisson distribution; Correlated data; Gen-

eralized estimating equations; Pseudo-likelihood.

1 Introduction

Count data collected repeatedly over time for the same subject are commonly

encountered in scientific research. When collected only once per subject or at

one time point, one usually assumes the data to be generated from a univariate

Poisson distribution. Contemporary studies frequently aim at describing the

1



evolution of subjects over time or observing more than one response from a single

subject. Assuming a univariate Poisson distribution as the parent distribution

of such data would ignore correlation and lead to erroneous inferences.

A lot of research has been done to account for correlation in count data.

Breslow and Clayton (1993) and Wolfinger and O’Connell (1993) extended the

generalized linear modeling (GLM) framework to the so-called generalized linear

mixed model (GLMM) in which the correlation is accounted for by use of random

effects. Molenberghs et al. (2007) (see also Molenberghs et al. 2010) propose

a joint model for clustering and over-dispersion through two separate sets of

random effects.

Extensions of the univariate Poisson model to a multivariate version have

also been proposed. This has the advantage of a gain in efficiency as long as

the model is correctly specified. However, use of a so-called Multivariate Pois-

son (MP) model is constrained by the complexity of the probability function to

be calculated. This is because it involves summations which may increase the

computational burden with increase in the number of measurements per subject

and/or sample size. Karlis (2003) uses the Expectation-Maximization (EM) algo-

rithm to derive a MP distribution via a multivariate reduction technique. Karlis

and Ntzoufras (2003) model sports data using a bivariate Poisson distribution.

Kocherlakota and Kocherlakota (2001) apply a bivariate Poisson distribution to

longitudinal data but with only two time points. In this paper, we propose a

pseudo-likelihood, taking the form of pairwise likelihood, to drastically simplify

computational burden while retaining sufficiently high statistical efficiency. For

each pair, a bivariate Poisson distribution is specified hence capturing the as-

sociation between the two measurements. We restrict attention to each subject

having at least 2 measurements recorded. We compare our proposal to General-

izing Estimating Equations (GEE, Liang and Zeger 1986) based on a simulation

with varying sample sizes (K) and number of measurements per subject i (ni).

Our proposal allows for ni to differ between subjects but we assign equal ni to

all subjects in the simulations. We quantify the behavior of the two methods

in terms of mean square error (MSE), variance, and the absolute bias of the

estimators. Two cases worth investigating are (a) when there is no association

in the data and, (b) where there exists association or when data is collected
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repeatedly per subject. In Section 2, an overview of GEE, the general idea of

pseudo-likelihood and our proposition are given. Section 3 outlines the set-up as

well as the results of the simulation study while an application of the proposal

to a clinical trial study in epileptic seizures is presented in Section 4.

2 Methodology

Inference in a good number of longitudinal studies is primarily based on marginal

parameters. Using classical maximum likelihood methodology then necessitates

the full specification of the joint distribution for Yi. In the context of discrete

data, one needs to specify the first-order moments as well as all higher-order mo-

ments (Molenberghs and Verbeke 2005) which often is computationally restrictive

for high-dimensional vectors of correlated data. With primary interest placed on

the marginal parameters, however, tools like GEE and pseudo-likelihood (PL,

Arnold and Strauss 1991, Le Cessie van Van Houwelingen 1994, Zhao and Joe

2005, Molenberghs and Verbeke 2005, Yi, Zeng, and Cook 2011) have been pro-

posed and implemented in statistical software. These two tools still allow for

within-subject dependence but yet are computationally more practical relative

to full likelihood.

Assume that there are K independent subjects in a study with subject i

having a measurement Yij , i = 1, . . . , K, j = 1, . . . , ni and a corresponding q × p

known design matrix Xi. Denote the responses of subject i at any given pair of

time points, s and t as Yis and Yit, respectively, 1 ≤ s < t ≤ ni.

2.1 Generalized Estimating Equations

GEE makes no distributional assumptions apart from the specification of the

mean function µi = exp(Xiβ) for models with the log link, the variance function

Vi =
(
A

1/2
i Ri(α)A

1/2
i

)−1
where Ai is an ni × ni diagonal matrix with var(µij)

as the jth diagonal element, and RRRi(ααα) is an ni × ni (perhaps incorrect) working

correlation matrix to model the dependence between within-subject observations

expressed in terms of ααα a vector of unknown parameters. Liang and Zeger (1986)
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solve the estimating equation

S(β) =

K∑

i=1

∂µi

∂β′ Vi(yi − µi) = 0, (1)

where µi = E(Yi), β is a p-dimensional vector of unknown regression param-

eters. The correlation between measurements can be assumed as, for example,

Corr(Yis, Yit) = 0 for independence, Corr(Yis, Yit) = α for exchangeability or

Corr(Yis, Yit) = αst for unstructured working assumptions (s 6= t). The solution

to (1) is consistent and asymptotically normally distributed with mean β and an

asymptotic variance-covariance matrix

Var(β̂) = I−1
0 I1I

−1
0 , (2)

also referred to as the sandwich estimator, where

I0 =

K∑

i=1

∂µ′
i

∂β
V −1

i

∂µi

∂β′ , (3a)

I1 =
K∑

i=1

∂µ′
i

∂β
V −1

i Var(Yi)V
−1
i

∂µi

∂β′
, (3b)

as long as the marginal mean is correctly specified. Consistent parameter esti-

mates and standard errors are obtained even with miss-specification of the work-

ing assumption. Correct specification of the working correlation matrix results

in improved efficiency of the parameter estimates while severe miss-specification

may compromise efficiency. We refer to Molenberghs and Verbeke (2005) and

related references therein for further details on GEE.

GEE however falls short when scientific interest is in drawing inferences on

the association parameters or if the estimated correlation matrix is not positive

definite leading to a breakdown in the iterative procedure (Sun, Shults, and

Leonard 2009). Correct estimation of the correlation also improves efficiency of

the estimated regression parameters (Wang and Carey 2004). Some alternative

approaches have been proposed like [a] Second-order GEE in which the marginal

mean parameters are simultaneously estimated with the marginal correlation

parameters (Zhao and Prentice 1990; Liang, Zeger and Qaqish 1992) and, [b]

the careful estimation of the correlation parameters in GEE using Quasi Least
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Squares, developed in a suite of papers by Chaganty (1997), Shults and Chaganty

(1998), and Chaganty and Shults (1999). See also Wang and Carey (2004) and

Sun, Shults, and Leonard (2009) for more on estimating the correlation in the

framework of GEE.

2.2 General Form of Pseudo-likelihood

In likelihood-based modeling frameworks, the marginal (log)likelihood is usually

maximized to estimate the unknown parameters. For continuous longitudinal

data, the marginal distribution and therefore the marginal (log)likelihood in-

volves a product of the normal distributions for the data and the random effects

resulting in a normal distribution as the marginal distribution. This presents

no computational challenges and has been widely implemented in statistical

software packages like SAS. For non-normal data, on the other hand, specifi-

cation of the full likelihood can be very prohibitive computationally when mea-

surement sequences are of moderate to large length (Molenberghs and Verbeke

2005). Rather than specifying the full likelihood, the idea of pseudo-likelihood,

or composite likelihood (Arnold and Strauss 1991, Le Cessie and van Houwelin-

gen 1991, Geys, Molenberghs, and Ryan 1999, Aerts et al. 2002, Zhao and Joe

2005, Molenberghs and Verbeke 2005, Yi, Zeng, and Cook 2011) is to specify, for

example, all univariate densities, or all pairwise densities over the set of all pos-

sible pairs within a sequence of repeated measures in place of the full likelihood.

In the case of pairwise densities, the likelihood contribution f(yi1, . . . , yini
) of

subject i to the full likelihood is substituted with a product of f(yis, yit). For

example, when ni = 3, f(yi1, yi2, yi3) is replaced by f(yi1, yi2) × f(yi1, yi3) ×
f(yi2, yi3) and the corresponding log-likelihood log f(yi1, yi2, yi3) is replaced by

log f(yi1, yi2) + log f(yi1, yi3) + log f(yi2, yi3). In the general case of ni measure-

ments per subject i, the contribution of subject i to the log pseudo-likelihood is

p`i =
∑

1≤s<t≤ni
log f(yis, yit) and the marginal log-pseudo-likelihood is given by

p`(λ|Y) =
K∑

i=1

∑

s<t

log f(yis, yit), (4)

where λ contains the unknown parameters estimated by setting the first deriva-

tive of (4) equal to zero. With correct model specification, consistent and nor-
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mally distributed estimators are obtained (Molenberghs and Verbeke 2005), the

variance-covariance matrix calculated using a sandwich estimator similar to that

of GEE in (2).

Regularity conditions have to be invoked to ensure that (4) can be maximized

by solving the pseudo-likelihood (score) equations. These can be found, for ex-

ample, in Molenberghs et al (2011). Importantly, because the components in (4)

are derived from marginalizing the original distribution, a valid pseudo-likelihood

function results. Details can be found in Joe and Lee (2008), who use weighting

for reasons of efficiency in pairwise likelihood. Let λ0 be the true parameter.

Under the aforementioned regularity conditions, maximizing (4) produces a con-

sistent and asymptotically normal estimator λ̃0 so that
√

N(λ̃N−λ0) converges in

distribution to Np[0, I0(λ0)
−1I1(λ0)I0(λ0)

−1]. The regularity conditions, as

well as explicit forms for I0(λ0) and I1(λ0), are provided in Appendix A.

Troxel et al. (1998) used the product of all univariate distributions as an ap-

proximation to the full-likelihood. This significantly reduces the computational

burden encountered in the full-likelihood approach yet still results in asymp-

totically unbiased estimators of the regression parameters. However, specifying

univariate distributions for longitudinal data is based upon the unrealistic work-

ing assumption of no dependence between the several responses within a subject

and may lead to highly inefficiently estimated regression parameters (Parzen

et al. 2007). Specifying the bivariate distribution for all the pairs of the responses

from each subject may be a better approach. This has been used by Parzen et

al. (2007) for longitudinal binary data with non-ignorable non-monotone miss-

ingness. We apply the approach to hierarchical count data in the context of

marginal models.

2.3 A Model for Hierarchical Count Data

Assuming that Wk are independent Poisson random variables with means θk,

k = s, t or st. The random variables Yis = (Wis + Wist) and Yit = (Wit + Wist)

then follow a bivariate Poisson distribution, i.e., (Yis, Yit) ∼ BP (θis, θit, θist)

6



given by

f(yis, yit) = e−(θis+θit+θist)
θyis

is

yis!

θyit

it

yit!

min(yis,yit)∑

k=0

(
yis

k

)(
yit

k

)
k!

(
θist

θisθit

)k

. (5)

Let θ?
is = θis + θist and θ?

it = θit + θist where log(θis) = Xisβ and log(θit) =

Xitβ. Marginally, Yis ∼ Poisson(θ?
is), Yit ∼ Poisson(θ?

it) and θist is the covariance

between subsequent pairs of the random variables Yis and Yit. The marginal

log pseudo-likelihood takes the form (4). Estimation of the parameters in λ =

(β, θist)
T is done in SAS/IMLr using the Newton-Raphson (NR) algorithm; a

macro has been written to this effect. See Appendix B for the gradient and

Hessian functions of the log PL function in equation (4), with respect to the

unknown parameters in λ, which are supplied to the NR optimization step.

Note that we have formulated a bivariate model only, even though our aim

is to analyze hierarchical data with more than two repetitions. Fortunately,

the use of GEE and PL methodology obviates the need to explicitly specify the

higher-order joint distributions. We assume the covariance (θist) to be the same

for all subjects and pairs (=θst) in this paper. This bears resemblance to an

exchangeable correlation structure, but one must remember that, because the

variance depends on the mean, the corresponding correlations will fluctuate with

the mean, even though the covariances may be constant. The exception is when

the mean is constant as well; in that case a classical exchangeable correlation

matrix will follow. This assumption of equal covariance term can however be

relaxed.

3 Simulation Study

Simulations have been done to compare the performance of GEE and our pro-

posed pseudo-likelihood approach in the cases of both correlated and independent

outcomes. We study the effect of varying sample sizes and number of measure-

ments per subject for GEE with an exchangeable working correlation structure in

comparison to pseudo-likelihood, based on 1000 simulations. The absolute bias,

MSE, and the percent samples for which convergence has been reached, quantify

the behavior of the two methods.
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3.1 Design of Simulation Study

3.1.1 Simulation of Independent Data

We generated data for K = 10, 100, 1000, 10000 subjects, assuming the following

model:

µij = exp(β0 + β1 ∗ trti + β2 ∗ timeij + β3 ∗ trti ∗ timei), (6a)

Yij ∼ Poisson(µij), (6b)

for subjects i = 1, . . . , n and measurements j = 1, . . . , ni. The subjects are

equally distributed across the two treatment groups (trti = 0 or 1) and timeij is

the ordering of the jth measurement within subject i. Further, ni was fixed to

values of 2, 4, 8, and 16 for all subjects within a given run for simulation pur-

poses, even though our methods allows for varying cluster sizes. The regression

parameters were specified as β0 = 1.4531, β1 = −0.1869, β2 = −0.0328, and

β3 = 0.0195.

3.1.2 Simulation of Dependent Data

To generate dependent data, a subject-specific intercept bi is introduced to equa-

tion (6a), changing it to

µij = exp (β0 + bi + β1 ∗ trti + β2 ∗ timei + β3 ∗ trt ∗ timeij) . (7)

First, the fixed-effect parameters were specified as in the case of no association in

Section 3.1.1, while bi is a subject-specific parameter that was assumed to follow a

normal distribution with zero mean and a variance of 0.252, thus bi ∼ N (0, 0.252).

Datasets of varying sample sizes and cluster sizes were then generated from model

(7) and the “true” marginal parameters obtained by fitting a univariate Poisson

model ignoring the correlation. The parameters obtained are consistent though

the efficiency with which they are estimated is compromised. Note that data are

generated from a hierarchical model to which marginal models are then fitted.

This implies that the true values for the β parameters in (7) do not correspond to

the true values for the marginal model. To deal with this issue, very large sample

sizes were generated (starting from 1000 and going up all the way to 250,000)

using the hierarchical model and then the subsequent marginal model was fitted.
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For the largest sample sizes, very stable estimates were obtained. These values,

β
(m)
0 = 1.5807, β

(m)
1 = −0.1881, β

(m)
2 = −0.0340, and β

(m)
3 = 0.0192 were used

to calculate the bias in the case of dependent data. The superscript (m) refers

to ‘marginal.’

3.2 Results

A comparison between GEE and PL is done in the context of hierarchical count

data. GEE has been widely implemented in statistical software like SAS and R.

Our proposed PL approach is implemented in SAS and a macro is available from

the authors’ web pages.

Not surprisingly, for independent data, GEE and PL parameter estimates

are very similar (Table 1), with differences especially occurring in Table 1 for

K = 10, ni = 2. PL, however, has the covariance parameter θst estimated, which

indicates a relative tendency to zero with increase in sample size and number

of measurements per subject, as expected for independent data. For very small

sample sizes, however, PL’s performance is compromised as can also be seen

from Table 2. Though θst hails from a Poisson distribution and is expected to be

strictly positive, we argue that this interpretation takes effect in a hierarchical

modeling framework. In the context of marginal modeling, this parameter can

also take on negative values as is seen in Table 1. This phenomenon is often a

source of confusion, and it is less well understood in non-Gaussian cases than for

continuously distributed hierarchical data. Pryseley et al (2011) describe how

such negative correlations can be estimated and interpreted for both Gaussian

and non-Gaussian settings. One important situation where negative association

is natural is where cluster members are in a competitive relation with one another.

Molenberghs and Verbeke (2011) further discuss how a negative correlation can

be reconciled with a hierarhical model interpretation.

Simulations with θst strictly positive in the case of data with association,

see Table 6, in a marginal model perspective slightly improved the convergence

rate while the bias and the MSE were more or less the same. In the case of data

without association, the bias and MSE were also similar whether or not θst was

constrained to be positive but the rate of convergence was reduced in the case of

strictly positive θst.
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In the presence of correlation, θst is estimated above 1 as can be seen from

Table 3 for the various combinations of K and ni. Convergence (Table 4) issues

still persist for K ≈ 10.

4 Data Analysis

Data on epileptic seizures were obtained from a randomized double-blind, par-

allel group multi-center study to compare a placebo(treatment=0) and a new

anti-epileptic drug (AED) in combination with one or two other AED’s (treat-

ment=1). The randomization of the epileptic patients took place after a 12-week

stabilization period. The number of seizures were counted during this baseline

period after which 45 patients were assigned to the placebo group and 44 to the

AED group. Patients were then followed weekly for 16 weeks and then enrolled

into a long-term open-extension study. Patient characteristics including race, age

(years), sex, height, and weight were also recorded. Some of the patients were

followed for up to 27 weeks. The outcome of interest is the number of epileptic

seizures experienced during the last week. Molenberghs and Verbeke (2005) and

related references therein give more details and a report of earlier analyses of

this set of data. Here, we analyze this dataset using three different approaches:

(a) independence; (b) GEE; and (c) PL. Table 5 shows results of fitting a model

for the evolution of the two treatment arms over time and, the same model but

with a correction for baseline characteristics of the patients. Similar results are

observed for GEE and PL, especially as far as the standard errors are concerned.

5 Concluding Remarks

We have put forward a particular form of pseudo-likelihood, also termed pair-

wise likelihood, to estimate parameters for a model fitted to repeated count data.

Beneficially, the specification of a bivariate count-data model only is required.

Unlike conventional generalized estimating equations, our method allows for the

assessment of the association between pairs of measurements, in addition to the

usual marginal mean parameters. Of course, one could consider a very general

correlation structure with GEE, but this cannot be subjected to standard statisti-
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cal assessment, e.g., based on hypothesis-testing based assessment. Alternatively,

one could switch to second-order GEE (Zhao and Prentice 1990), but this come

with considerable computational complexity.

Pseudo-likelihood, like generalized estimating equations, yields consistent

and asymptotically normally distributed parameter estimates with a sandwich

estimator used to calculate the variance. On the one hand, GEE remains com-

putationally faster than PL because it only evaluates the first moment and plugs

in working assumptions for the second. But because it allows for the miss-

specification of the working correlation structure, one cannot rely on the correla-

tion estimates from GEE for formulating answers to scientific questions, should

interest be in the association as well. The computational burden encountered

in PL grows with the number of measurements per subject or cluster size, as

evaluation of the marginal PL is done for all [ni(ni − 1)]/2 possible pairs of a

subject.

It is important to realize that the method used for simulation does not match

the assumed model. This can be seen as a drawback, but underscores that more

and more flexible methods for simulating correlated Poisson data are needed. It

is a topic of ongoing research.

The constant covariance terms, considered in this paper, can and will be

relaxed in future developments.

In conclusion, pseudo-likelihood is a viable alternative when pairwise asso-

ciation between repeated counts is of interest. Of course, while these pairwise

association parameters are fully part of the model, in spite of the fact that full

likelihood is not specified, there may be a price in terms of efficiency loss. At

the same time, with pairwise pseudo-likelihood, no three-way of higher-order

parameters can be estimated.

Further, and importantly, GEE2 and pairwise likelihood are less

robust to misspecification of the association structure than conven-

tional GEE. Of course, we have to place this against the background of

functional restrictions on the correlation structure in marginal models.

There are situations, especially with binary data, where a pairwise cor-

relation structure is incompatible with the specified univariate mean

functions. In such a case, it is better to have non-converging GEE and
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PL, than a converged GEE which nevertheless cannot correspond to

a valid joint distribution.

Generally, the less parametric the model, the higher the robust-

ness towards misspecification. This simply means that whatever is not

specified, cannot be misspecified. In this spirit, PL is robust against

the entire higher-order association structure, given that it is not spec-

ified.

Robustness should also be seen against the existence of so-called

parent distributions, i.e., full joint distributions that are compatible

with the moments specified, e.g., the first and second moments in pair-

wise likelihood. Work has been done in this respect, e.g., by Molen-

berghs and Kenward (2010). These authors show that the parent

provides a natural description of the framework into which the semi-

parametrically specified parameters fit. The implication is that such

semi-parametric methods as GEE1, GEE2, ALR, etc. can always be

applied because there is always a valid parent, and hence a proba-

bilistic basis. The sole condition is that the parametrically specified

portion of the model be valid, but this is no different to any other

statistical modeling exercise. It follows from the above that, when

the pairwise correlation structure is grossly misspecified, the pairwise

probabilities may be jeopardized and more so the parent distribution.

This implies that robustness can come with important drawbacks. In

pairwise likelihood, the modeler’s obligation to reflect carefully on all

that is specified is straightforwardly built in.
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Table 1: Simulation study, no association: Parameter estimates for GEE (exch. corre-

lation) and pseudo-likelihood for varying number of measurements per subject (ni) and

sample size (K)

GEE Pseudo likelihood

K ni β0 β1 β2 β3 β0 β1 β2 β3 θst

True value 1.4531 -0.1869 -0.0328 0.0195 1.4531 -0.1869 -0.0328 0.0195 .

10 2 1.4147 -0.1691 -0.0306 0.0156 0.7424 -0.3586 -0.1007 0.1927 0.8545

10 4 1.4424 -0.1842 -0.0353 0.0203 1.4650 -0.1754 -0.0333 0.0178 -0.1502

10 8 1.4452 -0.1886 -0.0329 0.0203 1.4653 -0.1851 -0.0323 0.0199 -0.0906

10 16 1.4474 -0.1863 -0.0327 0.0196 1.4578 -0.1836 -0.0323 0.0193 -0.0465

100 2 1.4512 -0.1777 -0.0336 0.0122 1.4488 -0.1803 -0.0339 0.0122 -0.0066

100 4 1.4527 -0.1882 -0.0337 0.0201 1.4561 -0.1875 -0.0335 0.0200 -0.0179

100 8 1.4525 -0.1868 -0.0331 0.0197 1.4547 -0.1864 -0.0330 0.0197 -0.0101

100 16 1.4525 -0.1868 -0.0328 0.0197 1.4536 -0.1866 -0.0328 0.0197 -0.0051

1,000 2 1.4546 -0.1874 -0.0342 0.0200 1.4546 -0.1874 -0.0342 0.0199 -0.0016

1,000 4 1.4538 -0.1863 -0.0332 0.0193 1.4541 -0.1863 -0.0332 0.0193 -0.0015

1,000 8 1.4527 -0.1857 -0.0328 0.0194 1.4532 -0.1856 -0.0328 0.0194 -0.0021

1,000 16 1.4527 -0.1858 -0.0328 0.0194 1.4529 -0.1858 -0.0328 0.0194 -0.0005

10,000 2 1.4536 -0.1883 -0.0330 0.0202 1.4536 -0.1883 -0.0330 0.0202 0.0000

10,000 4 1.4536 -0.1865 -0.0329 0.0194 1.4537 -0.1865 -0.0329 0.0194 -0.0006

10,000 8 1.4536 -0.1875 -0.0329 0.0196 1.4536 -0.1875 -0.0329 0.0196 -0.0001

10,000 16 1.4531 -0.1871 -0.0328 0.0195 1.4531 -0.1871 -0.0328 0.0195 -0.0000
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Table 2: Simulation study, no association: Absolute bias in the parameter estimates and

percent rate of convergence (RATEc) for GEE and pseudo-likelihood for varying number

of measurements per subject (ni) and sample size (K)

GEE Pseudo likelihood

K ni β0 β1 β2 β3 RATEc β0 β1 β2 β3 RATEc

10 2 0.0384 0.0178 0.0022 0.0039 99 0.7107 0.1717 0.0679 0.1732 68

10 4 0.0107 0.0027 0.0025 0.0008 100 0.0119 0.0115 0.0005 0.0017 95

10 8 0.0079 0.0017 0.0001 0.0008 100 0.0122 0.0018 0.0005 0.0004 100

10 16 0.0057 0.0006 0.0001 0.0001 100 0.0047 0.0033 0.0005 0.0002 100

100 2 0.0019 0.0092 0.0008 0.0073 100 0.0043 0.0066 0.0011 0.0073 100

100 4 0.0004 0.0013 0.0009 0.0006 100 0.0030 0.0006 0.0007 0.0005 100

100 8 0.0006 0.0001 0.0003 0.0002 100 0.0016 0.0005 0.0002 0.0002 100

100 16 0.0006 0.0001 0.0000 0.0002 100 0.0005 0.0003 0.0000 0.0002 100

1,000 2 0.0015 0.0005 0.0014 0.0005 100 0.0015 0.0005 0.0014 0.0004 100

1,000 4 0.0007 0.0006 0.0004 0.0002 100 0.0010 0.0006 0.0004 0.0002 100

1,000 8 0.0004 0.0012 0.0000 0.0001 100 0.0001 0.0013 0.0000 0.0001 100

1,000 16 0.0004 0.0011 0.0000 0.0001 100 0.0002 0.0011 0.0000 0.0001 100

10,000 2 0.0005 0.0014 0.0002 0.0007 100 0.0005 0.0014 0.0002 0.0007 100

10,000 4 0.0005 0.0004 0.0001 0.0001 100 0.0006 0.0004 0.0001 0.0001 100

10,000 8 0.0005 0.0006 0.0001 0.0001 100 0.0005 0.0006 0.0001 0.0001 100

10,000 16 0.0000 0.0002 0.0000 0.0000 100 0.0000 0.0002 0.0000 0.0000 100
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Table 3: Simulation study, association: Parameter estimates of GEE (exch. correlation)

and pseudo-likelihood for varying number of measurements per subject (ni) and sample

size (K)

GEE Pseudo likelihood

K ni β0 β1 β2 β3 β0 β1 β2 β3 θst

True value 1.5807 -0.1881 -0.0340 0.0192 1.5807 -0.1881 -0.0340 0.0192 .

10 2 1.5183 -0.1862 -0.0470 0.0362 0.8550 -0.4958 -0.2284 0.3179 1.9756

10 4 1.5219 -0.1749 -0.0318 0.0222 1.2986 -0.2531 -0.0529 0.0343 1.5239

10 8 1.5328 -0.1765 -0.0329 0.0199 1.3454 -0.2226 -0.0473 0.0240 1.3882

10 16 1.5442 -0.1716 -0.0333 0.0199 1.4176 -0.2365 -0.0473 0.0256 1.2150

100 2 1.5651 -0.1834 -0.0311 0.0173 1.2493 -0.2745 -0.0561 0.0318 1.9167

100 4 1.5670 -0.1806 -0.0309 0.0191 1.2811 -0.2670 -0.0528 0.0282 1.8183

100 8 1.5703 -0.1882 -0.0326 0.0193 1.3179 -0.2612 -0.0520 0.0283 1.7083

100 16 1.5725 -0.1798 -0.0328 0.0195 1.3931 -0.2718 -0.0509 0.0284 1.4705

1,000 2 1.5774 -0.1853 -0.0328 0.0187 1.2591 -0.2709 -0.0535 0.0293 1.9175

1,000 4 1.5788 -0.1870 -0.0329 0.0192 1.2802 -0.2687 -0.0532 0.0283 1.8566

1,000 8 1.5776 -0.1867 -0.0329 0.0196 1.3179 -0.2713 -0.0524 0.0290 1.7337

1,000 16 1.5783 -0.1865 -0.0327 0.0195 1.3909 -0.2738 -0.0512 0.0287 1.4998

10,000 2 1.5779 -0.1872 -0.0326 0.0196 1.2628 -0.2712 -0.0549 0.0298 1.9194

10,000 4 1.5787 -0.1880 -0.0329 0.0198 1.2810 -0.2706 -0.0533 0.0289 1.8568

10,000 8 1.5778 -0.1863 -0.0328 0.0195 1.3179 -0.2715 -0.0525 0.0290 1.7367

10,000 16 1.5780 -0.1871 -0.0328 0.0195 1.3897 -0.2742 -0.0512 0.0287 1.5018

18



Table 4: Simulation study, association: Absolute bias in the parameter estimates and

percent rate of convergence (RATEc) for GEE and pseudo-likelihood for varying number

of measurements per subject (ni) and sample size (K)

GEE Pseudo likelihood

K ni β0 β1 β2 β3 RATEc β0 β1 β2 β3 RATEc

10 2 0.0624 0.0019 0.0130 0.0170 85 0.7257 0.3077 0.1944 0.2987 97

10 4 0.0588 0.0132 0.0022 0.0030 100 0.2821 0.0650 0.0189 0.0151 100

10 8 0.0479 0.0116 0.0011 0.0007 100 0.2353 0.0345 0.0133 0.0048 100

10 16 0.0365 0.0165 0.0007 0.0007 100 0.1631 0.0484 0.0133 0.0064 100

100 2 0.0156 0.0047 0.0029 0.0019 100 0.3314 0.0864 0.0221 0.0126 100

100 4 0.0137 0.0075 0.0031 0.0001 100 0.2996 0.0789 0.0188 0.0090 100

100 8 0.0104 0.0001 0.0014 0.0001 100 0.2628 0.0731 0.0180 0.0091 99

100 16 0.0082 0.0083 0.0012 0.0003 100 0.1876 0.0837 0.0169 0.0092 99

1,000 2 0.0033 0.0028 0.0012 0.0005 100 0.3216 0.0828 0.0195 0.0101 100

1,000 4 0.0019 0.0011 0.0011 0.0000 100 0.3005 0.0806 0.0192 0.0091 99

1,000 8 0.0031 0.0014 0.0011 0.0004 100 0.2628 0.0832 0.0184 0.0098 99

1,000 16 0.0024 0.0016 0.0013 0.0003 100 0.1898 0.0857 0.0172 0.0095 97

10,000 2 0.0028 0.0009 0.0014 0.0004 100 0.3179 0.0831 0.0209 0.0106 98

10,000 4 0.0020 0.0001 0.0011 0.0006 100 0.2997 0.0825 0.0193 0.0097 97

10,000 8 0.0029 0.0018 0.0012 0.0003 100 0.2628 0.0834 0.0185 0.0098 98

10,000 16 0.0027 0.0010 0.0012 0.0003 100 0.1910 0.0861 0.0172 0.0095 98
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Table 5: Epilepsy data: Parameter estimates (standard errors) for a univariate Poisson

model, GEE (exchangeable correlation) and pseudo-likelihood (4). The first block refers to

a model testing for a difference in number of epileptic seizures between the two treatment

arms over time. The second block corrects for patient characteristics including race, age,

sex, height and weight.

Parameter Univariate GEE Pseudo-likelihood

Intercept 1.4531 (0.0383) 1.3165 (0.1799) 0.91439 (0.29449)

treatment (0) -0.1869 (0.0571) 0.0156 (0.2931) -0.06423 (0.41424)

study week -0.0328 (0.0038) -0.0147 (0.0168) -0.03891 (0.01875)

study week×treatment (0) 0.0195 (0.0058) 0.0035 (0.0201) 0.02845 (0.03558)

θst 1.10170 (0.26994)

Intercept 2.3963 (0.3576) 4.0954 (3.9610) 3.91804 (5.06465)

treatment (0) -0.0992 (0.0578) -0.0925 (0.2619) -0.08047 (0.40335)

study week -0.0299 (0.0039) -0.0146 (0.0168) -0.03403 (0.01824)

study week×treatment (0) 0.0168 (0.0058) 0.0033 (0.0206) 0.02247 (0.03298)

race (1) -0.0811 (0.0506) -0.3298 (0.2904) -0.07743 (0.54786)

age (years) -0.0188 (0.0017) -0.0200 (0.0115) -0.02025 (0.01936)

sex (1) 0.5747 (0.0575) 0.8959 (0.3936) 0.77549 (0.44018)

height -0.0133 (0.0055) -0.0429 (0.0576) -0.03617 (0.07108)

weight 0.0008 (0.0005) 0.0023 (0.0040) -0.00235 (0.00830)

θst 1.07935 (0.25153)

20



Appendix

A Consistency and Asymptotic Normality of the

Pseudo-likelihood Estimator

We first list the required regularity conditions on the density functions fs(y
(s); λ).

A0 The densities fs(y
(s); λ) are distinct for different values of the parameter λ.

A1 The densities fs(y
(s); λ) have common support, which does not depend

on λ.

A2 The parameter space Ω contains an open region ω of which the true param-

eter value λ0 is an interior point.

A3 ω is such that for all s, and almost all y(s) in the support of Y (s), the

densities admit all third derivatives

∂3fs(y
(s); λ)

∂θj∂θk∂θ`
.

A4 The first and second logarithmic derivatives of fs satisfy

Eλ

(
∂ ln fs(y

(s); λ)

∂θk

)
= 0, k = 1, . . . , q,

and

0 < Eλ

(
−∂2 ln fs(y

(s); λ)

∂θk∂θ`

)
< ∞, k, ` = 1, . . . , q.

A5 The matrix I0, defined in (8), is positive definite.

A6 There exist functions Mklr such that

∑

s∈S

δsEλ

∣∣∣∣∣
∂3 ln fs(y

(s); λ)

∂θk∂θ`∂θr

∣∣∣∣∣ < Mk`r(y)

for all y in the support of f and for all θ ∈ ω and mk`r = Eλ0
(Mk`r(Y )) <

∞.
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Theorem 1, proven by Arnold and Strauss (1991), guarantees the existence of at

least one solution to the pseudo-likelihood equations, which is a consistent and

asymptotically normal estimator. Without loss of generality, we can assume λ

is constant. Replacing it by λi, and modeling it as a function of covariates is

straightforward.

Theorem 1 (Consistency and Asymptotic Normality) Assume

that (Y 1, . . . , Y N ) are i.i.d. with common density that depends on λ0. Then

under regularity conditions (A1)–(A6):

1. the pseudo-likelihood estimator λ̃N , defined as the maximizer of the pseudo-

score function, converges in probability to λ0.

2.
√

N (λ̃N − λ0) converges in distribution to Np(0, I0(λ0)
−1I1(λ0)I0(λ0)

−1)

with I0(λ) defined by

I0,k`(λ) = −
∑

s∈S

δsEλ

(
∂2 ln fs(y

(s); λ)

∂θk∂θ`

)
(8)

and I1(λ) by

I1,k`(λ) =
∑

s,t∈S

δsδtEλ

(
∂ ln fs(y

(s); λ)

∂θk

∂ ln ft(y
(t); λ)

∂θ`

)
. (9)

B The First and Second Derivatives of the Log Pseudo-

likelihood Function

Let

B =

min(yis ,yit)∑

k=0

eXisβ(yis−k)+Xitβ(yit−k)θk
ist

(yis − k)!(yit − k)!k!
.

Then, the bivariate Poisson distribution for the two measurements yis and yit

expressed in terms of the covariates at the two time points s and t is

f(yis, yit) = exp
[
−
(
eXisβ + eXitβ + θist

)]
×B. (10)

This leads to the log PL function given as

p`(λ|Y) =
K∑

i=1

∑

s<t

log f(yis, yit)
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from which the gradient and Hessian functions are derived with respect to β and

θist (θst here) as

∂p`

∂β
=

K∑

i=1

∑

s<t

{
−
(
XT

ise
Xisβ + XT

ite
Xitβ

)
+ B−1A

}

∂p`

∂θst
=

K∑

i=1

∑

s<t

{
−1 + B−1C2

}
(11)

and

∂

∂β

(∂p`

∂β

)
=

K∑

i=1

∑

s<t

{
−(XT

isXise
Xisβ + XT

itXite
Xitβ) + B−2(AdB −AAT )

}

∂

∂θst

( ∂p`

∂θst

)
=

K∑

i=1

∑

s<t

B−2(BC3 − C2
2)

∂

∂θst

(∂p`

∂β

)
=

K∑

i=1

∑

s<t

B−2(BC− C2A)

(12)

where

A1 =eXisβ(yis−k)+Xitβ(yit−k)

A2 =(yis − k)XT
is + (yit − k)XT

it

A =

min(yis,yit)∑

k=0

θk
st

(yis − k)!(yit − k)!k!
A1A2

Ad =

min(yis,yit)∑

k=0

θk
st

(yis − k)!(yit − k)!k!
A2A

T
2 A1

C =

min(yis,yit)∑

k=0

kθk−1
st A1A2

(yis − k)!(yit − k)!k!

C2 =

min(yis,yit)∑

k=0

kθk−1
st A1

(yis − k)!(yit − k)!k!

C3 =

min(yis,yit)∑

k=0

A1

(yis − k)!(yit − k)!k!
k(k − 1)θk−2

st
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C Additional Results

We present an additional Table 6 related to the hierarchical interpretation, where

θst is constrained to be strictly positive.

Table 6: Simulation study, association: Parameter estimates, MSE and convergence rate of pseudo-

likelihood for varying number of measurements per subject (ni) and sample size (K), when the

covariance(θst) is constrained to be positive

Parameter Estimates MSE

K ni β0 β1 β2 β3 θst β0 β1 β2 β3 RATEc

True value 1.5807 -0.1881 -0.0340 0.0192 .

10 2 1.0275 -0.3366 -0.1742 0.1689 1.9424 12.7503 18.6687 5.6976 8.0308 93

10 4 1.2937 -0.2635 -0.0534 0.0362 1.5647 0.3822 0.5165 0.0271 0.0497 98

10 8 1.3449 -0.2225 -0.0473 0.0241 1.3904 0.2210 0.3112 0.0033 0.0052 100

10 16 1.4176 -0.2365 -0.0473 0.0256 1.2149 0.1379 0.2314 0.0006 0.0007 100

100 2 1.2493 -0.2745 -0.0561 0.0318 1.9167 0.1760 0.1524 0.0236 0.0506 100

100 4 1.2811 -0.2670 -0.0528 0.0282 1.8182 0.1126 0.0592 0.0023 0.0046 100

100 8 1.3175 -0.2615 -0.0519 0.0283 1.7079 0.0821 0.0364 0.0006 0.0006 100

100 16 1.3923 -0.2709 -0.0509 0.0284 1.4696 0.0434 0.0281 0.0003 0.0002 100

1,000 2 1.2591 -0.2709 -0.0535 0.0293 1.9175 0.1094 0.0204 0.0022 0.0046 100

1,000 4 1.2807 -0.2691 -0.0533 0.0284 1.8555 0.0924 0.0119 0.0006 0.0005 100

1,000 8 1.3179 -0.2713 -0.0524 0.0290 1.7340 0.0703 0.0099 0.0004 0.0002 100

1,000 16 1.3907 -0.2737 -0.0512 0.0287 1.4994 0.0369 0.0095 0.0003 0.0001 100

10,000 2 1.2626 -0.2709 -0.0547 0.0296 1.9194 0.1018 0.0083 0.0006 0.0006 100

10,000 4 1.2811 -0.2709 -0.0534 0.0290 1.8570 0.0900 0.0074 0.0004 0.0001 100
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