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Frailties and copulas, not two of a kind
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Abstract. Bivariate survival data occur in diverse disciplines such as financial mathematics [The European Journal of Finance
15 (2009), 609–618] and biostatistics [Twin Res. 4 (2001), 407–411]. Different modeling approaches have been developed. Two
standard approaches, the copula model and the frailty model, provide estimates of the correlation between event times in a cluster
[The Frailty Model, Springer, New York, 2008].

A unified framework is proposed here for the copula model and the different types of frailty models, i.e., the univariate, shared
and correlated frailty model, in order to evaluate similarities and differences between the models.

We further investigate the frailty effect at the event time scale; frailties operate at the hazard level, and therefore influence the
event times in a nonlinear way, which leads in some instances to counterintuitive findings. For instance, in a cluster with frailty
smaller than one, both event times will increase, but additionally also the difference between the two event times in the cluster
will increase.
Keywords: Clayton copula, gamma frailty model, multivariate survival, shared frailty, correlated frailty, univariate frailty

1. Introduction

Different approaches have been proposed to model
clustered survival data [3]. Frailty (conditional) and
copula models not only accommodate for the correla-
tion in the clustered data, but also provide estimates
for the correlation, whereas marginal, fixed effects or
stratified models only adjust parameter estimates for
the correlation. In this paper, differences and similari-
ties between the copula model and the different frailty
models (the univariate, shared and correlated frailty
model) are investigated for bivariate survival data, i.e.,
survival data with clusters of size 2. We restrict our at-
tention to Archimedean copulas having Laplace trans-
forms as generators. For these copulas the resulting
correlation structure is linked to the correlation struc-
ture of the most frequently used shared frailty mod-
els. For the sake of comparison, a unified framework
for the different models is developed in Section 2. Us-
ing this framework, it will be shown that shared frailty
models and copula models are different, although it has
been claimed that these two models are equivalent if
one uses the Laplace transform of the frailty density
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as generator of the Archimedean copula (see [6] for
references). The claimed equivalence, however, is only
true for the correlation structure between the marginal
survival functions, but the marginal survival functions
themselves are different in the two approaches. On the
other hand, the univariate, shared and correlated frailty
models are actually quite similar; they only differ in
the way the frailties correlate.

The interpretation of the correlation and the hetero-
geneity parameter of the frailties is not straightforward,
as the frailty operates on the hazard scale. For bivariate
data, an interpretation of the heterogeneity induced by
the frailties in terms of meaningful quantities, such as
the median event time, has been presented previously
[2]. It is however important to understand how frailties
operate on event times. Investigating the effect of the
frailty on the clustered event times is the topic of Sec-
tion 3. A data example follows in Section 4 and con-
clusions are given in Section 5.

2. A unifying modeling approach

Copula models have been used most frequently for
bivariate survival data, i.e., event times are clustered
pairwise; we therefore focus our attention on such data,
which can be presented by pairs (Yi1, Yi2) where i, i =
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1, . . . , s, refers to the cluster and Yij = min(Tij , Cij)
with Tij the event time and Cij the censoring time;
δij = 1(Tij � Cij) denotes the censoring indica-
tor. We further assume that the censoring time and the
event time are statistically independent random vari-
ables and that the Ti1’s have the same distribution,
Ti1 ∼ F1, as well as the Ti2’s, Ti2 ∼ F2.

Survival copula models represent the joint survival
function Sp(t1, t2) as a function of the marginal sur-
vival functions S1,p(t1) and S2,p(t2)

Sp(t1, t2) = C�θ
(S1,p(t1), S2,p(t2))

with C�θ
the copula function with parameter vector �θ

(for conditions on C�θ
, see [8]).

The likelihood function can easily be obtained from
the joint survival function

s∏
i=1

(fp(yi1, yi2))δi1δi2

(
− ∂Sp(yi1, yi2)

∂yi1

)δi1(1−δi2)

×
(

− ∂Sp(yi1, yi2)
∂yi2

)(1−δi1)δi2

× (Sp(yi1, yi2))(1−δi1)(1−δi2) (1)

with fp(yi1, yi2) the joint density function.
We restrict our attention to Archimedean copulas, as

they have a specific link with shared frailty models, as
will be shown at the end of this section. The general
expression for an Archimedean copula is given by

Sp(t1, t2) = p[q(S1,p(t1)) + q(S2,p(t2))]

with p(·) a decreasing function defined on [0, ∞] with
values in [0, 1] and satisfying p(0) = 1. Furthermore
p(·) has positive second derivative and q(·) is the in-
verse function of p(·).

Taking, e.g., p(v) = (1 + θv)−1/θ gives

Sp(t1, t2) = (S−θ
1,p (t1) + S−θ

2,p (t2) − 1)−1/θ. (2)

The corresponding C(v, w) = (v−θ +w−θ − 1)−1/θ

is the Clayton copula [1].
We restrict to parametrical modeling for the margin-

al survival functions in this discussion; the correspond-
ing parameters are collected in the vector �ξ. To link
the copula models to the frailty models, we will con-
sider the same shape parameter ρ and scale parameters
λ1 = λ and λ2 = λ exp(β) leading to �ξt = (λ, ρ, β).

The likelihood function (1) can be maximised simulta-
neously for θ and �ξ, but often the two-stage approach
is used [4]: first estimate �ξ by fitting the marginal mod-
els ([7] prove the consistency of these estimates); then
insert these estimates in (1) and maximise with respect
to θ (the only remaining parameter).

Frailty models (univariate, shared, correlated) are
conditional (hazard) models. The frailty term in the
hazard expression can be integrated out using the
frailty density to obtain both the marginal and joint
survival functions. The same type of expression (1) as
for the likelihood function of the copula model can be
used for the different frailty models; we only need to
replace Sp, resp. fp, with the appropriate joint survival
function, resp. joint density.

The univariate, shared and correlated frailty models
take form

hij(t) = h0(t)uij exp(xijβ),

where, for simplicity, we think xi1 = 0 and xi2 = 1.
The only difference between the three models is the

assumption put on the correlation between the frailties
Ui1 and Ui2. In Section 4 different scenarios are given,
each of them can be described adequately by one of the
three models. For all three models, we have that

Corr(Uij , Ui′j′ ) = 0 with i �= i′.

For the univariate frailty model we assume that the
Uij’s are i.i.d. and

Corr(Ui1, Ui2) = 0.

For the shared frailty model we have Ui1 = Ui2 =
Ui; hence

Corr(Ui1, Ui2) = 1,

i.e., the frailty is the same for both subjects, the two
subjects in a cluster ‘share’ the same frailty.

The correlated frailty model takes an intermediate
position having a correlation ρc that satisfies

0 � ρc = Corr(Ui1, Ui2) � 1.

The marginal survival functions take the same form
for all the frailty models

Sj,m(t) =
∫ ∞

0
exp(−uH0(t) exp(xjβ))fU (u) du

= L(H0(t) exp(xjβ)) (3)
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with L(·) the Laplace transform of the frailty density
function fU (·).

A frequently used frailty density function is the
one parameter gamma density function with mean one
and variance θ with corresponding Laplace transform
L(s) = (1+θs)−1/θ leading to marginal survival func-
tions

Sj,m(t) = (1 + θH0(t) exp(xjβ))−1/θ. (4)

The joint survival function for the univariate frailty
model, Su(t1, t2), is given by

Su(t1, t2) = S1,m(t1)S2,m(t2).

The joint survival function for the shared frailty
model, Ss(t1, t2), is given by

Ss(t1, t2)

=
∫ ∞

0
exp

(
−u(H0(t1)

+ H0(t2) exp(β))
)
fU (u) du

= L(H0(t1) + H0(t2) exp(β))

gamma
=

(
1 + θ(H0(t1) + H0(t2) exp(β))

)−1/θ
.

Using (4) Ss(t1, t2) can be rewritten as

Ss(t1, t2) = (S−θ
1,m(t1) + S−θ

2,m(t2) − 1)−1/θ. (5)

The shared gamma frailty model leads to a similar
structure of the joint survival function (5) as that for the
Clayton copula (2). This has often led to the conclu-
sion that copula models are equivalent to shared frailty
models given an adequate choice of the Laplace trans-
form. This is, however, not true due to the fact that the
marginal survival functions are different. Equivalence
only exists in the special case of Weibull distributed
event times combined with the positive stable Laplace
transform [6].

To obtain the joint survival function for the corre-
lated frailty model, the frailty structure must be speci-
fied further. We assume

Ui1 = Zi0 + Zi1 and Ui2 = Zi0 + Zi2

with Zi0 ∼ Gamma(k0, λ) and Zi1, Zi2 ∼ Gamma(k1,
λ). We further assume that Zi0, Zi1 and Zi2 are in-
dependent and that the vectors (Zi0, Zi1, Zi2), i =
1, . . . , s, are independent.

From this it follows that Uij ∼ Gamma(k0 + k1, λ).
We set k0 + k1 = λ so that

E(Uij) = 1, Var(Uij) = θ = 1/λ and
(6)

Corr(Ui1, Ui2) = ρc =
k0

k0 + k1
.

The joint survival function Sc(t1, t2) then equals

∫ ∞

0

∫ ∞

0

∫ ∞

0
exp

(
−(z0 + z1)H0(t1)

− (z0 + z2)H0(t2) exp(β)
)

× fZ0 (z0)fZ1 (z1)fZ2 (z2) dz0 dz1 dz2

= (1 + θH0(t1))−(1−ρc)/θ

× (1 + θH0(t2) exp(β))−(1−ρc)/θ

×
(
1 + θ(H0(t1) + H0(t2) exp(β))

)−ρc/θ

which can be rewritten in terms of the marginal sur-
vival functions as

Sc(t1, t2)

=
(S1,m(t1))1−ρc (S2,m(t2))1−ρc

((S1,m(t1))−θ + (S2,m(t2))−θ − 1)ρc/θ
.

The corresponding likelihood is most often max-
imised through a two-stage approach. This means that
the same parameter θ is estimated twice, once in the
marginal survival functions, and once in the maximi-
sation of the likelihood function (2). Yashin et al. [10]
already note that, if two very different estimates for θ
emerge from this two-stage approach, the conclusion
should be that the proposed model does not fit the data
well.

3. How do frailties operate on event times?

Frailties operate at the hazard level. This makes in-
terpretation of the frailty effect on more relevant out-
comes, such as the median event time, not straightfor-
ward. Duchateau and Janssen [2] demonstrated how
the frailty effect can be converted to heterogeneity
of meaningful outcomes such as the median event
time.

The aim of this section is to demonstrate how frail-
ties operate on individual event times making use of
simulations. We generate bivariate survival data with
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conditional Weibull distributions, using the same scale
parameter λ and shape parameter ρ for the two subjects
in the same cluster (and β can thus be dropped), and in-
cluding (or not) a shared gamma frailty term with vari-
ance θ = 0.5. We randomly draw a number z from the
uniform distribution with support [0, 1]. For a given z,
the corresponding survival percentile, t(z), is defined
by the equation P(T > t(z)) = z and thus

t(z) =
(

− log z

λ

)1/ρ

for the model without frailty term; and

t(z|u) =
(

− log z

λu

)1/ρ

= t(z)u−1/ρ

for the model with frailty.
The presence of the frailty makes the survival per-

centile a random variable that depends on the shape
parameter ρ; ρ values above (below) one lead to a de-
creasing (increasing) effect of the multiplicative frailty
term (closer to 1). For instance, for u = 0.5, the mul-
tiplicative frailty effect doubles for ρ = 0.5 compared
to the exponential distribution (ρ = 1) (Table 1).

In Fig. 1, univariate data are generated for the
Weibull distribution with λ = 1 and three different val-
ues for ρ (ρ = 0.83, 1 and 1.2) using the same ran-
domly generated percentiles (appearing on the same
line). The asterisks correspond to event times for the
model without frailties, the diamonds to event times of
the univariate frailty model, with the frailty term given
in the right column of the picture. It is obvious that
the inclusion of a frailty term increases the heterogene-
ity between the event times, with the largest effect ob-
served for ρ = 0.83.

In Fig. 2a, bivariate data are generated for the
Weibull distribution with ρ = 1, i.e., the exponential

Table 1

The effect of the frailty as a function of ρ on the time to event

Frailty ρ Multiplicative factor u−1/ρ

u = 2 0.5 0.25

1 0.50

2 0.71

u = 0.5 0.5 4

1 2

2 1.4

Note: For a time to event equal to 1 without frailty, the last
column also represents the equivalent time with frailty term.

distribution. The asterisks correspond to event times
for the model without frailties, the diamonds to event
times of the shared frailty model, with the frailty term
given in the right column of the picture. For clusters
with frailty terms below (above) 1, the distance be-
tween the two event times increases (decreases) com-
pared to the model without frailty terms. The cluster
averages of the same data are given in Fig. 2b. It is
clear that heterogeneity increases at the level of these
averages when including frailty terms.

4. Data example: Time to malaria

We study time to malaria in children as a function
of bednet use. Such bednets prevent bites of Anopheles
mosquitos, the vector of the malaria parasites. In each
of 150 villages, one child in one household is randomly
assigned to receive a bednet, another child in another
household is assigned to control (no bednet). Children
are followed up for malaria for 400 days.

For such bivariate survival data with village as clus-
ter, we can envisage the following scenarios:

(1) All children with the same treatment (bednet or
not) have the same underlying hazard function.

(2) Children have varying hazard functions due to in-
nate malaria susceptibility, unrelated to village.

(3) Villages have varying hazard functions due to
Anopheles vector distribution, related to village.

(4) A combination of (2) and (3).

It is clear that scenario (1) leads to an ordinary
survival model, scenario (2) to the univariate frailty
model, scenario (3) to the shared frailty model and sce-
nario (4) to the correlated frailty model.

The results of the different models are given in Ta-
ble 2.

According to the results in Table 2, a frailty term
needs to be included as the heterogeneity parameter θ
is large compared to its standard error for the shared
and correlated frailty model. Amongst the frailty mod-
els, the shared frailty model is the preferred one, as the
correlation can take any value for the correlation be-
tween the two frailties in a cluster, but converges here
to the shared frailty model with correlation between the
two frailties equal to 1. Comparing the shared frailty
model with the copula model is much more difficult as
these models have different baseline hazards (see [3],
p. 105).
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Fig. 1. Representation of univariate data simulated from a Weibull distribution with λ = 1 and ρ = 0.83 (left panel), ρ = 1 (middle panel),
ρ = 1.2 (right panel). The circles correspond to the model without frailties, the triangles to the univariate frailty model (frailties are given in
the right column of the figure). Each row corresponds to a randomly generated percentile. (Colors are visible in the online version of the article;
http://dx.doi.org/10.3233/RDA-2012-0067.)

5. Conclusions

To analyse bivariate survival data, different models
exist. In this paper, we studied frailty and copula mod-
els, as they both provide an estimate for the correlation
in the data.

It has been shown, using the general framework,
that the univariate and shared frailty model are spe-
cial cases of the correlated frailty model; it can there-
fore be seen from the results of the analysis which of
the three models appears to be more appropriate, as
demonstrated in our example. As the correlated frailty
model converges to the shared frailty model, the shared
frailty model is the preferred model for our data.

Although the correlation structure between the mar-
ginal survival functions in the shared gamma frailty
model is the same as in the Clayton copula, both

approaches lead to quite different results because
the marginal survival functions do not match. The
marginal survival functions of the shared frailty model
contain the heterogeneity parameter. We therefore fit
quite different models when starting conditionally or
marginally from a Weibull distribution. Which model
is most appropriate depends therefore on the data at
hand. Diagnostics need to be developed to enable the
data-analyst to make a choice between a copula or a
frailty model.
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Fig. 2. Representation of bivariate data simulated from a Weibull distribution with λ = 1 and ρ = 1. The circles correspond to the model without
frailties, the triangles to the shared frailty model (frailties are given in the right column of the figure). Each row corresponds to a randomly
generated percentile. The left panel presents the two observations in a cluster, the right panel the mean of the cluster. (Colors are visible in the
online version of the article; http://dx.doi.org/10.3233/RDA-2012-0067.)

Table 2

Results of fitting a parameter survival model with Weibull baseline hazard for the time to malaria data

Model Parameters

λ (se) ρ (se) HR (exp(β)) (95% CI) θ (se) ρc (se)

No frailty 0.016 0.752 0.81 – –

(0.005) (0.045) (0.62–1.06)

Univariate 0.015 0.772 0.80 0.100 –

(0.006) (0.090) (0.60–1.07) (0.347)

Shared 0.012 0.864 0.76 0.544 –

(0.004) (0.061) (0.58–1.02) (0.177)

Correlated 0.012 0.864 0.76 0.544 1.000

(0.004) (0.061) (0.58–1.02) (0.177) (0.000)

Copula 0.015 0.800 0.61 1.024 –

(0.002) (0.049) (0.50–0.76) (0.259)

Notes: The first model presents an ordinary survival analysis without taking the clustering in consideration. Next, the results are given for the
univariate, shared and correlated frailty model with gamma frailty density. The last model is the Clayton copula model.
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