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The Green rings of the generalized Taft Hopf algebras

Libin Li and Yinhuo Zhang

Abstract. In this paper, we investigate the Green ring r(Hn,d) of the gener-
alized Taft algebra Hn,d, extending the results of Chen, Van Oystaeyen and
Zhang (to appear in Proc. of AMS). We shall determine all nilpotent elements
of the Green ring r(Hn,d). It turns out that each nilpotent element in r(Hn,d)
can be written as a sum of indecomposable projective representations. The
Jacobson radical J(r(Hn,d)) of r(Hn,d) is generated by one element, and its
rank is n− n/d. Moreover, we will present all the finite dimensional indecom-
posable representations over the complexified Green ring R(Hn,d) of Hn,d.
Our analysis is based on the decomposition of the tensor product of indecom-
posable representations and the observation of the solutions for the system of
equations associated to the generating relations of the Green ring r(Hn,d).

1. Introduction

Let C be the category of finite dimensional representations of a Hopf algebra H
over a field K. In the study of the monoidal structure of C one has to consider the
decomposition of the tensor product of representations in C, in particular, the tensor
product of two indecomposable representations in C. However, in general, very
little is known about how a tensor product of two indecomposable representations
decomposes into a direct sum of indecomposable representations. One method of
addressing this problem is to consider the tensor product as the multiplication of
the Green ring (or the representation ring) r(H), and to study the ring properties
of the Green ring. In general, it is relatively easy to explore the ring structure of
the complexified Green ring R(H) as we shall see in this paper.

A lot of work have been done in this direction. Firstly, Green [15, 16], Benson
and Carlson, etc., considered the semi-simplicity of the representation ring r(KG)
for modular representations of a finite group G (see [4]). One of the interesting
results they obtained is that KG is of finite representation type if and only if there
are no nilpotent elements in r(KG). In general, it is difficult to determine all
nilpotent elements of r(KG) if KG is of infinite representation type (see [1, 18,
28]). For the Green rings of Hopf algebras, if H is a finite dimensional semi-simple
Hopf algebra, then the Green ring r(H) is equal to the Grothendieck ring and
is semi-simple (see, e.g. [23, 32]). If H is the enveloping algebra of a complex
semi-simple Lie algebra, the Green ring has been studied by Cartan and Weyl (see
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[14]). Here We would like to mention the recent work by Sergeev and Veselov for
basic classical Lie superalgebras (see [26]). Darpö and Herschend have presented a
general description of the Green ring of the polynomial Hopf algebra K[x] in [11]
in case the ground field K is perfect. For representation rings of quantum algebras,
we refer to the work by Domokos and Lenagan (see [12]) and the work by Chin
(see [10]).

Recently, Cibils in [8] determined all the graded Hopf algebras on a cycle path
coalgebra (which are just equal to the generalized Taft algebras (see [27, 30])),
and considered the decomposition of two indecomposable representations (see also
[17]). Moreover, Cibils also computed the Green ring of the Sweedler 4-dimensional
Hopf algebra by generators and relations and asked how to compute the Green ring
of KZn(q)/Id. In [31], Wakui computed the Green rings of all non semisimple Hopf
algebras of dimension 8, one of which is KZ4(q)/I2, over an algebraically closed
field K of characteristic 0 by generators and relations. More recently, Chen, Van
Oystaeyen and Zhang (see [7]) has explicitly described the Green ring r(Hn) of the
Taft Hopf algebra Hn by two generators and two relations.

The aforementioned works motivate us to investigate the structure of the Green
ring r(Hn,d) of the generalized Taft Hopf algebra Hn,d, which in turn could be help-
ful to understand the structure and the classification of non-semisimple monoidal
categories. It is well-known that the pointed Hopf algebra Hn,d is neither commu-
tative nor cocommutative, and is even not quasitriangular in general. However, it
is of finite representation type, and monomial, that is, all the relations are given by
paths. Thus the study of the Green ring of Hn,d can help us to understand more
the tensor categories of finite representation type.

The main aim of this paper is to compute the generators and generating re-
lations of the Green ring r(Hn,d), to determine explicitly all nilpotent elements of
r(Hn,d), and to give all finite dimensional indecomposable representations of the
complexified Green ring R(Hn,d). The paper is organized as follows. In Section
2, we recall the definitions and the basic representation theory of the generalized
Taft algebra Hn,d. There are nd non-isomorphic finite dimensional indecompos-
able modules over Hn,d. For each 1 � l � d, there are exactly n indecomposable
Hn,d-modules with dimension l. Every indecomposable projective Hn,d-module is
d-dimensional. In section 3, we prove that the Green ring r(Hn,d) of Hn,d is gen-
erated by two elements subject to two relations, one of which is associated with a
generalized Fibonacci polynomial (see Theorem 3.2).

In order to describe all nilpotent elements and the structure of the Green rings
r(Hn,d) and R(Hn,d), we compute, in Section 4, explicitly the roots of the general-
ized Fibonacci polynomials appeared in the generating relations of the Green rings
r(Hn,d). It turns out that the generalized Fibonacci polynomial Fn(a, x) has n− 1
distinct complex roots (see Proposition 4.2 for detail).

In section 5, we analyze the distinct solutions of the system of equations as-
sociated to the aforementioned generalized Fibonacci polynomial. By using a one
to one correspondence between the set of solutions for the system of equations and
the set of the isomorphism classes of irreducible modules over R(Hn,d), we obtain
nd − n + n

d irreducible modules of dimension 1 over R(Hn,d). This gives us a
description of all nilpotent elements of r(Hn,d), and concludes that the Jacobson
radical J(r(Hn,d)) is a principal ideal (i.e. generated by one element). Moreover,
we will determine all finite dimensional reducible and indecomposable modules over
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the Green ring Hn,d. It is interesting that the number of indecomposable represen-
tations of the Green ring R(Hn,d) and that of Hn,d are both equal to nd. In the
final section, we apply the same technique used on r(Hn,d) to describe all nilpotent
elements and finite dimensional indecomposable representations of the projective
class ring of Hn,d. Cibils studied the projective class rings in [9] for basic and split
Hopf algebras.

Throughout, we work over a fixed algebraically closed field K of characteristic
0. Unless otherwise stated, all algebras, Hopf algebras and modules are defined
over K; all modules are left modules and finite dimensional; all maps are K-linear;
dim and ⊗ stand for dimK and ⊗K , respectively. For the theory of Hopf algebras
and quantum groups, we refer to [21, 24, 25, 29].

2. Representation theory of the generalized Taft algebra Hn,d

In the sequel, we fix two integers n, d � 2 such that d | n. Assume that q is a
primitive d-th root of unity. In [27] (see also [2]) Radford considered the following
Hopf algebra Hn,d = Hn,d(q) generated by two elements g and h subject to the
relations:

gn = 1, hd = 0, hg = qgh.

The algebra Hn,d is a Hopf algebra with comultiplication Δ, counit ε, and antipode
S given by

Δ(g) = g ⊗ g, Δ(h) = 1⊗ h+ h⊗ g, ε(g) = 1,

ε(h) = 0, S(g) = g−1 = gn−1, S(h) = −q−1gn−1h.

Note that the dimension ofHn,d is dn, and the set {gihj |0 � i ≤ n−1, 0 ≤ j � d−1}
forms a PBW basis for Hn,d.

In case d = n, then Hn = Hn,n is the n2-dimensional Taft (Hopf) algebra (see
[30]). For this reason, Hn,d is called a generalized Taft algebra in [6, 20]. The
Hopf algebra Hn,d can be also approached by quiver and relations, that is, Hn,d is
isomorphic to the quiver quantum group KZn(q)/Id constructed by Cibils in [8].

In order to compute the Green ring of Hn,d, we need to recall the classification
of finite dimensional indecomposable representations of Hn,d. Thanks to Theorem
4.3 in [6], we have the following structures of Hn,d as algebras. Throughtout the
paper, we let m = n/d. Then

Lemma 2.1. Let Hd be the Taft algebra of dimension d2. Then

Hn,d
∼=

m copies︷ ︸︸ ︷
Hd ×Hd × · · · ×Hd . �

Recall that an algebra A is called Nakayama if each indecomposable projective
left and right module has a unique composition series. Since Hn,d is a Nakayama
algebra, its representation theory is not difficult to describe (see [3, 8, 20]). In [8]
Cibils classified the indecomposable modules over kZn(q)/Id, and gave the decom-
position formulas of the tensor product of two arbitrary indecomposable modules.
However, using the forms of the presentations in [8], it is hard to work out ex-
plicitly the generators and the generating relations for the Green rings of Hn,d.
For this reason, we will rewrite in the following all indecomposable modules over
Hn,d, and reformulate the decomposition formulas of the tensor product of two
indecomposable modules.
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Let Zn := Z/(n). For 1 � l � d and i ∈ Zn, denote by M(l, i) the k-vector
space with a K-basis {v0, v1, · · · , vl−1}. Let ω be a primitive n-th root of unity so
that ωm = q. Define an action of Hn,d on M(l, i) as follows:
g · vj = ωiq−jvj for all 0 � j � l − 1 and

h · vj =
{

vj+1, 0 � j � l − 2,

0, j = l − 1.

Then M(l, i) is an indecomposable module and the set {M(l, i) |i ∈ Zn, 1 � l � d}
forms a complete list of non-isomorphic indecomposable Hn,d-modules. Moreover,
M(l, i) is simple if and only if l = 1; and M(l, i) is projective indecomposable if
and only if l = d (for the proof, see [7, 8, 20]).

Lemma 2.2. We have the following isomorphisms:

M(1, i)⊗M(l, r) ∼= M(l, r)⊗M(1, i) ∼= M(l, r + i),

M(l, r) ∼= M(1, r)⊗M(l, 0) ∼= M(l, 0)⊗M(1, r)

for all 1 � l � d and i, r ∈ Zn. �

To find the decomposition of the tensor product M(l, i)⊗M(s, j), it is enough
to find the decomposition of the tensor product M(l, 0) ⊗ M(s, 0). The following
proposition tell us that it suffices to give an explicit evaluation of the tensor product
of any indecomposable representation with the two-dimensional indecomposable
representation M(2, 0).

Proposition 2.3. We have the following isomorphisms:

(1) M(2, 0)⊗M(l, 0) ∼= M(l+1, 0)
⊕

M(l− 1,−m) for all 2 � l � d− 1 and
d > 2.

(2) M(2, 0)⊗M(d, 0) ∼= M(d, 0)
⊕

M(d,−m).

Proof. (1) For d > 2 and 2 � l � d−1, let {v0, v1} and {w0, w1, · · · , wl−1} be
the standard basis of indecomposable representations M(2, 0) and M(l, 0) respec-
tively. Consider the submodule V of M(2, 0)⊗M(l, 0) generated by v0⊗w0. From
the action g ·hi ·(v0⊗w0) = q−ihi ·(v0⊗w0), it follows that V =< hi ·(v0⊗w0) | i ∈
N > . By induction, we obtain

hi · (v0 ⊗ w0) = v0 ⊗ wi + (1 + q−1 + · · ·+ q−(i−1))v1 ⊗ wi−1

for 0 ≤ i ≤ l − 1, and

hl · (v0 ⊗ w0) = (1 + q−1 + · · ·+ q−(l−1))v1 ⊗ wl−1 �= 0

since q is a primitive d-th root of unity and 0 ≤ l ≤ d − 1. It follows that hl+1 ·
(v0⊗w0) = 0. By the construction of M(l+1, 0), this implies that M(2, 0)⊗M(l, 0)
contains an indecomposable submodule V isomorphic to M(l+ 1, 0). On the other
hand, if we set

ei = hi · (v0 ⊗ w1 − q−(l−1)(1 + q + · · ·+ ql−2)v1 ⊗ w0)

for i ∈ N, then by induction again we have

ei = v0 ⊗ wi+1 − q−(l−1)(1 + q + · · ·+ ql−i−2)v1 ⊗ wi

for 0 ≤ i ≤ l − 2 and, in particular, we have

el−2 = v0 ⊗ wl−1 − q−(l−1)v1 ⊗ wl−2 �= 0 and el−1 = 0.
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Notice that g · ei = q−i−1ei = ω−mq−iei. Thus, M(2, 0) ⊗ M(l, 0) contains an
indecomposable submodule M generated by e0 and isomorphic to M(l − 1,−m).
Since M(l + 1, 0) has a unique composition series

0 → M(1,−lm) → · · · → M(l − 1,−2m) → M(l,−m) → M(l + 1, 0),

we have M(l − 1,−m) ∩M(l + 1, 0) = {0}. Comparing the dimensions we obtain
M(2, 0)⊗M(l, 0) ∼= M(l + 1, 0)

⊕
M(1,−m).

(2) As in the proof of (1), we let {v0, v1} and {w0, w1, · · · , wd−1} be the stan-
dard basis of the indecomposable representations M(2, 0) and M(d, 0) respectively.
Consider the submodule V of M(2, 0) ⊗ M(d, 0) generated by v0 ⊗ w0. Since
g · hi · (v0 ⊗ w0) = q−ihi · (v0 ⊗ w0), we have
V =< hi · (v0 ⊗ w0) | i ∈ Z >. Now by induction, we get

hi · (v0 ⊗ w0) = v0 ⊗ wi + (1 + q−1 + · · ·+ q−(i−1))v1 ⊗ wi−1

for 0 ≤ i ≤ d− 1, and

hd · (v0 ⊗ w0) = (1 + q−1 + · · ·+ q−(d−1))v1 ⊗ wd−1 = 0.

These imply that M(2, 0)⊗M(d, 0) contains an indecomposable submodule V iso-
morphic to M(d, 0).

On the other hand, if we let N be the submodule of M(2, 0)⊗M(d, 0) generated
by v0 ⊗ w1, then by induction, we obtain the following:

hi · (v0 ⊗ w1) = v0 ⊗ wi+1 + (q−1 + · · ·+ q−i)v1 ⊗ wi

for 0 ≤ i ≤ d− 2 and

hd−1 · (v0 ⊗ w1) = (q−1 + · · ·+ q−(d−1))v1 ⊗ wd−1 �= 0.

Thus we get hd·(v0⊗w1) = 0.Note that g·hi·(v0⊗w1) = q−i−1v0⊗w1 = ω−mq−iv0⊗
w1. It follows that M(2, 0) ⊗ M(d, 0) contains an indecomposable submodule N
isomorphic to M(d,−m). Comparing the dimensions we obtain that M(2, 0) ⊗
M(d, 0) ∼= M(d, 0)

⊕
M(d,−m). �

In order to describe the Green ring r(Hn,d) of Hn,d, we also need the decom-
position of the tensor product M(d, 0)⊗M(d, 0).

Proposition 2.4. We have the following decomposition:

M(d, 0)⊗M(d, 0) ∼= M(d, 0)⊕M(d,−m)⊕ · · · ⊕M(d,−(d− 1)m).

Proof. Let {v0, v1, · · · , vd−1} be the standard basis of the indecomposable
representation M(d, 0). Similar to the proof of the Proposition 2.3, for 0 ≤ i ≤ d−1
we get that 〈v0 ⊗ vi〉, the submodule of M(d, 0) ⊗ M(d, 0) generated by element
v0 ⊗ vi, is isomorphic to M(d,−im). Now comparing the dimensions, we have an
isomorphism:

M(d, 0)⊗M(d, 0) ∼= M(d, 0)⊕M(d,−m)⊕ · · · ⊕M(d,−(d− 1)m). �

3. Generators and relations for the Green ring r(Hn,d)

The aim of this section is to describe explicitly the generators and the gener-
ating relations for the Green ring r(Hn,d) of the generalized Taft algebra Hn,d.

Let H be a Hopf algebra over a field K. Recall that the Green ring or the
representation ring r(H) of H can be defined as follows. As a group r(H) is the
free abelian group generated by the isomorphism classes [V ] of finite dimensionalH-
modules V modulo the relations [M⊕V ] = [M ]+[V ]. The multiplication of r(H) is
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given by the tensor product of H-modules, that is, [M ][V ] = [M⊗V ]. Then r(H) is
an associative ring with identity given by [Kε], whereKε is the trivial 1-dimensional
H-module. Note that r(H) is a free abelian group with a Z-basis {[V ]|V ∈ ind(H)},
where ind(H) denotes the set of finite dimensional indecomposableH-modules. The
complexified Green ring R(H), which we shall call the Green algebra for short, is
an associative C-algebra defined by C⊗Z r(H).

Now we return to the case H = Hn,d. We begin with the following lemma,
which follows from Lemma 2.2, Proposition 2.3 and 2.4.

Lemma 3.1. The following equations hold in r(Hn,d).

(1) [M(1,−1)]n = 1 and [M(l, r)] = [M(1,−1)]n−r[M(l, 0)] for all 1 � l � d
and r ∈ Zn.

(2) [M(l + 1, 0)] = [M(2, 0)][M(l, 0)] − [M(1,−1)]m[M(l − 1, 0)] for all 2 �
l � d− 1 and d > 2.

(3) [M(2, 0)][M(d, 0)] = (1 + [M(1,−1)]m)[M(d, 0)].

(4) [M(d, 0)][M(d, 0)] =
d−1∑
i=0

[M(d,−im)]. �

As a consequence, we have the following corollary.

Corollary 3.2. The Green ring r(Hn,d) is a commutative ring generated by
[M(1,−1)] and [M(2, 0)]. �

Therefore, r(Hn,d) can be identified with a quotient of the polynomial ring
Z[y, z]. In the sequel, we shall determine the relations of the two generators. Let
Fs(y, z) be the generalized Fibonacci polynomials defined by

Fs+2(y, z) = zFs+1(y, z)− yFs(y, z)

for s ≥ 1, while F0(y, z) = 0, F1(y, z) = 1, F2(y, z) = z. These generalized Fi-
bonacci polynomials were found appearing in the generating relations of the Green
rings of the Taft algebras Hn (see [7]). The general form of the polynomials is as
follows:

Lemma 3.3. [7, Lemma 3.11] For s ≥ 2 we have

Fs(y, z) =

[(s−1)/2]∑
i=0

(−1)i

[
s− 1− i

i

]
yizs−1−2i,

where [ s−1
2 ] denotes the biggest integer which is not bigger than s−1

2 . �
Now we are ready to present the Green ring r(Hn,d).

Theorem 3.4. The Green ring r(Hn,d) of Hn,d is isomorphic to the quotient
ring of the polynomial ring Z[y, z] modulo the ideal I generated by the following
elements

yn − 1, (z − ym − 1)Fd(y
m, z).

Moreover, under the isomorphism the polynomial Fs(y
m, z) corresponds to [M(s, 0)]

for 2 ≤ s ≤ d.

Proof. It follows from Lemma 3.1 that

([M(2, 0)]− (1 + [M(1,−1)]m))[M(d, 0)] = 0, [M(1,−1)]n = 1

and
[M(d, 0)] = Fd([M(1,−1)]m, [M(2, 0)]).
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These lead to a natural surjective Z-algebra homomorphism

Φ : Z[y, z]/I → r(Hn,d), Φ(y) = [M(1,−1)], Φ(z) = [M(2, 0)]

from Z[y, z]/I to r(Hn,d). Observe that as a free Z-module, Z[y, z]/I has a Z-basis
{yizj | 0 ≤ i ≤ n− 1, 0 ≤ j ≤ d}. This means that Z[y, z]/I and r(Hn,d) both have
the same rank nd as free Z-modules. It follows that Φ must be an isomorphism.
The other assertions now follow from the fact that the following relations hold in
r(Hn,d)

[M(l + 1, 0)] = [M(2, 0)][M(l, 0)]− [M(1,−1)]m[M(l − 1, 0)]

for all 2 � l � d− 1 and d > 2. �

One can easily see that the Grothendieck ring of Hn,d is the group ring ZZn

generated by [M(1,−1)]. From the above theorem, we see that the Green ring
of Hn,d is much more complicated than the Grothendieck ring of Hn,d. Another
interesting factor is that the Green ring of Hn,d is commutative although Hn,d is not
quasitriangular. Thus the Green rings of the generalized Taft algebras Hn,d (here
n, d can be chosen) provide more examples that a non-quasitriangular Hopf algebra
possesses a commutative Green ring. However, we do have non-commutative Green
rings. For example, the Green ring of the small quantum group is not commutative
when p ≥ 3 (see [22]).

Now let A be the subalgebra of r(Hn,d) generated by [M(1,−m)] and [M(2, 0)].
Then by Lemma 3.1 we have

r(Hn,d) = A
⊕

A[M(1,−1)]
⊕

· · ·
⊕

A[M(1,−1)](m−1).

By Theorem 3.10 in [7] and Theorem 3.4, it is easy to see that A is isomorphic
to r(Hd), the Green ring of the Taft algebra Hd. Now the following theorem is
straightforward.

Theorem 3.5. As a Z-algebra, the Green ring r(Hn,d) is isomorphic to
r(Hd)[x]/(x

m − a), where a = [M(1,−m)]. �
Remark 3.6. For a finite-dimensional Hopf algebra H over a field K, the

antipode S induces an anti-ring endomorphism ∗ of the Green ring r(H), see
[23]. In the case where H is the generalized Taft algebra Hn,d, it is easy to see
that the anti-ring endomorphism ∗ is given by [M(1,−1)]∗ = [M(1,−1)]−1 and
[M(2, 0)]∗ = [M(1,−1)]−m[M(2, 0)]. It follows that the the anti-isomorphism ∗ is
an involution whereas S is not. This is because S2 is inner and V ∗∗ ∼= V for any
finite dimensional H-module, see [23].

4. Roots of the generalized Fibonacci polynomials

In order to determine all nilpotent elements and the structure of the Green rings
r(Hn,d) and R(Hn,d), we need to compute explicitly all roots of the generalized
Fibonacci polynomial Fd(y, z) associated to the generating relations of the Green
ring r(Hn,d).We shall set up in this section a general framework, which is of interest
in its own.

Let C[x] be the polynomial algebra over the complex number field C with
variable x. Fix 0 �= a ∈ C, the generalized Fibonacci polynomials Fs(a, x) are
defined recursively:

F0(a, x) = 0, F1(a, x) = 1, Fs+2(a, x) = xFs+1(a, x)− aFs(a, x)
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for s ≥ 0. Fs(a, x) has the following combinatorial formula as shown in Section 3:

Fs(a, x) =

[(s−1)/2]∑
i=0

(−1)i

[
s− 1− i

i

]
aixs−1−2i

for s ≥ 1. From these combinatorial expressions, it is easy to see that Fs(a, x) is a
polynomial in C[x] with degree s− 1.

Remark 4.1. The classical Fibonacci polynomials Fs(x) are defined by the
linear recurrence

Fs+2(x) = xFs+1(x) + Fs(x)

for s ≥ 0 and F0(x) = 0, F1(x) = 1, that is, Fs(x) = Fs(−1, x). These polynomials
are of great importance in the study of many subjects such as algebra, geometry,
and number theory. Obviously, these polynomials have a close relation with the
famous Fibonacci numbers. The Fibonacci polynomials are essentially Chebychev
polynomials, of which the roots can be computed. Thus Fs(x) has s − 1 distinct
roots given by (see, e.g., [19]) :

xj = 2i cos
πj

s
, 1 ≤ j ≤ s− 1. �

The following proposition give us the roots of generalized Fibonacci polynomial
Fs(a, x).

Proposition 4.2. Let s ≥ 2. Then the generalized Fibonacci polynomial Fs(a, x)
has s− 1 distinct complex roots given by

xj = 2
√
a cos

jπ

s
, 1 ≤ j ≤ s− 1.

Proof. Let x = by and b = −i
√
a ∈ C. Then

Fs(a, x) = bs−1Fs(−1, y) = bs−1Fs(y).

Note that the roots of Fs(y) are yj = 2i cos jπ
s , 1 ≤ j ≤ s− 1. It follows that the

roots of Fs(a, x) are

xj = 2
√
a cos

jπ

s
, 1 ≤ j ≤ s− 1. �

We need the following corollary in Section 5.

Corollary 4.3. For every 1 ≤ j ≤ s − 1, there exists a 2s-th root ηj �= 1 of
unity, such that

xj = 2
√
a cos

πj

s
=

√
a(ηj + η−1

j ).

Proof. For each j, 1 ≤ j ≤ s−1, let ηj = cos jπ
s + isin jπ

s = e
jπi
s . Then ηj �= 1

is a 2s-th root of unity and

2
√
a cos

πj

s
=

√
a(ηj + η−1

j ). �
To end this section, we solve the system of equations determined by the generat-

ing relations of the Green ring r(Hn,d). For 0 ≤ k ≤ n−1, let ωk = cos 2kπ
n +isin 2kπ

n
be an n-th root of unity. By Proposition 4.2, all distinct roots of the generalized
Fibonacci polynomial Fd(ω

m
k , x) are given by

σk,j = 2
√
ωm
k cos

πj

d
, 1 ≤ j ≤ d− 1.

We have the following lemma.
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Lemma 4.4. The following system of equations

(1)

{
yn = 1,

(z − ym − 1)Fd(y
m, z) = 0

has (d − 1)n + m distinct solutions in C , where m = n/d, and the solutions
are given by

(2)
T = {(ωk, 2) | 0 ≤ k ≤ n− 1, d|k}

∪{(ωk, σk,j) | 0 ≤ k ≤ n− 1, 1 ≤ j ≤ d− 1}.

Proof. By Proposition 4.2, it is not difficult to see that the solutions of the
system (1) are as follows:

{(ωk, 1 + ωm
k ), (ωk, σk,j) | 0 ≤ k ≤ n− 1, 1 ≤ j ≤ d− 1}.

Thanks to Corollary 4.3, the roots of the generalized Fibonacci polynomial Fd(ω
m
k , x)

can be written as

σk,j = 2
√
ωk

m cos
πj

d
=

√
ωm
k (ηj + η−1

j ),

where ηj = cos jπ
d + isin jπ

d is a 2d-th root of unity, and 1 ≤ j ≤ d − 1. Now we
divide k, 0 ≤ k ≤ n− 1, in two cases.
Case 1: d | k. In this case, for 1 ≤ j ≤ d− 1 we have σk,j �= 2. Thus, the following
set gives md distinct roots of the system (1):

{(ωk, 2), (ωk, σk,j) | 0 ≤ k ≤ n− 1, d|k, 1 ≤ j ≤ d− 1}.
Case 2: d � k. In this case, ηk =

√
ωm
k �= 1. So we have

σk,k =
√
ωm
k (ηk + η−1

k ) =
√
ωm
k (

√
ωm
k +

√
ω−m
k ) = 1 + ωm

k .

Since the generalized Fibonacci polynomial Fd(ω
m
k , z) possesses d−1 distinct roots

σk,j for each k, this implies that for each ωm
k �= 1, the system (1) has d− 1 distinct

roots {(ωk, σk,j) | 1 ≤ j ≤ d− 1}.
To summarize, we have in total

md+ (n−m)(d− 1) = nd− n+m

distinct solutions for the system (1) of equations. �

5. Nilpotent elements in r(Hn,d) and representation theory of R(Hn,d)

In this section, we determine all nilpotent elements in the Green ring r(Hn,d)
and classify the finite dimensional indecomposable representations over the Green
algebra R(Hn,d). We first list the irreducible representations of the Green algebra
R(Hn,d).

Theorem 5.1. Let d ≥ 2. Then the Green algebra R(Hn,d) has exactly nd −
n+m irreducible modules and each irreducible module is 1-dimensional.

Proof. By Theorem 3.4, we know that the Green algebra R(Hn,d) of Hn,d

is commutative and isomorphic to C[y, z]/I, where the ideal I is generated by the
following elements

yn − 1, (z − ym − 1)Fd(y
m, z).

Since C is an algebraically closed field of characteristic 0, the dimension of each
irreducible module is 1. By Lemma 4.4, we know that the system (1) has nd−n+m
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distinct solutions given by T in (2). For each solution (λ, μ) ∈ T, one can define an
irreducible R(Hn,d)-module Cλ,μ on the vector space C by y · 1 = λ, z · 1 = μ.

It is clear that (λ, μ) �→ Cλ,μ gives a one to one correspondence between the set
of solutions for the system (1) and the set of the isomorphism classes of irreducible
modules over R(Hn,d). �

Theorem 5.2. Let d ≥ 2. The set of nilpotent elements in r(Hn,d) is equal to

〈[M(d, i)]− [M(d, j)] | i ≡ j(mod m)〉,
that is, the Jacobson radical J(r(Hn,d)) of r(Hn,d) has a Z-basis

{[M(d, im+ j)]− [M(d, (i− 1)m+ j)] | 1 ≤ i ≤ d− 1, 0 ≤ j ≤ m− 1}.

Proof. By Proposition 2.4 we have the Hn,d-modules decomposition

M(d, 0)⊗M(d, 0) ∼=
d−1⊕
i=0

M(d,−im).

Thus, for i, j ∈ Zn, we get

M(d, i)⊗M(d, j) ∼= M(1, i)⊗M(1, j)⊗M(d, 0)⊗M(d, 0)

∼= M(1, i+ j)⊗
d−1⊕
s=0

M(d,−sm)

∼=
d−1⊕
s=0

M(d, i+ j − sm).

This implies that if i ≡ j(mod m), then we have

M(d, i)⊗M(d, i) ∼= M(d, j)⊗M(d, j) ∼=
d−1⊕
s=0

M(d, i+ j − sm) ∼= M(d, i)⊗M(d, j).

It follows that in the Green ring r(Hn,d)

[M(d, i)]2 = [M(d, j)]2 = [M(d, i)][M(d, j)] = [M(d, j)][M(d, i)]

for i ≡ j(mod m). Therefore, if i ≡ j(mod m), we have that

([M(d, i)]− [M(d, j)])2 = 0,

i.e., 0 �= [M(d, i)] − [M(d, j)] is an nilpotent element in r(Hn,d). Since Z is a
principal ideal integral domain and hence each submodule of free Z-module is free.
Note that the set

{[M(d, im+ j)]− [M(d, (i− 1)m+ j)] | 1 ≤ i ≤ d− 1, 0 ≤ j ≤ m− 1} ⊂ J(r(Hn,d))

is independent over Z. Hence the rank r of J(r(Hn,d)) as Z-module is large or equal
to (d− 1)m = n−m. On the other hand, it is easy to see from Theorem 5.1 that
the dimension dimC(J(R(Hn))) = n −m. But the fact that dimC(J(R(Hn))) ≥ r
is clear, and hence r = n−m. Thus, the set

{[M(d, im+ j)]− [M(d, (i− 1)m+ j)] | 1 ≤ i ≤ d− 1, 0 ≤ j ≤ m− 1}
forms a Z-basis of J(r(Hn,d)). �

As a consequence, we obtain the following:
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Corollary 5.3. The Jacobson radical J(r(Hn,d)) is a principal ideal generated
by the element ([M(1,m)]− 1)[M(d, 0)].

Proof. For 1 ≤ i ≤ d− 1, 0 ≤ j ≤ m− 1, by Lemma 3.1, we have

[M(d, im+ j)]− [M(d, (i− 1)m+ j)]

=([M(1, im+ j)]− [M(1, (i− 1)m+ j)])[M(d, 0)]

=[M(1, (i− 1)m+ j)]([M(1,m)− 1])[M(d, 0)].

Note that [M(1, (i− 1)m+ j)] is invertible in r(Hn,d). Hence, the assertion follows
from Theorem 5.2. �

In the sequel, we shall classify the indecomposable but non-irreducible finite
dimensional modules over the Green algebra R(Hn,d). For each k, 0 ≤ k ≤ n − 1,

such that d � k, write ωk for cos 2kπ
n + isin 2kπ

n , an n-th root of unity, and let V (k)
be a 2-dimensional C-vector space with a basis {v1, v2}. Define an action of the
Green algebra R(Hn,d) on V (k) as follows:

y · vi = ωkvi, z · v1 = (1 + ωm
k )v1, z · v2 = v1 + (1 + ωm

k )v2.

Then we have the following.

Lemma 5.4. Let 0 ≤ k, t ≤ n− 1, d � k, d � t. Then V (k) is an indecomposable
and reducible module of R(Hn,d). Moreover, V (k) ∼= V (t) if and only if k = t.

Proof. V (k) is indecomposable because 1+ωm
k is a double root of the equation

(z − ωm
k − 1)Fd(ω

m
k , z) = 0

by Lemma 4.4 and the action of z corresponds to the following Jordan block(
1 + ωm

k 1

0 1 + ωm
k

)
.

Observe that Cv1 is a submodule of V (k). Therefore, V (k) is reducible which is
direct from Theorem 5.1. The rest is straightforward. �

Theorem 5.5. Let V be a finite dimensional indecomposable and reducible
module of the Green algebra R(Hn,d). Then there exists k, 0 ≤ k ≤ n−1, and d � k,
such that V ∼= V (k).

Proof. Assume that V is a finite dimensional indecomposable module with
dimension s ≥ 2. Since the actions of y and z on V are commutative and yn = 1,
there exist a basis {v1, v2, · · · , vs} of V such that with respect to this basis, the
matrices corresponding to the actions of the generators y and z are respectively
Y = ωkEs, where ωk = cos 2kπ

n + isin 2kπ
n is an n−th root of unity for some 0 ≤

k ≤ n− 1 and Es is the s× s identity matrix, and the Jordan block:

Z =

⎛
⎜⎜⎜⎜⎜⎜⎝

λ 1

λ 1
. . .

. . .

λ 1

λ

⎞
⎟⎟⎟⎟⎟⎟⎠

s×s
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for some λ ∈ C. Notice that the matrix Z must satisfy the following matrix equation

(Z − (ωm
k + 1)Es)

d−1∏
j=1

(Z − σk,jEs) = 0,

where {σk,j | 1 ≤ j ≤ d− 1} is the set of roots of the generalized Fibonacci polyno-
mial Fd(ω

m
k , z), see Proposition 4.2.

Since for each j the matrix Z−σk,jEs is a Jordan block, Z−σk,jEs is invertible
if λ �= σk,j . Moreover, σk,j for 1 ≤ j ≤ d − 1 are distinct and σk,k = 1 + ωm

k for
d � k. It follows that ωm

k �= 1, s = 2 and λ = 1 + ωm
k . Therefore, we have that

V ∼= V (k) for some 0 ≤ k ≤ n− 1 such that d � k. �
Now we can describe the blocks of the Green algebra R(Hn,d).

Corollary 5.6. (1) The set {Cλ,μ, V (k) |(λ, μ) ∈ T, 0 ≤ k ≤ n−1, d � k}
forms a complete list of finite dimensional indecomposable representations
of R(Hn,d) with cardinal number nd. Moreover, Cλ,μ is projective if and
only if μ �= 1 + λm and V (k) is projective for each k.

(2) There are nd − 2(n − m) blocks of dimension 1 and n − m blocks of di-
mension 2. �

6. Comparing the Green ring and the projective class ring of Hn,d

In this section, we compare the structure of the Green ring r(Hn,d) and the
structure of the projective class ring p(Hn,d). Recall that the projective class ring
p(Hn,d) of Hn,d is the subalgebra of r(Hn,d) generated by the projective and
semisimple representations of Hn,d (see [9] for details). It is easy to see that
p(Hn,d) has a Z-basis {[M(1, i)], [M(d, i)] | 0 ≤ i ≤ n − 1}. In [9] Cibils deter-
mined the structure of the complexified projective class algebra P (Hd) of the Tafe

algebra Hd, which is isomorphic to C2 × C[ε]d−1, where C[ε] is the algebra of dual
numbers C[x]/(x2). Applying the same technique used on r(Hn,d) and R(Hn,d), we
can easily obtain the following result.

Proposition 6.1. Let p(Hn,d) be the projective class ring of Hn,d and assume
d ≥ 2. Then as a Z-algebra, p(Hn,d) is generated by [M(1,−1)] and [M(d, 0)], and
is isomorphic to Z[y, z]/I with I generated by the following elements:

yn − 1, z2 − (1 + ym + y2m + · · ·+ y(d−1)m)z.

Proof. Follows from Lemma 3.1. �
Since the nilpotent elements of r(Hn,d) stem from projective indecomposable

modules, we have that the Jacobson radical of r(Hn,d) is equal to the Jacobson
radical of p(Hn,d).

Corollary 6.2. The set of nilpotent elements of p(Hn,d) is equal to the set of
nilpotent elements of r(Hn,d). �

The following proposition summarizes the irreducible representations of the
complexified projective class algebra P (Hn,d) = C⊗Z p(Hn,d).

For each k, 0 ≤ k ≤ n− 1, let ωk = cos 2kπ
n + isin 2kπ

n be an n-th root of unity.
Let Ck = C for each k, and Ck,d = C for d | k, as vector spaces. Define the actions
of P (Hn,d) on Ck and Ck,d respectively as follows:

y · 1 = ωk, z · 1 = 0
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and

y · 1 = ωk, z · 1 = d

Then we have the following.

Proposition 6.3. (1) There are n + m non-isomorphic irreducible 1-
dimensional P (Hn,d)-representations

{Ck | 0 ≤ k ≤ n− 1} ∪ {Ck,d | 0 ≤ k ≤ n− 1, d | k}
(2) There are n−m non-isomorphic reducible indecomposable 2-dimensional

P (Hn,d)-representations Vk, where 0 ≤ k ≤ n−1, d � k, and Vk has a basis
{v1, v2} with the module structure given by

y · v1 = ωkv1, y · v2 = ωkv2, z · v1 = 0, z · v2 = v1.

Moreover, the set {Ck,Ck,d, Vi} forms a complete list of non-isomorphic inde-
composable P (Hn,d)-representations. �

We finish the paper with a remark on the stable Green ring of Hn,d. The
stable Green ring was introduced in the study of Green rings for the modular
representation theory of finite groups. It is a quotient of the Green ring modulo
all projective representations (see[4, 13]). In our situation, it is easy to see from
Theorem 3.4 that the stable Green ring St(Hn,d) of Hn,d is generated by [M(1,−1)]
and [M(2, 0)] and is isomorphic to Z[y, z]/J , where the ideal J is generated by the
following elements:

yn − 1, Fd(y
m, z).

By Theorem 5.2, the stable Green ring St(Hn,d) has no nilpotent elements, and
hence it is semiprimitive.
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